1
|
Cai H, Huang X, Chen H, Zhao J, Sun H, Huang Y, Guo J, Shen J. A Novel Subtype of Spondylocostal Dysplasia Associated With a Heterozygous Missense FLNA Variant. Orthop Surg 2025. [PMID: 40264431 DOI: 10.1111/os.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Spondylocostal dysplasia (SCD) is characterized by vertebral defects and rib abnormalities. Following radiological diagnosis, further genetic testing is conducted to confirm the mutant loci and identify the subtype of SCD. While seven loci potentially associated with SCD have been identified, rare cases remain unexplained. CASE PRESENTATIONS A 37-year-old female diagnosed with SCD at birth was reported in this study. She exhibited scoliosis and thoracic asymmetry, along with a left-sided bilateral breast deformity. Imaging analysis revealed congenital scoliosis with a lack of segmentation, deformity of multiple ribs, and a lower spinal cord. Using whole-exome sequencing, we identified the genetic variant in the afflicted individual. We detected a heterozygous exon 16 FLNA variant in the afflicted individual and confirmed the absence of pathogenic variants of other known SCD-associated genes. CONCLUSIONS The variant NM_001456.4: c.2351T>C detected in this study enhances our knowledge of the pleiotropy linked with heterozygous FLNA variants. By expanding the mutation spectrum of FLNA, these findings will lay a foundation for further studies on the correlation between genotypes and phenotypes.
Collapse
Affiliation(s)
- Haoyu Cai
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Xu'an Huang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Haojie Chen
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Junduo Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Heng Sun
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Yizhen Huang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Jiayue Guo
- School of Health Policy and Management, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
| | - Jianxiong Shen
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
2
|
Hou X, Chen Y, Carrillo ND, Cryns VL, Anderson RA, Sun J, Wang S, Chen M. Phosphoinositide signaling at the cytoskeleton in the regulation of cell dynamics. Cell Death Dis 2025; 16:296. [PMID: 40229242 PMCID: PMC11997203 DOI: 10.1038/s41419-025-07616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The cytoskeleton, composed of microfilaments, intermediate filaments, and microtubules, provides the structural basis for cellular functions such as motility and adhesion. Equally crucial, phosphoinositide (PIPn) signaling is a critical regulator of these processes and other biological activities, though its precise impact on cytoskeletal dynamics has yet to be systematically investigated. This review explores the complex interplay between PIPn signaling and the cytoskeleton, detailing how PIPn modulates the dynamics of actin, intermediate filaments, and microtubules to shape cellular behavior. Dysregulation of PIPn signaling is implicated in various diseases, including cancer, highlighting promising therapeutic opportunities through targeted modulation of these pathways. Future research should aim to elucidate the intricate molecular interactions and broader cellular responses to PIPn signaling perturbations, particularly in disease contexts, to devise effective strategies for restoring cytoskeletal integrity.
Collapse
Affiliation(s)
- Xiaoting Hou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jichao Sun
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Songlin Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Esposito E, Marra G, Catalano R, Maioli S, Nozza E, Barbieri AM, Hantel C, Di Dalmazi G, Sigala S, Geginat J, Cassinotti E, Baldari L, Palmieri S, Mangone A, Berruti A, Ferrante E, Mantovani G, Peverelli E. Therapeutic potential of targeting the FLNA-regulated Wee1 kinase in adrenocortical carcinomas. Int J Cancer 2025; 156:1256-1271. [PMID: 39528354 PMCID: PMC11737004 DOI: 10.1002/ijc.35239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Filamin A (FLNA) is poorly expressed in adrenocortical carcinomas (ACC) compared to adenomas (ACA). Its presence is associated to a less aggressive tumour behaviour, potentially due to its role in negatively regulating IGF1R signalling. Upregulation of G2/M Wee1 kinase was shown in FLNA-deficient mouse neural progenitor cells, and it has been reported in several tumours. This study explored Wee1 expression in ACC and its regulation by FLNA, the effects of Wee1 inhibitor AZD1775, and the impact of FLNA on its efficacy in ACC cell lines and primary cells. Analysis of FLNA and Wee1 proteins revealed elevated Wee1 and reduced FLNA in ACC compared to normal adrenal gland. FLNA knockdown increased Wee1 protein in NCI-H295R, MUC-1, and in primary ACC cells. Higher p-CDK1 and cyclin B1 were shown in FLNA-silenced MUC-1, while decreased Wee1, p-CDK1 and cyclin B1 resulted after FLNA overexpression. Wee1 reduction was reverted by lactacystin treatment and FLNA transfection increased p-Wee1 (Ser123), suggesting FLNA's role in targeting Wee1 for degradation. AZD1775 dose-dependently reduced proliferation and viability in ACC cell lines and primary cultures, and it triggered MUC-1 cell death. Similar effects were induced by Wee1 silencing. FLNA depletion augmented AZD1775's efficacy in reducing proliferation and potentiating apoptosis in MUC-1 and primary cells. In conclusion, we demonstrated that FLNA regulates Wee1 expression by promoting its degradation, suggesting that low FLNA typical of ACC leads to increased Wee1 with consequent cancer cells growth. It proposes Wee1 inhibition as a new potential therapeutic approach for ACC, particularly for those lacking FLNA.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- PhD Programme in Experimental MedicineUniversity of MilanMilanItaly
| | - Giusy Marra
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
| | - Rosa Catalano
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
| | - Sara Maioli
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- PhD Programme in Translational MedicineUniversity of MilanMilanItaly
| | - Emma Nozza
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- PhD Programme in Experimental MedicineUniversity of MilanMilanItaly
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical NutritionUniversity Hospital Zurich (USZ) and University of Zurich (UZH)ZurichSwitzerland
- Medizinische Klinik und Poliklinik IIIUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
| | - Guido Di Dalmazi
- Division of Endocrinology and Diabetes Prevention and CareIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical SciencesAlma Mater University of BolognaBolognaItaly
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Jens Geginat
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
| | - Elisa Cassinotti
- Department of SurgeryFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of MilanMilanItaly
| | - Ludovica Baldari
- Department of SurgeryFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of MilanMilanItaly
| | - Serena Palmieri
- Endocrinology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of MilanMilanItaly
| | - Alessandra Mangone
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Endocrinology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of MilanMilanItaly
| | - Alfredo Berruti
- Medical Oncology UnitASST Spedali Civili di BresciaBresciaItaly
- Department of Medical & Surgical Specialties, Radiological Sciences & Public HealthUniversity of BresciaBresciaItaly
| | - Emanuele Ferrante
- Endocrinology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of MilanMilanItaly
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Endocrinology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of MilanMilanItaly
| | - Erika Peverelli
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Endocrinology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of MilanMilanItaly
| |
Collapse
|
4
|
Yang Y, Sakurai M. Advances in Detection Methods for A-to-I RNA Editing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70014. [PMID: 40223708 PMCID: PMC11995373 DOI: 10.1002/wrna.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a key post-transcriptional modification that influences gene expression and various cellular processes. Advances in sequencing technologies have greatly contributed to the identification of A-to-I editing sites, providing insights into their distribution across coding and non-coding regions. These developments have facilitated the discovery of functionally relevant editing events and have advanced the understanding of their biological roles. This review presents the evolution of methodologies for RNA editing detection and examines recent advances, including chemically-assisted, enzyme-assisted, and quantitative approaches. By evaluating these techniques, we aim to help researchers select the most effective tools for investigating RNA editing and its broader implications in health and disease.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| | - Masayuki Sakurai
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| |
Collapse
|
5
|
Akdemir AS, Metin Armagan D, Polat Korkmaz O, Ozkaya HM, Kadioglu P, Gazioglu N, Tanriover N, Dirican A, Ozturk M. Association between β-arrestin-2 and filamin-A gene variations with medical treatment response in acromegaly patients. Minerva Endocrinol (Torino) 2025; 50:32-41. [PMID: 34669321 DOI: 10.23736/s2724-6507.21.03611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acromegaly is a disease that occurs as a result of excessive growth hormone caused by pituitary adenomas. Some acromegaly patients show resistance to somatostatin analog (SSA) treatment. Filamin-A (FLNA) and β-arrestins are thought to play a role in the response to SSAs. We aimed to investigate the relationship between FLNA-rs782079491 and β-arrestin-2-rs34230287 single-nucleotide polymorphisms and disease risk, as well as treatment response in patients with acromegaly in the Turkish population. METHODS The genotypes of 110 acromegaly patients and 99 controls were determined by real-time PCR. The genotype distributions were compared with clinical data on the disease. RESULTS There was no association between the β-arrestin-2 gene polymorphism and the response to SSA treatment in acromegaly patients. For responder patients to SSAs, the β-arrestin-2-rs34230287 CT+TT genotype was associated with higher microadenoma as compared with the CC genotype (P=0.017). The FLNA polymorphism was not observed in the study group. CONCLUSIONS We showed that there was no association between the polymorphic genotypes of FLNA and β-arrestin-2 genes with acromegaly disease and SSAs response in the Turkish population. However, there was a relationship between β-arrestin-2 and some of the clinical characteristics. Furthermore, the CC genotype and the C allele are risk factors associated with tumor growth rate in acromegaly patients.
Collapse
Affiliation(s)
- Ayse S Akdemir
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Derya Metin Armagan
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
- Department of Medicine, Cedars - Sinai Medical Center, Los Angeles, CA, USA
| | - Ozge Polat Korkmaz
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Hande M Ozkaya
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Pinar Kadioglu
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
- Pituitary Research Center, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Nurperi Gazioglu
- Department of Neurosurgery, Medicine Faculty, Istinye University, Istanbul, Türkiye
| | - Necmettin Tanriover
- Pituitary Research Center, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Ahmet Dirican
- Department of Biostatistics, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Melek Ozturk
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye -
| |
Collapse
|
6
|
Hein MY, Peng D, Todorova V, McCarthy F, Kim K, Liu C, Savy L, Januel C, Baltazar-Nunez R, Sekhar M, Vaid S, Bax S, Vangipuram M, Burgess J, Njoya L, Wang E, Ivanov IE, Byrum JR, Pradeep S, Gonzalez CG, Aniseia Y, Creery JS, McMorrow AH, Sunshine S, Yeung-Levy S, DeFelice BC, Mehta SB, Itzhak DN, Elias JE, Leonetti MD. Global organelle profiling reveals subcellular localization and remodeling at proteome scale. Cell 2025; 188:1137-1155.e20. [PMID: 39742809 DOI: 10.1016/j.cell.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
Defining the subcellular distribution of all human proteins and their remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immunocapture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membraneless compartments. A graph-based analysis assigns the subcellular localization of over 7,600 proteins, defines spatial networks, and uncovers interconnections between cellular compartments. Our approach can be deployed to comprehensively profile proteome remodeling during cellular perturbation. By characterizing the cellular landscape following HCoV-OC43 viral infection, we discover that many proteins are regulated by changes in their spatial distribution rather than by changes in abundance. Our results establish that proteome-wide analysis of subcellular remodeling provides key insights for elucidating cellular responses, uncovering an essential role for ferroptosis in OC43 infection. Our dataset can be explored at organelles.czbiohub.org.
Collapse
Affiliation(s)
| | - Duo Peng
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | | | | | - Kibeom Kim
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Chad Liu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laura Savy
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | - Sophie Bax
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - James Burgess
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Leila Njoya
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Eileen Wang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Serena Yeung-Levy
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
7
|
Tamizkar KH, Jantsch MF. RNA editing in disease: mechanisms and therapeutic potential. RNA (NEW YORK, N.Y.) 2025; 31:359-368. [PMID: 39746751 PMCID: PMC11874977 DOI: 10.1261/rna.080331.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Adenosine to inosine conversion by adenosine deaminases acting on RNA (ADARs) was first identified in the late 1980s of the previous century. As the conversion of adenosines to inosines can be easily detected by sequencing of cDNAs, where the presence of an inosine reads out as a guanosine, the analysis of this type of RNA editing has become widespread. Consequently, several pipelines for detecting inosines in transcriptomes have become available. Still, how to interpret the consequences and alterations of RNA-editing events in whole transciptome editomes is a matter of debate. In particular, the cause or consequence of altered editomes on disease development is poorly understood. Similarly, absolute frequencies of editing events in single molecules, their longitudinal distribution, and naturally occurring changes during development, in different tissues, or in response to physiological changes need to be explored. Lastly, while the use of site-directed RNA editing as a treatment of certain genetic diseases is rapidly evolving, the applicability of this technology still faces several technical obstacles. In this review, we describe the current state of knowledge on adenosine deamination-type RNA editing, its involvement in disease development, and its potential as a therapeutic. Lastly, we highlight open challenges and questions that need to be addressed.
Collapse
Affiliation(s)
- Kasra Honarmand Tamizkar
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
8
|
Earnhardt-San AL, Baker EC, Cilkiz KZ, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Riley DG, Welsh TH. Evaluation of Prenatal Transportation Stress on DNA Methylation (DNAm) and Gene Expression in the Hypothalamic-Pituitary-Adrenal (HPA) Axis Tissues of Mature Brahman Cows. Genes (Basel) 2025; 16:191. [PMID: 40004522 PMCID: PMC11855312 DOI: 10.3390/genes16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The experience of prenatal stress results in various physiological disorders due to an alteration of an offspring's methylome and transcriptome. The objective of this study was to determine whether PNS affects DNA methylation (DNAm) and gene expression in the stress axis tissues of mature Brahman cows. Methods: Samples were collected from the paraventricular nucleus (PVN), anterior pituitary (PIT), and adrenal cortex (AC) of 5-year-old Brahman cows that were prenatally exposed to either transportation stress (PNS, n = 6) or were not transported (Control, n = 8). The isolated DNA and RNA samples were, respectively, used for methylation and RNA-Seq analyses. A gene ontology and KEGG pathway enrichment analysis of each data set within each sample tissue was conducted with the DAVID Functional Annotation Tool. Results: The DNAm analysis revealed 3, 64, and 99 hypomethylated and 2, 93, and 90 hypermethylated CpG sites (FDR < 0.15) within the PVN, PIT, and AC, respectively. The RNA-Seq analysis revealed 6, 25, and 5 differentially expressed genes (FDR < 0.15) in the PVN, PIT, and AC, respectively, that were up-regulated in the PNS group relative to the Control group, as well as 24 genes in the PIT that were down-regulated. Based on the enrichment analysis, several developmental and cellular processes, such as maintenance of the actin cytoskeleton, cell motility, signal transduction, neurodevelopment, and synaptic function, were potentially modulated. Conclusions: The methylome and transcriptome were altered in the stress axis tissues of mature cows that had been exposed to prenatal transportation stress. These findings are relevant to understanding how prenatal experiences may affect postnatal neurological functions.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| |
Collapse
|
9
|
Mulder T, Johnson J, González-Morales N. The filamins of Drosophila. Genome 2025; 68:1-11. [PMID: 39869855 DOI: 10.1139/gen-2024-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton. Filamins are required across various cells and tissues. In Drosophila early and recent studies have provided many details about filamin functions. This review centers on the two Drosophila filamins encoded by the cheerio and jitterbu g genes. We examine the structural and evolutionary aspects of filamin genes in flies, contrasting them with those of other model organisms. Then, we synthesize phenotypic data across diverse cell types. Additionally, we outline the genetic tools available for both genes. We also propose to divide filamins into typical and atypical based on the number of actin-binding domains and their relationship with other filamins.
Collapse
Affiliation(s)
- Tiara Mulder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Johnson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
10
|
Wade EM, Goodin EA, Morgan T, Pereira S, Woolley AG, Jenkins ZA, Daniel PB, Robertson SP. The hinge-1 domain of Flna is not necessary for diverse physiological functions in mice. Eur J Clin Invest 2024; 54:e14308. [PMID: 39215762 DOI: 10.1111/eci.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The filamins are cytoskeletal binding proteins that dynamically crosslink actin into orthogonal networks or bundle it into stress fibres. The domain structure of filamin proteins is very well characterised, with an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. The role of hinge-1 especially has been proposed to be essential for protein function as it provides flexibility to the otherwise rigid protein, and is a target for cleavage by calpain. Hinge-1 protects cells from otherwise destructive forces, and the products of calpain cleavage are involved in critical cellular signalling processes, such as survival during hypoxia. Pathogenic variants in FLNA encoding Filamin A, including those that remove the hinge-1 domain, cause a wide range of survivable developmental disorders. In contrast, complete loss of function of this gene is embryonic lethal in human and mouse. METHODS AND RESULTS In this study, we show that removing filamin A hinge-1 from mouse (FlnaΔH1), while preserving its expression level leads to no obvious developmental phenotype. Detailed characterisation of the skeletons of FlnaΔH1 mice showed no skeletal phenotype reminiscent of that found in the FLNA-causing skeletal dysplasia. Furthermore, nuclear functions of FLNA are maintained with loss of Filamin A hinge-1. CONCLUSION We conclude that hinge-1 is dispensable for filamin A protein function during development over the murine lifespan.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Goodin
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephana Pereira
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip B Daniel
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Mommaerts K, Okawa S, Schmitt M, Kofanova O, Turner TR, Ben RN, Del Sol A, Mathieson W, Schwamborn JC, Acker JP, Betsou F. Ice recrystallization inhibitors enable efficient cryopreservation of induced pluripotent stem cells: A functional and transcriptomic analysis. Stem Cell Res 2024; 81:103583. [PMID: 39467374 DOI: 10.1016/j.scr.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The successful use of human induced pluripotent stem cells (iPSCs) for research or clinical applications requires the development of robust, efficient, and reproducible cryopreservation protocols. After cryopreservation, the survival rate of iPSCs is suboptimal and cell line-dependent. We assessed the use of ice recrystallization inhibitors (IRIs) for cryopreservation of human iPSCs. A toxicity screening study was performed to assess specific small-molecule carbohydrate-based IRIs and concentrations for further evaluation. Then, a cryopreservation study compared the cryoprotective efficiency of 15 mM IRIs in 5 % or 10 % DMSO-containing solutions and with CryoStor® CS10. Three iPSC lines were cryopreserved as single-cell suspensions in the cryopreservation solutions and post-thaw characteristics, including pluripotency and differential gene expression were assessed. We demonstrate the fitness-for-purpose of 15 mM IRI in 5 % DMSO as an efficient cryoprotective solution for iPSCs in terms of post-thaw recovery, viability, pluripotency, and transcriptomic changes. This mRNA sequencing dataset has the potential to be used for molecular mechanism analysis relating to cryopreservation. Use of IRIs can reduce DMSO concentrations and its associated toxicities, thereby improving the utility, effectiveness, and efficiency of cryopreservation.
Collapse
Affiliation(s)
- Kathleen Mommaerts
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Margaux Schmitt
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Olga Kofanova
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | | | - Robert N Ben
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - William Mathieson
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jason P Acker
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Fay Betsou
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| |
Collapse
|
12
|
Yang HH, Han MR. MethylCallR : a comprehensive analysis framework for Illumina Methylation Beadchip. Sci Rep 2024; 14:27026. [PMID: 39506033 PMCID: PMC11541563 DOI: 10.1038/s41598-024-77914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
DNA methylation is a molecular process that mediates gene-environment interactions. Epigenome-wide association studies (EWAS) using the Illumina Human Methylation BeadChip are powerful tools for quantifying the relationship between DNA methylation and phenotypes. Recently, the Illumina Methylation EPICv2 BeadChip (EPICv2) was released, which includes new features, such as duplicated probes and changed probe names. Several published algorithms have been updated to address these features in EPICv2. However, appropriate EPICv2 preprocessing and integration with previous microarray versions remain complex. Therefore, MethylCallR, an open-source R package designed to provide standard procedures for performing EWAS using Illumina methylation microarrays including EPICv2, was developed. MethylCallR can be used to control duplicated probes in EPICv2, by using pre-set data implemented in MethylCallR or new customized data. MethylCallR includes a straightforward conversion function between different types of Illumina Human Methylation BeadChips. Using MethylCallR, potential outlier sample detection and statistical power estimation were conducted and used to select meaningful probes. Publicly available data was analyzed using MethylCallR and the findings were compared to that of a previous study.
Collapse
Affiliation(s)
- Hyun-Ho Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea.
| |
Collapse
|
13
|
Wang X, Jia Q, Yu L, Huang J, Wang X, Zhou L, Mijiti W, Xie Z, Dong S, Xie Z, Ma H. Filamin B knockdown impairs differentiation and function in mouse pre-osteoblasts via aberrant transcription and alternative splicing. Heliyon 2024; 10:e39334. [PMID: 39498024 PMCID: PMC11533582 DOI: 10.1016/j.heliyon.2024.e39334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Objective Filamin B (FLNB) encodes an actin-binding protein that is known to function as a novel RNA-binding protein involved in cell movement and signal transduction and plays a pivotal role in bone growth. This study aimed to investigate possible FLNB function in the skeletal system by characterizing the effecs of FLNB knockdown in mouse preosteoblast cells. Methods Stable FLNB MC3T3-E1 knockdown cells were constructed for RNA-seq and alternative splicing event (ASE) analysis of genes involved in osteoblast differentiation and function that may be regulated by FLNB. Standard transwell, MTT, ALP, qPCR, Western blot, and alizarin red staining assays were used to assess functional changes of FLNB-knockdown MC3T3-E1 cells. Results Analysis of differentially expressed genes (DEGs) in FLNB knockdown cells revealed enrichment for genes related to osteoblast proliferation, differentiation and migration, such as ITGA10, Cebpβ, Grem1, etc. Alternative splicing (AS) analysis showed changes in the predominant mRNA isoforms of skeletal development-related genes, especially Tpx2 and Evc. Functional asslysis indicated that proliferation, migration, and differentiation were all inhibited upon FLNB knockdown in MC3T3-E1 cells compared to that in vector control cells. Conclusions FLNB participates in regulating the transcription and AS of genes required for osteoblast development and function, consequently affecting growth and development in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Qiyu Jia
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Jinyong Huang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Xin Wang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Lijun Zhou
- School of Public Health, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Wubulikasimu Mijiti
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zhenzi Xie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Shiming Dong
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zengru Xie
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
14
|
Yan G, Zhou J, Yin J, Gao D, Zhong X, Deng X, Kang H, Sun A. Membrane Ruffles: Composition, Function, Formation and Visualization. Int J Mol Sci 2024; 25:10971. [PMID: 39456754 PMCID: PMC11507850 DOI: 10.3390/ijms252010971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline. Membrane ruffles are involved in multiple cell functions such as cell motility, macropinocytosis, receptor internalization, fluid viscosity sensing in a two-dimensional culture environment, and protecting cells from death in response to physiologically compressive loads. Herein, we review the state-of-the-art knowledge on membrane ruffle structure and function, the growth factor-induced membrane ruffling process, and the growth factor-independent ruffling mode triggered by calcium and other stimulating factors, together with the respective underlying mechanisms. We also summarize the inhibitors used in ruffle formation studies and their specificity. In the last part, an overview is given of the various techniques in which the membrane ruffles have been visualized up to now.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| |
Collapse
|
15
|
Wade EM, Morgan T, Gimenez G, Jenkins ZA, Titheradge H, O'Donnell M, Skidmore D, Suri M, Robertson SP. Pathogenic FLNA variants affecting the hinge region of filamin A are associated with male survival. Am J Med Genet A 2024; 194:e63779. [PMID: 38853608 DOI: 10.1002/ajmg.a.63779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Pathogenic variants in FLNA cause a diversity of X-linked developmental disorders associated with either preserved or diminished levels of filamin A protein and are conceptualized dichotomously as relating to underlying gain- or loss-of-function pathogenic mechanisms. Hemizygosity for germline deletions or truncating variants in FLNA is generally considered to result in embryonic lethality. Structurally, filamin A is composed of an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. Hinge-1 is proposed to confer flexibility to the otherwise rigid protein and is a target for cleavage by calpain with the resultant filamin fragments mediating crucial cellular signaling processes. Here, three families with pathogenic variants in FLNA that impair the function of hinge-1 in males are described, leading to distinct clinical phenotypes. One large in-frame deletion that includes the hinge leads to frontometaphyseal dysplasia in affected males and females, while two germline truncating variants located within the exon encoding hinge 1 result in phenotypes in males that are explained by exon skipping and under-expression of a transcript that deletes hinge-1 from the resultant protein. These three variants affecting hinge-1 indicate that this domain does not mediate cellular functions that, when deficientresult in embryonic lethality in males and that germline truncating variants in this region of FLNA can result in viable phenotypes in males.
Collapse
Affiliation(s)
- Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Hannah Titheradge
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Marie O'Donnell
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - David Skidmore
- IWK Hospital, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mohnish Suri
- Clinical Genetics Service, City Hospital, Nottingham, UK
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| |
Collapse
|
16
|
Martin E, Girardello R, Dittmar G, Ludwig A. Time-resolved proximity proteomics uncovers a membrane tension-sensitive caveolin-1 interactome at the rear of migrating cells. eLife 2024; 13:e85601. [PMID: 39315773 PMCID: PMC11509677 DOI: 10.7554/elife.85601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to increased membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. Caveolae have also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and their role in mechanotransduction remains unclear. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disrupts the caveolar protein coat. Membrane tension also detaches caveolin-1 from focal adhesion proteins and several mechanosensitive regulators of cortical actin including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 associate with caveolin-1 in a manner dependent on membrane tension, with ARHGAP29 influencing caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.
Collapse
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| | - Rossana Girardello
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Clarke J, Melcher L, Crowell AD, Cavanna F, Houser JR, Graham K, Green AM, Stachowiak JC, Truskett TM, Milliron DJ, Rosales AM, Das M, Alvarado J. Morphological control of bundled actin networks subject to fixed-mass depletion. J Chem Phys 2024; 161:074905. [PMID: 39166892 PMCID: PMC11663489 DOI: 10.1063/5.0197269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Depletion interactions are thought to significantly contribute to the organization of intracellular structures in the crowded cytosol. The strength of depletion interactions depends on physical parameters such as the depletant number density and the depletant size ratio. Cells are known to dynamically regulate these two parameters by varying the copy number of proteins of a wide distribution of sizes. However, mammalian cells are also known to keep the total protein mass density remarkably constant, to within 0.5% throughout the cell cycle. We thus ask how the strength of depletion interactions varies when the total depletant mass is held fixed, a.k.a. fixed-mass depletion. We answer this question via scaling arguments, as well as by studying depletion effects on networks of reconstituted semiflexible actin in silico and in vitro. We examine the maximum strength of the depletion interaction potential U∗ as a function of q, the size ratio between the depletant and the matter being depleted. We uncover a scaling relation U∗ ∼ qζ for two cases: fixed volume fraction φ and fixed mass density ρ. For fixed volume fraction, we report ζ < 0. For the fixed mass density case, we report ζ > 0, which suggests that the depletion interaction strength increases as the depletant size ratio is increased. To test this prediction, we prepared our filament networks at fixed mass concentrations with varying sizes of the depletant molecule poly(ethylene glycol) (PEG). We characterize the depletion interaction strength in our simulations via the mesh size. In experiments, we observe two distinct actin network morphologies, which we call weakly bundled and strongly bundled. We identify a mass concentration where different PEG depletant sizes lead to weakly bundled or strongly bundled morphologies. For these conditions, we find that the mesh size and intra-bundle spacing between filaments across the different morphologies do not show significant differences, while the dynamic light scattering relaxation time and storage modulus between the two states do show significant differences. Our results demonstrate the ability to tune actin network morphology and mechanics by controlling depletant size and give insights into depletion interaction mechanisms under the fixed-depletant-mass constraint relevant to living cells.
Collapse
Affiliation(s)
- James Clarke
- UT Austin Department of Physics, 2515 Speedway, Austin, Texas 78712, USA
| | - Lauren Melcher
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Anne D. Crowell
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | - Francis Cavanna
- UT Austin Department of Physics, 2515 Speedway, Austin, Texas 78712, USA
| | - Justin R. Houser
- UT Austin Department of Biomedical Engineering, Austin, Texas 78712, USA
| | - Kristin Graham
- UT Austin Department of Biomedical Engineering, Austin, Texas 78712, USA
| | - Allison M. Green
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | | | - Thomas M. Truskett
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | - Delia J. Milliron
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | - Adrianne M. Rosales
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | | | - José Alvarado
- UT Austin Department of Physics, 2515 Speedway, Austin, Texas 78712, USA
| |
Collapse
|
18
|
Cakici O, Bandaru S, Lee GY, Mustafa D, Akyürek LM. Targeting Cleavage of C-Terminal Fragment of Cytoskeletal Filamin A in Cancers. Cells 2024; 13:1394. [PMID: 39195282 PMCID: PMC11352274 DOI: 10.3390/cells13161394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Human cancers express altered levels of actin-binding cytoskeletal filamin A (FLNA) protein. FLNA in mammals consists of an actin-binding domain at its N-terminus that is followed by 24 immunoglobulin-like repeat modules interrupted by two hinge regions between repeats 15-16 and 23-24. Cleavage of these hinge regions produces a naturally occurring C-terminal 90 kDa fragment of FLNA (FLNACT) that physically interacts with multiple proteins with diverse functions. This cleavage leads to actin cytoskeleton remodeling, which in turn contributes to cellular signaling, nucleocytoplasmic shuttling of transcriptional factors and nuclear receptors, and regulation of their transcriptional activities that are important for initiation and progression of cancers. Therefore, recent studies have proposed blocking FLNA cleavage as a means of cancer therapy. Here, we update how FLNA cleavage has been targeted by different approaches and their potential implications for future treatment of human cancers.
Collapse
Affiliation(s)
- Ozgur Cakici
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (O.C.); (G.Y.L.)
| | - Sashidar Bandaru
- Department of Clinical Pathology, Sahlgrenska University Hospital, Västra Götalandsregionen, 413 45 Gothenburg, Sweden;
| | - Grace Yankun Lee
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (O.C.); (G.Y.L.)
| | - Dyar Mustafa
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden;
| | - Levent M. Akyürek
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (O.C.); (G.Y.L.)
- Department of Clinical Pathology, Sahlgrenska University Hospital, Västra Götalandsregionen, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden;
| |
Collapse
|
19
|
Daly ML, Nishi K, Klawa SJ, Hinton KY, Gao Y, Freeman R. Designer peptide-DNA cytoskeletons regulate the function of synthetic cells. Nat Chem 2024; 16:1229-1239. [PMID: 38654104 PMCID: PMC11322001 DOI: 10.1038/s41557-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The bottom-up engineering of artificial cells requires a reconfigurable cytoskeleton that can organize at distinct locations and dynamically modulate its structural and mechanical properties. Here, inspired by the vast array of actin-binding proteins and their ability to reversibly crosslink or bundle filaments, we have designed a library of peptide-DNA crosslinkers varying in length, valency and geometry. Peptide filaments conjoint through DNA hybridization give rise to tactoid-shaped bundles with tunable aspect ratios and mechanics. When confined in cell-sized water-in-oil droplets, the DNA crosslinker design guides the localization of cytoskeletal structures at the cortex or within the lumen of the synthetic cells. The tunable spatial arrangement regulates the passive diffusion of payloads within the droplets and complementary DNA handles allow for the reversible recruitment and release of payloads on and off the cytoskeleton. Heat-induced reconfiguration of peptide-DNA architectures triggers shape deformations of droplets, regulated by DNA melting temperatures. Altogether, the modular design of peptide-DNA architectures is a powerful strategy towards the bottom-up assembly of synthetic cells.
Collapse
Affiliation(s)
- Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kengo Nishi
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kameryn Y Hinton
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Kopsidas CA, Lowe CC, McDaniel DP, Zhou X, Feng Y. Sustained generation of neurons destined for neocortex with oxidative metabolic upregulation upon filamin abrogation. iScience 2024; 27:110199. [PMID: 38989458 PMCID: PMC11233971 DOI: 10.1016/j.isci.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Neurons in the neocortex are generated during embryonic development. While the adult ventricular-subventricular zone (V-SVZ) contains cells with neural stem/progenitors' characteristics, it remains unclear whether it has the capacity of producing neocortical neurons. Here, we show that generating neurons with transcriptomic resemblance to upper layer neocortical neurons continues in the V-SVZ of mouse models of a human condition known as periventricular heterotopia by abrogating Flna and Flnb. We found such surplus neurogenesis was associated with V-SVZ's upregulation of oxidative phosphorylation, mitochondrial biogenesis, and vascular abundance. Additionally, spatial transcriptomics analyses showed V-SVZ's neurogenic activation was coupled with transcriptional enrichment of genes in diverse pathways for energy metabolism, angiogenesis, cell signaling, synaptic transmission, and turnovers of nucleic acids and proteins in upper cortical layers. These findings support the potential of generating neocortical neurons in adulthood through boosting brain-wide vascular circulation, aerobic adenosine triphosphate synthesis, metabolic turnover, and neuronal activity.
Collapse
Affiliation(s)
- Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
21
|
Kamizaki K, Minami Y, Nishita M. Role of the Ror family receptors in Wnt5a signaling. In Vitro Cell Dev Biol Anim 2024; 60:489-501. [PMID: 38587578 DOI: 10.1007/s11626-024-00885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/09/2024]
Abstract
Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
| |
Collapse
|
22
|
Giovannelli P, Di Donato M, Licitra F, Sabbatino E, Tutino V, Castoria G, Migliaccio A. Filamin A in triple negative breast cancer. Steroids 2024; 205:109380. [PMID: 38311094 DOI: 10.1016/j.steroids.2024.109380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy.
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Fabrizio Licitra
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Emilia Sabbatino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Viviana Tutino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| |
Collapse
|
23
|
Nelson N, Vita DJ, Broadie K. Experience-dependent glial pruning of synaptic glomeruli during the critical period. Sci Rep 2024; 14:9110. [PMID: 38643298 PMCID: PMC11032375 DOI: 10.1038/s41598-024-59942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Critical periods are temporally-restricted, early-life windows when sensory experience remodels synaptic connectivity to optimize environmental input. In the Drosophila juvenile brain, critical period experience drives synapse elimination, which is transiently reversible. Within olfactory sensory neuron (OSN) classes synapsing onto single projection neurons extending to brain learning/memory centers, we find glia mediate experience-dependent pruning of OSN synaptic glomeruli downstream of critical period odorant exposure. We find glial projections infiltrate brain neuropil in response to critical period experience, and use Draper (MEGF10) engulfment receptors to prune synaptic glomeruli. Downstream, we find antagonistic Basket (JNK) and Puckered (DUSP) signaling is required for the experience-dependent translocation of activated Basket into glial nuclei. Dependent on this signaling, we find critical period experience drives expression of the F-actin linking signaling scaffold Cheerio (FLNA), which is absolutely essential for the synaptic glomeruli pruning. We find Cheerio mediates experience-dependent regulation of the glial F-actin cytoskeleton for critical period remodeling. These results define a sequential pathway for experience-dependent brain synaptic glomeruli pruning in a strictly-defined critical period; input experience drives neuropil infiltration of glial projections, Draper/MEGF10 receptors activate a Basket/JNK signaling cascade for transcriptional activation, and Cheerio/FLNA induction regulates the glial actin cytoskeleton to mediate targeted synapse phagocytosis.
Collapse
Affiliation(s)
- Nichalas Nelson
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Dominic J Vita
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
24
|
Marcus NJ, Robbins L, Araki A, Gracely EJ, Theoharides TC. Effective Doses of Low-Dose Naltrexone for Chronic Pain - An Observational Study. J Pain Res 2024; 17:1273-1284. [PMID: 38532991 PMCID: PMC10964028 DOI: 10.2147/jpr.s451183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
PURPOSE Despite the availability of a wide variety of analgesics, many patients with chronic pain often experience suboptimal pain relief in part related to the absence of any medication to address the nociplastic component of common pain syndromes. Low-dose naltrexone has been used for the treatment of chronic pain, typically at 4.5 mg per day, even though it is also noted that effective doses of naltrexone for chronic pain presentations range from 0.1 to 4.5 mg per day. We performed an observational analysis to determine the range of effective naltrexone daily dosing in 41 patients with chronic musculoskeletal pain. METHODS Charts of 385 patients, 115 males, 270 females, ages 18-92, were reviewed. Two hundred and sixty patients with chronic diffuse, symmetrical pain were prescribed a titrating dose of naltrexone to determine a maximally effective dose established by self-report of 1) reduction of diffuse/generalized and/or severity level of pain and/or 2) positive effects on mood, energy, and mental clarity. Brief Pain Inventory and PROMIS scales were given pre- and post-determining a maximally effective naltrexone dose. RESULTS Forty-one patients met all criteria for inclusion, successfully attained a maximally effective dose, and completed a pre- and post-outcome questionnaire. Hormesis was demonstrated during the determination of the maximally effective dosing, which varied over a wide range, with statistically significant improvement in BPI. CONCLUSION The maximally effective dose of low-dose naltrexone for the treatment of chronic pain is idiosyncratic, suggesting the need for 1) dosage titration to establish a maximally effective dose and 2) the possibility of re-introduction of low-dose naltrexone to patients who had failed initial trials on a fixed dose of naltrexone.
Collapse
Affiliation(s)
- Norman J Marcus
- Norman Marcus Pain Institute, New York, NY, USA
- Department of Anesthesiology and Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | - Aya Araki
- Norman Marcus Pain Institute, New York, NY, USA
| | - Edward J Gracely
- Family, Community & Preventative Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- School of Public Health, Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Theoharis C Theoharides
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Institute for Neuro-Immune Medicine, Nova, Southeaster University, Clearwater, FL, USA
| |
Collapse
|
25
|
Georgana I, Scutts SR, Gao C, Lu Y, Torres AA, Ren H, Emmott E, Men J, Oei K, Smith GL. Filamin B restricts vaccinia virus spread and is targeted by vaccinia virus protein C4. J Virol 2024; 98:e0148523. [PMID: 38412044 PMCID: PMC10949515 DOI: 10.1128/jvi.01485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.
Collapse
Affiliation(s)
- Iliana Georgana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keefe Oei
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Wang Q, Xiao Z, Hou Z, Li D. Effect of disulfidptosis-related genes SLC3A2, SLC7A11 and FLNB polymorphisms on risk of autoimmune thyroiditis in a Chinese population. Int Immunopharmacol 2024; 129:111605. [PMID: 38316082 DOI: 10.1016/j.intimp.2024.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE This study aimed to evaluate the associations between disulfidptosis related genes-SLC3A2, SLC7A11 and FLNB polymorphisms and risk of autoimmune thyroiditis (AIT). METHODS Six SNPs in the SLC3A2, SLC7A11 and FLNB were genotyped in 650 AIT cases and 650 controls using a MassARRAY platform. RESULTS Minor alleles of SLC3A2-rs12794763, rs1059292 and FLNB-rs839240 might lead to a higher risk of AIT (p < 0.001), while SLC7A11-rs969319-C allele tends to decrease the risk of the disease (p = 0.006). Genetic model analysis showed that SLC3A2-rs12794763, SLC3A2-rs1059292 and FLNB-rs839240 polymorphisms were risk factors for AIT (p < 0.001); while SLC7A11-rs969319 showed a protective role for the disease in all genetic models (p < 0.005). Stratification analysis showed that SLC3A2-rs1059292 and rs12794763 were correlated with higher risk of AIT regardless of sex (p < 0.05). Moreover, FLNB-rs839240 exhibited higher risk of disease only in females (p < 0.05). By contrast, SLC7A11-rs969319 showed a protective role only in females (p < 0.05). CONCLUSION Our results shed new light on the association between disulfidptosis-related genes and AIT risk.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Zhifu Xiao
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Zebin Hou
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Dewei Li
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China.
| |
Collapse
|
27
|
Lazzarino M, Zanetti M, Chen SN, Gao S, Peña B, Lam CK, Wu JC, Taylor MRG, Mestroni L, Sbaizero O. Defective Biomechanics and Pharmacological Rescue of Human Cardiomyocytes with Filamin C Truncations. Int J Mol Sci 2024; 25:2942. [PMID: 38474188 PMCID: PMC10932268 DOI: 10.3390/ijms25052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Actin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants (FLNCtv) are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying FLNCtv. CRISPR/Cas9 genome-edited homozygous FLNCKO-/- hiPSC-CMs and heterozygous knock-out FLNCKO+/- hiPSC-CMs were analyzed and compared to wild-type FLNC (FLNCWT) hiPSC-CMs. Atomic force microscopy (AFM) was used to perform micro-indentation to evaluate passive and dynamic mechanical properties. A qualitative analysis of the beating traces showed gene dosage-dependent-manner "irregular" peak profiles in FLNCKO+/- and FLNCKO-/- hiPSC-CMs. Two Young's moduli were calculated: E1, reflecting the compression of the plasma membrane and actin cortex, and E2, including the whole cell with a cytoskeleton and nucleus. Both E1 and E2 showed decreased stiffness in mutant FLNCKO+/- and FLNCKO-/- iPSC-CMs compared to that in FLNCWT. The cell adhesion force and work of adhesion were assessed using the retraction curve of the SCFS. Mutant FLNC iPSC-CMs showed gene dosage-dependent decreases in the work of adhesion and adhesion forces from the heterozygous FLNCKO+/- to the FLNCKO-/- model compared to FLNCWT, suggesting damaged cytoskeleton and membrane structures. Finally, we investigated the effect of crenolanib on the mechanical properties of hiPSC-CMs. Crenolanib is an inhibitor of the Platelet-Derived Growth Factor Receptor α (PDGFRA) pathway which is upregulated in FLNCtv hiPSC-CMs. Crenolanib was able to partially rescue the stiffness of FLNCKO-/- hiPSC-CMs compared to control, supporting its potential therapeutic role.
Collapse
Affiliation(s)
- Marco Lazzarino
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Michele Zanetti
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Suet Nee Chen
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Shanshan Gao
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Brisa Peña
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Bioengineering Department, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Matthew R. G. Taylor
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Orfeo Sbaizero
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Engineering and Architecture Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
28
|
Xu Q, Cui L, Lin Y, Cui LA, Xia W. Disruption of FLNB leads to skeletal malformation by interfering with skeletal segmentation through the HOX gene. Bone Rep 2024; 20:101746. [PMID: 38463381 PMCID: PMC10924170 DOI: 10.1016/j.bonr.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Filamin B (FLNB) plays an important role in skeletal development. Mutations in FLNB can lead to skeletal malformation such as an abnormal number of ossification centers, indicating that the skeletal segmentation in the embryonic period may be interfered with. We established a mouse model with the pathogenic point mutation FLNB NM_001081427.1: c.4756G > A (p.Gly1586Arg) using CRISPR-Cas9 technology. Micro-CT, HE staining and whole skeletal preparation were performed to examine the skeletal malformation. In situ hybridization of embryos was performed to examine the transcription of HOX genes during embryonic development. The expression of FLNB was downregulated in FLNBG1586R/G1586R and FLNBWT/G1586R mice, compared to FLNBWT/WT mice. Fusions in tarsal bones were found in FLNBG1586R/G1586R and FLNBWT/G1586R mice, indicating that the skeletal segmentation was interfered with. In the embryo of FLNBG1586R/G1586R mice (E12.5), the transcription levels of HOXD10 and HOXB2 were downregulated in the carpal region and cervical spine region, respectively. This study indicated that the loss-of-function mutation G1586R in FLNB may lead to abnormal skeletal segmentation, and the mechanism was possibly associated with the downregulation of HOX gene transcription during the embryonic period.
Collapse
Affiliation(s)
- Qiming Xu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100085, China
| | - Lijia Cui
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yude Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leigh-Anne Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
29
|
Das A, Yesupatham S, Allison D, Tanwar H, Gnanasekaran J, Kear B, Wang X, Wang S, Zachariadou C, Abbasi Y, Chung M, Ozato K, Liu C, Foster B, Thumbigere-Math V. Murine IRF8 Mutation Offers New Insight into Osteoclast and Root Resorption. J Dent Res 2024; 103:318-328. [PMID: 38343385 PMCID: PMC10985390 DOI: 10.1177/00220345231222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, functions as a negative regulator of osteoclasts and helps maintain dental and skeletal homeostasis. Previously, we reported that a novel mutation in the IRF8 gene increases susceptibility to multiple idiopathic cervical root resorption (MICRR), a form of tooth root resorption mediated by increased osteoclast activity. The IRF8 G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. To investigate the molecular basis of MICRR and IRF8 function in osteoclastogenesis, we generated Irf8 knock-in (KI) mice using CRISPR/Cas9 technique modeling the human IRF8G388S mutation. The heterozygous (Het) and homozygous (Homo) Irf8 KI mice showed no gross morphological defects, and the development of hematopoietic cells was unaffected and similar to wild-type (WT) mice. The Irf8 KI Het and Homo mice showed no difference in macrophage gene signatures important for antimicrobial defenses and inflammatory cytokine production. Consistent with the phenotype observed in MICRR patients, Irf8 KI Het and Homo mice demonstrated significantly increased osteoclast formation and resorption activity in vivo and in vitro when compared to WT mice. The oral ligature-inserted Het and Homo mice displayed significantly increased root resorption and osteoclast-mediated alveolar bone loss compared to WT mice. The increased osteoclastogenesis noted in KI mice is due to the inability of IRF8G388S mutation to inhibit NFATc1-dependent transcriptional activation and downstream osteoclast specific transcripts, as well as its impact on autophagy-related pathways of osteoclast differentiation. This translational study delineates the IRF8 domain important for osteoclast function and provides novel insights into the IRF8 mutation associated with MICRR. IRF8G388S mutation mainly affects osteoclastogenesis while sparing immune cell development and function. These insights extend beyond oral health and significantly advance our understanding of skeletal disorders mediated by increased osteoclast activity and IRF8's role in osteoclastogenesis.
Collapse
Affiliation(s)
- A. Das
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - S.K. Yesupatham
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - D. Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - H. Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - J. Gnanasekaran
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - B. Kear
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - X. Wang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - S. Wang
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - C. Zachariadou
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Y. Abbasi
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - M.K. Chung
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - K. Ozato
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - C. Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - B.L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - V. Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
30
|
Vitali E, Franceschini B, Milana F, Soldani C, Polidoro MA, Carriero R, Kunderfranco P, Trivellin G, Costa G, Milardi G, Di Tommaso L, Torzilli G, Lleo A, Lania AG, Donadon M. Filamin A is involved in human intrahepatic cholangiocarcinoma aggressiveness and progression. Liver Int 2024; 44:518-531. [PMID: 38010911 DOI: 10.1111/liv.15800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 μM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Flavio Milana
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela A Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Milardi
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of General Surgery, University Maggiore Hospital, Novara, Italy
| |
Collapse
|
31
|
Ellis ML, Terreaux A, Alwis I, Smythe R, Perdomo J, Eckly A, Cranmer SL, Passam FH, Maclean J, Schoenwaelder SM, Ruggeri ZM, Lanza F, Taoudi S, Yuan Y, Jackson SP. GPIbα-filamin A interaction regulates megakaryocyte localization and budding during platelet biogenesis. Blood 2024; 143:342-356. [PMID: 37922495 DOI: 10.1182/blood.2023021292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.
Collapse
Affiliation(s)
- Marc L Ellis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Antoine Terreaux
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Imala Alwis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Rhyll Smythe
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Anita Eckly
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Susan L Cranmer
- Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - Freda H Passam
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Maclean
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Simone M Schoenwaelder
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| | - Francois Lanza
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Samir Taoudi
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Yuping Yuan
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Shaun P Jackson
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
32
|
Johnson LG, Zhai C, Prusa KJ, Nair MN, Prenni JE, Chaparro JM, Huff-Lonergan E, Lonergan SM. Proteomic and metabolomic profiling of aged pork loin chops reveals molecular phenotypes linked to pork tenderness. J Anim Sci 2024; 102:skae355. [PMID: 39563021 PMCID: PMC11630860 DOI: 10.1093/jas/skae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
The ability to predict fresh pork tenderness and quality is hindered by an incomplete understanding of molecular factors that influence these complex traits. It is hypothesized that a comprehensive description of the metabolomic and proteomic phenotypes associated with variation in pork tenderness and quality will enhance the understanding and inform the development of rapid and nondestructive methods to measure pork quality. The objective of this investigation was to examine the proteomic and metabolomic profiles of ~2-wk aged pork chops categorized across instrumental tenderness groups. One hundred pork loin chops from a larger sample (N = 120) were assigned to one of the four categories (n = 25) based on instrumental star probe value (Category A, x¯ =4.23 kg, 3.43-4.55 kg; Category B, x¯ =4.79 kg, 4.66-5.00 kg; Category C, x¯ =5.43 kg, 5.20-5.64 kg; and Category D, x¯ =6.21 kg, 5.70-7.41 kg). Soluble protein from ~2 wk aged pork loin was prepared using a low-ionic-strength buffer. Proteins were digested with trypsin, labeled with 11-plex isobaric tandem mass tag reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Metabolites were extracted in 80% methanol from lyophilized and homogenized tissue samples. Derivatized metabolites were identified and quantified using gas chromatography-mass spectrometry. Between Categories A and D, 84 proteins and 22 metabolites were differentially abundant (adjusted P < 0.05). Fewer differences were detected in comparison between categories with less divergent tenderness measures. The molecular phenotype of the more tender (Category A) aged chops is consistent with a slower and less extended pH decline and markedly less abundance of glycolytic metabolites. The presence and greater abundance of proteins in the low-ionic-strength extract, including desmin, filamin C, calsequestrin, and fumarate hydratase, indicates a greater disruption of sarcoplasmic reticulum and mitochondrial membranes and the degradation and release of structural proteins from the continuous connections of myofibrils and the sarcolemma.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
33
|
Di Donato M, Moretti A, Sorrentino C, Toro G, Gentile G, Iolascon G, Castoria G, Migliaccio A. Filamin A cooperates with the androgen receptor in preventing skeletal muscle senescence. Cell Death Discov 2023; 9:437. [PMID: 38040692 PMCID: PMC10692324 DOI: 10.1038/s41420-023-01737-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Aging induces a slow and progressive decrease in muscle mass and function, causing sarcopenia. Androgens control muscle trophism and exert important anabolic functions through the binding to the androgen receptor. Therefore, analysis of the androgen receptor-mediated actions in skeletal muscle might provide new hints for a better understanding of sarcopenia pathogenesis. In this study, we report that expression of the androgen receptor in skeletal muscle biopsies from 20 subjects is higher in young, as compared with old subjects. Co-immunoprecipitation experiments reveal that the androgen receptor is complexed with filamin A mainly in young, that in old subjects. Therefore, we have in depth analyzed the role of such complex using C2C12 myoblasts that express a significant amount of the androgen receptor. In these cells, hormone stimulation rapidly triggers the assembly of the androgen receptor/filamin A complex. Such complex prevents the senescence induced by oxidative stress in C2C12 cells, as disruption of the androgen receptor/filamin A complex by Rh-2025u stapled peptide re-establishes the senescent phenotype in C2C12 cells. Simultaneously, androgen stimulation of C2C12 cells rapidly triggers the activation of various signaling effectors, including Rac1, focal adhesion kinase, and mitogen-activated kinases. Androgen receptor blockade by bicalutamide or perturbation of androgen receptor/filamin A complex by Rh-2025u stapled peptide both reverse the hormone activation of signaling effectors. These findings further reinforce the role of the androgen receptor and its extranuclear partners in the rapid hormone signaling that controls the functions of C2C12 cells. Further investigations are needed to promote clinical interventions that might ameliorate muscle cell function as well the clinical outcome of age-related frailty.
Collapse
Affiliation(s)
- Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Antimo Moretti
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Carmela Sorrentino
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Giuseppe Toro
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Giulia Gentile
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Giovanni Iolascon
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy.
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| |
Collapse
|
34
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
35
|
Islam M, Jones S, Ellis I. Role of Akt/Protein Kinase B in Cancer Metastasis. Biomedicines 2023; 11:3001. [PMID: 38002001 PMCID: PMC10669635 DOI: 10.3390/biomedicines11113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Metastasis is a critical step in the process of carcinogenesis and a vast majority of cancer-related mortalities result from metastatic disease that is resistant to current therapies. Cell migration and invasion are the first steps of the metastasis process, which mainly occurs by two important biological mechanisms, i.e., cytoskeletal remodelling and epithelial to mesenchymal transition (EMT). Akt (also known as protein kinase B) is a central signalling molecule of the PI3K-Akt signalling pathway. Aberrant activation of this pathway has been identified in a wide range of cancers. Several studies have revealed that Akt actively engages with the migratory process in motile cells, including metastatic cancer cells. The downstream signalling mechanism of Akt in cell migration depends upon the tumour type, sites, and intracellular localisation of activated Akt. In this review, we focus on the role of Akt in the regulation of two events that control cell migration and invasion in various cancers including head and neck squamous cell carcinoma (HNSCC) and the status of PI3K-Akt pathway inhibitors in clinical trials in metastatic cancers.
Collapse
Affiliation(s)
- Mohammad Islam
- Unit of Cell and Molecular Biology, School of Dentistry, University of Dundee, Park Place, Dundee DD1 4HR, UK; (S.J.); (I.E.)
| | | | | |
Collapse
|
36
|
Schoonvelde SAC, Ruijmbeek CWB, Hirsch A, van Slegtenhorst MA, Wessels MW, von der Thüsen JH, Baas AF, Stroeks SLVM, Verdonschot JAJ, van der Zwaag PA, Verhagen JMA, Michels M. Phenotypic variability of filamin C-related cardiomyopathy: Insights from a novel Dutch founder variant. Heart Rhythm 2023; 20:1512-1521. [PMID: 37562486 DOI: 10.1016/j.hrthm.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) can be caused by truncating variants in the filamin C gene (FLNC). A new pathogenic FLNC variant, c.6864_6867dup, p.(Val2290Argfs∗23), was recently identified in Dutch patients with DCM. OBJECTIVES The report aimed to evaluate the phenotype of FLNC variant carriers and to determine whether this variant is a founder variant. METHODS Clinical and genetic data were retrospectively collected from variant carriers. Cardiovascular magnetic resonance studies were reassessed. Haplotypes were reconstructed to determine a founder effect. The geographical distribution and age of the variant were determined. RESULTS Thirty-three individuals (of whom 23 [70%] were female) from 9 families were identified. Sudden cardiac death was the first presentation in a carrier at the age of 28 years. The median age at diagnosis was 41 years (range 19-67 years). The phenotype was heterogeneous. DCM with left ventricular dilation and reduced ejection fraction (<45%) was present in 11 (33%) individuals, 3 (9%) of whom underwent heart transplantation. Cardiovascular magnetic resonance showed late gadolinium enhancement in 13 (65%) of the assessed individuals, primarily in a ringlike distribution. Nonsustained ventricular arrhythmias were detected in 6 (18%), and 5 (15%) individuals received an implantable cardioverter-defibrillator. A shared haplotype spanning 2.1 Mb was found in all haplotyped individuals. The variant originated between 275 and 650 years ago. CONCLUSION The pathogenic FLNC variant c.6864_6867dup, p.(Val2290Argfs∗23) is a founder variant originating from the south of the Netherlands. Carriers are susceptible to developing heart failure and ventricular arrhythmias. The cardiac phenotype is characterized by ringlike late gadolinium enhancement, even in individuals without significantly reduced left ventricular function.
Collapse
Affiliation(s)
- Stephan A C Schoonvelde
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Claudine W B Ruijmbeek
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sophie L V M Stroeks
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands; Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands; Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Du T, Ma C, Wang Z, Hao Y, Zhang W. Distribution and Degradation of Pork Filamin during Postmortem Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15287-15295. [PMID: 37788342 DOI: 10.1021/acs.jafc.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The filamin C (FLNC) was hypothesized to be colocalized with its certain binding partners in pork tissues and calpain as well as caspase was assumed responsible for the postmortem degradation of FLNC. Therefore, the specific distribution of pork FLNC and its degradation pattern during postmortem aging were investigated in this study. The longissimus thoracis muscles from 12 pigs were removed from the carcasses and then aged at 4 °C for 1, 6, 12, 24, 72, and 168 h, respectively. The FLNC signals appeared to localize in subsarcolemmal areas by cross-sectional images, while the localization was found surrounding the myofibrils at the level of the Z-discs in longitudinal sections. FLNC displayed a highly overlapped spatial colocalization with actin or integrin. Western blot results showed that the intact 290 kDa FLNC was rapidly degraded to produce an approximately 280 kDa band. An almost overlapped distribution pattern was observed between FLNC and μ-calpain or caspase-3 in porcine skeletal muscle cells. Moreover, both the μ-calpain inhibitor and the caspase-3 inhibitor could inhibit the degradation of FLNC in porcine LT muscles during postmortem aging.
Collapse
Affiliation(s)
- Tongyao Du
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuejing Hao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Sgarzi M, Mazzeschi M, Santi S, Montacci E, Panciera T, Ferlizza E, Girone C, Morselli A, Gelfo V, Kuhre RS, Cavallo C, Valente S, Pasquinelli G, Győrffy B, D'Uva G, Romaniello D, Lauriola M. Aberrant MET activation impairs perinuclear actin cap organization with YAP1 cytosolic relocation. Commun Biol 2023; 6:1044. [PMID: 37838732 PMCID: PMC10576810 DOI: 10.1038/s42003-023-05411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Little is known about the signaling network responsible for the organization of the perinuclear actin cap, a recently identified structure holding unique roles in the regulation of nuclear shape and cell directionality. In cancer cells expressing a constitutively active MET, we show a rearrangement of the actin cap filaments, which crash into perinuclear patches associated with spherical nuclei, meandering cell motility and inactivation of the mechano-transducer YAP1. MET ablation is sufficient to reactivate YAP1 and restore the cap, leading to enhanced directionality and flattened nuclei. Consistently, the introduction of a hyperactive MET in normal epithelial cells, enhances nuclear height and alters the cap organization, as also confirmed by TEM analysis. Finally, the constitutively active YAP1 mutant YAP5SA is able to overcome the effects of oncogenic MET. Overall, our work describes a signaling axis empowering MET-mediated YAP1 dampening and actin cap misalignment, with implications for nuclear shape and cell motility.
Collapse
Affiliation(s)
- Michela Sgarzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Spartaco Santi
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
- IRCCS-Institute Orthopaedic Rizzoli, Bologna, Italy
| | - Elisa Montacci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Enea Ferlizza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cinzia Girone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessandra Morselli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Valerio Gelfo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Rikke Sofie Kuhre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Carola Cavallo
- Laboratory of Preclinical Studies for Regenerative Medicine of the Musculoskeletal System (RAMSES), (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sabrina Valente
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Balazs Győrffy
- Semmelweis University Dept. of Bioinformatics and 2nd Dept. Of Pediatrics, Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy.
| |
Collapse
|
39
|
Abi Nahed R, Safwan-Zaiter H, Gemy K, Lyko C, Boudaud M, Desseux M, Marquette C, Barjat T, Alfaidy N, Benharouga M. The Multifaceted Functions of Prion Protein (PrP C) in Cancer. Cancers (Basel) 2023; 15:4982. [PMID: 37894349 PMCID: PMC10605613 DOI: 10.3390/cancers15204982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The cellular prion protein (PrPC) is a glycoprotein anchored to the cell surface by glycosylphosphatidylinositol (GPI). PrPC is expressed both in the brain and in peripheral tissues. Investigations on PrPC's functions revealed its direct involvement in neurodegenerative and prion diseases, as well as in various physiological processes such as anti-oxidative functions, copper homeostasis, trans-membrane signaling, and cell adhesion. Recent findings have revealed the ectopic expression of PrPC in various cancers including gastric, melanoma, breast, colorectal, pancreatic, as well as rare cancers, where PrPC promotes cellular migration and invasion, tumor growth, and metastasis. Through its downstream signaling, PrPC has also been reported to be involved in resistance to chemotherapy and tumor cell apoptosis. This review summarizes the variance of expression of PrPC in different types of cancers and discusses its roles in their development and progression, as well as its use as a potential target to treat such cancers.
Collapse
Affiliation(s)
- Roland Abi Nahed
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Hasan Safwan-Zaiter
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Kevin Gemy
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Camille Lyko
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Mélanie Boudaud
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Morgane Desseux
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Christel Marquette
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Tiphaine Barjat
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Nadia Alfaidy
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Mohamed Benharouga
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| |
Collapse
|
40
|
Quiogue AR, Sumiyoshi E, Fries A, Chuang CH, Bowerman B. Microtubules oppose cortical actomyosin-driven membrane ingression during C. elegans meiosis I polar body extrusion. PLoS Genet 2023; 19:e1010984. [PMID: 37782660 PMCID: PMC10569601 DOI: 10.1371/journal.pgen.1010984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.
Collapse
Affiliation(s)
- Alyssa R. Quiogue
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Eisuke Sumiyoshi
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Adam Fries
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
- Imaging Core, Office of the Vice President for Research University of Oregon, Eugene, Oregon, United States of America
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| |
Collapse
|
41
|
Desai YB, Parikh VN. Genetic Risk Stratification in Arrhythmogenic Left Ventricular Cardiomyopathy. Card Electrophysiol Clin 2023; 15:391-399. [PMID: 37558308 DOI: 10.1016/j.ccep.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Arrhythmogenic left ventricular cardiomyopathy is characterized by early malignant ventricular arrhythmia associated with varying degrees and times of onset of left ventricular dysfunction. Variants in numerous genes have been associated with this phenotype. Here, the authors review the literature on recent cohort studies of patients with variants in desmoplakin, lamin A/C, filamin-C, phospholamban, RBM20, TMEM43, and selected channelopathy genes also associated with structural disease. Unlike traditional sudden cardiac death risk assessment in nonischemic cardiomyopathy, left ventricular systolic function is an insensitive predictor of risk in patients with these genetic diagnoses.
Collapse
Affiliation(s)
- Yaanik B Desai
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Falk CRVC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Victoria N Parikh
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Falk CRVC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Deng Y, Yan J. Force-Dependent Structural Changes of Filamin C Rod Domains Regulated by Filamin C Dimer. J Am Chem Soc 2023; 145:14670-14678. [PMID: 37369984 PMCID: PMC10348313 DOI: 10.1021/jacs.3c02303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/29/2023]
Abstract
Filamin C (FLNC), a large dimeric actin-binding protein in muscle cells, plays a critical role in transmitting force in the cytoskeleton and that between membrane receptors and the cytoskeleton. It performs crucial mechanosensing and downstream mechanotransduction functions via force-dependent interactions with signaling proteins. Mutations in FLNC have been linked to muscle and heart diseases. The mechanical responses of the force-bearing elements in FLNC have not been determined. This study investigated the mechanical responses of FLNC domains and their dimerization interface using magnetic tweezers. Results showed high stability of the N-terminal domains in the rod-1 segment but significant changes in the rod-2 domains in response to forces of a few piconewtons (pN). The dimerization interface, formed by the R24 domain, has a lifetime of seconds to tens of seconds at pN forces, and it dissociates within 1 s at forces greater than 14 pN. The findings suggest the FLNC dimerization interface provides sufficient mechanical stability that enables force-dependent structural changes in rod-2 domains for signaling protein binding and maintains structural integrity of the rod-1 domains.
Collapse
Affiliation(s)
- Yunxin Deng
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
43
|
Carrozzini T, Pollaci G, Gorla G, Potenza A, Rifino N, Acerbi F, Vetrano IG, Ferroli P, Bersano A, Gianazza E, Banfi C, Gatti L. Proteome Profiling of the Dura Mater in Patients with Moyamoya Angiopathy. Int J Mol Sci 2023; 24:11194. [PMID: 37446373 DOI: 10.3390/ijms241311194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Moyamoya angiopathy (MMA) is an uncommon cerebrovascular disease characterized by a progressive steno-occlusive lesion of the internal carotid artery and the compensatory development of an unstable network of collateral vessels. These vascular hallmarks are responsible for recurrent ischemic/hemorrhagic strokes. Surgical treatment represents the preferred procedure for MMA patients, and indirect revascularization may induce a spontaneous angiogenesis between the brain surface and dura mater (DM), whose function remains rather unknown. A better understanding of MMA pathogenesis is expected from the molecular characterization of DM. We performed a comprehensive, label-free, quantitative mass spectrometry-based proteomic characterization of DM. The 30 most abundant identified proteins were located in the extracellular region or exosomes and were involved in extracellular matrix organization. Gene ontology analysis revealed that most proteins were involved in binding functions and hydrolase activity. Among the 30 most abundant proteins, Filamin A is particularly relevant because considering its well-known biochemical functions and molecular features, it could be a possible second hit gene with a potential role in MMA pathogenesis. The current explorative study could pave the way for further analyses aimed at better understanding such uncommon and disabling intracranial vasculopathy.
Collapse
Affiliation(s)
- Tatiana Carrozzini
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giuliana Pollaci
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, 20133 Milan, Italy
| | - Gemma Gorla
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Antonella Potenza
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Nicola Rifino
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Experimental Microsurgical Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ignazio G Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Biomedical Sciences for Health, Università di Milano, 20133 Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Anna Bersano
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erica Gianazza
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Laura Gatti
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
44
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
45
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
46
|
Imam N, Alam A, Siddiqui MF, Veg A, Bay S, Khan MJI, Ishrat R. Network-medicine approach for the identification of genetic association of parathyroid adenoma with cardiovascular disease and type-2 diabetes. Brief Funct Genomics 2023; 22:250-262. [PMID: 36790356 DOI: 10.1093/bfgp/elac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 02/16/2023] Open
Abstract
Primary hyperparathyroidism is caused by solitary parathyroid adenomas (PTAs) in most cases (⁓85%), and it has been previously reported that PTAs are associated with cardiovascular disease (CVD) and type-2 diabetes (T2D). To understand the molecular basis of PTAs, we have investigated the genetic association amongst PTAs, CVD and T2D through an integrative network-based approach and observed a remarkable resemblance. The current study proposed to compare the PTAs-associated proteins with the overlapping proteins of CVD and T2D to determine the disease relationship. We constructed the protein-protein interaction network by integrating curated and experimentally validated interactions in humans. We found the $11$ highly clustered modules in the network, which contain a total of $13$ hub proteins (TP53, ESR1, EGFR, POTEF, MEN1, FLNA, CDKN2B, ACTB, CTNNB1, CAV1, MAPK1, G6PD and CCND1) that commonly co-exist in PTAs, CDV and T2D and reached to network's hierarchically modular organization. Additionally, we implemented a gene-set over-representation analysis over biological processes and pathways that helped to identify disease-associated pathways and prioritize target disease proteins. Moreover, we identified the respective drugs of these hub proteins. We built a bipartite network that helps decipher the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drug combinations or drug-repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs and give a synergistic effect with better outcomes. This network-based analysis opens a new horizon for more personalized treatment and drug-repurposing opportunities to investigate new targets and multi-drug treatment and may be helpful in further analysis of the mechanisms underlying PTA and associated diseases.
Collapse
Affiliation(s)
- Nikhat Imam
- Institute of Computer Science and Information Technology, Department of Mathematics, Magadh University, Bodh Gaya, Bihar India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi India
| | - Mohd Faizan Siddiqui
- International Medical Faculty, Osh State University, Osh City, 723500, Kyrgyz Republic Kyrgyzstan
| | - Akhtar Veg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi India
| | - Sadik Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University; Istanbul Türkiye
| | - Md Jawed Ikbal Khan
- Institute of Computer Science and Information Technology, Department of Mathematics, Magadh University, Bodh Gaya, Bihar India
- Department of Mathematics, Mirza Ghalib College, Magadh University, Bodh Gaya, Bihar India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi India
| |
Collapse
|
47
|
Ladouce R, Combes GF, Trajković K, Drmić Hofman I, Merćep M. Oxime blot: A novel method for reliable and sensitive detection of carbonylated proteins in diverse biological systems. Redox Biol 2023; 63:102743. [PMID: 37207613 DOI: 10.1016/j.redox.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Oxidative stress and oxidative protein damage occur in various biological processes and diseases. The carbonyl group on amino acid side chains is the most widely used protein oxidation biomarker. Carbonyl groups are commonly detected indirectly through their reaction with 2,4-dinitrophenylhydrazine (DNPH) and subsequent labeling with an anti-DNP antibody. However, the DNPH immunoblotting method lacks protocol standardization, exhibits technical bias, and has low reliability. To overcome these shortcomings, we have developed a new blotting method in which the carbonyl group reacts with the biotin-aminooxy probe to form a chemically stable oxime bond. The reaction speed and the extent of the carbonyl group derivatization are increased by adding a p-phenylenediamine (pPDA) catalyst under neutral pH conditions. These improvements are crucial since they ensure that the carbonyl derivatization reaction reaches a plateau within hours and increases the sensitivity and robustness of protein carbonyl detection. Furthermore, derivatization under pH-neutral conditions facilitates a good SDS-PAGE protein migration pattern, avoids protein loss by acidic precipitation, and is directly compatible with protein immunoprecipitation. This work describes the new Oxime blot method and demonstrates its use in detecting protein carbonylation in complex matrices from diverse biological samples.
Collapse
Affiliation(s)
- Romain Ladouce
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia
| | - Guillaume Fabien Combes
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Katarina Trajković
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia
| | - Irena Drmić Hofman
- University Department of Health Studies, University of Split, 21000, Split, Croatia; School of Medicine, University of Split, 21000, Split, Croatia
| | - Mladen Merćep
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia; Zora Foundation, Ruđera Boškovića 21, 21000, Split, Croatia.
| |
Collapse
|
48
|
Golla K, Paul M, Lengyell TC, Simpson EM, Falet H, Kim H. A novel association between platelet filamin A and soluble N-ethylmaleimide sensitive factor attachment proteins regulates granule secretion. Res Pract Thromb Haemost 2023; 7:100019. [PMID: 37538498 PMCID: PMC10394388 DOI: 10.1016/j.rpth.2022.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 08/05/2023] Open
Abstract
Background and Objective The molecular mechanisms that underpin platelet granule secretion remain poorly defined. Filamin A (FLNA) is an actin-crosslinking and signaling scaffold protein whose role in granule exocytosis has not been explored despite evidence that FLNA gene mutations confer platelet defects in humans. Methods and Results Using platelets from platelet-specific conditional Flna-knockout mice, we showed that the loss of FLNA confers a severe defect in alpha (α)- and dense (δ)-granule exocytosis, as measured based on the release of platelet factor 4 (aka CXCL4) and adenosine triphosphate (ATP), respectively. This defect was observed following activation of both immunoreceptor tyrosine-based activation motif (ITAM) signaling by collagen-related peptide (CRP) and G protein-coupled receptor (GPCR) signaling by thrombin and the thromboxane mimetic U46619. CRP-induced spikes in intracellular calcium [Ca2+]i were impaired in FLNA-null platelets relative to controls, confirming that FLNA regulates ITAM-driven proximal signaling. In contrast, GPCR-mediated spikes in [Ca2+]i in response to thrombin and U46619 were unaffected by FLNA. Normal platelet secretion requires complexing of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins synaptosomal-associated protein 23 (SNAP23) and syntaxin-11 (STX11). We determined that FLNA coimmunoprecipitates with both SNAP23 and STX11 upon platelet stimulation. Conclusion FLNA regulates GPCR-driven platelet granule secretion and associates with SNAP23 and STX11 in an activation-dependent manner.
Collapse
Affiliation(s)
- Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
50
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|