1
|
Miyauchi K, Kimura S, Akiyama N, Inoue K, Ishiguro K, Vu TS, Srisuknimit V, Koyama K, Hayashi G, Soma A, Nagao A, Shirouzu M, Okamoto A, Waldor MK, Suzuki T. A tRNA modification with aminovaleramide facilitates AUA decoding in protein synthesis. Nat Chem Biol 2025; 21:522-531. [PMID: 39300229 PMCID: PMC11938285 DOI: 10.1038/s41589-024-01726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Modified tRNA anticodons are critical for proper mRNA translation during protein synthesis. It is generally thought that almost all bacterial tRNAsIle use a modified cytidine-lysidine (L)-at the first position (34) of the anticodon to decipher the AUA codon as isoleucine (Ile). Here we report that tRNAsIle from plant organelles and a subset of bacteria contain a new cytidine derivative, designated 2-aminovaleramididine (ava2C). Like L34, ava2C34 governs both Ile-charging ability and AUA decoding. Cryo-electron microscopy structural analyses revealed molecular details of codon recognition by ava2C34 with a specific interaction between its terminal amide group and an mRNA residue 3'-adjacent to the AUA codon. These findings reveal the evolutionary variation of an essential tRNA modification and demonstrate the molecular basis of AUA decoding mediated by a unique tRNA modification.
Collapse
MESH Headings
- Protein Biosynthesis
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Cryoelectron Microscopy
- Codon
- Anticodon/chemistry
- Cytidine/analogs & derivatives
- Cytidine/chemistry
- Cytidine/metabolism
- Isoleucine/chemistry
- Isoleucine/metabolism
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/genetics
- Nucleic Acid Conformation
- Models, Molecular
Collapse
Affiliation(s)
- Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Naho Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kazuki Inoue
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Thien-Son Vu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Kenta Koyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Elahi R, Prigge ST. tRNA lysidinylation is essential for the minimal translation system in the Plasmodium falciparum apicoplast. EMBO Rep 2025:10.1038/s44319-025-00420-w. [PMID: 40113990 DOI: 10.1038/s44319-025-00420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
For decades, researchers have sought to define minimal translation systems to uncover fundamental principles of life and advance biotechnology. tRNAs, essential components of this machinery, decode mRNA codons into amino acids. The apicoplast of malaria parasites contains 25 tRNA isotypes in its organellar genome-the lowest number found in known translation systems. Efficient translation in such minimal systems depends heavily on post-transcriptional tRNA modifications. One such modification, lysidine at the wobble position (C34) of tRNACAU, distinguishes between methionine (AUG) and isoleucine (AUA) codons. tRNA isoleucine lysidine synthetase (TilS) produces lysidine, which is nearly ubiquitous in bacteria and essential for cellular viability. Here, we report a TilS ortholog (PfTilS) targeted to the apicoplast of Plasmodium falciparum. We demonstrate that PfTilS activity is essential for parasite survival and apicoplast function, likely due to its role in protein translation. This study is the first to characterize TilS in an endosymbiotic organelle, contributing to research on eukaryotic organelles and minimal translational systems. Moreover, the absence of lysidine in humans highlights a potential target for antimalarial strategies.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
3
|
Masuda I, McGuigan H, Maharjan S, Yamaki Y, Hou YM. Connecting tRNA Charging and Decoding through the Axis of Nucleotide Modifications at Position 37. J Mol Biol 2025:169095. [PMID: 40113011 DOI: 10.1016/j.jmb.2025.169095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Charging and decoding of tRNA are two steps in an elongation cycle of protein synthesis that embody the essence of the genetic code. In this embodiment, the amino acid charged to the 3'-end of a tRNA is delivered to the corresponding codon via the base pairing interaction between the anticodon of the tRNA and the codon in the ribosome decoding site. Previous work has shown that the nucleotide base at position 37 on the 3'-side of the anticodon can connect charging with decoding in one elongation cycle, providing an axis to coordinate these two steps in the making of a new peptide bond. However, as much of the previous work used tRNA transcripts as substrates, lacking any post-transcriptional modification, the role of the post-transcriptional modification at position 37 in this axis has remained unknown. Here we summarize recent work that has uncovered the modifications at position 37 that are important for both charging and decoding. We find that m1G37 and t6A37 are two such modifications. This review serves as a template for further discovery of tRNA modifications at position 37 that connect charging with decoding to provide the basis for better understanding of tRNA biology in human health and disease.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United Kingdom
| | - Henri McGuigan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United Kingdom
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United Kingdom
| | - Yuka Yamaki
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United Kingdom
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United Kingdom.
| |
Collapse
|
4
|
Böttger EC, Santhosh Kumar H, Steiner A, Sotirakis E, Thiam K, Isnard Petit P, Seebeck P, Wolfer DP, Shcherbakov D, Akbergenov R. Translational error in mice increases with ageing in an organ-dependent manner. Nat Commun 2025; 16:2069. [PMID: 40021653 PMCID: PMC11871305 DOI: 10.1038/s41467-025-57203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/10/2025] [Indexed: 03/03/2025] Open
Abstract
The accuracy of protein synthesis and its relation to ageing has been of long-standing interest. To study whether spontaneous changes in the rate of ribosomal error occur as a function of age, we first determined that stop-codon readthrough is a more sensitive read-out of mistranslation due to codon-anticodon mispairing than missense amino acid incorporation. Subsequently, we developed knock-in mice for in-vivo detection of stop-codon readthrough using a gain-of-function Kat2-TGA-Fluc readthrough reporter which combines fluorescent and sensitive bioluminescent imaging techniques. We followed expression of reporter proteins in-vivo over time, and assessed Kat2 and Fluc expression in tissue extracts and by whole organ ex-vivo imaging. Collectively, our results provide evidence for an organ-dependent, age-related increase in translational error: stop-codon readthrough increases with age in muscle (+ 75%, p < 0.001) and brain (+ 50%, p < 0.01), but not in liver (p > 0.5). Together with recent data demonstrating premature ageing in mice with an error-prone ram mutation, our findings highlight age-related decline of translation fidelity as a possible contributor to ageing.
Collapse
Affiliation(s)
- Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
| | | | - Adrian Steiner
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | | | | | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - David P Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland.
- Biozentrum University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Hwang SP, Liao H, Barondeau K, Han X, Herbert C, McConie H, Shekar A, Pestov DG, Limbach PA, Chang JT, Denicourt C. TRMT1L-catalyzed m 22G27 on tyrosine tRNA is required for efficient mRNA translation and cell survival under oxidative stress. Cell Rep 2025; 44:115167. [PMID: 39786998 PMCID: PMC11834103 DOI: 10.1016/j.celrep.2024.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/11/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with the component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing N2,N2-dimethylguanosine (m22G) solely at position 27 of tRNA-Tyr-GUA. Surprisingly, TRMT1L depletion also impaired the deposition of 3-(3-amino-3-carboxypropyl) uridine (acp3U) and dihydrouridine on tRNA-Tyr-GUA, Cys-GCA, and Ala-CGC. TRMT1L knockout cells have a marked decrease in tRNA-Tyr-GUA levels, coinciding with a reduction in global translation rates and hypersensitivity to oxidative stress. Our results establish TRMT1L as the elusive methyltransferase catalyzing the m22G27 modification on tRNA Tyr, resolving a long-standing gap of knowledge and highlighting its potential role in a tRNA modification circuit crucial for translation regulation and stress response.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Katherine Barondeau
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xinyi Han
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter McConie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Amirtha Shekar
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dimitri G Pestov
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Chen B, Yi F, Luo Z, Lu F, Liu H, Luo S, Gu Q, Zhou H. The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition. Nat Commun 2024; 15:10817. [PMID: 39738040 DOI: 10.1038/s41467-024-55183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNAIle from tRNAMet solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS). ScIleRS utilizes a eukaryotic/archaeal-specific arginine as the H-bond donor to recognize the common carbonyl group (H-bond acceptor) of various N34s of tRNAIle, which induces mutual structural adaptations between ScIleRS and tRNAIle to achieve a preferable editing state. C34 of unmodified tRNAIle(CAU) (behaves like tRNAMet) lacks a relevant H-bond acceptor, which disrupts key H-bonding interactions and structural adaptations and suspends the ScIleRS·tRNAIle(CAU) complex in an initial non-reactive state. This wobble nucleotide recognition-based structural adaptation provides mechanistic insights into selective tRNA aminoacylation by AARSs.
Collapse
Affiliation(s)
- Bingyi Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fang Yi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiteng Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feihu Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongwei Liu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, China
| | - Siting Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huihao Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Berrissou C, Cognat V, Koechler S, Bergdoll M, Duchêne AM, Drouard L. Extensive import of nucleus-encoded tRNAs into chloroplasts of the photosynthetic lycophyte, Selaginella kraussiana. Proc Natl Acad Sci U S A 2024; 121:e2412221121. [PMID: 39503889 PMCID: PMC11573648 DOI: 10.1073/pnas.2412221121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
Over the course of evolution, land plant mitochondrial genomes have lost many transfer RNA (tRNA) genes and the import of nucleus-encoded tRNAs is essential for mitochondrial protein synthesis. By contrast, plastidial genomes of photosynthetic land plants generally possess a complete set of tRNA genes and the existence of plastidial tRNA import remains a long-standing question. The early vascular plants of the Selaginella genus show an extensive loss of plastidial tRNA genes while retaining photosynthetic capacity, and represent an ideal model for answering this question. Using purification, northern blot hybridization, and high-throughput tRNA sequencing, a global analysis of total and plastidial tRNA populations was undertaken in Selaginella kraussiana. We confirmed the expression of all plastidial tRNA genes and, conversely, observed that nucleus-encoded tRNAs corresponding to these plastidial tRNAs were generally excluded from the chloroplasts. We then demonstrated a selective and differential plastidial import of around forty nucleus-encoded tRNA species, likely compensating for the insufficient coding capacity of plastidial-encoded tRNAs. In-depth analysis revealed differential import of tRNA isodecoders, leading to the identification of specific situations. This includes the expression and import of nucleus-encoded tRNAs expressed from plastidial or bacterial-like genes inserted into the nuclear genome. Overall, our results confirm the existence of molecular processes that enable tRNAs to be selectively imported not only into mitochondria, as previously described, but also into chloroplasts, when necessary.
Collapse
Affiliation(s)
- Christina Berrissou
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Sandrine Koechler
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Marc Bergdoll
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| |
Collapse
|
8
|
Hwang SP, Liao H, Barondeau K, Han X, Herbert C, McConie H, Shekar A, Pestov D, Limbach PA, Chang JT, Denicourt C. TRMT1L-catalyzed m 2 2G27 on tyrosine tRNA is required for efficient mRNA translation and cell survival under oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591343. [PMID: 39416027 PMCID: PMC11482778 DOI: 10.1101/2024.05.02.591343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and Nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA, as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing m2 2G solely at position 27 of tRNA-Tyr-GUA. Surprisingly, TRMT1L depletion also impaired the deposition of acp3U and dihydrouridine on tRNA-Tyr-GUA, Cys-GCA, and Ala-CGC. TRMT1L knockout cells have a marked decrease in tRNA-Tyr-GUA levels, coinciding with a reduction in global translation rates and hypersensitivity to oxidative stress. Our results establish TRMT1L as the elusive methyltransferase catalyzing the m2 2G27 modification on tRNA Tyr, resolving a long-standing gap of knowledge and highlighting its potential role in a tRNA modification circuit crucial for translation regulation and stress response.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Katherine Barondeau
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xinyi Han
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter McConie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Amirtha Shekar
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dimitri Pestov
- Department of Cell Biology and Neuroscience, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08028, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- Lead Contact
| |
Collapse
|
9
|
Jiang R, Yuan S, Zhou Y, Wei Y, Li F, Wang M, Chen B, Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024; 75:108417. [PMID: 39038691 DOI: 10.1016/j.biotechadv.2024.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Protein expression is a critical process in diverse biological systems. For Escherichia coli, a widely employed microbial host in industrial catalysis and healthcare, researchers often face significant challenges in constructing recombinant expression systems. To maximize the potential of E. coli expression systems, it is essential to address problems regarding the low or absent production of certain target proteins. This article presents viable solutions to the main factors posing challenges to heterologous protein expression in E. coli, which includes protein toxicity, the intrinsic influence of gene sequences, and mRNA structure. These strategies include specialized approaches for managing toxic protein expression, addressing issues related to mRNA structure and codon bias, advanced codon optimization methodologies that consider multiple factors, and emerging optimization techniques facilitated by big data and machine learning.
Collapse
Affiliation(s)
- Ruizhao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yilong Zhou
- Tanwei College, Tsinghua University, Beijing 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Beijing Evolyzer Co.,Ltd., 100176, China
| | | | - Bo Chen
- Beijing Evolyzer Co.,Ltd., 100176, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Elahi R, Prigge ST. tRNA lysidinylation is essential for the minimal translation system found in the apicoplast of Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612944. [PMID: 39314434 PMCID: PMC11419160 DOI: 10.1101/2024.09.13.612944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
For decades, researchers have sought to define minimal genomes to elucidate the fundamental principles of life and advance biotechnology. tRNAs, essential components of this machinery, decode mRNA codons into amino acids. The apicoplast of malaria parasites encodes 25 tRNA isotypes in its organellar genome - the lowest number found in known translation systems. Efficient translation in such minimal systems depends heavily on post-transcriptional tRNA modifications, especially at the wobble anticodon position. Lysidine modification at the wobble position (C34) of tRNACAU distinguishes between methionine (AUG) and isoleucine (AUA) codons, altering the amino acid delivered by this tRNA and ensuring accurate protein synthesis. Lysidine is formed by the enzyme tRNA isoleucine lysidine synthetase (TilS) and is nearly ubiquitous in bacteria and essential for cellular viability. We identified a TilS ortholog (PfTilS) located in the apicoplast of Plasmodium falciparum parasites. By complementing PfTilS with a bacterial ortholog, we demonstrated that the lysidinylation activity of PfTilS is critical for parasite survival and apicoplast maintenance, likely due to its impact on apicoplast protein translation. Our findings represent the first characterization of TilS in an endosymbiotic organelle, advancing eukaryotic organelle research and our understanding of minimal translational machinery. Due to the absence of lysidine modifications in humans, this research also exposes a potential vulnerability in malaria parasites that could be targeted by antimalarial strategies.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
12
|
Hoffmann A, Lorenz C, Fallmann J, Wolff P, Lechner A, Betat H, Mörl M, Stadler PF. Temperature-Dependent tRNA Modifications in Bacillales. Int J Mol Sci 2024; 25:8823. [PMID: 39201508 PMCID: PMC11354880 DOI: 10.3390/ijms25168823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Transfer RNA (tRNA) modifications are essential for the temperature adaptation of thermophilic and psychrophilic organisms as they control the rigidity and flexibility of transcripts. To further understand how specific tRNA modifications are adjusted to maintain functionality in response to temperature fluctuations, we investigated whether tRNA modifications represent an adaptation of bacteria to different growth temperatures (minimal, optimal, and maximal), focusing on closely related psychrophilic (P. halocryophilus and E. sibiricum), mesophilic (B. subtilis), and thermophilic (G. stearothermophilus) Bacillales. Utilizing an RNA sequencing approach combined with chemical pre-treatment of tRNA samples, we systematically profiled dihydrouridine (D), 4-thiouridine (s4U), 7-methyl-guanosine (m7G), and pseudouridine (Ψ) modifications at single-nucleotide resolution. Despite their close relationship, each bacterium exhibited a unique tRNA modification profile. Our findings revealed increased tRNA modifications in the thermophilic bacterium at its optimal growth temperature, particularly showing elevated levels of s4U8 and Ψ55 modifications compared to non-thermophilic bacteria, indicating a temperature-dependent regulation that may contribute to thermotolerance. Furthermore, we observed higher levels of D modifications in psychrophilic and mesophilic bacteria, indicating an adaptive strategy for cold environments by enhancing local flexibility in tRNAs. Our method demonstrated high effectiveness in identifying tRNA modifications compared to an established tool, highlighting its potential for precise tRNA profiling studies.
Collapse
Affiliation(s)
- Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Helmholtz Zentrum München of the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, D-04103 Leipzig, Germany;
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16–18, D-04107 Leipzig, Germany;
| | - Christian Lorenz
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany (H.B.); (M.M.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16–18, D-04107 Leipzig, Germany;
| | - Philippe Wolff
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France; (P.W.); (A.L.)
| | - Antony Lechner
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France; (P.W.); (A.L.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany (H.B.); (M.M.)
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany (H.B.); (M.M.)
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16–18, D-04107 Leipzig, Germany;
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions and Leipzig Research Center for Civilization Diseases, University Leipzig, Puschstrasse 4, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad National de Colombia, Bogotá CO-111321, Colombia
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
14
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
15
|
Masuda I, Hou YM. A tRNA modification pattern that facilitates interpretation of the genetic code. Front Microbiol 2024; 15:1415100. [PMID: 38933027 PMCID: PMC11199890 DOI: 10.3389/fmicb.2024.1415100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Interpretation of the genetic code from triplets of nucleotides to amino acids is fundamental to life. This interpretation is achieved by cellular tRNAs, each reading a triplet codon through its complementary anticodon (positions 34-36) while delivering the amino acid charged to its 3'-end. This amino acid is then incorporated into the growing polypeptide chain during protein synthesis on the ribosome. The quality and versatility of the interpretation is ensured not only by the codon-anticodon pairing, but also by the post-transcriptional modifications at positions 34 and 37 of each tRNA, corresponding to the wobble nucleotide at the first position of the anticodon and the nucleotide on the 3'-side of the anticodon, respectively. How each codon is read by the matching anticodon, and which modifications are required, cannot be readily predicted from the codon-anticodon pairing alone. Here we provide an easily accessible modification pattern that is integrated into the genetic code table. We focus on the Gram-negative bacterium Escherichia coli as a model, which is one of the few organisms whose entire set of tRNA modifications and modification genes is identified and mapped. This work provides an important reference tool that will facilitate research in protein synthesis, which is at the core of the cellular life.
Collapse
|
16
|
Rajan KS, Aryal S, Hiregange DG, Bashan A, Madmoni H, Olami M, Doniger T, Cohen-Chalamish S, Pescher P, Taoka M, Nobe Y, Fedorenko A, Bose T, Zimermann E, Prina E, Aharon-Hefetz N, Pilpel Y, Isobe T, Unger R, Späth GF, Yonath A, Michaeli S. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification. Cell Rep 2024; 43:114203. [PMID: 38722744 PMCID: PMC11156624 DOI: 10.1016/j.celrep.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel; The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mika Olami
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Pascal Pescher
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Ella Zimermann
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Eric Prina
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Ada Yonath
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
17
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Lee BST, Sinha A, Dedon P, Preiser P. Charting new territory: The Plasmodium falciparum tRNA modification landscape. Biomed J 2024; 48:100745. [PMID: 38734409 PMCID: PMC12002611 DOI: 10.1016/j.bj.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonucleoside modifications comprising the epitranscriptome are present in all organisms and all forms of RNA, including mRNA, rRNA and tRNA, the three major RNA components of the translational machinery. Of these, tRNA is the most heavily modified and the tRNA epitranscriptome has the greatest diversity of modifications. In addition to their roles in tRNA biogenesis, quality control, structure, cleavage, and codon recognition, tRNA modifications have been shown to regulate gene expression post-transcriptionally in prokaryotes and eukaryotes, including humans. However, studies investigating the impact of tRNA modifications on gene expression in the malaria parasite Plasmodium falciparum are currently scarce. Current evidence shows that the parasite has a limited capacity for transcriptional control, which points to a heavier reliance on strategies for posttranscriptional regulation, such as tRNA epitranscriptome reprogramming. This review addresses the known functions of tRNA modifications in the biology of P. falciparum while highlighting the potential therapeutic opportunities and the value of using P. falciparum as a model organism for addressing several open questions related to the tRNA epitranscriptome.
Collapse
Affiliation(s)
- Benjamin Sian Teck Lee
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Peter Preiser
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
19
|
Akiyama N, Ishiguro K, Yokoyama T, Miyauchi K, Nagao A, Shirouzu M, Suzuki T. Structural insights into the decoding capability of isoleucine tRNAs with lysidine and agmatidine. Nat Struct Mol Biol 2024; 31:817-825. [PMID: 38538915 DOI: 10.1038/s41594-024-01238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/31/2024] [Indexed: 05/21/2024]
Abstract
The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.
Collapse
MESH Headings
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Ile/genetics
- Cryoelectron Microscopy
- Anticodon/chemistry
- Anticodon/metabolism
- Ribosomes/metabolism
- Ribosomes/chemistry
- Nucleic Acid Conformation
- Models, Molecular
- Codon/genetics
- Lysine/metabolism
- Lysine/chemistry
- Lysine/analogs & derivatives
- Cytidine/analogs & derivatives
- Cytidine/chemistry
- Cytidine/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Protein Biosynthesis
- Pyrimidine Nucleosides
Collapse
Affiliation(s)
- Naho Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Smith TJ, Giles RN, Koutmou KS. Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation. Semin Cell Dev Biol 2024; 154:105-113. [PMID: 37385829 PMCID: PMC11849751 DOI: 10.1016/j.semcdb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
RNAs are central to protein synthesis, with ribosomal RNA, transfer RNAs and messenger RNAs comprising the core components of the translation machinery. In addition to the four canonical bases (uracil, cytosine, adenine, and guanine) these RNAs contain an array of enzymatically incorporated chemical modifications. Transfer RNAs (tRNAs) are responsible for ferrying amino acids to the ribosome, and are among the most abundant and highly modified RNAs in the cell across all domains of life. On average, tRNA molecules contain 13 post-transcriptionally modified nucleosides that stabilize their structure and enhance function. There is an extensive chemical diversity of tRNA modifications, with over 90 distinct varieties of modifications reported within tRNA sequences. Some modifications are crucial for tRNAs to adopt their L-shaped tertiary structure, while others promote tRNA interactions with components of the protein synthesis machinery. In particular, modifications in the anticodon stem-loop (ASL), located near the site of tRNA:mRNA interaction, can play key roles in ensuring protein homeostasis and accurate translation. There is an abundance of evidence indicating the importance of ASL modifications for cellular health, and in vitro biochemical and biophysical studies suggest that individual ASL modifications can differentially influence discrete steps in the translation pathway. This review examines the molecular level consequences of tRNA ASL modifications in mRNA codon recognition and reading frame maintenance to ensure the rapid and accurate translation of proteins.
Collapse
Affiliation(s)
- Tyler J Smith
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Rachel N Giles
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Choi H, Covert MW. Whole-cell modeling of E. coli confirms that in vitro tRNA aminoacylation measurements are insufficient to support cell growth and predicts a positive feedback mechanism regulating arginine biosynthesis. Nucleic Acids Res 2023; 51:5911-5930. [PMID: 37224536 PMCID: PMC10325894 DOI: 10.1093/nar/gkad435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
In Escherichia coli, inconsistencies between in vitro tRNA aminoacylation measurements and in vivo protein synthesis demands were postulated almost 40 years ago, but have proven difficult to confirm. Whole-cell modeling can test whether a cell behaves in a physiologically correct manner when parameterized with in vitro measurements by providing a holistic representation of cellular processes in vivo. Here, a mechanistic model of tRNA aminoacylation, codon-based polypeptide elongation, and N-terminal methionine cleavage was incorporated into a developing whole-cell model of E. coli. Subsequent analysis confirmed the insufficiency of aminoacyl-tRNA synthetase kinetic measurements for cellular proteome maintenance, and estimated aminoacyl-tRNA synthetase kcats that were on average 7.6-fold higher. Simulating cell growth with perturbed kcats demonstrated the global impact of these in vitro measurements on cellular phenotypes. For example, an insufficient kcat for HisRS caused protein synthesis to be less robust to the natural variability in aminoacyl-tRNA synthetase expression in single cells. More surprisingly, insufficient ArgRS activity led to catastrophic impacts on arginine biosynthesis due to underexpressed N-acetylglutamate synthase, where translation depends on repeated CGG codons. Overall, the expanded E. coli model deepens understanding of how translation operates in an in vivo context.
Collapse
Affiliation(s)
- Heejo Choi
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Adaptation to Overflow Metabolism by Mutations That Impair tRNA Modification in Experimentally Evolved Bacteria. mBio 2023; 14:e0028723. [PMID: 36853041 PMCID: PMC10128029 DOI: 10.1128/mbio.00287-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
When microbes grow in foreign nutritional environments, selection may enrich mutations in unexpected pathways connecting growth and homeostasis. An evolution experiment designed to identify beneficial mutations in Burkholderia cenocepacia captured six independent nonsynonymous substitutions in the essential gene tilS, which modifies tRNAIle2 by adding a lysine to the anticodon for faithful AUA recognition. Further, five additional mutants acquired mutations in tRNAIle2, which strongly suggests that disrupting the TilS-tRNAIle2 interaction was subject to strong positive selection. Mutated TilS incurred greatly reduced enzymatic function but retained capacity for tRNAIle2 binding. However, both mutant sets outcompeted the wild type by decreasing the lag phase duration by ~3.5 h. We hypothesized that lysine demand could underlie fitness in the experimental conditions. As predicted, supplemental lysine complemented the ancestral fitness deficit, but so did the additions of several other amino acids. Mutant fitness advantages were also specific to rapid growth on galactose using oxidative overflow metabolism that generates redox imbalance, not resources favoring more balanced metabolism. Remarkably, 13 tilS mutations also evolved in the long-term evolution experiment with Escherichia coli, including four fixed mutations. These results suggest that TilS or unknown binding partners contribute to improved growth under conditions of rapid sugar oxidation at the predicted expense of translational accuracy. IMPORTANCE There is growing evidence that the fundamental components of protein translation can play multiple roles in maintaining cellular homeostasis. Enzymes that interact with transfer RNAs not only ensure faithful decoding of the genetic code but also help signal the metabolic state by reacting to imbalances in essential building blocks like free amino acids and cofactors. Here, we present evidence of a secondary function for the essential enzyme TilS, whose only prior known function is to modify tRNAIle(CAU) to ensure accurate translation. Multiple nonsynonymous substitutions in tilS, as well as its cognate tRNA, were selected in evolution experiments favoring rapid, redox-imbalanced growth. These mutations alone decreased lag phase and created a competitive advantage, but at the expense of most primary enzyme function. These results imply that TilS interacts with other factors related to the timing of exponential growth and that tRNA-modifying enzymes may serve multiple roles in monitoring metabolic health.
Collapse
|
23
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
24
|
van der Gulik PT, Egas M, Kraaijeveld K, Dombrowski N, Groot AT, Spang A, Hoff WD, Gallie J. On distinguishing between canonical tRNA genes and tRNA gene fragments in prokaryotes. RNA Biol 2023; 20:48-58. [PMID: 36727270 PMCID: PMC9897764 DOI: 10.1080/15476286.2023.2172370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.
Collapse
Affiliation(s)
- Peter T.S. van der Gulik
- Department of Algorithms and Complexity, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands,CONTACT Peter T.S. van der Gulik Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Leiden Centre for Applied Bioscience, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Astrid T. Groot
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Spang
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA,Wouter Hoff
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany,Jenna Gallie
| |
Collapse
|
25
|
Mangano K, Marks J, Klepacki D, Saha CK, Atkinson GC, Vázquez-Laslop N, Mankin AS. Context-based sensing of orthosomycin antibiotics by the translating ribosome. Nat Chem Biol 2022; 18:1277-1286. [PMID: 36138139 PMCID: PMC11472246 DOI: 10.1038/s41589-022-01138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Orthosomycin antibiotics inhibit protein synthesis by binding to the large ribosomal subunit in the tRNA accommodation corridor, which is traversed by incoming aminoacyl-tRNAs. Structural and biochemical studies suggested that orthosomycins block accommodation of any aminoacyl-tRNAs in the ribosomal A-site. However, the mode of action of orthosomycins in vivo remained unknown. Here, by carrying out genome-wide analysis of antibiotic action in bacterial cells, we discovered that orthosomycins primarily inhibit the ribosomes engaged in translation of specific amino acid sequences. Our results reveal that the predominant sites of orthosomycin-induced translation arrest are defined by the nature of the incoming aminoacyl-tRNA and likely by the identity of the two C-terminal amino acid residues of the nascent protein. We show that nature exploits this antibiotic-sensing mechanism for directing programmed ribosome stalling within the regulatory open reading frame, which may control expression of an orthosomycin-resistance gene in a variety of bacterial species.
Collapse
Affiliation(s)
- Kyle Mangano
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Amgen Research, Thousand Oaks, CA, USA
| | - James Marks
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Chayan Kumar Saha
- Department of Experimental Medicine, Lund University, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Gemma C Atkinson
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Son B, Patterson-West J, Thompson CO, Iben JR, Hinton DM. Setting Up a Better Infection: Overexpression of the Early Bacteriophage T4 Gene motB During Infection Results in a More Favorable tRNA Pool for the Phage. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:141-152. [PMID: 36196375 PMCID: PMC9527043 DOI: 10.1089/phage.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND : Although many bacteriophage T4 early genes are nonessential with unknown functions, they are believed to aid in the takeover of the Escherichia coli host. Understanding the functions of these genes could be helpful to develop novel antibacterial strategies. MotB, encoded by a previously uncharacterized T4 early gene, is a DNA-binding protein that compacts the host nucleoid and alters host gene expression. METHODS : MotB structure was predicted by AlphaFold 2. RNA-seq and mass spectrometry (MS) analyses were performed to determine RNA and protein changes when motB was overexpressed in E. coli BL21(DE3) ±5 min T4 infection. RESULTS : MotB structure is predicted to be a two-domain protein with N-terminal Kyprides-Onzonis-Woese and C-terminal oligonucleotide/oligosaccharide-fold domains. In E. coli B, motB overexpression during infection does not affect T4 RNAs, but affects the expression of host genes, including the downregulation of 21 of the 84 chargeable host tRNAs. Many of these tRNAs are used less frequently by T4 or have a counterpart encoded within the T4 genome. The MS analyses indicate that the levels of multiple T4 proteins are changed by motB overexpression. CONCLUSION : Our results suggest that in this E. coli B host, motB is involved in establishing a more favorable tRNA pool for the phage during infection.
Collapse
Affiliation(s)
- Bokyung Son
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Patterson-West
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine O. Thompson
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Uesugi G, Fukuba Y, Yamamoto T, Inaba N, Furukawa H, Yoshizawa S, Tomikawa C, Takai K. Recognition of tRNA
Ile
with a UAU anticodon by isoleucyl‐tRNA synthetase in lactic acid bacteria. FEBS J 2022; 289:4888-4900. [DOI: 10.1111/febs.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Gakuto Uesugi
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University Matsuyama Japan
| | - Yuho Fukuba
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University Matsuyama Japan
| | - Takayuki Yamamoto
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University Matsuyama Japan
| | - Nozomi Inaba
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University Matsuyama Japan
| | - Haruyuki Furukawa
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University Matsuyama Japan
| | - Satoko Yoshizawa
- Université Paris‐Saclay ENS Paris‐Saclay CNRS UMR8113 Laboratory of Biology and Applied Pharmacology (LBPA) Gif‐sur‐Yvette France
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University Matsuyama Japan
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology Graduate School of Science and Engineering Ehime University Matsuyama Japan
| |
Collapse
|
28
|
Tasak M, Phizicky EM. Initiator tRNA lacking 1-methyladenosine is targeted by the rapid tRNA decay pathway in evolutionarily distant yeast species. PLoS Genet 2022; 18:e1010215. [PMID: 35901126 PMCID: PMC9362929 DOI: 10.1371/journal.pgen.1010215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5’-3’ exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3’-5’ exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.
Collapse
Affiliation(s)
- Monika Tasak
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
30
|
Peng R, Santos HJ, Nozaki T. Transfer RNA-Derived Small RNAs in the Pathogenesis of Parasitic Protozoa. Genes (Basel) 2022; 13:286. [PMID: 35205331 PMCID: PMC8872473 DOI: 10.3390/genes13020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are newly identified non-coding small RNAs that have recently attracted attention due to their functional significance in both prokaryotes and eukaryotes. tsRNAs originated from the cleavage of precursor or mature tRNAs by specific nucleases. According to the start and end sites, tsRNAs can be broadly divided into tRNA halves (31-40 nucleotides) and tRNA-derived fragments (tRFs, 14-30 nucleotides). tsRNAs have been reported in multiple organisms to be involved in gene expression regulation, protein synthesis, and signal transduction. As a novel regulator, tsRNAs have also been identified in various protozoan parasites. The conserved biogenesis of tsRNAs in early-branching eukaryotes strongly suggests the universality of this machinery, which requires future research on their shared and potentially disparate biological functions. Here, we reviewed the recent studies of tsRNAs in several representative protozoan parasites including their biogenesis and the roles in parasite biology and intercellular communication. Furthermore, we discussed the remaining questions and potential future works for tsRNAs in this group of organisms.
Collapse
Affiliation(s)
| | | | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.P.); (H.J.S.)
| |
Collapse
|
31
|
Fages-Lartaud M, Hohmann-Marriott MF. Overview of tRNA Modifications in Chloroplasts. Microorganisms 2022; 10:226. [PMID: 35208681 PMCID: PMC8877259 DOI: 10.3390/microorganisms10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022] Open
Abstract
The chloroplast is a promising platform for biotechnological innovation due to its compact translation machinery. Nucleotide modifications within a minimal set of tRNAs modulate codon-anticodon interactions that are crucial for translation efficiency. However, a comprehensive assessment of these modifications does not presently exist in chloroplasts. Here, we synthesize all available information concerning tRNA modifications in the chloroplast and assign translation efficiency for each modified anticodon-codon pair. In addition, we perform a bioinformatics analysis that links enzymes to tRNA modifications and aminoacylation in the chloroplast of Chlamydomonas reinhardtii. This work provides the first comprehensive analysis of codon and anticodon interactions of chloroplasts and its implication for translation efficiency.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
- United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
32
|
DeBenedictis EA, Carver GD, Chung CZ, Söll D, Badran AH. Multiplex suppression of four quadruplet codons via tRNA directed evolution. Nat Commun 2021; 12:5706. [PMID: 34588441 PMCID: PMC8481270 DOI: 10.1038/s41467-021-25948-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Genetic code expansion technologies supplement the natural codon repertoire with assignable variants in vivo, but are often limited by heterologous translational components and low suppression efficiencies. Here, we explore engineered Escherichia coli tRNAs supporting quadruplet codon translation by first developing a library-cross-library selection to nominate quadruplet codon-anticodon pairs. We extend our findings using a phage-assisted continuous evolution strategy for quadruplet-decoding tRNA evolution (qtRNA-PACE) that improved quadruplet codon translation efficiencies up to 80-fold. Evolved qtRNAs appear to maintain codon-anticodon base pairing, are typically aminoacylated by their cognate tRNA synthetases, and enable processive translation of adjacent quadruplet codons. Using these components, we showcase the multiplexed decoding of up to four unique quadruplet codons by their corresponding qtRNAs in a single reporter. Cumulatively, our findings highlight how E. coli tRNAs can be engineered, evolved, and combined to decode quadruplet codons, portending future developments towards an exclusively quadruplet codon translation system.
Collapse
Affiliation(s)
- Erika A DeBenedictis
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Christina Z Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Ahmed H Badran
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
33
|
Valadon C, Namy O. The Importance of the Epi-Transcriptome in Translation Fidelity. Noncoding RNA 2021; 7:51. [PMID: 34564313 PMCID: PMC8482273 DOI: 10.3390/ncrna7030051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.
Collapse
Affiliation(s)
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
34
|
The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375-392. [PMID: 33658722 DOI: 10.1038/s41580-021-00342-0] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.
Collapse
|
35
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
36
|
Kimura S. Distinct evolutionary pathways for the synthesis and function of tRNA modifications. Brief Funct Genomics 2021; 20:125-134. [PMID: 33454776 DOI: 10.1093/bfgp/elaa027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Transfer ribonucleicacids (RNAs) (tRNAs) are essential adaptor molecules for translation. The functions and stability of tRNAs are modulated by their post-transcriptional modifications (tRNA modifications). Each domain of life has a specific set of modifications that include ones shared in multiple domains and ones specific to a domain. In some cases, different tRNA modifications across domains have similar functions to each other. Recent studies uncovered that distinct enzymes synthesize the same modification in different organisms, suggesting that such modifications are acquired through independent evolution. In this short review, I outline the mechanisms by which various modifications contribute to tRNA function, including modulation of decoding and tRNA stability, using recent findings. I also focus on modifications that are synthesized by distinct biosynthetic pathways.
Collapse
Affiliation(s)
- Satoshi Kimura
- Dr Matthew Waldor's lab at the Brigham and Women's Hospital. He completed his PhD and early postdoc work in Dr Tsutomu Suzuki's lab at the University of Tokyo
| |
Collapse
|
37
|
Funk HM, Zhao R, Thomas M, Spigelmyer SM, Sebree NJ, Bales RO, Burchett JB, Mamaril JB, Limbach PA, Guy MP. Identification of the enzymes responsible for m2,2G and acp3U formation on cytosolic tRNA from insects and plants. PLoS One 2020; 15:e0242737. [PMID: 33253256 PMCID: PMC7704012 DOI: 10.1371/journal.pone.0242737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional modification of tRNA is critical for efficient protein translation and proper cell growth, and defects in tRNA modifications are often associated with human disease. Although most of the enzymes required for eukaryotic tRNA modifications are known, many of these enzymes have not been identified and characterized in several model multicellular eukaryotes. Here, we present two related approaches to identify the genes required for tRNA modifications in multicellular organisms using primer extension assays with fluorescent oligonucleotides. To demonstrate the utility of these approaches we first use expression of exogenous genes in yeast to experimentally identify two TRM1 orthologs capable of forming N2,N2-dimethylguanosine (m2,2G) on residue 26 of cytosolic tRNA in the model plant Arabidopsis thaliana. We also show that a predicted catalytic aspartate residue is required for function in each of the proteins. We next use RNA interference in cultured Drosophila melanogaster cells to identify the gene required for m2,2G26 formation on cytosolic tRNA. Additionally, using these approaches we experimentally identify D. melanogaster gene CG10050 as the corresponding ortholog of human DTWD2, which encodes the protein required for formation of 3-amino-3-propylcarboxyuridine (acp3U) on residue 20a of cytosolic tRNA. We further show that A. thaliana gene AT2G41750 can form acp3U20b on an A. thaliana tRNA expressed in yeast cells, and that the aspartate and tryptophan residues in the DXTW motif of this protein are required for modification activity. These results demonstrate that these approaches can be used to study tRNA modification enzymes.
Collapse
Affiliation(s)
- Holly M. Funk
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Maggie Thomas
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Sarah M. Spigelmyer
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Nichlas J. Sebree
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Regan O. Bales
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Jamison B. Burchett
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Justen B. Mamaril
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Michael P. Guy
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| |
Collapse
|
38
|
Accornero F, Ross RL, Alfonzo JD. From canonical to modified nucleotides: balancing translation and metabolism. Crit Rev Biochem Mol Biol 2020; 55:525-540. [PMID: 32933330 DOI: 10.1080/10409238.2020.1818685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Every type of nucleic acid in cells may undergo some kind of post-replicative or post-transcriptional chemical modification. Recent evidence has highlighted their importance in biology and their chemical complexity. In the following pages, we will describe new discoveries of modifications, with a focus on tRNA and mRNA. We will highlight current challenges and advances in modification detection and we will discuss how changes in nucleotide post-transcriptional modifications may affect cell homeostasis leading to malfunction. Although, RNA modifications prevail in all forms of life, the present review will focus on eukaryotic systems, where the great degree of intracellular compartmentalization provides barriers and filters for the level at which a given RNA is modified and will of course affect its fate and function. Additionally, although we will mention rRNA modification and modifications of the mRNA 5'-CAP structure, this will only be discussed in passing, as many substantive reviews have been written on these subjects. Here we will not spend much time describing all the possible modifications that have been observed; truly a daunting task. For reference, Bujnicki and coworkers have created MODOMICS, a useful repository for all types of modifications and their associated enzymes. Instead we will discuss a few examples, which illustrate our arguments on the connection of modifications, metabolism and ultimately translation. The fact remains, a full understanding of the long reach of nucleic acid modifications in cells requires both a global and targeted study of unprecedented scale, which at the moment may well be limited only by technology.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Robert L Ross
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Di Giulio M. LUCA as well as the ancestors of archaea, bacteria and eukaryotes were progenotes: Inference from the distribution and diversity of the reading mechanism of the AUA and AUG codons in the domains of life. Biosystems 2020; 198:104239. [PMID: 32919036 DOI: 10.1016/j.biosystems.2020.104239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022]
Abstract
Here I use the rationale assuming that if of a certain trait that exerts its function in some aspect of the genetic code or, more generally, in protein synthesis, it is possible to identify the evolutionary stage of its origin then it would imply that this evolutionary moment would be characterized by a high translational noise because this trait would originate for the first time during that evolutionary stage. That is to say, if this trait had a non-marginal role in the realization of the genetic code, or in protein synthesis, then the origin of this trait would imply that, more generally, it was the genetic code itself that was still originating. But if the genetic code were still originating - at that precise evolutionary stage - then this would imply that there was a high translational noise which in turn would imply that it was in the presence of a protocell, i.e. a progenote that was by definition characterized by high translational noise. I apply this rationale to the mechanism of modification of the base 34 of the anticodon of an isoleucine tRNA that leads to the reading of AUA and AUG codons in archaea, bacteria and eukaryotes. The phylogenetic distribution of this mechanism in these phyletic lineages indicates that this mechanism originated only after the evolutionary stage of the last universal common ancestor (LUCA), namely, during the formation of cellular domains, i.e., at the stage of ancestors of these main phyletic lineages. Furthermore, given that this mechanism of modification of the base 34 of the anticodon of the isoleucine tRNA would result to emerge at a stage of the origin of the genetic code - despite in its terminal phases - then all this would imply that the ancestors of bacteria, archaea and eukaryotes were progenotes. If so, all the more so, the LUCA would also be a progenote since it preceded these ancestors temporally. A consequence of all this reasoning might be that since these three ancestors were of the progenotes that were different from each other, if at least one of them had evolved into at least two real and different cells - basically different from each other - then the number of cellular domains would not be three but it would be greater than three.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena (L'Aquila), Italy; Institute of Biosciences and Bioresources, National Research Council, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
40
|
De Zoysa T, Phizicky EM. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. PLoS Genet 2020; 16:e1008893. [PMID: 32841241 PMCID: PMC7473580 DOI: 10.1371/journal.pgen.1008893] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity. A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ and other single modification mutants that triggered RTD. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
41
|
Edwards AM, Addo MA, Dos Santos PC. Extracurricular Functions of tRNA Modifications in Microorganisms. Genes (Basel) 2020; 11:genes11080907. [PMID: 32784710 PMCID: PMC7466049 DOI: 10.3390/genes11080907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/29/2022] Open
Abstract
Transfer RNAs (tRNAs) are essential adaptors that mediate translation of the genetic code. These molecules undergo a variety of post-transcriptional modifications, which expand their chemical reactivity while influencing their structure, stability, and functionality. Chemical modifications to tRNA ensure translational competency and promote cellular viability. Hence, the placement and prevalence of tRNA modifications affects the efficiency of aminoacyl tRNA synthetase (aaRS) reactions, interactions with the ribosome, and transient pairing with messenger RNA (mRNA). The synthesis and abundance of tRNA modifications respond directly and indirectly to a range of environmental and nutritional factors involved in the maintenance of metabolic homeostasis. The dynamic landscape of the tRNA epitranscriptome suggests a role for tRNA modifications as markers of cellular status and regulators of translational capacity. This review discusses the non-canonical roles that tRNA modifications play in central metabolic processes and how their levels are modulated in response to a range of cellular demands.
Collapse
|
42
|
Abstract
The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key players in an increasing number of other cellular processes, with far-reaching consequences in health and disease. The biochemical versatility of the synthetases has also proven pivotal in efforts to expand the genetic code, further emphasizing the wide-ranging roles of the aminoacyl-tRNA synthetase family in synthetic and natural biology.
Collapse
Affiliation(s)
- Miguel Angel Rubio Gomez
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
43
|
The phylogenetic distribution of the glutaminyl-tRNA synthetase and Glu-tRNA Gln amidotransferase in the fundamental lineages would imply that the ancestor of archaea, that of eukaryotes and LUCA were progenotes. Biosystems 2020; 196:104174. [PMID: 32535177 DOI: 10.1016/j.biosystems.2020.104174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
The function of the glutaminyl-tRNA synthetase and Glu-tRNAGln amidotransferase might be related to the origin of the genetic code because, for example, glutaminyl-tRNA synthetase catalyses the fundamental reaction that makes the genetic code. If the evolutionary stage of the origin of these two enzymes could be unambiguously identified, then the genetic code should still have been originating at that particular evolutionary stage because the fundamental reaction that makes the code itself was still evidently evolving. This would result in that particular evolutionary moment being attributed to the evolutionary stage of the progenote because it would have a relationship between the genotype and the phenotype not yet fully realized because the genetic code was precisely still originating. I then analyzed the distribution of the glutaminyl-tRNA synthetase and Glu-tRNAGln aminodotrasferase in the main phyletic lineages. Since in some cases the origin of these two enzymes can be related to the evolutionary stages of ancestors of archaea and eukaryotes, this would indicate these ancestors as progenotes because at that evolutionary moment the genetic code was evidently still evolving, thus realizing the definition of progenote. The conclusion that the ancestor of archaea and that of eukaryotes were progenotes would imply that even the last universal common ancestor (LUCA) was a progenote because it appeared, on the tree of life, temporally before these ancestors.
Collapse
|
44
|
Cai G, Scofield SR. Mitochondrial genome sequence of Phytophthora sansomeana and comparative analysis of Phytophthora mitochondrial genomes. PLoS One 2020; 15:e0231296. [PMID: 32407378 PMCID: PMC7224479 DOI: 10.1371/journal.pone.0231296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Phytophthora sansomeana infects soybean and causes root rot. It was recently separated from the species complex P. megasperma sensu lato. In this study, we sequenced and annotated its complete mitochondrial genome and compared it to that of nine other Phytophthora species. The genome was assembled into a circular molecule of 39,618 bp with a 22.03% G+C content. Forty-two protein coding genes, 25 tRNA genes and two rRNA genes were annotated in this genome. The protein coding genes include 14 genes in the respiratory complexes, four ATP synthase genes, 16 ribosomal proteins genes, a tatC translocase gene, six conserved ORFs and a unique orf402. The tRNA genes encode tRNAs for 19 amino acids. Comparison among mitochondrial genomes of 10 Phytophthora species revealed three inversions, each covering multiple genes. These genomes were conserved in gene content with few exceptions. A 3' truncated atp9 gene was found in P. nicotianae. All 10 Phytophthora species, as well as other oomycetes and stramenopiles, lacked tRNA genes for threonine in their mitochondria. Phylogenomic analysis using the mitochondrial genomes supported or enhanced previous findings of the phylogeny of Phytophthora spp.
Collapse
Affiliation(s)
- Guohong Cai
- Crop Production and Pest Control Research Unit, Agricultural Research Service, USDA, and College of Agriculture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| | - Steven R. Scofield
- Crop Production and Pest Control Research Unit, Agricultural Research Service, USDA, and College of Agriculture, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
45
|
Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization. J Bacteriol 2020; 202:JB.00748-19. [PMID: 32041795 DOI: 10.1128/jb.00748-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensis IMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.
Collapse
|
46
|
Affiliation(s)
- Milda Nainyte
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstr. 5–13 DE-81377 Munich
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstr. 5–13 DE-81377 Munich
| |
Collapse
|
47
|
Wilcox B, Osterman I, Serebryakova M, Lukyanov D, Komarova E, Gollan B, Morozova N, Wolf YI, Makarova KS, Helaine S, Sergiev P, Dubiley S, Borukhov S, Severinov K. Escherichia coli ItaT is a type II toxin that inhibits translation by acetylating isoleucyl-tRNAIle. Nucleic Acids Res 2019; 46:7873-7885. [PMID: 29931259 PMCID: PMC6125619 DOI: 10.1093/nar/gky560] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/07/2018] [Indexed: 11/14/2022] Open
Abstract
Prokaryotic toxin-antitoxin (TA) modules are highly abundant and are involved in stress response and drug tolerance. The most common type II TA modules consist of two interacting proteins. The type II toxins are diverse enzymes targeting various essential intracellular targets. The antitoxin binds to cognate toxin and inhibits its function. Recently, TA modules whose toxins are GNAT-family acetyltransferases were described. For two such systems, the target of acetylation was shown to be aminoacyl-tRNA: the TacT toxin targets aminoacylated elongator tRNAs, while AtaT targets the amino acid moiety of initiating tRNAMet. We show that the itaRT gene pair from Escherichia coli encodes a TA module with acetyltransferase toxin ItaT that specifically and exclusively acetylates Ile-tRNAIle thereby blocking translation and inhibiting cell growth. ItaT forms a tight complex with the ItaR antitoxin, which represses the transcription of itaRT operon. A comprehensive bioinformatics survey of GNAT acetyltransferases reveals that enzymes encoded by validated or putative TA modules are common and form a distinct branch of the GNAT family tree. We speculate that further functional analysis of such TA modules will result in identification of enzymes capable of specifically targeting many, perhaps all, aminoacyl tRNAs.
Collapse
Affiliation(s)
- Brendan Wilcox
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Ilya Osterman
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Marina Serebryakova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Dmitry Lukyanov
- Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Ekaterina Komarova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Bridget Gollan
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Natalia Morozova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Peter the Great St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Petr Sergiev
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Svetlana Dubiley
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine at Stratford, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow 119334, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
48
|
Antoine L, Wolff P, Westhof E, Romby P, Marzi S. Mapping post-transcriptional modifications in Staphylococcus aureus tRNAs by nanoLC/MSMS. Biochimie 2019; 164:60-69. [PMID: 31295507 DOI: 10.1016/j.biochi.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
RNA modifications are involved in numerous biological processes. These modifications are constitutive or modulated in response to adaptive processes and can impact RNA base-pairing formation, protein recognition, RNA structure and stability. tRNAs are the most abundantly modified RNA molecules. Analysis of the roles of their modifications in response to stress, environmental changes, and infections caused by pathogens, has fueled new research areas. Nevertheless, the detection of modified nucleotides in RNAs is still a challenging task. We present here a reliable method to identify and localize tRNA modifications, which was applied to the human pathogenic bacteria, Staphyloccocus aureus. The method is based on a separation of tRNA species on a two-dimensional polyacrylamide gel electrophoresis followed by nano liquid chromatography-mass spectrometry. We provided a list of modifications mapped on 25 out of the 40 tRNA species (one isoacceptor for each amino acid). This method can be easily used to monitor the dynamics of tRNA modifications in S. aureus in response to stress adaptation and during infection of the host, a relatively unexplored field.
Collapse
Affiliation(s)
- Laura Antoine
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France; Plateforme Protéomique Strasbourg Esplanade, CNRS, FR1589, F-67000, Strasbourg, France
| | - Eric Westhof
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de L'ARN, UPR 9002, F-67000, Strasbourg, France.
| |
Collapse
|
49
|
Nilsson EM, Alexander RW. Bacterial wobble modifications of NNA-decoding tRNAs. IUBMB Life 2019; 71:1158-1166. [PMID: 31283100 DOI: 10.1002/iub.2120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 01/18/2023]
Abstract
Nucleotides of transfer RNAs (tRNAs) are highly modified, particularly at the anticodon. Bacterial tRNAs that read A-ending codons are especially notable. The U34 nucleotide canonically present in these tRNAs is modified by a wide range of complex chemical constituents. An additional two A-ending codons are not read by U34-containing tRNAs but are accommodated by either inosine or lysidine at the wobble position (I34 or L34). The structural basis for many N34 modifications in both tRNA aminoacylation and ribosome decoding has been elucidated, and evolutionary conservation of modifying enzymes is also becoming clearer. Here we present a brief review of the structure, function, and conservation of wobble modifications in tRNAs that translate A-ending codons. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1158-1166, 2019.
Collapse
Affiliation(s)
- Emil M Nilsson
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| | - Rebecca W Alexander
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
50
|
Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal? Int J Mol Sci 2019; 20:ijms20081929. [PMID: 31010123 PMCID: PMC6515474 DOI: 10.3390/ijms20081929] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
In the past two decades, tRNA molecules and their corresponding aminoacyl-tRNA synthetases (aaRS) have been extensively used in synthetic biology to genetically encode post-translationally modified and unnatural amino acids. In this review, we briefly examine one fundamental requirement for the successful application of tRNA/aaRS pairs for expanding the genetic code. This requirement is known as “orthogonality”—the ability of a tRNA and its corresponding aaRS to interact exclusively with each other and avoid cross-reactions with additional types of tRNAs and aaRSs in a given organism.
Collapse
|