1
|
Bussmann B, Ayagama T, Liu K, Li D, Herring N. Bayliss Starling Prize Lecture 2023: Neuropeptide-Y being 'unsympathetic' to the broken hearted. J Physiol 2025; 603:1841-1864. [PMID: 38847435 PMCID: PMC11955873 DOI: 10.1113/jp285370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 04/01/2025] Open
Abstract
William Bayliss and Ernest Starling are not only famous as pioneers in cardiovascular physiology, but also responsible for the discovery of the first hormone (from the Greek 'excite or arouse'), the intestinal signalling molecule and neuropeptide secretin in 1902. Our research group focuses on neuropeptides and neuromodulators that influence cardiovascular autonomic control as potential biomarkers in disease and tractable targets for therapeutic intervention. Acute myocardial infarction (AMI) and chronic heart failure (CHF) result in high levels of cardiac sympathetic stimulation, which is a poor prognostic indicator. Although beta-blockers improve mortality in these conditions by preventing the action of the neurotransmitter noradrenaline, a substantial residual risk remains. Recently, we have identified the sympathetic co-transmitter neuropeptide-Y (NPY) as being released during AMI, leading to larger infarcts and life-threatening arrhythmia in both animal models and patients. Here, we discuss recently published data demonstrating that peripheral venous NPY levels are associated with heart failure hospitalisation and mortality after AMI, and all cause cardiovascular mortality in CHF, even when adjusting for known risk factors (including brain natriuretic peptide). We have investigated the mechanistic basis for these observations in human and rat stellate ganglia and cardiac tissue, manipulating NPY neurochemistry at the same time as using state-of-the-art imaging techniques, to establish the receptor pathways responsible for NPY signalling. We propose NPY as a new mechanistic biomarker in AMI and CHF patients and aim to determine whether specific NPY receptor blockers can prevent arrhythmia and attenuate the development of heart failure.
Collapse
Affiliation(s)
- Benjamin Bussmann
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Thamali Ayagama
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Nakamori T, Komatsuzawa I, Iwata U, Makita A, Kagiya G, Fujitani K, Kitaguchi T, Tsuboi T, Ohki-Hamazaki H. The role of osteocrin in memory formation during early learning, as revealed by visual imprinting in chicks. iScience 2024; 27:111195. [PMID: 39600306 PMCID: PMC11591550 DOI: 10.1016/j.isci.2024.111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/17/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Osteocrin (OSTN) is structurally associated with natriuretic peptides. Its expression in the brain, which has only been recognized in anthropoid primates, is induced by sensory stimuli and regulates the activity-dependent dendritic growth of neurons. However, details on the signaling mechanisms of OSTN and its function in plastic changes during learning and memory have yet to be elucidated. We found that OSTN was expressed in the cortical region of the chicken brain. The injection of chicken OSTN (chOSTN) after imprinting training prolonged the memory retention for the imprinting stimulus. Conversely, a reduction in the OSTN receptor chNPR3 inhibited memory retention. The memory retention was positively correlated with a high level of chOSTN and fewer neurites in the cortical region. In conclusion, OSTN-NPR3 signaling promoted memory consolidation and/or retention by regulating neurite branching during childhood.
Collapse
Affiliation(s)
- Tomoharu Nakamori
- College of Liberal Arts and Sciences, Kitasato University, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Izumi Komatsuzawa
- College of Liberal Arts and Sciences, Kitasato University, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Umi Iwata
- College of Liberal Arts and Sciences, Kitasato University, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ami Makita
- College of Liberal Arts and Sciences, Kitasato University, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Go Kagiya
- School of Allied Health Sciences, and Regenerative Medicine and Cell Design Research Facility, Kitasato University, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Kazuko Fujitani
- Gene Analysis Center, School of Medicine, Kitasato University, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiroko Ohki-Hamazaki
- College of Liberal Arts and Sciences, Kitasato University, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
3
|
Kaupp UB, Kendall O. David Garbers' Contributions to Chemotaxis Signaling in Sperm. Mol Reprod Dev 2024; 91:e23774. [PMID: 39445585 DOI: 10.1002/mrd.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
This review focuses on the contribution of the late David Garbers to chemotaxis of sperm, in particular from sea urchin. We will describe his discovery of chemotactic peptides and their cognate receptors, his discovery of a sperm-specific, unique Na+/H+ exchanger that represents a chimera between a solute carrier (SLC) and an ion channel. Finally, we will discuss his contributions to the understanding of cAMP signaling in sperm via soluble adenylyl cyclase (sAC) and its control by Ca2+ ions.
Collapse
Affiliation(s)
- U B Kaupp
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Olivia Kendall
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Potter LR. Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors. Endocr Rev 2024; 45:755-771. [PMID: 38713083 PMCID: PMC11405504 DOI: 10.1210/endrev/bnae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Kwiatkowski M, Wong A, Fiderewicz A, Gehring C, Jaworski K. A SNF1-related protein kinase regulatory subunit functions as a molecular tuner. PHYTOCHEMISTRY 2024; 224:114146. [PMID: 38763313 DOI: 10.1016/j.phytochem.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Metabolic processes in prokaryotic and eukaryotic organisms are often modulated by kinases which are in turn, dependent on Ca2+ and the cyclic mononucleotides cAMP and cGMP. It has been established that some proteins have both kinase and cyclase activities and that active cyclases can be embedded within the kinase domains. Here, we identified phosphodiesterase (PDE) sites, enzymes that hydrolyse cAMP and cGMP, to AMP and GMP, respectively, in some of these proteins in addition to their kinase/cyclase twin-architecture. As an example, we tested the Arabidopsis thaliana KINγ, a subunit of the SnRK2 kinase, to demonstrate that all three enzymatic centres, adenylate cyclase (AC), guanylate cyclase (GC) and PDE, are catalytically active, capable of generating and hydrolysing cAMP and cGMP. These data imply that the signal output of the KINγ subunit modulates SnRK2, consequently affecting the downstream kinome. Finally, we propose a model where a single protein subunit, KINγ, is capable of regulating cyclic mononucleotide homeostasis, thereby tuning stimulus specific signal output.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland.
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, Zhejiang Province, China; Research Center for Integrative Plant Sciences, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, Zhejiang Province, China.
| | - Adam Fiderewicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy.
| | - Krzysztof Jaworski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland.
| |
Collapse
|
6
|
Ogawa H, Kodama M. Structural insight into hormone recognition by the natriuretic peptide receptor-A. FEBS J 2024; 291:2273-2286. [PMID: 38437249 DOI: 10.1111/febs.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/21/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
Atrial natriuretic peptide (ANP) plays a central role in the regulation of blood pressure and volume. ANP activities are mediated by natriuretic peptide receptor-A (NPR-A), a single-pass transmembrane receptor harboring intrinsic guanylate cyclase activity. This study investigated the mechanism underlying NPR-A-dependent hormone recognition through the determination of the crystal structures of the NPR-A extracellular hormone-binding domain complexed with full-length ANP, truncated mutants of ANP, and dendroaspis natriuretic peptide (DNP) isolated from the venom of the green Mamba snake, Dendroaspis angusticeps. The bound peptides possessed pseudo-two-fold symmetry, despite the lack of two-fold symmetry in the primary sequences, which enabled the tight coupling of the peptide to the receptor, and evidently contributes to guanylyl cyclase activity. The binding of DNP to the NPR-A was essentially identical to that of ANP; however, the affinity of DNP for NPR-A was higher than that of ANP owing to the additional interactions between distinctive sequences in the DNP and NPR-A. Consequently, our findings provide valuable insights that can be applied to the development of novel agonists for the treatment of various human diseases.
Collapse
Affiliation(s)
- Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Masami Kodama
- Department of Bio-informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| |
Collapse
|
7
|
Du H, Wang R, Dai X, Yin Z, Liu Y, Su L, Chen H, Zhao S, Zheng L, Dong X, Zhai Y. Effect of Guanylate Cyclase-22-like on Ovarian Development of Orius nagaii (Hemiptera: Anthocoridae). INSECTS 2024; 15:110. [PMID: 38392529 PMCID: PMC10889437 DOI: 10.3390/insects15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
This study identified and characterized the gene encoding recep tor-type guanylate cyclase-22-like (GCY-22; OnGCY) from the pirate bug Orius nagaii, an important biological control agent. The full-length cDNA of the GCY of O. nagaii was obtained by rapid amplification of cDNA ends (RACE); it had a total length of 4888 base pairs (bp), of which the open reading frame (ORF) was 3750 bp, encoding a polypeptide of 1249 amino acid residues. The physicochemical properties of OnGCY were predicted and analyzed by using relevant ExPASy software, revealing a molecular formula of C6502H10122N1698O1869S57, molecular weight of ~143,811.57 kDa, isoelectric point of 6.55, and fat index of 90.04. The resulting protein was also shown to have a signal peptide, two transmembrane regions, and a conserved tyrosine kinase (tyrkc). Silencing OnGCY by RNA interference significantly inhibited ovarian development and decreased fertility in female O. nagaii in the treated versus the control group. Additionally, OnGCY silencing significantly decreased the expression levels of other GCY and Vg genes. Thus, these results clarify the structure and biological function of OnGCY, which has an important role in insect fecundity. The results also provide a reference for agricultural pest control and future large-scale breeding of biological control agents.
Collapse
Affiliation(s)
- Huiling Du
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaolin Dong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
8
|
Ensho T, Hino J, Ueda Y, Miyazato M, Iwakura H. Vascular endothelial cell-specific overexpression of CNP did not improve liver fibrosis in HFFCD-induced NASH, but did improve renal lesions. Peptides 2024; 172:171146. [PMID: 38157939 DOI: 10.1016/j.peptides.2023.171146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Mice with endothelial-cell-specific overexpression of C-type natriuretic peptide (E-CNP Tg mice) were shown to be protected against hepatic fibrosis and inflammation induced by high fat diet (HFD) feeding, with improved insulin sensitivity and attenuated weight gain. A recently developed high-fat, high-fructose, high-cholesterol diet (HFFCD) is considered to be a superior model to HFD, owing to the resemblance to human non-alcoholic steatohepatitis (NASH). In this study, we therefore aimed to reveal whether these previous findings with E-CNP Tg mice on HFD can be observed in a newly developed NASH model. Patients with NASH have been suggested to be at higher risk of developing chronic kidney disease, so we also assessed the kidney histology of these mice. After 8 months of HFFCD feeding, the livers of E-CNP Tg mice and controls showed progressive fibrosis, which resembled the features of human NASH. However, no significant differences were observed in NAFLD activity scores between E-CNP Tg mice and controls, although there was a tendency for improvement in E-CNP Tg mice. The reduced levels of GCB, a receptor for CNP, may have weakened the action of CNP in the current model. In the kidneys, HFFCD showed glomerular hypertrophy and tubular atrophy in the cortical region, which were suppressed in E-CNP Tg mice. The present study did not prove the therapeutic effect of CNP on NASH in the HFFCD model, but provided evidence of its potential beneficial effects on NASH-associated renal damage.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
9
|
Turek I, Freihat L, Vyas J, Wheeler J, Muleya V, Manallack DT, Gehring C, Irving H. The discovery of hidden guanylate cyclases (GCs) in the Homo sapiens proteome. Comput Struct Biotechnol J 2023; 21:5523-5529. [PMID: 38022692 PMCID: PMC10665587 DOI: 10.1016/j.csbj.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Recent discoveries have established functional guanylate cyclase (GC) catalytic centers with low activity within kinase domains in plants. These crypto GCs generate guanosine 3',5'-cyclic monophosphate (cGMP) essential for both intramolecular and downstream signaling. Here, we have set out to search for such crypto GCs moonlighting in kinases in the H. sapiens proteome and identified 18 candidates, including the neurotropic receptor tyrosine kinase 1 (NTRK1). NTRK1 shows a domain architecture much like plant receptor kinases such as the phytosulfokine receptor, where a functional GC essential for downstream signaling is embedded within a kinase domain. In vitro characterization of the NTRK1 shows that the embedded NTRK1 GC is functional with a marked preference for Mn2+ over Mg2+. This therefore points to hitherto unsuspected roles of cGMP in intramolecular and downstream signaling of NTRK1 and the role of cGMP in NTRK1-dependent growth and neoplasia.
Collapse
Affiliation(s)
- Ilona Turek
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3550, Australia
| | - Lubna Freihat
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jignesh Vyas
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Janet Wheeler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio building, Bundoora, VIC 3086, Australia
| | - Victor Muleya
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David T. Manallack
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Chris Gehring
- Department of Chemistry, Biochemistry and Biotechnology, University of Perugia, 06121 Perugia, Italy
| | - Helen Irving
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3550, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
11
|
Liu D, Ceddia RP, Zhang W, Shi F, Fang H, Collins S. Discovery of another mechanism for the inhibition of particulate guanylyl cyclases by the natriuretic peptide clearance receptor. Proc Natl Acad Sci U S A 2023; 120:e2307882120. [PMID: 37399424 PMCID: PMC10334801 DOI: 10.1073/pnas.2307882120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
The cardiac natriuretic peptides (NPs) control pivotal physiological actions such as fluid and electrolyte balance, cardiovascular homeostasis, and adipose tissue metabolism by activating their receptor enzymes [natriuretic peptide receptor-A (NPRA) and natriuretic peptide receptor-B (NPRB)]. These receptors are homodimers that generate intracellular cyclic guanosine monophosphate (cGMP). The natriuretic peptide receptor-C (NPRC), nicknamed the clearance receptor, lacks a guanylyl cyclase domain; instead, it can bind the NPs to internalize and degrade them. The conventional paradigm is that by competing for and internalizing NPs, NPRC blunts the ability of NPs to signal through NPRA and NPRB. Here we show another previously unknown mechanism by which NPRC can interfere with the cGMP signaling function of the NP receptors. By forming a heterodimer with monomeric NPRA or NPRB, NPRC can prevent the formation of a functional guanylyl cyclase domain and thereby suppress cGMP production in a cell-autonomous manner.
Collapse
Affiliation(s)
- Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, NashvilleTN37232
| | - Ryan P. Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, NashvilleTN37232
| | - Wei Zhang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, NashvilleTN37232
| | - Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, NashvilleTN37232
| | - Huafeng Fang
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL32827
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, NashvilleTN37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN37232
| |
Collapse
|
12
|
Tsutsui H, Albert NM, Coats AJS, Anker SD, Bayes-Genis A, Butler J, Chioncel O, Defilippi CR, Drazner MH, Felker GM, Filippatos G, Fiuzat M, Ide T, Januzzi JL, Kinugawa K, Kuwahara K, Matsue Y, Mentz RJ, Metra M, Pandey A, Rosano G, Saito Y, Sakata Y, Sato N, Seferovic PM, Teerlink J, Yamamoto K, Yoshimura M. Natriuretic peptides: role in the diagnosis and management of heart failure: a scientific statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. Eur J Heart Fail 2023; 25:616-631. [PMID: 37098791 DOI: 10.1002/ejhf.2848] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/27/2023] Open
Abstract
Natriuretic peptides, brain (B-type) natriuretic peptide (BNP) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) are globally and most often used for the diagnosis of heart failure (HF). In addition, they can have an important complementary role in the risk stratification of its prognosis. Since the development of angiotensin receptor-neprilysin inhibitors (ARNIs), the use of natriuretic peptides as therapeutic agents has grown in importance. The present document is the result of the Trilateral Cooperation Project among the Heart Failure Association of the European Society of Cardiology, the Heart Failure Society of America and the Japanese Heart Failure Society. It represents an expert consensus that aims to provide a comprehensive, up-to-date perspective on natriuretic peptides in the diagnosis and management of HF, with a focus on the following main issues: (1) history and basic research: discovery, production and cardiovascular protection; (2) diagnostic and prognostic biomarkers: acute HF, chronic HF, inclusion/endpoint in clinical trials, and natriuretic peptide-guided therapy; (3) therapeutic use: nesiritide (BNP), carperitide (ANP) and ARNIs; and (4) gaps in knowledge and future directions.
Collapse
Affiliation(s)
- Hiroyuki Tsutsui
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nancy M Albert
- Research and Innovation-Nursing Institute, Kaufman Center for Heart Failure-Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew J S Coats
- University of Warwick, Warwick, UK, and Monash University, Clayton, Australia
| | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies; German Centre for Cardiovascular Research partner site Berlin, Germany; Charite Universit atsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Germans Trias i Pujol, CIBERCV, Badalona, Spain
- Universitat Autonoma Barcelona, Spain
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- University of Mississippi, Jackson, MS, USA
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases Prof. C.C. Iliescu Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | | | - Mark H Drazner
- Clinical Chief of Cardiology, University of Texas Southwestern Medical Center, Department of Internal Medicine/Division of Cardiology, Dallas, TX, USA
| | - G Michael Felker
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Gerasimos Filippatos
- School of Medicine of National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Mona Fiuzat
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Tomomi Ide
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - James L Januzzi
- Massachusetts General Hospital, Harvard Medical School and Baim Institute for Clinical Research, Boston, MA, USA
| | - Koichiro Kinugawa
- Second Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuya Matsue
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Robert J Mentz
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Marco Metra
- Cardiology. ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ambarish Pandey
- Division of Cardiology, Department of Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Giuseppe Rosano
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
- Nara Prefecture Seiwa Medical Center, Sango, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Sato
- Department of Cardiovascular Medicine, Kawaguchi Cardiovascular and Respiratory Hospital, Kawaguchi, Japan
| | - Petar M Seferovic
- University of Belgrade Faculty of Medicine, Serbian Academy of Sciences and Arts, and Heart Failure Center, Belgrade University Medical Center, Belgrade, Serbia
| | - John Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Tsutsui H, Albert NM, Coats AJS, Anker SD, Bayes-Genis A, Butler J, Chioncel O, Defilippi CR, Drazner MH, Felker GM, Filippatos G, Fiuzat M, Ide T, Januzzi JL, Kinugawa K, Kuwahara K, Matsue Y, Mentz RJ, Metra M, Pandey A, Rosano G, Saito Y, Sakata Y, Sato N, Seferovic PM, Teerlink J, Yamamoto K, Yoshimura M. Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement From the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. J Card Fail 2023; 29:787-804. [PMID: 37117140 DOI: 10.1016/j.cardfail.2023.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/30/2023]
Abstract
Natriuretic peptides, brain (B-type) natriuretic peptide (BNP) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) are globally and most often used for the diagnosis of heart failure (HF). In addition, they can have an important complementary role in the risk stratification of its prognosis. Since the development of angiotensin receptor neprilysin inhibitors (ARNIs), the use of natriuretic peptides as therapeutic agents has grown in importance. The present document is the result of the Trilateral Cooperation Project among the Heart Failure Association of the European Society of Cardiology, the Heart Failure Society of America and the Japanese Heart Failure Society. It represents an expert consensus that aims to provide a comprehensive, up-to-date perspective on natriuretic peptides in the diagnosis and management of HF, with a focus on the following main issues: (1) history and basic research: discovery, production and cardiovascular protection; (2) diagnostic and prognostic biomarkers: acute HF, chronic HF, inclusion/endpoint in clinical trials, and natriuretic peptides-guided therapy; (3) therapeutic use: nesiritide (BNP), carperitide (ANP) and ARNIs; and (4) gaps in knowledge and future directions.
Collapse
Affiliation(s)
- Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Nancy M Albert
- Research and Innovation-Nursing Institute, Kaufman Center for Heart Failure-Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew J S Coats
- University of Warwick, Warwick, UK, and Monash University, Clayton, Australia
| | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies; German Centre for Cardiovascular Research partner site Berlin, Germany; Charité Universitätsmedizin Berlin, Germany; Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Germans Trias i Pujol, CIBERCV, Badalona, Spain; Universitat Autonoma Barcelona, Spain
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA; University of Mississippi, Jackson, Mississippi, USA
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases Prof. C.C. Iliescu Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | | | - Mark H Drazner
- Clinical Chief of Cardiology, University of Texas Southwestern Medical Center, Department of Internal Medicine/Division of Cardiology, Dallas, Texas, USA
| | - G Michael Felker
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gerasimos Filippatos
- School of Medicine of National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Mona Fiuzat
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - James L Januzzi
- Massachusetts General Hospital, Harvard Medical School and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | - Koichiro Kinugawa
- Second Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuya Matsue
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Robert J Mentz
- Duke Clinical Research Institute, Durham, Nortth Carolina, USA; Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Marco Metra
- Cardiology. ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ambarish Pandey
- Division of Cardiology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Giuseppe Rosano
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan; Nara Prefecture Seiwa Medical Center, Sango, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Sato
- Department of Cardiovascular Medicine, Kawaguchi Cardiovascular and Respiratory Hospital, Kawaguchi, Japan
| | - Petar M Seferovic
- University of Belgrade Faculty of Medicine, Serbian Academy of Sciences and Arts, and Heart Failure Center, Belgrade University Medical Center, Belgrade, Serbia
| | - John Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Duda T, Sharma RK. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Front Mol Neurosci 2023; 15:1022771. [PMID: 36683846 PMCID: PMC9849996 DOI: 10.3389/fnmol.2022.1022771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.
Collapse
|
15
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
16
|
Li Y, Anand-Srivastava MB. Downregulation of natriuretic peptide receptor-C in vascular smooth muscle cells from spontaneously hypertensive rats contributes to vascular remodeling. Peptides 2022; 158:170894. [PMID: 36243172 DOI: 10.1016/j.peptides.2022.170894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/27/2022]
Abstract
Hypertension is associated with vascular remodeling due to hyperproliferation and hypertrophy of vascular smooth muscle cells (VSMC). VSMC from several animal models of hypertensive rats including spontaneously hypertensive rats (SHR) exhibit hyperproliferation, hypertrophy and decreased expression of natriuretic peptide receptor-C (NPR-C). In addition, angiotensin II (Ang II) and growth factors that promotes vascular remodeling have also been shown to attenuate the expression of NPR-C in VSMC. The present study investigates the relationship between the decreased expression of NPR-C and vascular remodeling in SHR and the underlying molecular mechanisms. Aortic VSMC from SHR and their control Wistar Kyoto (WKY) rats were transfected with cDNA of NPR-C and used for the vascular remodeling studies. Transfection of VSMC with cDNA of NPR-C augmented the expression of NPR-C in both VSMC from SHR and WKY rats and resulted in the attenuation of hyperproliferation and hypertrophy of VSMC from SHR. The overexpression of NPR-C also resulted in the attenuation of increased expression of epidermal growth factor receptor (EGFR), platelet derived growth factor receptor (PDGFR), cell cycle proteins, cyclin D1, cyclin-dependent kinase 4 (Cdk4), phospho-retinoblastoma (pRb) and Giα-2 proteins, all these signaling molecules implicated in the hyperproliferation/hypertrophy of VSMC from SHR. In summary, these results indicate that augmenting the decreased expression of NPR-C in VSMC from SHR improves vascular remodeling by attenuating hyperproliferation and hypertrophy through decreasing the overexpression of several signaling molecules. It may be suggested that NPR-C plays a vasculoprotective role and that the downregulation of NPR-C contributes to the vascular remodeling in SHR.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
17
|
Tokudome T, Otani K. Molecular Mechanism of Blood Pressure Regulation through the Atrial Natriuretic Peptide. BIOLOGY 2022; 11:biology11091351. [PMID: 36138830 PMCID: PMC9495342 DOI: 10.3390/biology11091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is a cardiac peptide hormone that was identified by Kangawa and Matsuo in 1984. In Japan, ANP has been used as an intravenous drug for the treatment of acute heart failure since 1995. Because ANP has a hypotensive effect, it is important to avoid excessive lowering of blood pressure when ANP is used. Recently, a compound that inhibits neutral endopeptidase, the enzyme that degrades ANP, has been developed (angiotensin receptor-neprilysin inhibitor (ARNI)). ARNI has been approved worldwide for the treatment of chronic heart failure and has been authorized in Japan as an antihypertensive drug. However, it is not understood exactly how ANP exerts its hypotensive effect. In this review, we discuss the molecular mechanism of the blood pressure-regulating effects of ANP, focusing on our recent findings. Abstract Natriuretic peptides, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), have cardioprotective effects and regulate blood pressure in mammals. ANP and BNP are hormones secreted from the heart into the bloodstream in response to increased preload and afterload. Both hormones act through natriuretic peptide receptor 1 (NPR1). In contrast, CNP acts through natriuretic peptide receptor 2 (NPR2) and was found to be produced by the vascular endothelium, chondrocytes, and cardiac fibroblasts. Based on its relatively low plasma concentration compared with ANP and BNP, CNP is thought to function as both an autocrine and a paracrine factor in the vasculature, bone, and heart. The cytoplasmic domains of both NPR1 and NPR2 display a guanylate cyclase activity that catalyzes the formation of cyclic GMP. NPR3 lacks this guanylate cyclase activity and is reportedly coupled to Gi-dependent signaling. Recently, we reported that the continuous infusion of the peptide osteocrin, an endogenous ligand of NPR3 secreted by bone and muscle cells, lowered blood pressure in wild-type mice, suggesting that endogenous natriuretic peptides play major roles in the regulation of blood pressure. Neprilysin is a neutral endopeptidase that degrades several vasoactive peptides, including natriuretic peptides. The increased worldwide clinical use of the angiotensin receptor-neprilysin inhibitor for the treatment of chronic heart failure has brought renewed attention to the physiological effects of natriuretic peptides. In this review, we provide an overview of the discovery of ANP and its translational research. We also highlight our recent findings on the blood pressure regulatory effects of ANP, focusing on its molecular mechanisms.
Collapse
Affiliation(s)
- Takeshi Tokudome
- Department of Pathophysiology of Heart Failure and Therapeutics, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
- Correspondence: ; Tel.: +81-6-6170-1069
| | - Kentaro Otani
- Center for Regenerative Medicine, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
| |
Collapse
|
18
|
Pleiotropic Roles of Atrial Natriuretic Peptide in Anti-Inflammation and Anti-Cancer Activity. Cancers (Basel) 2022; 14:cancers14163981. [PMID: 36010974 PMCID: PMC9406604 DOI: 10.3390/cancers14163981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The relationship between inflammation and carcinogenesis, as well as the response to anti-tumor therapy, is intimate. Atrial natriuretic peptides (ANPs) play a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance. In addition, ANPs exert immune-modulatory effects in the tissue microenvironment, thus exhibiting a fascinating ability to prevent inflammation-related tumorigenesis and cancer recurrence. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs have potential therapeutic value in tumors. Here, we summarized the roles of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs, contributing to the development of ANP-based anti-cancer agents. Abstract The atrial natriuretic peptide (ANP), a cardiovascular hormone, plays a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance and is approved to treat congestive heart failure. In addition, there is a growing realization that ANPs might be related to immune response and tumor growth. The anti-inflammatory and immune-modulatory effects of ANPs in the tissue microenvironment are mediated through autocrine or paracrine mechanisms, which further suppress tumorigenesis. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs act on several hallmarks of cancer, such as inflammation, angiogenesis, sustained tumor growth, and metastasis. In this review, we summarized the contributions of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs.
Collapse
|
19
|
Purification, characterization, and preliminary serial crystallography diffraction advances structure determination of full-length human particulate guanylyl cyclase A receptor. Sci Rep 2022; 12:11824. [PMID: 35821229 PMCID: PMC9276669 DOI: 10.1038/s41598-022-15798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Particulate Guanylyl Cyclase Receptor A (pGC-A) is a natriuretic peptide membrane receptor, playing a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop methods to regulate pGC-A, structural information on the full-length form is needed. However, structural data on the transmembrane and intracellular domains are lacking. This work presents expression and optimization using baculovirus, along with the first purification of functional full-length human pGC-A. In vitro assays revealed the pGC-A tetramer was functional in detergent micelle solution. Based on our purification results and previous findings that dimer formation is required for functionality, we propose a tetramer complex model with two functional subunits. Previous research suggested pGC-A signal transduction is an ATP-dependent, two-step mechanism. Our results show the binding ligand also moderately activates pGC-A, and ATP is not crucial for activation of guanylyl cyclase. Furthermore, crystallization of full-length pGC-A was achieved, toward determination of its structure. Needle-shaped crystals with 3 Å diffraction were observed by serial crystallography. This work paves the road for determination of the full-length pGC-A structure and provides new information on the signal transduction mechanism.
Collapse
|
20
|
Smith R, Perez-Ternero C, Conole D, Martin C, Myers SH, Hobbs AJ, Selwood DL. A Series of Substituted Bis-Aminotriazines Are Activators of the Natriuretic Peptide Receptor C. J Med Chem 2022; 65:5495-5513. [PMID: 35333039 PMCID: PMC9014859 DOI: 10.1021/acs.jmedchem.1c01974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-type natriuretic peptide (CNP) is involved in the regulation of vascular homeostasis, which is at least partly mediated through agonism of natriuretic peptide receptor C (NPR-C), and loss of this signaling has been associated with vascular dysfunction. As such, NPR-C is a novel therapeutic target to treat cardiovascular diseases. A series of novel small molecules have been designed and synthesized, and their structure-activity relationships were evaluated by a surface plasmon resonance binding assay. The biological activity of hit compounds was confirmed through organ bath assays measuring vascular relaxation and inhibition of cAMP production, which was shown to be linked to its NPR-C activity. Lead compound 1 was identified as a potent agonist (EC50 ∼ 1 μM) with promising in vivo pharmacokinetic properties.
Collapse
Affiliation(s)
- Robert
J. Smith
- Wolfson
Institute for Biomedical Research, University
College London, Cruciform Building, Gower St, London WC1E 6DH, U.K.
| | - Cristina Perez-Ternero
- William
Harvey Research Institute, Barts & The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K.
| | - Daniel Conole
- Wolfson
Institute for Biomedical Research, University
College London, Cruciform Building, Gower St, London WC1E 6DH, U.K.
| | - Capucine Martin
- William
Harvey Research Institute, Barts & The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K.
| | - Samuel H. Myers
- Wolfson
Institute for Biomedical Research, University
College London, Cruciform Building, Gower St, London WC1E 6DH, U.K.
| | - Adrian J. Hobbs
- William
Harvey Research Institute, Barts & The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K.
| | - David L. Selwood
- Wolfson
Institute for Biomedical Research, University
College London, Cruciform Building, Gower St, London WC1E 6DH, U.K.
| |
Collapse
|
21
|
Pandey KN. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Front Physiol 2021; 12:693099. [PMID: 34489721 PMCID: PMC8416980 DOI: 10.3389/fphys.2021.693099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP) and their cognate receptors has greatly increased our knowledge of the control of hypertension and cardiovascular homeostasis. ANP and BNP are potent endogenous hypotensive hormones that elicit natriuretic, diuretic, vasorelaxant, antihypertrophic, antiproliferative, and antiinflammatory effects, largely directed toward the reduction of blood pressure (BP) and cardiovascular diseases (CVDs). The principal receptor involved in the regulatory actions of ANP and BNP is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which produces the intracellular second messenger cGMP. Cellular, biochemical, molecular, genetic, and clinical studies have facilitated understanding of the functional roles of natriuretic peptides (NPs), as well as the functions of their receptors, and signaling mechanisms in CVDs. Transgenic and gene-targeting (gene-knockout and gene-duplication) strategies have produced genetically altered novel mouse models and have advanced our knowledge of the importance of NPs and their receptors at physiological and pathophysiological levels in both normal and disease states. The current review describes the past and recent research on the cellular, molecular, genetic mechanisms and functional roles of the ANP-BNP/NPRA system in the physiology and pathophysiology of cardiovascular homeostasis as well as clinical and diagnostic markers of cardiac disorders and heart failure. However, the therapeutic potentials of NPs and their receptors for the diagnosis and treatment of cardiovascular diseases, including hypertension, heart failure, and stroke have just begun to be expanded. More in-depth investigations are needed in this field to extend the therapeutic use of NPs and their receptors to treat and prevent CVDs.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
22
|
Zhao J, Pei L. Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. ACTA ACUST UNITED AC 2020; 5:949-960. [PMID: 33015416 PMCID: PMC7524786 DOI: 10.1016/j.jacbts.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
The heart plays a central role in the circulatory system and provides essential oxygen, nutrients, and growth factors to the whole organism. The heart can synthesize and secrete endocrine signals to communicate with distant target organs. Studies of long-known and recently discovered heart-derived hormones highlight a shared theme and reveal a unified mechanism of heart-derived hormones in coordinating cardiac function and target organ biology. This paper reviews the biochemistry, signaling, function, regulation, and clinical significance of representative heart-derived hormones, with a focus on the cardiovascular system. This review also discusses important and exciting questions that will advance the field of cardiac endocrinology.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ActR, activin receptor
- BNP, brain natriuretic peptide
- CNP, C-type natriuretic peptide
- FGF, fibroblast growth factor
- FSTL, follistatin-like
- GDF, growth differentiation factor
- GDF15
- GFRAL, GDNF family receptor α-like
- NPR, natriuretic peptide receptors
- PCSK, proprotein convertase subtilisin/kexin type
- ST2, suppression of tumorigenesis-2
- TGF, transforming growth factor
- cardiac endocrinology
- heart
- heart-derived hormones
Collapse
Affiliation(s)
- Juanjuan Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Therapeutic hypothermia after cardiac arrest increases the plasma level of B-type natriuretic peptide. Sci Rep 2020; 10:15545. [PMID: 32968178 PMCID: PMC7511910 DOI: 10.1038/s41598-020-72703-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Natriuretic peptides (NPs) regulate blood pressure and fluid homeostasis and exert various effects on the cardiovascular system. Recently, the relationship between NPs and the energy metabolism has been reported, and using a cell culture experiment system, we previously showed that NP activated brown cells in a low temperature environment while also suppressing a decrease in the cell temperature. However, few reports have described the secretion of NPs in cold environments, and there have been almost no studies of B-type natriuretic peptide (BNP) in humans. We investigated how NPs respond to cold environments in 21 patients who underwent therapeutic hypothermia (TH) after cardiac arrest. The plasma BNP levels were significantly increased (more than fivefold) during TH (logarithmically from 1.98 ± 0.79 to 2.63 ± 0.59, P < 0.01). During TH, diastolic pulmonary artery pressure (PAP) significantly decreased, and there were no significant changes in the stroke volume index (SVI). This increase of BNP was not associated with any hemodynamic changes. In contrast to our findings for BNP, the change in A-type NP (ANP) was quite small. We detected a significant increase in the plasma BNP levels during TH, unrelated to hemodynamics. This elevation of BNP levels seems to be potential influenced by hypothermia.
Collapse
|
24
|
Zhang DM, Lin YF. Functional modulation of sarcolemmal K ATP channels by atrial natriuretic peptide-elicited intracellular signaling in adult rabbit ventricular cardiomyocytes. Am J Physiol Cell Physiol 2020; 319:C194-C207. [PMID: 32432931 DOI: 10.1152/ajpcell.00409.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-sensitive potassium (KATP) channels couple cell metabolic status to membrane excitability and are crucial for stress adaptation and cytoprotection in the heart. Atrial natriuretic peptide (ANP), a cardiac peptide important for cardiovascular homeostasis, also exhibits cytoprotective features including protection against myocardial ischemia-reperfusion injuries. However, how ANP modulates cardiac KATP channels is largely unknown. In the present study we sought to address this issue by investigating the role of ANP signaling in functional modulation of sarcolemmal KATP (sarcKATP) channels in ventricular myocytes freshly isolated from adult rabbit hearts. Single-channel recordings were performed in combination with pharmacological approaches in the cell-attached patch configuration. Bath application of ANP markedly potentiated sarcKATP channel activities induced by metabolic inhibition with sodium azide, whereas the KATP-stimulating effect of ANP was abrogated by selective inhibition of the natriuretic peptide receptor type A (NPR-A), cGMP-dependent protein kinase (PKG), reactive oxygen species (ROS), extracellular signal-regulated protein kinase (ERK)1/2, Ca2+/calmodulin-dependent protein kinase II (CaMKII), or the ryanodine receptor (RyR). Blockade of RyRs also nullified hydrogen peroxide (H2O2)-induced stimulation of sarcKATP channels in intact cells. Furthermore, single-channel kinetic analyses revealed that ANP enhanced the function of ventricular sarcKATP channels through destabilizing the long closures and facilitating the opening transitions, without affecting the single-channel conductance. In conclusion, here we report that ANP positively modulates the activity of ventricular sarcKATP channels via an intracellular signaling mechanism consisting of NPR-A, PKG, ROS, ERK1/2, CaMKII, and RyR2. This novel mechanism may regulate cardiac excitability and contribute to cytoprotection, in part, by opening myocardial KATP channels.
Collapse
Affiliation(s)
- Dai-Min Zhang
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California, Davis, California.,Department of Anesthesiology and Pain Medicine, University of California, Davis, California
| |
Collapse
|
25
|
Xi G, Wang W, Fazlani SA, Yao F, Yang M, Hao J, An L, Tian J. C-type natriuretic peptide enhances mouse preantral follicle growth. Reproduction 2020; 157:445-455. [PMID: 30817314 DOI: 10.1530/rep-18-0470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/25/2019] [Indexed: 01/03/2023]
Abstract
Compared to ovarian antral follicle development, the mechanism underlying preantral follicle growth has not been well documented. Although C-type natriuretic peptide (CNP) involvement in preantral folliculogenesis has been explored, its detailed role has not been fully defined. Here, we used mouse preantral follicles and granulosa cells (GCs) as a model for investigating the dynamic expression of CNP and natriuretic peptide receptor 2 (NPR2) during preantral folliculogenesis, the regulatory role of oocyte-derived growth factors (ODGFs) in natriuretic peptide type C (Nppc) and Npr2 expression, and the effect of CNP on preantral GC viability. Both mRNA and protein levels of Nppc and Npr2 were gradually activated during preantral folliculogenesis. CNP supplementation in culture medium significantly promoted the growth of in vitro-cultured preantral follicles and enhanced the viability of cultured GCs in a follicle-stimulating hormone (FSH)-independent manner. Using adult and prepubertal mice as an in vivo model, CNP pre-treatment via intraperitoneal injection before conventional superovulation also had a beneficial effect on promoting the ovulation rate. Furthermore, ODGFs enhanced Nppc and Npr2 expression in the in vitro-cultured preantral follicles and GCs. Mechanistic study demonstrated that the regulation of WNT signaling and estrogen synthesis may be implicated in the promoting role of CNP in preantral folliculogenesis. This study not only proves that CNP is a critical regulator of preantral follicle growth, but also provides new insight in understanding the crosstalk between oocytes and somatic cells during early folliculogenesis.
Collapse
Affiliation(s)
- Guangyin Xi
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Sarfaraz A Fazlani
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China.,Lasbela University of Agriculture, Water and Marine Science, Lasbela, Balochistan, Pakistan
| | - Fusheng Yao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jing Hao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, Chirinos JA, Collins S, Deo RC, Gladwin MT, Granzier H, Hummel SL, Kass DA, Redfield MM, Sam F, Wang TJ, Desvigne-Nickens P, Adhikari B. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020; 141:1001-1026. [PMID: 32202936 PMCID: PMC7101072 DOI: 10.1161/circulationaha.119.041886] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF), a major public health problem that is rising in prevalence, is associated with high morbidity and mortality and is considered to be the greatest unmet need in cardiovascular medicine today because of a general lack of effective treatments. To address this challenging syndrome, the National Heart, Lung, and Blood Institute convened a working group made up of experts in HFpEF and novel research methodologies to discuss research gaps and to prioritize research directions over the next decade. Here, we summarize the discussion of the working group, followed by key recommendations for future research priorities. There was uniform recognition that HFpEF is a highly integrated, multiorgan, systemic disorder requiring a multipronged investigative approach in both humans and animal models to improve understanding of mechanisms and treatment of HFpEF. It was recognized that advances in the understanding of basic mechanisms and the roles of inflammation, macrovascular and microvascular dysfunction, fibrosis, and tissue remodeling are needed and ideally would be obtained from (1) improved animal models, including large animal models, which incorporate the effects of aging and associated comorbid conditions; (2) repositories of deeply phenotyped physiological data and human tissue, made accessible to researchers to enhance collaboration and research advances; and (3) novel research methods that take advantage of computational advances and multiscale modeling for the analysis of complex, high-density data across multiple domains. The working group emphasized the need for interactions among basic, translational, clinical, and epidemiological scientists and across organ systems and cell types, leveraging different areas or research focus, and between research centers. A network of collaborative centers to accelerate basic, translational, and clinical research of pathobiological mechanisms and treatment strategies in HFpEF was discussed as an example of a strategy to advance research progress. This resource would facilitate comprehensive, deep phenotyping of a multicenter HFpEF patient cohort with standardized protocols and a robust biorepository. The research priorities outlined in this document are meant to stimulate scientific advances in HFpEF by providing a road map for future collaborative investigations among a diverse group of scientists across multiple domains.
Collapse
Affiliation(s)
- Sanjiv J. Shah
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | - Scott L. Hummel
- University of Michigan and the Ann Arbor Veterans Affairs Health System, Ann Arbor, MI
| | | | | | - Flora Sam
- Boston University School of Medicine, Boston, MA
| | | | | | - Bishow Adhikari
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD
| |
Collapse
|
27
|
Casalechi M, Dias JA, Pinto LV, Lobach VN, Pereira MT, Cavallo IK, Reis AM, Dela Cruz C, Reis FM. C-type natriuretic peptide signaling in human follicular environment and its relation with oocyte maturation. Mol Cell Endocrinol 2019; 492:110444. [PMID: 31075302 DOI: 10.1016/j.mce.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Abstract
Studies in mice have shown that C-type natriuretic peptide (CNP) is produced by granulosa cells and contributes to ovarian follicle growth and oocyte meiotic arrest until the preovulatory LH surge. In humans, the relationship between intraovarian CNP levels and oocyte meiotic resumption is unknown. The aim of this study was to investigate whether CNP and its receptor NPR2 are expressed in human ovarian follicles and if their levels change according to the meiotic phase of oocytes. We collected follicular fluid (FF) and luteinized granulosa cells (LGC) from follicle pools (n = 47), and FF, LGC and cumulus cells (CC) from individual follicles (n = 96) during oocyte pickup for in vitro fertilization. There was a positive linear correlation between CNP levels in FF pools and basal antral follicle counting (rs = 0.458; p = 0.002), number of preovulatory follicles >16 mm (rs = 0.361; p = 0.016) and number of oocytes retrieved (rs = 0,378; p = 0.011) and a negative correlation between CNP levels in FF pools and the percentage of mature (MII) oocytes retrieved (rs = -0.39; p = 0.033). FF CNP levels in follicles containing MII oocytes were significantly lower than in follicles containing immature (MI) oocytes (median = 0.44 vs. 0.57 ng/mL, p < 0.05). Accordingly, the CNP precursor gene NPPC was 50% less expressed in LGC from follicles containing MII oocytes than in follicles containing MI oocytes (p < 0.01). In addition, NPR2 mRNA was down-regulated in CC surrounding MII oocytes (60% reduction, p < 0.01). CNP signaling is downregulated in human ovarian follicles containing mature oocytes. Further studies should clarify whether CNP signaling is essential to keep oocyte meiotic arrest in humans.
Collapse
Affiliation(s)
- Maíra Casalechi
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Júlia A Dias
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Lorena V Pinto
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Verônica N Lobach
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Maria T Pereira
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Ines K Cavallo
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Adelina M Reis
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Belo Horizonte, Brazil.
| |
Collapse
|
28
|
Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat Struct Mol Biol 2019; 26:535-544. [PMID: 31270468 DOI: 10.1038/s41594-019-0252-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Metabotropic receptors are responsible for so-called 'slow synaptic transmission' and mediate the effects of hundreds of peptide and non-peptide neurotransmitters and neuromodulators. Over the past decade or so, a revolution in membrane-protein structural determination has clarified the molecular determinants responsible for the actions of these receptors. This Review focuses on the G protein-coupled receptors (GPCRs) that are targets of neuropsychiatric drugs and shows how insights into the structure and function of these important synaptic proteins are accelerating understanding of their actions. Notably, elucidating the structure and function of GPCRs should enhance the structure-guided discovery of novel chemical tools with which to manipulate and understand these synaptic proteins.
Collapse
|
29
|
Mani I, Pandey KN. Emerging concepts of receptor endocytosis and concurrent intracellular signaling: Mechanisms of guanylyl cyclase/natriuretic peptide receptor-A activation and trafficking. Cell Signal 2019; 60:17-30. [PMID: 30951863 DOI: 10.1016/j.cellsig.2019.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
Abstract
Endocytosis is a prominent clathrin-mediated mechanism for concentrated uptake and internalization of ligand-receptor complexes, also known as cargo. Internalization of cargo is the fundamental mechanism for receptor-dependent regulation of cell membrane function, intracellular signal transduction, and neurotransmission, as well as other biological and physiological activities. However, the intrinsic mechanisms of receptor endocytosis and contemporaneous intracellular signaling are not well understood. We review emerging concepts of receptor endocytosis with concurrent intracellular signaling, using a typical example of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) internalization, subcellular trafficking, and simultaneous generation of second-messenger cGMP and signaling in intact cells. We highlight the role of short-signal motifs located in the carboxyl-terminal regions of membrane receptors during their internalization and subsequent receptor trafficking in organelles that are not traditionally studied in this context, including nuclei and mitochondria. This review sheds light on the importance of future investigations of receptor endocytosis and trafficking in live cells and intact animals in vivo in physiological context.
Collapse
Affiliation(s)
- Indra Mani
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States.
| |
Collapse
|
30
|
Goetze JP, Rehfeld JF. Procholecystokinin expression and processing in cardiac myocytes. Peptides 2019; 111:71-76. [PMID: 29902521 DOI: 10.1016/j.peptides.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
The mammalian heart is by now an established endocrine organ whose myocytes in a regulated manner release atrial and ventricular natriuretic peptides (ANP and BNP). But like other hormone-producing cells in classic endocrine organs, the cardiac myocytes also express genes of additional peptide hormones. One such hormone gene is that of the well-known pleiotropic gut-brain peptide system, cholecystokinin (CCK), which is expressed at mRNA and protein levels in both atrial and ventricular cardiac myocytes. The posttranslational processing of proCCK in the myocytes, however, deviates substantially from that of other CCK-producing cells. Hence, the predominant cardiac proCCK product is devoid of the N-terminal 1-24 fragment, and besides O-sulfated at three C-terminal tyrosyl residues (Y76, Y90, and Y92). Moreover, carboxyamidated CCK peptides are present only in very low trace amounts (≤0.1%) in comparison with the truncated and triple-sulfated proCCK fragment. The present review first summarizes present knowledge about the wide-spread expression of the CCK system in mammals, and then discusses the possible function and biomarker role of the specific cardiac proCCK variant. The review concludes that the many unsettled questions about the specific cardiac expression cascade as well as the functional and diagnostic roles of cardiac CCK are worth pursuing.
Collapse
Affiliation(s)
- Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Keng BMH, Gao F, Tan RS, Ewe SH, Teo LLY, Xie BQ, Goh GBB, Koh WP, Koh AS. N-Terminal pro C-Type Natriuretic Peptide (NTproCNP) and myocardial function in ageing. PLoS One 2018; 13:e0209517. [PMID: 30566484 PMCID: PMC6300279 DOI: 10.1371/journal.pone.0209517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022] Open
Abstract
Ageing-related alterations in cardiovascular structure and function are commonly associated with chronic inflammation. A potential blood-based biomarker indicative of a chronic inflammatory state is N-Terminal Pro C-Type Natriuretic Peptide (NTproCNP). We aim to investigate associations between NTproCNP and ageing-related impairments in cardiovascular function. Community-based participants underwent same-day assessment of cardiovascular function and circulating profiles of plasma NTproCNP. Associations between cardiovascular and biomarker profiles were studied in adjusted models including standard covariates. We studied 93 participants (mean age 73 ± 5.3 years, 36 women), of whom 55 (59%) had impaired myocardial relaxation (ratio of peak velocity flow in early diastole E (m/s) to peak velocity flow in late diastole by atrial contraction A (m/s) <0.84). Participants with impaired myocardial relaxation were also found to have lower peak early phase filling velocity (0.6 ± 0.1 vs 0.7 ± 0.1, p < 0.0001) and higher peak atrial phase filling velocity (0.9 ± 0.1 vs 0.7 ± 0.1, p < 0.0001). NTproCNP levelswere significantly lower among participants with impaired myocardial relaxation (16.4% vs 39.5% with NTproCNP ≥ 19, p = 0.012). After multivariable adjustments, NTproCNP was independently associated with impaired myocardial relaxation (OR 2.99, 95%CI 1.12–8.01, p = 0.029). Community elderly adults with myocardial ageing have lower NTproCNP levels compared to those with preserved myocardial function. Given that impaired myocardial relaxation probably represents early changes within the myocardium with ageing, NTproCNP may be useful as an ‘upstream’ biomarker useful for charting myocardial ageing.
Collapse
Affiliation(s)
| | - Fei Gao
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru San Tan
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - See Hooi Ewe
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Bei Qi Xie
- National Heart Centre Singapore, Singapore, Singapore
| | - George B. B. Goh
- Duke-NUS Medical School, Singapore, Singapore
- Singapore General Hospital, Singapore, Singapore
| | - Woon-Puay Koh
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Angela S. Koh
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
32
|
Duda T, Pertzev A, Ravichandran S, Sharma RK. Ca 2+-Sensor Neurocalcin δ and Hormone ANF Modulate ANF-RGC Activity by Diverse Pathways: Role of the Signaling Helix Domain. Front Mol Neurosci 2018; 11:430. [PMID: 30546296 PMCID: PMC6278801 DOI: 10.3389/fnmol.2018.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Prototype member of the membrane guanylate cyclase family, ANF-RGC (Atrial Natriuretic Factor Receptor Guanylate Cyclase), is the physiological signal transducer of two most hypotensive hormones ANF and BNP, and of the intracellular free Ca2+. Both the hormonal and the Ca2+-modulated signals operate through a common second messenger, cyclic GMP; yet, their operational modes are divergent. The hormonal pathways originate at the extracellular domain of the guanylate cyclase; and through a cascade of structural changes in its successive domains activate the C-terminal catalytic domain (CCD). In contrast, the Ca2+ signal operating via its sensor, myristoylated neurocalcin δ both originates and is translated directly at the CCD. Through a detailed sequential deletion and expression analyses, the present study examines the role of the signaling helix domain (SHD) in these two transduction pathways. SHD is a conserved 35-amino acid helical region of the guanylate cyclase, composed of five heptads, each meant to tune and transmit the hormonal signals to the CCD for their translation and generation of cyclic GMP. Its structure is homo-dimeric and the molecular docking analyses point out to the possibility of antiparallel arrangement of the helices. Contrary to the hormonal signaling, SHD has no role in regulation of the Ca2+- modulated pathway. The findings establish and define in molecular terms the presence of two distinct non-overlapping transduction modes of ANF-RGC, and for the first time demonstrate how differently they operate, and, yet generate cyclic GMP utilizing common CCD machinery.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Alexandre Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Sarangan Ravichandran
- Advanced Biomedical Computational Sciences Group, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Leidos Biomedical Research Inc., Fredrick, MD, United States
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| |
Collapse
|
33
|
Fujii T, Sato T, Uchino S, Doi K, Iwami T, Kawamura T. Human atrial natriuretic peptide for acute kidney injury in adult critically ill patients: A multicenter prospective observational study. J Crit Care 2018; 51:229-235. [PMID: 30528663 DOI: 10.1016/j.jcrc.2018.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Acute kidney injury (AKI) is common in the intensive care unit (ICU). Selected clinical studies have implied human atrial natriuretic peptide (hANP) improves renal function; however, the treatment effects for AKI are unclear. METHODS A multicenter prospective observational study in 13 Japanese ICUs. The effects of hANP were estimated by the standardized mortality ratio weighted analyses of generalized linear models using propensity scores. The primary outcome was renal replacement therapy (RRT) or death in the ICU. RESULTS Of 904 patients with AKI, 63 received hANP as a treatment for AKI. The primary outcome occurred in 20.5% (185/904). HANP did not reduce the risk of RRT or death in the ICU (risk ratio 1.12, 95% confidence interval [CI] 0.74 to 1.69) and was associated with a lower mean arterial pressure (β -3.8 mmHg, 95%CI -7.6 to -0.1), a longer hospital length of stay (β 12.0 days, 95%CI 1.2 to 22.8) and a lower eGFR at hospital discharge (β -10.4 mL/min/m2, 95%CI -19.1 to -1.7). No beneficial effect was observed in subgroups of cardiovascular surgery, sepsis, nor chronic kidney disease. CONCLUSIONS In critically ill patients with AKI, the treatment effect of hANP was not evident on dialysis-free survival in the ICU.
Collapse
Affiliation(s)
- Tomoko Fujii
- Department of Epidemiology and Preventive Medicine, Kyoto University Graduate School of Medicine. Yoshida Hon-machi, Sakyo-ku, Kyoto, Japan; Japan Society for the Promotion of Science. 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan.
| | - Tosiya Sato
- Department of Biostatistics, Kyoto University School of Public Health. Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Shigehiko Uchino
- Intensive Care Unit, Department of Anaesthesiology, Jikei University School of Medicine. 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Taku Iwami
- Kyoto University Health Service, Yoshida Hon-machi, Sakyo-ku, Kyoto, Japan
| | - Takashi Kawamura
- Kyoto University Health Service, Yoshida Hon-machi, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
34
|
Jain A, Anand-Srivastava MB. Natriuretic peptide receptor-C-mediated attenuation of vascular smooth muscle cell hypertrophy involves Gqα/PLCβ1 proteins and ROS-associated signaling. Pharmacol Res Perspect 2018; 6. [PMID: 29417757 PMCID: PMC5817836 DOI: 10.1002/prp2.375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/04/2017] [Indexed: 11/23/2022] Open
Abstract
Hypertension is associated with vascular remodeling due to hyperproliferation and hypertrophy of vascular smooth muscle cells (VSMC). Recently, we showed the implication of enhanced expression of Gqα and PLCβ1 proteins in hypertrophy of VSMCs from 16‐week‐old spontaneously hypertensive rats (SHR). The aim of this study was to investigate whether C‐ANP4‐23, a natriuretic peptide receptor‐C (NPR‐C) ligand that was shown to inhibit vasoactive peptide‐induced enhanced protein synthesis in A10 VSMC could also attenuate hypertrophy of VSMC isolated from rat model of cardiac hypertrophy and to further explore the possible involvement of Gqα/PLCβ1 proteins and ROS‐mediated signaling in this effect. The protein synthesis and cell volume, markers of hypertrophy were significantly enhanced in VSMC from 16‐week‐old SHR compared with age‐matched WKY rats and C‐ANP4‐23 treatment attenuated both to WKY levels. In addition, C‐ANP4‐23 treatment also attenuated the enhanced expression of AT1 receptor, Gqα, PLCβ1, Nox4, and p47phox proteins, the enhanced activation of EGFR, PDGFR, IGF‐1R, enhanced phosphorylation of ERK1/2/AKT and c‐Src in VSMC from SHR. Furthermore, the enhanced levels of superoxide anion and NADPH oxidase activity exhibited by VSMC from SHR were also attenuated to control levels by C‐ANP4‐23 treatment. These results indicate that C‐ANP4‐23 via the activation of NPR‐C attenuates VSMC hypertrophy through decreasing the overexpression of Gqα/PLCβ1 proteins, enhanced oxidative stress, increased activation of growth factor receptors, and enhanced phosphorylation of MAPK/AKT signaling pathways. Thus, it can be suggested that C‐ANP4‐23 may be used as a therapeutic agent for the treatment of vascular complications associated with hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Ashish Jain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Québec, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Québec, Canada
| |
Collapse
|
35
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
36
|
Fitzakerley JL, Trachte GJ. Genetics of guanylyl cyclase pathways in the cochlea and their influence on hearing. Physiol Genomics 2018; 50:780-806. [PMID: 29958079 DOI: 10.1152/physiolgenomics.00056.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although hearing loss is the most common sensory deficit in Western societies, there are no successful pharmacological treatments for this disorder. Recent experiments have demonstrated that manipulation of intracellular cyclic guanosine monophosphate (cGMP) concentrations can have both beneficial and harmful effects on hearing. In this review, we will examine the role of cGMP as a key second messenger involved in many aspects of cochlear function and discuss the known functions of downstream effectors of cGMP in sound processing. The nitric oxide-stimulated soluble guanylyl cyclase system (sGC) and the two natriuretic peptide-stimulated particulate GCs (pGCs) will be more extensively covered because they have been studied most thoroughly. The cochlear GC systems are attractive targets for medical interventions that improve hearing while simultaneously representing an under investigated source of sensorineural hearing loss.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| | - George J Trachte
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| |
Collapse
|
37
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
38
|
Chiba A, Watanabe-Takano H, Miyazaki T, Mochizuki N. Cardiomyokines from the heart. Cell Mol Life Sci 2018; 75:1349-1362. [PMID: 29238844 PMCID: PMC11105766 DOI: 10.1007/s00018-017-2723-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
- AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
39
|
Bork NI, Nikolaev VO. cGMP Signaling in the Cardiovascular System-The Role of Compartmentation and Its Live Cell Imaging. Int J Mol Sci 2018. [PMID: 29534460 PMCID: PMC5877662 DOI: 10.3390/ijms19030801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system.
Collapse
Affiliation(s)
- Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| |
Collapse
|
40
|
Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells. Mol Cell Biochem 2018; 448:77-89. [DOI: 10.1007/s11010-018-3316-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 01/26/2023]
|
41
|
Gehring C, Turek IS. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:1704. [PMID: 29046682 PMCID: PMC5632652 DOI: 10.3389/fpls.2017.01704] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
The cyclic nucleotide monophosphates (cNMPs), and notably 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.
Collapse
Affiliation(s)
- Chris Gehring
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ilona S. Turek
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
42
|
Shi F, Collins S. Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0062/hmbci-2017-0062.xml. [PMID: 28949928 DOI: 10.1515/hmbci-2017-0062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/29/2017] [Indexed: 01/19/2023]
Abstract
β-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the 'browning' of adipocytes within white fat depots (so-called 'brite' or 'beige' adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like ('beige' or 'brite') adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.
Collapse
|
43
|
Wu W, Shi F, Liu D, Ceddia RP, Gaffin R, Wei W, Fang H, Lewandowski ED, Collins S. Enhancing natriuretic peptide signaling in adipose tissue, but not in muscle, protects against diet-induced obesity and insulin resistance. Sci Signal 2017; 10:10/489/eaam6870. [PMID: 28743802 PMCID: PMC7418652 DOI: 10.1126/scisignal.aam6870] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In addition to controlling blood pressure, cardiac natriuretic peptides (NPs) can stimulate lipolysis in adipocytes and promote the "browning" of white adipose tissue. NPs may also increase the oxidative capacity of skeletal muscle. To unravel the contribution of NP-stimulated metabolism in adipose tissue compared to that in muscle in vivo, we generated mice with tissue-specific deletion of the NP clearance receptor, NPRC, in adipose tissue (NprcAKO ) or in skeletal muscle (NprcMKO ). We showed that, similar to Nprc null mice, NprcAKO mice, but not NprcMKO mice, were resistant to obesity induced by a high-fat diet. NprcAKO mice exhibited increased energy expenditure, improved insulin sensitivity, and increased glucose uptake into brown fat. These mice were also protected from diet-induced hepatic steatosis and visceral fat inflammation. These findings support the conclusion that NPRC in adipose tissue is a critical regulator of energy metabolism and suggest that inhibiting this receptor may be an important avenue to explore for combating metabolic disease.
Collapse
Affiliation(s)
- Wei Wu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA.,Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fubiao Shi
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Dianxin Liu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Ryan P Ceddia
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Robert Gaffin
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Wan Wei
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Huafeng Fang
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - E Douglas Lewandowski
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Sheila Collins
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA.
| |
Collapse
|
44
|
Ravichandran S, Duda T, Pertzev A, Sharma RK. Membrane Guanylate Cyclase catalytic Subdomain: Structure and Linkage with Calcium Sensors and Bicarbonate. Front Mol Neurosci 2017; 10:173. [PMID: 28638321 PMCID: PMC5461267 DOI: 10.3389/fnmol.2017.00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022] Open
Abstract
Membrane guanylate cyclase (MGC) is a ubiquitous multi-switching cyclic GMP generating signaling machine linked with countless physiological processes. In mammals it is encoded by seven distinct homologous genes. It is a single transmembrane spanning multi-modular protein; composed of integrated blocks and existing in homo-dimeric form. Its core catalytic domain (CCD) module is a common transduction center where all incoming signals are translated into the production of cyclic GMP, a cellular signal second messenger. Crystal structure of the MGC's CCD does not exist and its precise identity is ill-defined. Here, we define it at a sub-molecular level for the phototransduction-linked MGC, the rod outer segment guanylate cyclase type 1, ROS-GC1. (1) The CCD is a conserved 145-residue structural unit, represented by the segment V820-P964. (2) It exists as a homo-dimer and contains seven conserved catalytic elements (CEs) wedged into seven conserved motifs. (3) It also contains a conserved 21-residue neurocalcin δ-modulated structural domain, V836-L857. (4) Site-directed mutagenesis documents that each of the seven CEs governs the cyclase's catalytic activity. (5) In contrast to the soluble and the bacterium MGC which use Mn2+-GTP substrate for catalysis, MGC CCD uses the natural Mg2+-GTP substrate. (6) Strikingly, the MGC CCD requires anchoring by the Transmembrane Domain (TMD) to exhibit its major (∼92%) catalytic activity; in isolated form the activity is only marginal. This feature is not linked with any unique sequence of the TMD; there is minimal conservation in TMD. Finally, (7) the seven CEs control each of four phototransduction pathways- -two Ca2+-sensor GCAPs-, one Ca2+-sensor, S100B-, and one bicarbonate-modulated. The findings disclose that the CCD of ROS-GC1 has built-in regulatory elements that control its signal translational activity. Due to conservation of these regulatory elements, it is proposed that these elements also control the physiological activity of other members of MGC family.
Collapse
Affiliation(s)
- Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., FredrickMD, United States
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| | - Alexandre Pertzev
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| | - Rameshwar K. Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| |
Collapse
|
45
|
Nakao Y, Yamada S, Yanamoto S, Tomioka T, Naruse T, Ikeda T, Kurita H, Umeda M. Natriuretic peptide receptor A is related to the expression of vascular endothelial growth factors A and C, and is associated with the invasion potential of tongue squamous cell carcinoma. Int J Oral Maxillofac Surg 2017; 46:1237-1242. [PMID: 28521969 DOI: 10.1016/j.ijom.2017.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/08/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Natriuretic peptide receptor A (NPRA) is one of the natriuretic peptide receptors. NPRA has been reported to play a role in the carcinogenesis of various tumours, as well as functional roles in renal, cardiovascular, endocrine, and skeletal homeostasis. The clinicopathological significance of NPRA in tongue squamous cell carcinoma (TSCC) was examined in this study. The overexpression of NPRA was more frequent in TSCC (21/58, 36.2%) than in the normal oral epithelium (0/10, 0%) (P<0.05). It was also more frequently observed in cancers with higher grades according to the pattern of invasion (grades 1-2 vs. grades 3-4, P<0.01). Additionally, there was a tendency towards an association between the N classification and NPRA expression (N0 vs. N1-2, P=0.06). Significant correlations were also observed between the expression of NPRA and that of VEGF-A (P<0.001) and VEGF-C (P<0.001). The high-NPRA expression group had a significantly poorer prognosis, with a 5-year disease-specific survival rate of 39.7%, compared to 97.0% in the low-expression group (P<0.001). Multivariate analysis suggested that the overexpression of NPRA may also be an independent prognostic factor (P<0.05). In conclusion, NPRA is associated with VEGF expression levels, invasion, and metastasis, and may be a prognostic factor in TSCC patients.
Collapse
Affiliation(s)
- Y Nakao
- Department of Clinical Oral Oncology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - S Yamada
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - S Yanamoto
- Department of Clinical Oral Oncology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Tomioka
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - T Naruse
- Department of Clinical Oral Oncology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Ikeda
- Department of Oral Pathology and Bone Metabolism, Unit of Basic Medical Sciences, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - H Kurita
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - M Umeda
- Department of Clinical Oral Oncology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
46
|
Sharma RK, Duda T, Makino CL. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Front Mol Neurosci 2016; 9:83. [PMID: 27695398 PMCID: PMC5023690 DOI: 10.3389/fnmol.2016.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
47
|
Buttgereit J, Shanks J, Li D, Hao G, Athwal A, Langenickel TH, Wright H, da Costa Goncalves AC, Monti J, Plehm R, Popova E, Qadri F, Lapidus I, Ryan B, Özcelik C, Paterson DJ, Bader M, Herring N. C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovasc Res 2016; 112:637-644. [PMID: 27496871 PMCID: PMC5157132 DOI: 10.1093/cvr/cvw184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/26/2023] Open
Abstract
Aims B-type natriuretic peptide (BNP)–natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. Methods and results Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1–7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 μM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 µg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). Conclusion C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP–NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.
Collapse
Affiliation(s)
- Jens Buttgereit
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Julia Shanks
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Guoliang Hao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Arvinder Athwal
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Thomas H Langenickel
- Translational Medicine, Clinical Pharmacology and Profiling, Novartis Pharma AG, Basel, Switzerland
| | - Hannah Wright
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | | | - Jan Monti
- Helios Clinic Bad Saarow, Pieskower Strasse 33, Bad Saarow, Germany
| | - Ralph Plehm
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Fatimunnisa Qadri
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Irina Lapidus
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Brent Ryan
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Cemil Özcelik
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| |
Collapse
|
48
|
Nagai-Okatani C, Kangawa K, Takashio S, Takahama H, Hayashi T, Anzai T, Minamino N. Novel Chemiluminescent Enzyme Immunoassays for Individual Quantification of 3 Endogenous Molecular Forms of Atrial Natriuretic Peptide in Human Plasma. J Appl Lab Med 2016; 1:47-59. [DOI: 10.1373/jalm.2016.020230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 02/01/2023]
Abstract
Abstract
Background
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are cardiac peptide hormones with pivotal roles in maintaining cardiovascular homeostasis. BNP and its precursor fragment are accepted as gold standard markers for heart failure (HF). Human ANP is present in the atria of the heart and plasma as 3 endogenous molecular forms designated α-ANP, β-ANP, and proANP. A previous study indicated that the ratios of these 3 ANP forms are altered in the plasma of HF patients. The purpose of our study was to establish immunoassays for quantifying the individual ANP forms to collect clinical information.
Methods
We developed 3 plate-based chemiluminescent enzyme immunoassays (CLEIAs) for measuring total ANP (i.e., sum of α-ANP, β-ANP, and proANP), β-ANP, and proANP levels. To minimize background signals, we added single-step PEGylation targeting the immobilized antibody in the conventional plate-based sandwich CLEIA procedure.
Results
CLEIAs with PEGylation showed sensitivity, specificity, reproducibility, and accuracy satisfying clinical requirements. Two of the CLEIAs enabled direct measurement in plasma samples. During treatments, acute decompensated HF patients exhibited marked decreases in plasma β-ANP levels but moderate decreases in plasma proANP level. The plasma ratios of α-ANP/total ANP and proANP/total ANP in acute decompensated HF patients were maintained, whereas the β-ANP/total ANP ratio was significantly decreased at discharge.
Conclusions
The combination of the 3 CLEIAs enabled accurate quantification of α-ANP, β-ANP, and proANP, even in plasma samples, and indicated the potential of β-ANP and proANP as circulating biomarkers for HF, with different characteristics from that of BNP.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Current affiliation: Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroyuki Takahama
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomohiro Hayashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
- Current affiliation: Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Current affiliation: Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
49
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Dewey CM, Spitler KM, Ponce JM, Hall DD, Grueter CE. Cardiac-Secreted Factors as Peripheral Metabolic Regulators and Potential Disease Biomarkers. J Am Heart Assoc 2016; 5:e003101. [PMID: 27247337 PMCID: PMC4937259 DOI: 10.1161/jaha.115.003101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen M Dewey
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jessica M Ponce
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, Papajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|