1
|
Jauhal AA, Constantine R, Newcomb RD. A Comparative Genomics Approach to Understanding the Evolution of Olfaction in Cetaceans. J Mol Evol 2024; 92:912-929. [PMID: 39581917 DOI: 10.1007/s00239-024-10217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
Major evolutionary transitions, such as the shift of cetaceans from terrestrial to marine life, can put pressure on sensory systems to adapt to a new set of relevant stimuli. Relatively little is known about the role of smell in the evolution of mysticetes (baleen whales). While their toothed cousins, the odontocetes, lack the anatomical features to smell, it is less clear whether baleen whales have retained this sense, and if so, when the pressure on olfaction diverged in the cetacean evolutionary lineage. We examined eight genes encoding olfactory signal transduction pathway components and key chaperones for signs of inactivating mutations and selective pressures. All of the genes we examined were intact in all eight mysticete genomes examined, despite inactivating mutations in odontocete homologs in multiple genes. We also tested several models representing various hypotheses regarding the evolutionary history of olfaction in cetaceans. Our results support a model where olfactory ability is specifically reduced in the odontocete lineage following their split from stem cetaceans and serve to clarify the evolutionary history of olfaction in cetaceans.
Collapse
Affiliation(s)
- April A Jauhal
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Rochelle Constantine
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Shi K, Jiao Y, Yang L, Yuan G, Jia J. New insights into the roles of olfactory receptors in cardiovascular disease. Mol Cell Biochem 2024; 479:1615-1626. [PMID: 38761351 DOI: 10.1007/s11010-024-05024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Olfactory receptors (ORs) are G protein coupled receptors (GPCRs) with seven transmembrane domains that bind to specific exogenous chemical ligands and transduce intracellular signals. They constitute the largest gene family in the human genome. They are expressed in the epithelial cells of the olfactory organs and in the non-olfactory tissues such as the liver, kidney, heart, lung, pancreas, intestines, muscle, testis, placenta, cerebral cortex, and skin. They play important roles in the normal physiological and pathophysiological mechanisms. Recent evidence has highlighted a close association between ORs and several metabolic diseases. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. Furthermore, ORs play an essential role in the development and functional regulation of the cardiovascular system and are implicated in the pathophysiological mechanisms of CVDs, including atherosclerosis (AS), heart failure (HF), aneurysms, and hypertension (HTN). This review describes the specific mechanistic roles of ORs in the CVDs, and highlights the future clinical application prospects of ORs in the diagnosis, treatment, and prevention of the CVDs.
Collapse
Affiliation(s)
- Kangru Shi
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Jiao
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Hu Z, Yang J. Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels. Channels (Austin) 2023; 17:2273165. [PMID: 37905307 PMCID: PMC10761061 DOI: 10.1080/19336950.2023.2273165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Recent years have seen an outpouring of atomic or near atomic resolution structures of cyclic nucleotide-gated (CNG) channels, captured in closed, transition, pre-open, partially open, and fully open states. These structures provide unprecedented molecular insights into the activation, assembly, architecture, regulation, and channelopathy of CNG channels, as well as mechanistic explanations for CNG channel biophysical and pharmacological properties. This article summarizes recent advances in CNG channel structural biology, describes key structural features and elements, and illuminates a detailed conformational landscape of activation by cyclic nucleotides. The review also correlates structures with findings and properties delineated in functional studies, including nonselective monovalent cation selectivity, Ca2+ permeation and block, block by L-cis-diltiazem, location of the activation gate, lack of voltage-dependent gating, and modulation by lipids and calmodulin. A perspective on future research is also offered.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Hu Z, Zheng X, Yang J. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun 2023; 14:4284. [PMID: 37463923 DOI: 10.1038/s41467-023-39971-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels transduce chemical signals into electrical signals in sensory receptors and neurons. They are activated by cGMP or cAMP, which bind to the cyclic nucleotide-binding domain (CNBD) to open a gate located 50-60 Å away in the central cavity. Structures of closed and open vertebrate CNG channels have been solved, but the conformational landscape of this allosteric gating remains to be elucidated and enriched. Here, we report structures of the cGMP-activated human cone photoreceptor CNGA3/CNGB3 channel in closed, intermediate, pre-open and open states in detergent or lipid nanodisc, all with fully bound cGMP. The pre-open and open states are obtained only in the lipid nanodisc, suggesting a critical role of lipids in tuning the energetic landscape of CNGA3/CNGB3 activation. The different states exhibit subunit-unique, incremental and distinct conformational rearrangements that originate in the CNBD, propagate through the gating ring to the transmembrane domain, and gradually open the S6 cavity gate. Our work illustrates a spatial conformational-change wave of allosteric gating of a vertebrate CNG channel by its natural ligand and provides an expanded framework for studying CNG properties and channelopathy.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
6
|
Huang L, Zhang W, Tong D, Lu L, Zhou W, Tian D, Liu G, Shi W. Triclosan and triclocarban weaken the olfactory capacity of goldfish by constraining odorant recognition, disrupting olfactory signal transduction, and disturbing olfactory information processing. WATER RESEARCH 2023; 233:119736. [PMID: 36801581 DOI: 10.1016/j.watres.2023.119736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, increased production and consumption of disinfectants such as triclosan (TCS) and triclocarban (TCC) have led to massive pollution of the environment, which draws global concern over the potential risk to aquatic organisms. However, the olfactory toxicity of disinfectants in fish remains elusive to date. In the present study, the impact of TCS and TCC on the olfactory capacity of goldfish was assessed by neurophysiological and behavioral approaches. As shown by the reduced distribution shifts toward amino acid stimuli and hampered electro-olfactogram responses, our results demonstrated that TCS/TCC treatment would cause deterioration of the olfactory ability of goldfish. Our further analysis found that TCS/TCC exposure suppressed the expression of olfactory G protein-coupled receptors in the olfactory epithelium, restricted the transformation of odorant stimulation into electrical responses by disturbing the cAMP signaling pathway and ion transportation, and induced apoptosis and inflammation in the olfactory bulb. In conclusion, our results demonstrated that an environmentally realistic level of TCS/TCC would weaken the olfactory capacity of goldfish by constraining odorant recognition efficiency, disrupting olfactory signal generation and transduction, and disturbing olfactory information processing.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China.
| |
Collapse
|
7
|
Kim H, Kim H, Nguyen LT, Ha T, Lim S, Kim K, Kim SH, Han K, Hyeon SJ, Ryu H, Park YS, Kim SH, Kim IB, Hong GS, Lee SE, Choi Y, Cohen LB, Oh U. Amplification of olfactory signals by Anoctamin 9 is important for mammalian olfaction. Prog Neurobiol 2022; 219:102369. [PMID: 36330924 DOI: 10.1016/j.pneurobio.2022.102369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Sensing smells of foods, prey, or predators determines animal survival. Olfactory sensory neurons in the olfactory epithelium (OE) detect odorants, where cAMP and Ca2+ play a significant role in transducing odorant inputs to electrical activity. Here we show Anoctamin 9, a cation channel activated by cAMP/PKA pathway, is expressed in the OE and amplifies olfactory signals. Ano9-deficient mice had reduced olfactory behavioral sensitivity, electro-olfactogram signals, and neural activity in the olfactory bulb. In line with the difference in olfaction between birds and other vertebrates, chick ANO9 failed to respond to odorants, whereas chick CNGA2, a major transduction channel, showed greater responses to cAMP. Thus, we concluded that the signal amplification by ANO9 is important for mammalian olfactory transduction.
Collapse
Affiliation(s)
- Hyungsup Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyesu Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Luan Thien Nguyen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoong Ha
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sujin Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soon Ho Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyungreem Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yong Soo Park
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang Hyun Kim
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Beom Kim
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yunsook Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lawrence B Cohen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Schirmeyer J, Eick T, Schulz E, Hummert S, Sattler C, Schmauder R, Benndorf K. Subunit promotion energies for channel opening in heterotetrameric olfactory CNG channels. PLoS Comput Biol 2022; 18:e1010376. [PMID: 35998156 PMCID: PMC9512249 DOI: 10.1371/journal.pcbi.1010376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/26/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels of olfactory sensory neurons contain three types of homologue subunits, two CNGA2 subunits, one CNGA4 subunit and one CNGB1b subunit. Each subunit carries an intracellular cyclic nucleotide binding domain (CNBD) whose occupation by up to four cyclic nucleotides evokes channel activation. Thereby, the subunits interact in a cooperative fashion. Here we studied 16 concatamers with systematically disabled, but still functional, binding sites and quantified channel activation by systems of intimately coupled state models transferred to 4D hypercubes, thereby exploiting a weak voltage dependence of the channels. We provide the complete landscape of free energies for the complex activation process of heterotetrameric channels, including 32 binding steps, in both the closed and open channel, as well as 16 closed-open isomerizations. The binding steps are specific for the subunits and show pronounced positive cooperativity for the binding of the second and the third ligand. The energetics of the closed-open isomerizations were disassembled to elementary subunit promotion energies for channel opening, ΔΔGfpn, adding to the free energy of the closed-open isomerization of the empty channel, E0. The ΔΔGfpn values are specific for the four subunits and presumably invariant for the specific patterns of liganding. In conclusion, subunit cooperativity is confined to the CNBD whereas the subunit promotion energies for channel opening are independent. Olfactory sensory neurons (OSNs) in the nose transmit the information of odor molecules to electrical signals that are conducted to central parts of the brain. Olfactory cyclic nucleotide-gated (CNG) ion channels, located in the cell membrane of the OSNs, are relevant proteins in this process. These olfactory CNG channels are formed by three types of homologue subunits and each of these subunits contains a cyclic nucleotide binding domain (CNBD). A channel is activated by the binding of up to four cyclic nucleotides. The process of channel activation is only poorly understood. Herein we analyzed this activation process in great detail by concatenating these four subunits, disabling the CNBDs by mutations and performing extended computational fit analyses providing all 32 constants for the different binding steps at different degrees of liganding and, in addition, elementary subunit promotion energies for channel opening for all subunits. Our data suggest that subunit cooperativity is confined to the action of the CNBD.
Collapse
Affiliation(s)
- Jana Schirmeyer
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Eick
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eckhard Schulz
- Schmalkalden University of Applied Sciences, Faculty of Electrical Engineering, Blechhammer, Schmalkalden, Germany
| | - Sabine Hummert
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Schmalkalden University of Applied Sciences, Faculty of Electrical Engineering, Blechhammer, Schmalkalden, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
9
|
Li RC, Molday LL, Lin CC, Ren X, Fleischmann A, Molday RS, Yau KW. Low signaling efficiency from receptor to effector in olfactory transduction: A quantified ligand-triggered GPCR pathway. Proc Natl Acad Sci U S A 2022; 119:e2121225119. [PMID: 35914143 PMCID: PMC9371729 DOI: 10.1073/pnas.2121225119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling is ubiquitous. As an archetype of this signaling motif, rod phototransduction has provided many fundamental, quantitative details, including a dogma that one active GPCR molecule activates a substantial number of downstream G protein/enzyme effector complexes. However, rod phototransduction is light-activated, whereas GPCR pathways are predominantly ligand-activated. Here, we report a detailed study of the ligand-triggered GPCR pathway in mammalian olfactory transduction, finding that an odorant-receptor molecule when (one-time) complexed with its most effective odorants produces on average much less than one downstream effector. Further experiments gave a nominal success probability of tentatively ∼10-4 (more conservatively, ∼10-2 to ∼10-5). This picture is potentially more generally representative of GPCR signaling than is rod phototransduction, constituting a paradigm shift.
Collapse
Affiliation(s)
- Rong-Chang Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Chih-Chun Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xiaozhi Ren
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
10
|
Omura M, Takabatake Y, Lempert E, Benjamin-Hong S, D'Hulst C, Feinstein P. A genetic platform for functionally profiling odorant receptors in olfactory cilia ex vivo. Sci Signal 2022; 15:eabm6112. [PMID: 35944068 DOI: 10.1126/scisignal.abm6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The molecular basis for odor perception in humans remains enigmatic because of the difficulty in studying odorant receptors (ORs) outside their native environment. Efforts toward OR expression and functional profiling have been met with limited success because of the poor efficiency of their cell surface expression in vitro. Structures protruding from the surface of olfactory sensory neurons called cilia contain all of the components of the olfactory signal transduction machinery and can be placed in an ex vivo plate assay to rapidly measure odor-specific responses. Here, we describe an approach using cilia isolated from the olfactory sensory neurons of mice expressing two human ORs, OR1A1 and OR5AN1, that showed 10- to 100-fold more sensitivity to ligands as compared to previous assays. A single mouse can produce enough olfactory cilia for up to 4000 384-well assay wells, and isolated cilia can be stored frozen and thus preserved. This pipeline offers a sensitive and highly scalable ex vivo odor-screening platform that has the potential to decode human olfaction.
Collapse
Affiliation(s)
- Masayo Omura
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Yukie Takabatake
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Eugene Lempert
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | | | - Charlotte D'Hulst
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.,Yesse Technologies Inc., New York, NY 10016, USA.,Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
11
|
Li J, Wang X, Xun S, Guo Q, Wang Y, Jia Y, Wang W, Wang Y, Li T, Tang T, Zou J, Wang M, Yang M, Wang F, Zhang X, Wang C. Study of the Mechanism of Antiemetic Effect of Lavandula angustifolia Mill. Essential Oil Based on Ca 2+/CaMKII/ERK1/2 Pathway. Drug Des Devel Ther 2022; 16:2407-2422. [PMID: 35923932 PMCID: PMC9341382 DOI: 10.2147/dddt.s366597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To investigate the effective components and possible mechanism of action of Lavandula angustifolia Mill. essential oil (LEO) in preventing vomiting through the olfactory pathway. Materials and Methods A new network pharmacology-based method was established to analyze main components and pathways of LEO involved in antiemetic effects by introducing component content; biological activities of key proteins of the olfactory pathway and their corresponding compounds were verified by molecular docking technique; and finally pica in a rat model was established to verify the molecular mechanism of antiemetic effects of LEO by enzyme-linked immunosorbent assay (ELISA) to determine the serum 5-HT, substance P, and DA levels in each group and by immunohistochemistry to determine the contents of 5-HT3R, CaMKII and ERK1/2 proteins in the medulla oblongata tissue. Results Network pharmacology combined with molecular docking analysis showed that the mechanism of the antiemetic effect of LEO may be related to (2Z)-3,7-dimethyl-2,6-octadienyl acetate, linalyl acetate, butanoic acid, hexyl ester, 4-hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, acetate, .tau.-cadinol and other active ingredients, which regulate the cyclic adenosine monophosphate (cAMP) signaling pathway and the expression of BRAF, PDE and other targets on the pathway. An ELISA revealed that LEO reduced the levels of 5-hydroxytryptamine (5-HT), substance P, and dopamine in serum compared with the model group (P <0.05). Immunohistochemical analysis showed that LEO decreased the expression of 5-HT3R, CaMKII, and ERK1/2 proteins in the medulla oblongata of rats compared with the model group (P <0.01). Conclusion LEO may achieve the antiemetic effect by reducing the content of 5-HT and inhibiting its related receptors, thereby regulating downstream Ca2+/CaMKII/ERK1/2 pathway of the cAMP signaling pathway.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Xiao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Shining Xun
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Qiuting Guo
- Xianyang Vocational Technical College, Xianyang, People’s Republic of China
| | - Yao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yanzuo Jia
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Wenfei Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yujiao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Taotao Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Tiantian Tang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Junbo Zou
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Mei Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Ming Yang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Fang Wang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Xiaofei Zhang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Changli Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| |
Collapse
|
12
|
A Naturally Occurring Membrane-Anchored Gα s Variant, XLαs, Activates Phospholipase Cβ4. J Biol Chem 2022; 298:102134. [PMID: 35709985 PMCID: PMC9294334 DOI: 10.1016/j.jbc.2022.102134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Extra-large stimulatory Gα (XLαs) is a large variant of G protein αs subunit (Gαs) that uses an alternative promoter and thus differs from Gαs at the first exon. XLαs activation by G protein–coupled receptors mediates cAMP generation, similarly to Gαs; however, Gαs and XLαs have been shown to have distinct cellular and physiological functions. For example, previous work suggests that XLαs can stimulate inositol phosphate production in renal proximal tubules and thereby regulate serum phosphate levels. In this study, we show that XLαs directly and specifically stimulates a specific isoform of phospholipase Cβ (PLCβ), PLCβ4, both in transfected cells and with purified protein components. We demonstrate that neither the ability of XLαs to activate cAMP generation nor the canonical G protein switch II regions are required for PLCβ stimulation. Furthermore, this activation is nucleotide independent but is inhibited by Gβγ, suggesting a mechanism of activation that relies on Gβγ subunit dissociation. Surprisingly, our results indicate that enhanced membrane targeting of XLαs relative to Gαs confers the ability to activate PLCβ4. We also show that PLCβ4 is required for isoproterenol-induced inositol phosphate accumulation in osteocyte-like Ocy454 cells. Taken together, we demonstrate a novel mechanism for activation of phosphoinositide turnover downstream of Gs-coupled receptors that may have a critical role in endocrine physiology.
Collapse
|
13
|
Awasthi M, Ranjan P, Kelterborn S, Hegemann P, Snell WJ. A cytoplasmic protein kinase couples engagement of Chlamydomonas ciliary receptors to cAMP-dependent cellular responses. J Cell Sci 2022; 135:275490. [PMID: 35502650 DOI: 10.1242/jcs.259814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
The primary cilium is a cellular compartment specialized for receipt of extracellular signals essential for development and homeostasis. Although intraciliary responses to engagement of ciliary receptors are well studied, fundamental questions remain about the mechanisms and molecules that transduce ciliary signals into responses in the cytoplasm. During fertilization in the bi-ciliated alga Chlamydomonas reinhardtii, ciliary adhesion between plus and minus gametes triggers an immediate ∼10-fold increase in cellular cAMP and consequent responses in the cytoplasm required for cell-cell fusion. Here, we identify a new participant in ciliary signaling, Gamete-Specific Protein Kinase (GSPK). GSPK is essential for the adhesion-induced cAMP increase and for rapid gamete fusion. The protein is in the cytoplasm and the entire cellular complement responds to a signal from the cilium by becoming phosphorylated within 1 minute after ciliary receptor engagement. Unlike all other cytoplasmic events in ciliary signaling, GSPK phosphorylation is not responsive to exogenously added cAMP. Thus, during ciliary signaling in Chlamydomonas, a cytoplasmic protein is required to rapidly interpret a still uncharacterized ciliary signal to generate a cytoplasmic response.
Collapse
Affiliation(s)
- Mayanka Awasthi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Peeyush Ranjan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Simon Kelterborn
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
14
|
Xue J, Han Y, Zeng W, Jiang Y. Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel. Neuron 2022; 110:86-95.e5. [PMID: 34699778 PMCID: PMC8738139 DOI: 10.1016/j.neuron.2021.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Mammalian cyclic nucleotide-gated (CNG) channels are nonselective cation channels activated by cGMP or cAMP and play essential roles in the signal transduction of the visual and olfactory sensory systems. CNGA1, the principal component of the CNG channel from rod photoreceptors, can by itself form a functional homotetrameric channel and has been used as the model system in the majority of rod CNG studies. However, the native rod CNG functions as a heterotetramer consisting of three A1 and one B1 subunits and exhibits different functional properties than the CNGA1 homomer. Here we present the functional analysis of human rod CNGA1/B1 heterotetramer and its cryo-EM structures in apo, cGMP-bound, cAMP-bound, and L-cis-Diltiazem-blocked states. These structures, with resolution ranging from 2.6 to 3.3 Å, elucidate the structural mechanisms underlying the 3:1 subunit stoichiometry, the asymmetrical gating upon cGMP activation, and the unique pharmacological property of the native rod CNG channel.
Collapse
Affiliation(s)
- Jing Xue
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yan Han
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Lead Contact: Youxing Jiang, Ph.D., Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9040, Tel. 214 645-6027; Fax. 214 645-6042;
| |
Collapse
|
15
|
Structure of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Struct Mol Biol 2022; 29:40-46. [PMID: 34969976 PMCID: PMC8776609 DOI: 10.1038/s41594-021-00699-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels transduce light-induced chemical signals into electrical signals in retinal cone and rod photoreceptors. Structures of native CNG channels, which are heterotetramers formed by CNGA and CNGB subunits, have not been obtained. In the present study, we report a high-resolution cryo-electron microscopy structure of the human cone CNG channel in the apo closed state. The channel contains three CNGA3 and one CNGB3 subunits. Arg403 in the pore helix of CNGB3 projects into an asymmetric selectivity filter and forms hydrogen bonds with two pore-lining backbone carbonyl oxygens. Arg442 in S6 of CNGB3 protrudes into and occludes the pore below the hydrophobic cavity gate previously observed in homotetrameric CNGA channels. It is interesting that Arg403Gln is a disease mutation, and Arg442 is replaced by glutamine in some animal species with dichromatic or monochromatic vision. These and other unique structural features and the disease link conferred by CNGB3 indicate a critical role of CNGB3 in shaping cone photoresponses.
Collapse
|
16
|
Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron 2021; 109:2469-2484.e7. [PMID: 34186026 DOI: 10.1016/j.neuron.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses: elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.
Collapse
|
17
|
Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron 2021; 109:1302-1313.e4. [PMID: 33651975 DOI: 10.1016/j.neuron.2021.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 11/22/2022]
Abstract
Mammalian cyclic nucleotide-gated (CNG) channels play an essential role in the signal transduction of the visual and olfactory sensory systems. Here we reveal the structural mechanism of ligand gating in human rod CNGA1 channel by determining its cryo-EM structures in both the apo closed and cGMP-bound open states. Distinct from most other members of voltage-gated tetrameric cation channels, CNGA1 forms a central channel gate in the middle of the membrane, occluding the central cavity. Structural analyses of ion binding profiles in the selectivity filters of the wild-type channel and the E365Q filter mutant allow us to unambiguously define the two Ca2+ binding sites inside the selectivity filter, providing structural insights into Ca2+ blockage and permeation in CNG channels. The structure of the E365Q mutant also reveals two alternative side-chain conformations at Q365, providing a plausible explanation for the voltage-dependent gating of CNG channel acquired upon E365 mutation.
Collapse
|
18
|
Kurian SM, Naressi RG, Manoel D, Barwich AS, Malnic B, Saraiva LR. Odor coding in the mammalian olfactory epithelium. Cell Tissue Res 2021; 383:445-456. [PMID: 33409650 PMCID: PMC7873010 DOI: 10.1007/s00441-020-03327-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Noses are extremely sophisticated chemical detectors allowing animals to use scents to interpret and navigate their environments. Odor detection starts with the activation of odorant receptors (ORs), expressed in mature olfactory sensory neurons (OSNs) populating the olfactory mucosa. Different odorants, or different concentrations of the same odorant, activate unique ensembles of ORs. This mechanism of combinatorial receptor coding provided a possible explanation as to why different odorants are perceived as having distinct odors. Aided by new technologies, several recent studies have found that antagonist interactions also play an important role in the formation of the combinatorial receptor code. These findings mark the start of a new era in the study of odorant-receptor interactions and add a new level of complexity to odor coding in mammals.
Collapse
Affiliation(s)
| | | | | | | | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| | - Luis R Saraiva
- Sidra Medicine, Doha, Qatar.
- Monell Chemical Senses Center, Philadelphia, USA.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
19
|
Aloum L, Alefishat E, Adem A, Petroianu G. Ionone Is More than a Violet's Fragrance: A Review. Molecules 2020; 25:molecules25245822. [PMID: 33321809 PMCID: PMC7764282 DOI: 10.3390/molecules25245822] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The term ionone is derived from “iona” (Greek for violet) which refers to the violet scent and “ketone” due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of β-carotene by β-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and β-pinene into α-and β-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that β-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. β-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. β-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators. α-Ionone and β-ionone derivatives exhibit anti-inflammatory, antimicrobial and anticancer effects, however the corresponding structure activity relationships are still inconclusive. Overall, data demonstrates that ionone is a promising scaffold for cancer, inflammation and infectious disease research and thus is more than simply a violet’s fragrance.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE
| | - Abdu Adem
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Correspondence: ; Tel.: +971-50-413-4525
| |
Collapse
|
20
|
Abstract
Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Correspondence to be sent to: Timothy S. McClintock, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA. e-mail:
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
21
|
Zheng X, Fu Z, Su D, Zhang Y, Li M, Pan Y, Li H, Li S, Grassucci RA, Ren Z, Hu Z, Li X, Zhou M, Li G, Frank J, Yang J. Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel. Nat Struct Mol Biol 2020; 27:625-634. [PMID: 32483338 PMCID: PMC7354226 DOI: 10.1038/s41594-020-0433-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide-gated (CNG) channels convert cyclic nucleotide (CN) binding and unbinding into electrical signals in sensory receptors and neurons. The molecular conformational changes underpinning ligand activation are largely undefined. We report both closed- and open-state atomic cryo-EM structures of a full-length Caenorhabditis elegans cyclic GMP-activated channel TAX-4, reconstituted in lipid nanodiscs. These structures, together with computational and functional analyses and a mutant channel structure, reveal a double-barrier hydrophobic gate formed by two S6 amino acids in the central cavity. cGMP binding produces global conformational changes that open the cavity gate located ~52 Å away but do not alter the structure of the selectivity filter-the commonly presumed activation gate. Our work provides mechanistic insights into the allosteric gating and regulation of CN-gated and nucleotide-modulated channels and CNG channel-related channelopathies.
Collapse
Affiliation(s)
- Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,These authors contributed equally to this work
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA,These authors contributed equally to this work
| | - Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China,These authors contributed equally to this work
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Minghui Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Current address: HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yaping Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huan Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Shufang Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert A. Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Zhenning Ren
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
22
|
Hu J, Wang Y, Le Q, Yu N, Cao X, Kuang S, Zhang M, Gu W, Sun Y, Yang Y, Yan X. Transcriptome sequencing of olfactory-related genes in olfactory transduction of large yellow croaker ( Larimichthy crocea) in response to bile salts. PeerJ 2019; 7:e6627. [PMID: 30918761 PMCID: PMC6431138 DOI: 10.7717/peerj.6627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/15/2019] [Indexed: 11/20/2022] Open
Abstract
Fish produce and release bile salts as chemical signalling substances that act as sensitive olfactory stimuli. To investigate how bile salts affect olfactory signal transduction in large yellow croaker (Larimichthy crocea), deep sequencing of olfactory epithelium was conducted to analyse olfactory-related genes in olfactory transduction. Sodium cholates (SAS) have typical bile salt chemical structures, hence we used four different concentrations of SAS to stimulate L. crocea, and the fish displayed a significant behavioural preference for 0.30% SAS. We then sequenced olfactory epithelium tissues, and identified 9938 unigenes that were significantly differentially expressed between SAS-stimulated and control groups, including 9055 up-regulated and 883 down-regulated unigenes. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses found eight categories linked to the olfactory transduction pathway that was highly enriched with some differentially expressed genes (DEGs), including the olfactory receptor (OR), Adenylate cyclase type 3 (ADCY3) and Calmodulin (CALM). Genes in these categories were analysed by RT-qPCR, which revealed aspects of the pathway transformation between odor detection, and recovery and adaptation. The results provide new insight into the effects of bile salt stimulation in olfactory molecular mechanisms in fishes, and expands our knowledge of olfactory transduction, and signal generation and decline.
Collapse
Affiliation(s)
- Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Qijun Le
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China.,Ningbo Entry-Exit Inspection and Quarantine Bureau Technical Centre, Ningbo, China
| | - Na Yu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaohuan Cao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Siwen Kuang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Weiwei Gu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yibo Sun
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yang Yang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Phospho-substrate profiling of Epac-dependent protein kinase C activity. Mol Cell Biochem 2019; 456:167-178. [PMID: 30739223 DOI: 10.1007/s11010-019-03502-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Exchange protein directly activated by cAMP (Epac) and protein kinase A are effectors for cAMP with distinct actions and regulatory mechanisms. Epac is a Rap guanine nucleotide exchange factor that activates Rap1; protein kinase C (PKC) is a major downstream target of Epac-Rap1 signaling that has been implicated in a variety of pathophysiological processes, including cardiac hypertrophy, cancer, and nociceptor sensitization leading to chronic pain. Despite the implication of both Epac and PKC in these processes, few downstream targets of Epac-PKC signaling have been identified. This study characterized the regulation of PKC activity downstream of Epac activation. Using an antibody that recognizes phospho-serine residues within the consensus sequence phosphorylated by PKC, we analyzed the 1-dimensional banding profile of PKC substrate protein phosphorylation from the Neuro2A mouse neuroblastoma cell line. Activation of Epac either indirectly by prostaglandin PGE2, or directly by 8-pCPT-2-O-Me-cAMP-AM (8pCpt), produced distinct PKC phospho-substrate protein bands that were suppressed by co-administration of the Epac inhibitor ESI09. Different PKC isoforms contributed to the induction of individual phospho-substrate bands, as determined using isoform-selective PKC inhibitors. Moreover, the banding profile after Epac activation was altered by disruption of the cytoskeleton, suggesting that the orchestration of Epac-dependent PKC signaling is regulated in part by interactions with the cytoskeleton. The approach described here provides an effective means to characterize Epac-dependent PKC activity.
Collapse
|
24
|
Ca 2+-activated Cl current predominates in threshold response of mouse olfactory receptor neurons. Proc Natl Acad Sci U S A 2018; 115:5570-5575. [PMID: 29735665 DOI: 10.1073/pnas.1803443115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammalian olfactory transduction, odorants activate a cAMP-mediated signaling pathway that leads to the opening of cyclic nucleotide-gated (CNG), nonselective cation channels and depolarization. The Ca2+ influx through open CNG channels triggers an inward current through Ca2+-activated Cl channels (ANO2), which is expected to produce signal amplification. However, a study on an Ano2-/- mouse line reported no elevation in the behavioral threshold of odorant detection compared with wild type (WT). Subsequent studies by others on the same Ano2-/- line, nonetheless, found subtle defects in olfactory behavior and some abnormal axonal projections from the olfactory receptor neurons (ORNs) to the olfactory bulb. As such, the question regarding signal amplification by the Cl current in WT mouse remains unsettled. Recently, with suction-pipette recording, we have successfully separated in frog ORNs the CNG and Cl currents during olfactory transduction and found the Cl current to predominate in the response down to the threshold of action-potential signaling to the brain. For better comparison with the mouse data by others, we have now carried out similar current-separation experiments on mouse ORNs. We found that the Cl current clearly also predominated in the mouse olfactory response at signaling threshold, accounting for ∼80% of the response. In the absence of the Cl current, we expect the threshold stimulus to increase by approximately sevenfold.
Collapse
|
25
|
James ZM, Zagotta WN. Structural insights into the mechanisms of CNBD channel function. J Gen Physiol 2017; 150:225-244. [PMID: 29233886 PMCID: PMC5806680 DOI: 10.1085/jgp.201711898] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
James and Zagotta discuss how recent cryoEM structures inform our understanding of cyclic nucleotide–binding domain channels. Cyclic nucleotide-binding domain (CNBD) channels are a family of ion channels in the voltage-gated K+ channel superfamily that play crucial roles in many physiological processes. CNBD channels are structurally similar but functionally very diverse. This family includes three subfamilies: (1) the cyclic nucleotide-gated (CNG) channels, which are cation-nonselective, voltage-independent, and cyclic nucleotide-gated; (2) the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are weakly K+ selective, hyperpolarization-activated, and cyclic nucleotide-gated; and (3) the ether-à-go-go-type (KCNH) channels, which are strongly K+ selective, depolarization-activated, and cyclic nucleotide-independent. Recently, several high-resolution structures have been reported for intact CNBD channels, providing a structural framework to better understand their diverse function. In this review, we compare and contrast the recent structures and discuss how they inform our understanding of ion selectivity, voltage-dependent gating, and cyclic nucleotide–dependent gating within this channel family.
Collapse
Affiliation(s)
- Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
26
|
Cilia- and Flagella-Associated Protein 69 Regulates Olfactory Transduction Kinetics in Mice. J Neurosci 2017; 37:5699-5710. [PMID: 28495971 DOI: 10.1523/jneurosci.0392-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 02/02/2023] Open
Abstract
Animals detect odorous chemicals through specialized olfactory sensory neurons (OSNs) that transduce odorants into neural electrical signals. We identified a novel and evolutionarily conserved protein, cilia- and flagella-associated protein 69 (CFAP69), in mice that regulates olfactory transduction kinetics. In the olfactory epithelium, CFAP69 is enriched in OSN cilia, where olfactory transduction occurs. Bioinformatic analysis suggests that a large portion of CFAP69 can form Armadillo-type α-helical repeats, which may mediate protein-protein interactions. OSNs lacking CFAP69, remarkably, displayed faster kinetics in both the on and off phases of electrophysiological responses at both the neuronal ensemble level as observed by electroolfactogram and the single-cell level as observed by single-cell suction pipette recordings. In single-cell analysis, OSNs lacking CFAP69 showed faster response integration and were able to fire APs more faithfully to repeated odor stimuli. Furthermore, both male and female mutant mice that specifically lack CFAP69 in OSNs exhibited attenuated performance in a buried food pellet test when a background of the same odor to the food pellet was present even though they should have better temporal resolution of coding olfactory stimulation at the peripheral. Therefore, the role of CFAP69 in the olfactory system seems to be to allow the olfactory transduction machinery to work at a precisely regulated range of response kinetics for robust olfactory behavior.SIGNIFICANCE STATEMENT Sensory receptor cells are generally thought to evolve to respond to sensory cues as fast as they can. This idea is consistent with mutational analyses in various sensory systems, where mutations of sensory receptor cells often resulted in reduced response size and slowed response kinetics. Contrary to this idea, we have found that there is a kinetic "damper" present in the olfactory transduction cascade of the mouse that slows down the response kinetics and, by doing so, it reduces the peripheral temporal resolution in coding odor stimuli and allows for robust olfactory behavior. This study should trigger a rethinking of the significance of the intrinsic speed of sensory transduction and the pattern of the peripheral coding of sensory stimuli.
Collapse
|
27
|
Dibattista M, Pifferi S, Boccaccio A, Menini A, Reisert J. The long tale of the calcium activated Cl - channels in olfactory transduction. Channels (Austin) 2017; 11:399-414. [PMID: 28301269 DOI: 10.1080/19336950.2017.1307489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ca2+-activated Cl- currents have been implicated in many cellular processes in different cells, but for many years, their molecular identity remained unknown. Particularly intriguing are Ca2+-activated Cl- currents in olfactory transduction, first described in the early 90s. Well characterized electrophysiologically, they carry most of the odorant-induced receptor current in the cilia of olfactory sensory neurons (OSNs). After many attempts to determine their molecular identity, TMEM16B was found to be abundantly expressed in the cilia of OSNs in 2009 and having biophysical properties like those of the native olfactory channel. A TMEM16B knockout mouse confirmed that TMEM16B was indeed the olfactory Cl- channel but also suggested a limited role in olfactory physiology and behavior. The question then arises of what the precise role of TMEM16b in olfaction is. Here we review the long story of this channel and its possible roles.
Collapse
Affiliation(s)
- Michele Dibattista
- a Department of Basic Medical Sciences, Neuroscience and Sensory Organs , University of Bari A. Moro , Bari , Italy
| | - Simone Pifferi
- b Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati , Trieste , Italy
| | | | - Anna Menini
- b Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati , Trieste , Italy
| | | |
Collapse
|
28
|
Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, Yang J. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 2017; 542:60-65. [PMID: 28099415 DOI: 10.1038/nature20819] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Cyclic-nucleotide-gated channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5-Å-resolution single-particle electron cryo-microscopy structure of a cyclic-nucleotide-gated channel from Caenorhabditis elegans in the cyclic guanosine monophosphate (cGMP)-bound open state. The channel has an unusual voltage-sensor-like domain, accounting for its deficient voltage dependence. A carboxy-terminal linker connecting S6 and the cyclic-nucleotide-binding domain interacts directly with both the voltage-sensor-like domain and the pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of cyclic-nucleotide-gated channels and cyclic nucleotide modulation of related channels.
Collapse
Affiliation(s)
- Minghui Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Xiaoyuan Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ioannis Michailidis
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ye Gong
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Huan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
29
|
Olfactory signaling components and olfactory receptors are expressed in tubule cells of the human kidney. Arch Biochem Biophys 2016; 610:8-15. [PMID: 27693121 DOI: 10.1016/j.abb.2016.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
Cells of the renal tubule system are in direct contact with compounds dissolved in the urine, such as short chain fatty acids (SCFA). Murine OR78, a member of the olfactory receptor (OR) family, is involved in SCFA-related regulation of renal blood pressure in mice. It is still unclear whether OR signaling has an impact on human renal physiology. In our study, we showed that OR51E1 and OR11H7, both of which can be activated by the SCFA isovaleric acid, are expressed in the HK-2 human proximal tubule cell line. We observed a transient increase in intracellular Ca2+ when isovaleric acid and 4-methylvaleric acid were added to HK-2 cells. The isovaleric acid-induced response was dependent on extracellular Ca2+ and adenylyl cyclase (AC) activation. Furthermore, we demonstrated that the canonical olfactory signaling components Gαolf and ACIII are co-localized with OR51E1. The number of cells responding to isovaleric acid correlated with the presence of primary cilia on HK-2 cells. OR51E1 protein expression was confirmed in the tubule system of human kidney tissue. Our study is the first to show the expression of ORs and olfactory signaling components in human kidney cells. Additionally, we discuss ORs as potential modulators of the renal physiology.
Collapse
|
30
|
Cyclic-nucleotide-gated cation current and Ca2+-activated Cl current elicited by odorant in vertebrate olfactory receptor neurons. Proc Natl Acad Sci U S A 2016; 113:11078-11087. [PMID: 27647918 DOI: 10.1073/pnas.1613891113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide-gated (CNG), nonselective cation channels. The consequent Ca2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca2+-activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olfactory response has inward CNG and Cl components that are in rapid succession and not easily separable. We report here success in quantitatively separating these two currents with respect to amplitude and time course over a broad range of odorant strengths. Importantly, we found that the Cl current is the predominant component throughout the olfactory dose-response relation, down to the threshold of signaling to the brain. This observation is very surprising given a recent report by others that the olfactory-signal amplification effected by the Ca2+-activated Cl current does not influence the behavioral olfactory threshold in mice.
Collapse
|
31
|
Kalbe B, Knobloch J, Schulz VM, Wecker C, Schlimm M, Scholz P, Jansen F, Stoelben E, Philippou S, Hecker E, Lübbert H, Koch A, Hatt H, Osterloh S. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells. Front Physiol 2016; 7:339. [PMID: 27540365 PMCID: PMC4972829 DOI: 10.3389/fphys.2016.00339] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/21/2016] [Indexed: 12/31/2022] Open
Abstract
Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Benjamin Kalbe
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Jürgen Knobloch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep- and Respiratory Medicine, University Hospital Bergmannsheil Bochum, Germany
| | - Viola M Schulz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Christine Wecker
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Marian Schlimm
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Paul Scholz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Fabian Jansen
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Erich Stoelben
- Department of Thoracic Surgery, Lungenklinik Merheim, Kliniken der Stadt Köln Cologne, Germany
| | - Stathis Philippou
- Department of Pathology and Cytology, Augusta-Kranken-Anstalt Bochum, Germany
| | - Erich Hecker
- Thoraxzentrum Ruhrgebiet, Department of Thoracic Surgery, Evangelisches Krankenhaus Herne Herne, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr-University Bochum Bochum, Germany
| | - Andrea Koch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep- and Respiratory Medicine, University Hospital Bergmannsheil Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Sabrina Osterloh
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
32
|
Jha SK, Sharma M, Pandey GK. Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants. Curr Genomics 2016; 17:315-29. [PMID: 27499681 PMCID: PMC4955031 DOI: 10.2174/1389202917666160331202125] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Abstract
Tolerance of plants to a number of biotic and abiotic stresses such as pathogen and herbivore attack, drought, salinity, cold and nutritional limitations is ensued by complex multimodule signaling pathways. The outcome of this complex signaling pathways results in adaptive responses by restoring the cellular homeostasis and thus promoting survival. Functions of many plant cation transporter and channel protein families such as glutamate receptor homologs (GLRs), cyclic nucleotide-gated ion channel (CNGC) have been implicated in providing biotic and abiotic stress tolerance. Ion homeostasis regulated by several transporters and channels is one of the crucial parameters for the optimal growth, development and survival of all living organisms. The CNGC family members are known to be involved in the uptake of cations such as Na(+), K(+) and Ca(2+) and regulate plant growth and development. Detail functional genomics approaches have given an emerging picture of CNGCs wherein these protein are believed to play crucial role in pathways related to cellular ion homeostasis, development and as a 'guard' in defense against biotic and abiotic challenges. Here, we discuss the current knowledge of role of CNGCs in mediating stress management and how they aid plants in survival under adverse conditions.
Collapse
Affiliation(s)
- Saroj K. Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
33
|
Ferrer I, Garcia-Esparcia P, Carmona M, Carro E, Aronica E, Kovacs GG, Grison A, Gustincich S. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Front Aging Neurosci 2016; 8:163. [PMID: 27458372 PMCID: PMC4932117 DOI: 10.3389/fnagi.2016.00163] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Eva Carro
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Neuroscience Group, Research Institute HospitalMadrid, Spain
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Alice Grison
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| | - Stefano Gustincich
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| |
Collapse
|
34
|
Scholz P, Mohrhardt J, Jansen F, Kalbe B, Haering C, Klasen K, Hatt H, Osterloh S. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs. Front Cell Neurosci 2016; 10:63. [PMID: 27065801 PMCID: PMC4809895 DOI: 10.3389/fncel.2016.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.
Collapse
Affiliation(s)
- Paul Scholz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Julia Mohrhardt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Fabian Jansen
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Benjamin Kalbe
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Claudia Haering
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Katharina Klasen
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Sabrina Osterloh
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
35
|
Wongsamitkul N, Nache V, Eick T, Hummert S, Schulz E, Schmauder R, Schirmeyer J, Zimmer T, Benndorf K. Quantifying the cooperative subunit action in a multimeric membrane receptor. Sci Rep 2016; 6:20974. [PMID: 26858151 PMCID: PMC4746656 DOI: 10.1038/srep20974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/14/2016] [Indexed: 11/10/2022] Open
Abstract
In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels.
Collapse
Affiliation(s)
- Nisa Wongsamitkul
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Vasilica Nache
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Thomas Eick
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Sabine Hummert
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany.,Hochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, 98574 Schmalkalden, Germany
| | - Eckhard Schulz
- Hochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, 98574 Schmalkalden, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Jana Schirmeyer
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Thomas Zimmer
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| |
Collapse
|
36
|
Silva Teixeira CS, Cerqueira NMFSA, Silva Ferreira AC. Unravelling the Olfactory Sense: From the Gene to Odor Perception. Chem Senses 2015; 41:105-21. [PMID: 26688501 DOI: 10.1093/chemse/bjv075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although neglected by science for a long time, the olfactory sense is now the focus of a panoply of studies that bring new insights and raises interesting questions regarding its functioning. The importance in the clarification of this process is of interest for science, but also motivated by the food and perfume industries boosted by a consumer society with increasingly demands for higher quality standards. In this review, a general overview of the state of art of science regarding the olfactory sense is presented with the main focus on the peripheral olfactory system. Special emphasis will be given to the deorphanization of the olfactory receptors (ORs), a critical issue because the specificity and functional properties of about 90% of human ORs remain unknown mainly due to the difficulties associated with the functional expression of ORs in high yields.
Collapse
Affiliation(s)
- Carla S Silva Teixeira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@Requimte/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and
| | - António C Silva Ferreira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal, Department of Viticulture and Oenology, Institute for Wine Biotechnology, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa
| |
Collapse
|
37
|
Fechner S, Alvarez L, Bönigk W, Müller A, Berger TK, Pascal R, Trötschel C, Poetsch A, Stölting G, Siegfried KR, Kremmer E, Seifert R, Kaupp UB. A K(+)-selective CNG channel orchestrates Ca(2+) signalling in zebrafish sperm. eLife 2015; 4:e07624. [PMID: 26650356 PMCID: PMC4749565 DOI: 10.7554/elife.07624] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/09/2015] [Indexed: 01/03/2023] Open
Abstract
Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca(2+) signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K(+) channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca(2+) influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca(2+) entry. Ca(2+) induces spinning-like swimming, different from swimming of sperm from other species. The "spinning" mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.
Collapse
Affiliation(s)
- Sylvia Fechner
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Wolfgang Bönigk
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Astrid Müller
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Thomas K Berger
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Rene Pascal
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | | | - Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany
| | - Gabriel Stölting
- Institute of Complex Systems 4, Forschungszentrum Jülich, Jülich, Germany
| | - Kellee R Siegfried
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Elisabeth Kremmer
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, München, Germany
| | - Reinhard Seifert
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - U Benjamin Kaupp
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
38
|
Jansen F, Kalbe B, Scholz P, Mikosz M, Wunderlich KA, Kurtenbach S, Nagel-Wolfrum K, Wolfrum U, Hatt H, Osterloh S. Impact of the Usher syndrome on olfaction. Hum Mol Genet 2015; 25:524-33. [PMID: 26620972 DOI: 10.1093/hmg/ddv490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction.
Collapse
Affiliation(s)
- Fabian Jansen
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Benjamin Kalbe
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Paul Scholz
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Marta Mikosz
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Kirsten A Wunderlich
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Stefan Kurtenbach
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Kerstin Nagel-Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Hanns Hatt
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Sabrina Osterloh
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| |
Collapse
|
39
|
Yu Y, Kuan AS, Chen TY. Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel. ACTA ACUST UNITED AC 2015; 144:115-24. [PMID: 24981232 PMCID: PMC4076522 DOI: 10.1085/jgp.201411179] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ca2+-calmodulin fails to affect TMEM16A anion permeability. The transmembrane protein TMEM16A forms a Ca2+-activated Cl− channel that is permeable to many anions, including SCN−, I−, Br−, Cl−, and HCO3−, and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca2+-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide–gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca2+] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both.
Collapse
Affiliation(s)
- Yawei Yu
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | - Ai-Seon Kuan
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | - Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| |
Collapse
|
40
|
Paramonov VM, Mamaeva V, Sahlgren C, Rivero-Müller A. Genetically-encoded tools for cAMP probing and modulation in living systems. Front Pharmacol 2015; 6:196. [PMID: 26441653 PMCID: PMC4569861 DOI: 10.3389/fphar.2015.00196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Intracellular 3′-5′-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming—all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control—something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.
Collapse
Affiliation(s)
- Valeriy M Paramonov
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland
| | - Veronika Mamaeva
- Department of Clinical Science, University of Bergen , Bergen, Norway
| | - Cecilia Sahlgren
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland ; Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, Netherlands
| | - Adolfo Rivero-Müller
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Faculty of Natural Sciences and Technology, Åbo Akademi University , Turku, Finland ; Department of Biochemistry and Molecular Biology, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
41
|
The pre-vertebrate origins of neurogenic placodes. Nature 2015; 524:462-5. [PMID: 26258298 DOI: 10.1038/nature14657] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
Abstract
The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.
Collapse
|
42
|
Abstract
Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction.
Collapse
Affiliation(s)
- Todd A Wyatt
- VA Nebraska-Western Iowa Health Care System, Research Service, Department of Veterans Affairs Medical Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA.
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, 985910 Nebraska Medical Center, Omaha, NE 68198-5910, USA .
| |
Collapse
|
43
|
Churcher AM, Hubbard PC, Marques JP, Canário AVM, Huertas M. Deep sequencing of the olfactory epithelium reveals specific chemosensory receptors are expressed at sexual maturity in the European eel Anguilla anguilla. Mol Ecol 2015; 24:822-34. [PMID: 25580852 DOI: 10.1111/mec.13065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/19/2014] [Accepted: 12/30/2014] [Indexed: 01/02/2023]
Abstract
Vertebrate genomes encode a diversity of G protein-coupled receptor (GPCR) that belong to large gene families and are used by olfactory systems to detect chemical cues found in the environment. It is not clear however, if individual receptors from these large gene families have evolved roles that are specific to certain life stages. Here, we used deep sequencing to identify differentially expressed receptor transcripts in the olfactory epithelia (OE) of freshwater, seawater and sexually mature male eels (Anguilla anguilla). This species is particularly intriguing because of its complex life cycle, extreme long-distance migrations and early-branching position within the teleost phylogeny. In the A. anguillaOE, we identified full-length transcripts for 13, 112, 6 and 38 trace amine-associated receptors, odorant receptors (OR) and type I and type II vomeronasal receptors (V1R and V2R). Most of these receptors were expressed at similar levels at different life stages and a subset of OR and V2R-like transcripts was more abundant in sexually mature males suggesting that ORs and V2R-like genes are important for reproduction. We also identified a set of GPCR signal transduction genes that were differentially expressed indicating that eels make use of different GPCR signal transduction genes at different life stages. The finding that a diversity of chemosensory receptors is expressed in the olfactory epithelium and that a subset is differentially expressed suggests that most receptors belonging to large chemosensory gene families have functions that are important at multiple life stages, while a subset has evolved specific functions at different life stages.
Collapse
Affiliation(s)
- Allison M Churcher
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | | | | | | |
Collapse
|
44
|
Nache V, Eick T, Schulz E, Schmauder R, Benndorf K. Hysteresis of ligand binding in CNGA2 ion channels. Nat Commun 2014; 4:2866. [PMID: 24287615 PMCID: PMC3868267 DOI: 10.1038/ncomms3866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/04/2013] [Indexed: 01/19/2023] Open
Abstract
Tetrameric cyclic nucleotide-gated (CNG) channels mediate receptor potentials in olfaction and vision. The channels are activated by the binding of cyclic nucleotides to a binding domain embedded in the C terminus of each subunit. Here using a fluorescent cGMP derivative (fcGMP), we show for homotetrameric CNGA2 channels that ligand unbinding is ~50 times faster at saturating than at subsaturating fcGMP. Analysis with complex Markovian models reveals two pathways for ligand unbinding; the partially liganded open channel unbinds its ligands from closed states only, whereas the fully liganded channel reaches a different open state from which it unbinds all four ligands rapidly. Consequently, the transition pathways for ligand binding and activation of a fully liganded CNGA2 channel differ from that of ligand unbinding and deactivation, resulting in pronounced hysteresis of the gating mechanism. This concentration-dependent gating mechanism allows the channels to respond to changes in the cyclic nucleotide concentration with different kinetics. Cyclic nucleotide-gated channels mediate olfactory and visual responses. Using a fluorescent cGMP derivative, Nache et al. show that the rate of cyclic nucleotide release from CNGA2 depends on the extent to which this tetrameric receptor is liganded, revealing hysteresis in the gating mechanism.
Collapse
Affiliation(s)
- Vasilica Nache
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
45
|
Baumgart S, Jansen F, Bintig W, Kalbe B, Herrmann C, Klumpers F, Köster SD, Scholz P, Rasche S, Dooley R, Metzler-Nolte N, Spehr M, Hatt H, Neuhaus EM. The scaffold protein MUPP1 regulates odorant-mediated signaling in olfactory sensory neurons. J Cell Sci 2014; 127:2518-27. [PMID: 24652834 DOI: 10.1242/jcs.144220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The olfactory signal transduction cascade transforms odor information into electrical signals by a cAMP-based amplification mechanism. The mechanisms underlying the very precise temporal and spatial organization of the relevant signaling components remains poorly understood. Here, we identify, using co-immunoprecipitation experiments, a macromolecular assembly of signal transduction components in mouse olfactory neurons, organized through MUPP1. Disruption of the PDZ signaling complex, through use of an inhibitory peptide, strongly impaired odor responses and changed the activation kinetics of olfactory sensory neurons. In addition, our experiments demonstrate that termination of the response is dependent on PDZ-based scaffolding. These findings provide new insights into the functional organization, and regulation, of olfactory signal transduction.
Collapse
Affiliation(s)
- Sabrina Baumgart
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Fabian Jansen
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem Bintig
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benjamin Kalbe
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Fabian Klumpers
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - S David Köster
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Paul Scholz
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Sebastian Rasche
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Hanns Hatt
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Eva M Neuhaus
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany Pharmacology and Toxicology, University Hospital Jena, Drakendorfer Weg 1, 07743 Jena, Germany
| |
Collapse
|
46
|
Rich TC, Webb KJ, Leavesley SJ. Can we decipher the information content contained within cyclic nucleotide signals? J Gen Physiol 2014; 143:17-27. [PMID: 24378904 PMCID: PMC3874573 DOI: 10.1085/jgp.201311095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Thomas C. Rich
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| | - Kristal J. Webb
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| | - Silas J. Leavesley
- Center for Lung Biology, Department of Pharmacology, Basic Medical Sciences Graduate Program, and Department of Pharmacology, College of Medicine; and Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
47
|
Pervez N, Ham HG, Kim S. Interplay of Signaling Molecules in Olfactory Sensory Neuron toward Signal Amplification. ACTA ACUST UNITED AC 2014. [DOI: 10.7599/hmr.2014.34.3.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Nayab Pervez
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Hyoung-Geol Ham
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Sangseong Kim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| |
Collapse
|
48
|
Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol Ther 2013; 142:41-61. [PMID: 24280065 DOI: 10.1016/j.pharmthera.2013.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are prime therapeutic targets. The odorant and taste receptors account for over half of the GPCR repertoire, yet they are generally excluded from large-scale, drug candidate analyses. Accumulating molecular evidence indicates that the odorant and taste receptors are widely expressed throughout the body and functional beyond the oronasal cavity - with roles including nutrient sensing, autophagy, muscle regeneration, regulation of gut motility, protective airway reflexes, bronchodilation, and respiratory disease. Given this expanding array of actions, the restricted perception of these GPCRs as mere mediators of smell and taste is outdated. Moreover, delineation of the precise actions of odorant and taste GPCRs continues to be hampered by the relative paucity of selective and specific experimental tools, as well as the lack of defined receptor pharmacology. In this review, we summarize the evidence for expression and function of odorant and taste receptors in tissues beyond the nose and mouth, and we highlight their broad potential in physiology and pathophysiology.
Collapse
|
49
|
Abstract
The basic scheme of odor perception and signaling from olfactory cilia to the brain is well understood. However, factors that affect olfactory acuity of an animal, the threshold sensitivity to odorants, are less well studied. Using signal sequence trap screening of a mouse olfactory epithelium cDNA library, we identified a novel molecule, Goofy, that is essential for olfactory acuity in mice. Goofy encodes an integral membrane protein with specific expression in the olfactory and vomeronasal sensory neurons and predominant localization to the Golgi compartment. Goofy-deficient mice display aberrant olfactory phenotypes, including the impaired trafficking of adenylyl cyclase III, stunted olfactory cilia, and a higher threshold for physiological and behavioral responses to odorants. In addition, the expression of dominant-negative form of cAMP-dependent protein kinase results in shortening of olfactory cilia, implying a possible mechanistic link between cAMP and ciliogenesis in the olfactory sensory neurons. These results demonstrate that Goofy plays an important role in establishing the acuity of olfactory sensory signaling.
Collapse
|
50
|
Podda MV, Piacentini R, Barbati SA, Mastrodonato A, Puzzo D, D’Ascenzo M, Leone L, Grassi C. Role of cyclic nucleotide-gated channels in the modulation of mouse hippocampal neurogenesis. PLoS One 2013; 8:e73246. [PMID: 23991183 PMCID: PMC3750014 DOI: 10.1371/journal.pone.0073246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/18/2013] [Indexed: 12/25/2022] Open
Abstract
Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG) channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage.
Collapse
Affiliation(s)
- Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | | | - Alessia Mastrodonato
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Daniela Puzzo
- Section of Physiology, Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Marcello D’Ascenzo
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Lucia Leone
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| |
Collapse
|