1
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Ross P, Hilton HG, Lodwick J, Slezak T, Guethlein LA, McMurtrey CP, Han AS, Nielsen M, Yong D, Dulberger CL, Nolan KT, Roy S, Castro CD, Hildebrand WH, Zhao M, Kossiakoff A, Parham P, Adams EJ. Molecular characterization of the archaic HLA-B*73:01 allele reveals presentation of a unique peptidome and skewed engagement by KIR2DL2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625330. [PMID: 39651149 PMCID: PMC11623575 DOI: 10.1101/2024.11.25.625330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
HLA class I alleles of archaic origin may have been retained in modern humans because they provide immunity against diseases to which archaic humans had evolved resistance. According to this model, archaic introgressed alleles were somehow distinct from those that evolved in African populations. Here we show that HLA-B*73:01, a rare allotype with putative archaic origins, has a relatively rare peptide binding motif with an unusually long-tailed peptide length distribution. We also find that HLA-B*73:01 combines a restricted and unique peptidome with high-cell surface expression, characteristics that make it well-suited to combat one or a number of closely-related pathogens. Furthermore, a crystal structure of HLA-B*73:01 in complex with KIR2DL2 highlights differences from previously solved structures with HLA-C molecules. These molecular characteristics distinguish HLA-B*73:01 from other HLA class I alleles previously investigated and may have provided early modern human migrants that inherited this allele with a selective advantage as they colonized Europe and Asia.
Collapse
|
3
|
Nazziwa J, Andrews SM, Hou MM, Bruhn CAW, Garcia-Knight MA, Slyker J, Hill S, Lohman Payne B, Moringas D, Lemey P, John-Stewart G, Rowland-Jones SL, Esbjörnsson J. Higher HIV-1 evolutionary rate is associated with cytotoxic T lymphocyte escape mutations in infants. J Virol 2024; 98:e0007224. [PMID: 38814066 PMCID: PMC11265422 DOI: 10.1128/jvi.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024] Open
Abstract
Escape from cytotoxic T lymphocyte (CTL) responses toward HIV-1 Gag and Nef has been associated with reduced control of HIV-1 replication in adults. However, less is known about CTL-driven immune selection in infants as longitudinal studies of infants are limited. Here, 1,210 gag and 1,264 nef sequences longitudinally collected within 15 months after birth from 14 HIV-1 perinatally infected infants and their mothers were analyzed. The number of transmitted founder (T/F) viruses and associations between virus evolution, selection, CTL escape, and disease progression were determined. The analyses indicated that a paraphyletic-monophyletic relationship between the mother-infant sequences was common (80%), and that the HIV-1 infection was established by a single T/F virus in 10 of the 12 analyzed infants (83%). Furthermore, most HIV-1 CTL escape mutations among infants were transmitted from the mothers and did not revert during the first year of infection. Still, immune-driven selection was observed at approximately 3 months after HIV-1 infection in infants. Moreover, virus populations with CTL escape mutations in gag evolved faster than those without, independently of disease progression rate. These findings expand the current knowledge of HIV-1 transmission, evolution, and CTL escape in infant HIV-1 infection and are relevant for the development of immune-directed interventions in infants.IMPORTANCEDespite increased coverage in antiretroviral therapy for the prevention of perinatal transmission, paediatric HIV-1 infection remains a significant public health concern, especially in areas of high HIV-1 prevalence. Understanding HIV-1 transmission and the subsequent virus adaptation from the mother to the infant's host environment, as well as the viral factors that affect disease outcome, is important for the development of early immune-directed interventions for infants. This study advances our understanding of vertical HIV-1 transmission, and how infant immune selection pressure is shaping the intra-host evolutionary dynamics of HIV-1.
Collapse
Affiliation(s)
- Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
| | - Sophie M. Andrews
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Mimi M. Hou
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Miguel A. Garcia-Knight
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Sarah Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Barbara Lohman Payne
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dorothy Moringas
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Global Center for Integrated Health of Women, Adolescents and Children (Global WACh), University of Washington, Seattle, Washington, USA
| | | | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
5
|
Herbert NG, Goulder PJR. Impact of early antiretroviral therapy, early life immunity and immune sex differences on HIV disease and posttreatment control in children. Curr Opin HIV AIDS 2023; 18:229-236. [PMID: 37421384 PMCID: PMC10399946 DOI: 10.1097/coh.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW To review recent insights into the factors affecting HIV disease progression in children living with HIV, contrasting outcomes: following early ART initiation with those in natural, antiretroviral therapy (ART)-naive infection; in children versus adults; and in female individuals versus male individuals. RECENT FINDINGS Early life immune polarization and several factors associated with mother-to-child transmission of HIV result in an ineffective HIV-specific CD8+ T-cell response and rapid disease progression in most children living with HIV. However, the same factors result in low immune activation and antiviral efficacy mediated mainly through natural killer cell responses in children and are central features of posttreatment control. By contrast, rapid activation of the immune system and generation of a broad HIV-specific CD8+ T-cell response in adults, especially in the context of 'protective' HLA class I molecules, are associated with superior disease outcomes in ART-naive infection but not with posttreatment control. The higher levels of immune activation in female individuals versus male individuals from intrauterine life onwards increase HIV infection susceptibility in females in utero and may favour ART-naive disease outcomes rather than posttreatment control. SUMMARY Early-life immunity and factors associated with mother-to-child transmission typically result in rapid HIV disease progression in ART-naive infection but favour posttreatment control in children following early ART initiation.
Collapse
Affiliation(s)
- Nicholas G Herbert
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
6
|
Taha TY, Chen IP, Hayashi JM, Tabata T, Walcott K, Kimmerly GR, Syed AM, Ciling A, Suryawanshi RK, Martin HS, Bach BH, Tsou CL, Montano M, Khalid MM, Sreekumar BK, Renuka Kumar G, Wyman S, Doudna JA, Ott M. Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6. Nat Commun 2023; 14:2308. [PMID: 37085489 PMCID: PMC10120482 DOI: 10.1038/s41467-023-37787-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (~30 kb). Here, we present a plasmid-based viral genome assembly and rescue strategy (pGLUE) that constructs complete infectious viruses or noninfectious subgenomic replicons in a single ligation reaction with >80% efficiency. Fully sequenced replicons and infectious viral stocks can be generated in 1 and 3 weeks, respectively. By testing a series of naturally occurring viruses as well as Delta-Omicron chimeric replicons, we show that Omicron nonstructural protein 6 harbors critical attenuating mutations, which dampen viral RNA replication and reduce lipid droplet consumption. Thus, pGLUE overcomes remaining barriers to broadly study SARS-CoV-2 replication and reveals deficits in nonstructural protein function underlying Omicron attenuation.
Collapse
Affiliation(s)
- Taha Y Taha
- Gladstone Institutes, San Francisco, CA, USA.
| | - Irene P Chen
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | | - Abdullah M Syed
- Gladstone Institutes, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | - Hannah S Martin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Bryan H Bach
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | | | | | | | | | - Stacia Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Taha TY, Chen IP, Hayashi JM, Tabata T, Walcott K, Kimmerly GR, Syed AM, Ciling A, Suryawanshi RK, Martin HS, Bach BH, Tsou CL, Montano M, Khalid MM, Sreekumar BK, Kumar GR, Wyman S, Doudna JA, Ott M. Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.525914. [PMID: 36798416 PMCID: PMC9934579 DOI: 10.1101/2023.01.31.525914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (30kb). Here, we designed a plasmid-based viral genome assembly and resc ue strategy (pGLUE) that constructs complete infectious viruses or noninfectious subgenomic replicons in a single ligation reaction with >80% efficiency. Fully sequenced replicons and infectious viral stocks can be generated in 1 and 3 weeks, respectively. By testing a series of naturally occurring viruses as well as Delta-Omicron chimeric replicons, we show that Omicron nonstructural protein 6 harbors critical attenuating mutations, which dampen viral RNA replication and reduce lipid droplet consumption. Thus, pGLUE overcomes remaining barriers to broadly study SARS-CoV-2 replication and reveals deficits in nonstructural protein function underlying Omicron attenuation.
Collapse
|
8
|
Stanevich OV, Alekseeva EI, Sergeeva M, Fadeev AV, Komissarova KS, Ivanova AA, Simakova TS, Vasilyev KA, Shurygina AP, Stukova MA, Safina KR, Nabieva ER, Garushyants SK, Klink GV, Bakin EA, Zabutova JV, Kholodnaia AN, Lukina OV, Skorokhod IA, Ryabchikova VV, Medvedeva NV, Lioznov DA, Danilenko DM, Chudakov DM, Komissarov AB, Bazykin GA. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nat Commun 2023; 14:149. [PMID: 36627290 PMCID: PMC9831376 DOI: 10.1038/s41467-022-34033-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/11/2022] [Indexed: 01/11/2023] Open
Abstract
Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.
Collapse
Affiliation(s)
| | | | - Maria Sergeeva
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | - Artem V Fadeev
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | | | - Anna A Ivanova
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | | | - Kirill A Vasilyev
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | | | - Marina A Stukova
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | - Ksenia R Safina
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | - Elena R Nabieva
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Sofya K Garushyants
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Galya V Klink
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny A Bakin
- First Pavlov State Medical University, Saint-Petersburg, Russia.,Bioinformatics Institute, Saint Petersburg, Russia
| | | | - Anastasia N Kholodnaia
- First Pavlov State Medical University, Saint-Petersburg, Russia.,City Hospital 31, Saint-Petersburg, Russia
| | - Olga V Lukina
- First Pavlov State Medical University, Saint-Petersburg, Russia
| | | | | | | | - Dmitry A Lioznov
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia.,First Pavlov State Medical University, Saint-Petersburg, Russia
| | - Daria M Danilenko
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | - Dmitriy M Chudakov
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Georgii A Bazykin
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia. .,A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
9
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
10
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
11
|
Balasubramaniam M, Davids BO, Bryer A, Xu C, Thapa S, Shi J, Aiken C, Pandhare J, Perilla JR, Dash C. HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. PNAS NEXUS 2022; 1:pgac064. [PMID: 35719891 PMCID: PMC9198661 DOI: 10.1093/pnasnexus/pgac064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
HIV-1 replication is durably controlled without antiretroviral therapy (ART) in certain infected individuals called elite controllers (ECs). These individuals express specific human leukocyte antigens (HLA) that tag HIV-infected cells for elimination by presenting viral epitopes to CD8+ cytotoxic T-lymphocytes (CTL). In HIV-infected individuals expressing HLA-B27, CTLs primarily target the viral capsid protein (CA)-derived KK10 epitope. While selection of CA mutation R264K helps HIV-1 escape this potent CTL response, the accompanying fitness cost severely diminishes virus infectivity. Interestingly, selection of a compensatory CA mutation S173A restores HIV-1 replication. However, the molecular mechanism(s) underlying HIV-1 escape from this ART-free virus control by CTLs is not fully understood. Here, we report that the R264K mutation-associated infectivity defect arises primarily from impaired HIV-1 DNA integration, which is restored by the S173A mutation. Unexpectedly, the integration defect of the R264K variant was also restored upon depletion of the host cyclophilin A. These findings reveal a nuclear crosstalk between CA and HIV-1 integration as well as identify a previously unknown role of cyclophilin A in viral DNA integration. Finally, our study identifies a novel immune escape mechanism of an HIV-1 variant escaping a CA-directed CTL response.
Collapse
Affiliation(s)
| | - Benem-Orom Davids
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Alex Bryer
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chaoyi Xu
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Santosh Thapa
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Juan R Perilla
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| |
Collapse
|
12
|
Pymm P, Tenzer S, Wee E, Weimershaus M, Burgevin A, Kollnberger S, Gerstoft J, Josephs TM, Ladell K, McLaren JE, Appay V, Price DA, Fugger L, Bell JI, Schild H, van Endert P, Harkiolaki M, Iversen AKN. Epitope length variants balance protective immune responses and viral escape in HIV-1 infection. Cell Rep 2022; 38:110449. [PMID: 35235807 PMCID: PMC9631117 DOI: 10.1016/j.celrep.2022.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/31/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.
Collapse
Affiliation(s)
- Phillip Pymm
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Walter and Eliza Hall Institute of Medical Research, University of Melbourne, 1G Royalparade, Parkville, VIC 3052, Australia
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edmund Wee
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Anne Burgevin
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Victor Appay
- Institut National de la Santé et de la Recherche Médicale, Unité 1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Boulevard de l'Hopital, 75013 Paris, France; International Research Center of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Tenovus Building, CF14 4XN Cardiff, UK
| | - Lars Fugger
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DS Oxford, UK
| | - John I Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Maria Harkiolaki
- Structural Biology Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK.
| |
Collapse
|
13
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Amin O, Powers J, Bricker KM, Chahroudi A. Understanding Viral and Immune Interplay During Vertical Transmission of HIV: Implications for Cure. Front Immunol 2021; 12:757400. [PMID: 34745130 PMCID: PMC8566974 DOI: 10.3389/fimmu.2021.757400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the significant progress that has been made to eliminate vertical HIV infection, more than 150,000 children were infected with HIV in 2019, emphasizing the continued need for sustainable HIV treatment strategies and ideally a cure for children. Mother-to-child-transmission (MTCT) remains the most important route of pediatric HIV acquisition and, in absence of prevention measures, transmission rates range from 15% to 45% via three distinct routes: in utero, intrapartum, and in the postnatal period through breastfeeding. The exact mechanisms and biological basis of these different routes of transmission are not yet fully understood. Some infants escape infection despite significant virus exposure, while others do not, suggesting possible maternal or fetal immune protective factors including the presence of HIV-specific antibodies. Here we summarize the unique aspects of HIV MTCT including the immunopathogenesis of the different routes of transmission, and how transmission in the antenatal or postnatal periods may affect early life immune responses and HIV persistence. A more refined understanding of the complex interaction between viral, maternal, and fetal/infant factors may enhance the pursuit of strategies to achieve an HIV cure for pediatric populations.
Collapse
Affiliation(s)
- Omayma Amin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jenna Powers
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine M. Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
15
|
MILLAR JR, FATTI I, MCHUNU N, BENGU N, GRAYSON NE, ADLAND E, BONSALL D, ARCHARY M, MATTHEWS PC, NDUNG’U T, GOULDER P. Second-generation mother-to-child HIV transmission in South Africa is characterized by poor outcomes. AIDS 2021; 35:1597-1604. [PMID: 34270488 PMCID: PMC8288499 DOI: 10.1097/qad.0000000000002915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The worldwide incidence of pregnancy for women living with perinatal HIV infection is increasing. Subsequently, there is growing risk of second-generation mother-to-child HIV transmission. The infant clinical outcomes for such a phenomenon have yet to be described. DESIGN As part of a wider observational study in KwaZulu-Natal, South Africa, six infants with in-utero HIV infection were identified as being born to mothers with perinatal HIV infection. METHODS Blood results and clinical data were collected in the first 3 years of life. In two cases, sample availability allowed confirmation by phylogenetic analysis of grandmother-to-mother-to-child HIV transmission. RESULTS Outcomes were poor in all six cases. All six mothers had difficulty administering twice daily combination antiretroviral therapy to their infants due to difficulties with acceptance, disclosure, poor health and being themselves long-term nonprogressors. Nonnucleoside reverse transcriptase inhibitor-resistant virus was detected in all mothers tested. None of the infants maintained suppression of viraemia on combination antiretroviral therapy. One infant died, and another was lost to follow-up. CONCLUSION As the numbers of second-generation mother-to-child transmissions increase, it is important to highlight that this mother-infant dyad represents an extremely vulnerable group. In order for them to survive and thrive, these infants' mothers require their specific needs to be addressed and given intensive support.
Collapse
Affiliation(s)
- Jane R. MILLAR
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Isabella FATTI
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Noxolo MCHUNU
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Nomonde BENGU
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa
| | - Nicholas E. GRAYSON
- Department of Paediatrics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emily ADLAND
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - David BONSALL
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Moherndran ARCHARY
- Department of Paediatrics, King Edward VIII Hospital/University of KwaZulu-Natal, Durban, South Africa
| | - Philippa C. MATTHEWS
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford BRC, John Radcliffe Hospital, Oxford, UK
| | - Thumbi NDUNG’U
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Philip GOULDER
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, UK
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Agerer B, Koblischke M, Gudipati V, Montaño-Gutierrez LF, Smyth M, Popa A, Genger JW, Endler L, Florian DM, Mühlgrabner V, Graninger M, Aberle SW, Husa AM, Shaw LE, Lercher A, Gattinger P, Torralba-Gombau R, Trapin D, Penz T, Barreca D, Fae I, Wenda S, Traugott M, Walder G, Pickl WF, Thiel V, Allerberger F, Stockinger H, Puchhammer-Stöckl E, Weninger W, Fischer G, Hoepler W, Pawelka E, Zoufaly A, Valenta R, Bock C, Paster W, Geyeregger R, Farlik M, Halbritter F, Huppa JB, Aberle JH, Bergthaler A. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8 + T cell responses. Sci Immunol 2021; 6:6/57/eabg6461. [PMID: 33664060 PMCID: PMC8224398 DOI: 10.1126/sciimmunol.abg6461] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control. Here, we identified nonsynonymous mutations in MHC-I-restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV-2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding in a cell-free in vitro assay. Reduced MHC-I binding of mutant peptides was associated with decreased proliferation, IFN-γ production and cytotoxic activity of CD8+ T cells isolated from HLA-matched COVID-19 patients. Single cell RNA sequencing of ex vivo expanded, tetramer-sorted CD8+ T cells from COVID-19 patients further revealed qualitative differences in the transcriptional response to mutant peptides. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through point mutations in MHC-I-restricted viral epitopes.
Collapse
Affiliation(s)
- Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Venugopal Gudipati
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Mark Smyth
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jakob-Wendelin Genger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mühlgrabner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Husa
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Lisa Ellen Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Ricard Torralba-Gombau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Sabine Wenda
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Gernot Walder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Erich Pawelka
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Zoufaly
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Department of Pathophysiology and Allergy Research, Division of Immunopathology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria.,Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - René Geyeregger
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
17
|
Evaluation of potential MHC-I allele-specific epitopes in Zika virus proteins and the effects of mutations on peptide-MHC-I interaction studied using in silico approaches. Comput Biol Chem 2021; 92:107459. [PMID: 33636637 DOI: 10.1016/j.compbiolchem.2021.107459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 11/24/2022]
Abstract
Zika virus (ZIKV) infection is a global health concern due to its association with microcephaly and neurological complications. The development of a T-cell vaccine is important to combat this disease. In this study, we propose ZIKV major histocompatibility complex I (MHC-I) epitopes based on in silico screening consensus followed by molecular docking, PRODIGY, and molecular dynamics (MD) simulation analyses. The effects of the reported mutations on peptide-MHC-I (pMHC-I) complexes were also evaluated. In general, our data indicate an allele-specific peptide-binding human leukocyte antigen (HLA) and potential epitopes. For HLA-B44, we showed that the absence of acidic residue Glu at P2, due to the loss of the electrostatic interaction with Lys45, has a negative impact on the pMHC-I complex stability and explains the low free energy estimated for the immunodominant peptide E-4 (IGVSNRDFV). Our MD data also suggest the deleterious effects of acidic residue Asp at P1 on the pMHC-I stability of HLA-B8 due to destabilization of the α-helix and β-strand. Free energy estimation further indicated that the mutation from Val to Ala at P9 of peptide E-247 (DAHAKRQTV), which was found exclusively in microcephaly samples, did not reduce HLA-B8 affinity. In contrast, the mutation from Thr to Pro at P2 of the peptide NS5-832 (VTKWTDIPY) decreased the interaction energy, number of intermolecular interactions, and adversely affected its binding mode with HLA-A1. Overall, our findings are important with regard to the design of T-cell peptide vaccines and for understanding how ZIKV escapes recognition by CD8 + T-cells.
Collapse
|
18
|
Akahoshi T, Gatanaga H, Kuse N, Chikata T, Koyanagi M, Ishizuka N, Brumme CJ, Murakoshi H, Brumme ZL, Oka S, Takiguchi M. T-cell responses to sequentially emerging viral escape mutants shape long-term HIV-1 population dynamics. PLoS Pathog 2020; 16:e1009177. [PMID: 33370400 PMCID: PMC7833229 DOI: 10.1371/journal.ppat.1009177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/25/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.
Collapse
Affiliation(s)
| | - Hiroyuki Gatanaga
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Shinichi Oka
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Materne EC, Lilleri D, Garofoli F, Lombardi G, Furione M, Zavattoni M, Gibson L. Cytomegalovirus-Specific T Cell Epitope Recognition in Congenital Cytomegalovirus Mother-Infant Pairs. Front Immunol 2020; 11:568217. [PMID: 33329532 PMCID: PMC7732427 DOI: 10.3389/fimmu.2020.568217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Congenital cytomegalovirus (cCMV) infection is the most common infection acquired before birth and from which about 20% of infants develop permanent neurodevelopmental effects regardless of presence or absence of symptoms at birth. Viral escape from host immune control may be a mechanism of CMV transmission and infant disease severity. We sought to identify and compare CMV epitopes recognized by mother-infant pairs. We also hypothesized that if immune escape were occurring, then one pattern of longitudinal CD8 T cell responses restricted by shared HLA alleles would be maternal loss (by viral escape) and infant gain (by viral reversion to wildtype) of CMV epitope recognition. Methods: The study population consisted of 6 women with primary CMV infection during pregnancy and their infants with cCMV infection. CMV UL83 and UL123 peptides with known or predicted restriction by maternal MHC class I alleles were identified, and a subset was selected for testing based on several criteria. Maternal or infant cells were stimulated with CMV peptides in the IFN-γ ELISpot assay. Results: Overall, 14 of 25 (56%; 8 UL83 and 6 UL123) peptides recognized by mother-infant pairs were not previously reported as CD8 T cell epitopes. Of three pairs with longitudinal samples, one showed maternal loss and infant gain of responses to a CMV epitope restricted by a shared HLA allele. Conclusions: CD8 T cell responses to multiple novel CMV epitopes were identified, particularly in infants. Moreover, the hypothesized pattern of CMV immune escape was observed in one mother-infant pair. These findings emphasize that knowledge of paired CMV epitope recognition allows exploration of viral immune escape that may operate within the maternal-fetal system. Our work provides rationale for future studies of this potential mechanism of CMV transmission during pregnancy or clinical outcomes of infants with cCMV infection.
Collapse
Affiliation(s)
- Emma C Materne
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Daniele Lilleri
- Unità Operativa Complessa (UOC) Laboratorio Genetica - Trapiantologia e Malattie Cardiovascolari, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giuseppina Lombardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Milena Furione
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Maurizio Zavattoni
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Laura Gibson
- University of Massachusetts Medical School, Worcester, MA, United States.,Department of Medicine, UMass Memorial Medical Center, Worcester, MA, United States.,Department of Pediatrics, UMass Memorial Medical Center, Worcester, MA, United States
| |
Collapse
|
20
|
Kist NC, Lambert B, Campbell S, Katzourakis A, Lunn D, Lemey P, Iversen AKN. HIV-1 p24Gag adaptation to modern and archaic HLA-allele frequency differences in ethnic groups contributes to viral subtype diversification. Virus Evol 2020; 6:veaa085. [PMID: 33343925 PMCID: PMC7733611 DOI: 10.1093/ve/veaa085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pathogen-driven selection and past interbreeding with archaic human lineages have resulted in differences in human leukocyte antigen (HLA)-allele frequencies between modern human populations. Whether or not this variation affects pathogen subtype diversification is unknown. Here we show a strong positive correlation between ethnic diversity in African countries and both human immunodeficiency virus (HIV)-1 p24gag and subtype diversity. We demonstrate that ethnic HLA-allele differences between populations have influenced HIV-1 subtype diversification as the virus adapted to escape common antiviral immune responses. The evolution of HIV Subtype B (HIV-B), which does not appear to be indigenous to Africa, is strongly affected by immune responses associated with Eurasian HLA variants acquired through adaptive introgression from Neanderthals and Denisovans. Furthermore, we show that the increasing and disproportionate number of HIV-infections among African Americans in the USA drive HIV-B evolution towards an Africa-centric HIV-1 state. Similar adaptation of other pathogens to HLA variants common in affected populations is likely.
Collapse
Affiliation(s)
- Nicolaas C Kist
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ben Lambert
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Medical School Building St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Samuel Campbell
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Daniel Lunn
- Department of Statistics, University of Oxford, St Giles’, Oxford OX1 3LB, UK
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven B-3000, Belgium
| | - Astrid K N Iversen
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
21
|
HIV Transmission Chains Exhibit Greater HLA-B Homogeneity Than Randomly Expected. J Acquir Immune Defic Syndr 2020; 81:508-515. [PMID: 31107301 DOI: 10.1097/qai.0000000000002077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV's capacity to escape immune recognition by human leukocyte antigen (HLA) is a core component of HIV pathogenesis. A better understanding of the distribution of HLA class I in HIV-infected patients would improve our knowledge of pathogenesis in relation to the host HLA type and could better improve therapeutic strategies against HIV. MATERIALS AND METHODS Three hundred one to 325 transmission pairs and 469-496 clusters were identified for analysis among Swiss HIV Cohort Study (SHCS) participants using HIV pol sequences from the drug resistance database. HLA class I data were compiled at 3 specificity levels: 4-digit, 2-digit alleles, and HLA-B supertype. The analysis tabulated HLA-I homogeneity as 2 measures: the proportion of transmission pairs, which are HLA concordant, and the average percentage of allele matches within all clusters. These measures were compared with the mean value across randomizations with randomly assorted individuals. RESULTS We repeated the analysis for different HLA classification levels and separately for HLA-A, -B, and -C. Subanalyses by the risk group were performed for HLA-B. HLA-B showed significantly greater homogeneity in the transmission chains (2-digit clusters: 0.291 vs. 0.251, P value = 0.009; supertype clusters: 0.659 vs. 0.611, P value = 0.002; supertype pairs: 0.655 vs. 0.608, P value = 0.014). Risk group restriction caused the effect to disappear for men-who-have-sex-with-men but not for other risk groups. We also examined if protective HLA alleles B27 and B57 were under- or overrepresented in the transmission chains, although this yielded no significant pattern. CONCLUSIONS The HLA-B alleles of patients within HIV-1 transmission chains segregate in homogenous clusters/pairs, potentially indicating preferential transmission among HLA-B concordant individuals.
Collapse
|
22
|
Currenti J, Chopra A, John M, Leary S, McKinnon E, Alves E, Pilkinton M, Smith R, Barnett L, McDonnell WJ, Lucas M, Noel F, Mallal S, Conrad JA, Kalams SA, Gaudieri S. Deep sequence analysis of HIV adaptation following vertical transmission reveals the impact of immune pressure on the evolution of HIV. PLoS Pathog 2019; 15:e1008177. [PMID: 31821379 PMCID: PMC6924686 DOI: 10.1371/journal.ppat.1008177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) can adapt to an individual’s T cell immune response via genomic mutations that affect antigen recognition and impact disease outcome. These viral adaptations are specific to the host’s human leucocyte antigen (HLA) alleles, as these molecules determine which peptides are presented to T cells. As HLA molecules are highly polymorphic at the population level, horizontal transmission events are most commonly between HLA-mismatched donor/recipient pairs, representing new immune selection environments for the transmitted virus. In this study, we utilised a deep sequencing approach to determine the HIV quasispecies in 26 mother-to-child transmission pairs where the potential for founder viruses to be pre-adapted is high due to the pairs being haplo-identical at HLA loci. This scenario allowed the assessment of specific HIV adaptations following transmission in either a non-selective immune environment, due to recipient HLA mismatched to original selecting HLA, or a selective immune environment, mediated by matched donor/recipient HLA. We show that the pattern of reversion or fixation of HIV adaptations following transmission provides insight into the replicative cost, and likely compensatory networks, associated with specific adaptations in vivo. Furthermore, although transmitted viruses were commonly heavily pre-adapted to the child’s HLA genotype, we found evidence of de novo post-transmission adaptation, representing new epitopes targeted by the child’s T cell response. High-resolution analysis of HIV adaptation is relevant when considering vaccine and cure strategies for individuals exposed to adapted viruses via transmission or reactivated from reservoirs. Highly mutable pathogens utilise genetic variations within T cell epitopes as a mechanism of immune escape (viral adaptation). The diversity of the human leucocyte antigen (HLA) molecules that present viral targets to T cells in human populations partially protects against rapid population-level accumulation of human immunodeficiency virus (HIV) adaptations through horizontal transmissions. In contrast, vertical transmissions occur between haplo-identical mother/child pairs, and potentially include adaptive changes through father-mother-child transmission, representing a pathway to complete pre-adaptation to HLA alleles in child hosts over only two transmission events. We utilised next-generation sequencing to examine HIV evolution in the unique setting of vertical HIV transmission. We predict the in vivo replicative cost and immune benefit of specific HIV adaptations that could be used to inform vaccine design and cure strategies to combat viral immune adaptation.
Collapse
Affiliation(s)
- Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Elizabeth McKinnon
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rita Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michaela Lucas
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joseph A. Conrad
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fellay J, Pedergnana V. Exploring the interactions between the human and viral genomes. Hum Genet 2019; 139:777-781. [PMID: 31729546 DOI: 10.1007/s00439-019-02089-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Over the last decade, genome-wide association studies led to major advances in identifying human genetic variants associated with infectious disease susceptibility. On the pathogen side, comparable methods are now applied to identify disease-modulating pathogen variants. As host and pathogen variants jointly determine disease outcomes, the most recent development has been to explore simultaneously host and pathogen genomes, through so-called genome-to-genome studies. In this review, we provide some background on the development of genome-to-genome analysis and we detail the first wave of studies in this emerging field, which focused on patients chronically infected with HIV and hepatitis C virus. We also discuss the need for novel statistical methods to better tackle the issues of population stratification and multiple testing. Finally, we speculate on future research areas where genome-to-genome analysis may prove to be particularly effective.
Collapse
Affiliation(s)
- Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,Precision Medicine Unit, University Hospital and University of Lausanne, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Vincent Pedergnana
- French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM), Montpellier, France
| |
Collapse
|
24
|
Hanke T. Aiming for protective T-cell responses: a focus on the first generation conserved-region HIVconsv vaccines in preventive and therapeutic clinical trials. Expert Rev Vaccines 2019; 18:1029-1041. [PMID: 31613649 DOI: 10.1080/14760584.2019.1675518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Despite life-saving antiretroviral drugs, an effective HIV-1 vaccine is the best solution and likely a necessary component of any strategy for halting the AIDS epidemic. The currently prevailing aim is to pursue antibody-mediated vaccine protection. With ample evidence for the ability of T cells to control HIV-1 replication, their protective potential should be also harnessed by vaccination. The challenge is to elicit not just any, but protective T cells.Areas covered: This article reviews the clinical experience with the first-generation conserved-region immunogen HIVconsv delivered by combinations of plasmid DNA, simian adenovirus, and poxvirus MVA. The aim of our strategy is to induce strong and broad T cells targeting functionally important parts of HIV-1 proteins common to global variants. These vaccines were tested in eight phase 1/2 preventive and therapeutic clinical trials in Europe and Africa, and induced high frequencies of broadly specific CD8+ T cells capable of in vitro inhibition of four major HIV-1 clades A, B, C and D, and in combination with latency-reactivating agent provided a signal of drug-free virological control in early treated patients.Expert opinion: A number of critical T-cell traits have to come together at the same time to achieve control over HIV-1.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
25
|
Immunization of BLT Humanized Mice Redirects T Cell Responses to Gag and Reduces Acute HIV-1 Viremia. J Virol 2019; 93:JVI.00814-19. [PMID: 31375576 DOI: 10.1128/jvi.00814-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
BLT (bone marrow-liver-thymus) humanized mice, which reconstitute a functional human immune system, develop prototypic human virus-specific CD8+ T cell responses following infection with human immunodeficiency virus type 1 (HIV-1). We explored the utility of the BLT model for HIV-1 vaccine development by immunizing BLT mice against the conserved viral Gag protein, utilizing a rapid prime-boost protocol of poly(lactic-co-glycolic) acid microparticles and a replication-defective herpes simplex virus (HSV) recombinant vector. After HIV-1 challenge, the mice developed broad, proteome-wide gamma interferon-positive (IFN-γ+) T cell responses against HIV-1 that reached magnitudes equivalent to what is observed in HIV-1-infected individuals. The functionality of these responses was underscored by the consistent emergence of escape mutations in multiple CD8+ T cell epitopes during the course of infection. Although prechallenge vaccine-induced responses were largely undetectable, the Gag immunization increased both the magnitude and the kinetics of anamnestic Gag-specific T cell responses following HIV-1 infection, and the magnitude of these postchallenge Gag-specific responses was inversely correlated with acute HIV-1 viremia. Indeed, Gag immunization was associated with a modest but significant 0.5-log reduction in HIV-1 viral load when analyzed across four experimental groups of BLT mice. Notably, the HSV vector induced elevated plasma concentrations of polarizing cytokines and chemotactic factors, including interleukin-12p70 (IL-12p70) and MIP-1α, which were positively correlated with the magnitude of Gag-specific responses. Overall, these results support the ability of BLT mice to recapitulate human pathogen-specific T cell responses and to respond to immunization; however, additional improvements to the model are required to develop a robust system for testing HIV-1 vaccine efficacy.IMPORTANCE Advances in the development of humanized mice have raised the possibility of a small-animal model for preclinical testing of an HIV-1 vaccine. Here, we describe the capacity of BLT humanized mice to mount broadly directed HIV-1-specific human T cell responses that are functionally active, as indicated by the rapid emergence of viral escape mutations. Although immunization of BLT mice with the conserved viral Gag protein did not result in detectable prechallenge responses, it did increase the magnitude and kinetics of postchallenge Gag-specific T cell responses, which was associated with a modest but significant reduction in acute HIV-1 viremia. Additionally, the BLT model revealed immunization-associated increases in the plasma concentrations of immunomodulatory cytokines and chemokines that correlated with more robust T cell responses. These data support the potential utility of the BLT humanized mouse for HIV-1 vaccine development but suggest that additional improvements to the model are warranted.
Collapse
|
26
|
Mylvaganam G, Yanez AG, Maus M, Walker BD. Toward T Cell-Mediated Control or Elimination of HIV Reservoirs: Lessons From Cancer Immunology. Front Immunol 2019; 10:2109. [PMID: 31552045 PMCID: PMC6746828 DOI: 10.3389/fimmu.2019.02109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
As the AIDS epidemic unfolded, the appearance of opportunistic infections in at-risk persons provided clues to the underlying problem: a dramatic defect in cell-mediated immunity associated with infection and depletion of CD4+ T lymphocytes. Moreover, the emergence of HIV-associated malignancies in these same individuals was a clear indication of the significant role effective cellular immunity plays in combating cancers. As research in the HIV field progressed, advances included the first demonstration of the role of PD-1 in human T cell exhaustion, and the development of gene-modified T cell therapies, including chimeric antigen receptor (CAR) T cells. In the intervening years, the oncology field has capitalized on these advances, effectively mobilizing the cellular immune response to achieve immune-mediated remission or cure of previously intractable cancers. Although similar therapeutic advances have not yet been achieved in the HIV field, spontaneous CD8+ T cell mediated remission or functional cure of HIV infection does occur in very small subset of individuals in the absence of anti-retroviral therapy (ART). This has many similarities to the CD8+ T cell mediated functional control or elimination of cancers, and indicates that immunotherapy for HIV is a rational goal. In HIV infection, one major barrier to successful immunotherapy is the small, persistent population of infected CD4+ T cells, the viral reservoir, which evades pharmacological and immune-mediated clearance, and is largely maintained in secondary lymphoid tissues at sites where CD8+ T cells have limited access and/or function. The reservoir-enriched lymphoid microenvironment bears a striking resemblance to the tumor microenvironment of many solid tumors–namely high levels of anti-inflammatory cytokines, expression of co-inhibitory receptors, and physical exclusion of immune effector cells. Here, we review the parallels between CD8+ T cell-mediated immune control of HIV and cancer, and how advances in cancer immunotherapy may provide insights to direct the development of effective HIV cure strategies. Specifically, understanding the impact of the tissue microenvironment on T cell function and development of CAR T cells and therapeutic vaccines deserve robust attention on the path toward a CD8+ T cell mediated cure of HIV infection.
Collapse
Affiliation(s)
- Geetha Mylvaganam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Adrienne G Yanez
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Marcela Maus
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States.,MGH Cancer Center, Boston, MA, United States
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States.,Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, United States
| |
Collapse
|
27
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
28
|
IL-21 Expands HIV-1-Specific CD8 + T Memory Stem Cells to Suppress HIV-1 Replication In Vitro. J Immunol Res 2019; 2019:1801560. [PMID: 31183385 PMCID: PMC6515191 DOI: 10.1155/2019/1801560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 03/27/2019] [Indexed: 01/05/2023] Open
Abstract
Due to the existence of viral reservoirs, the rebound of human immunodeficiency virus type 1 (HIV-1) viremia can occur within weeks after discontinuing combined antiretroviral therapy. Immunotherapy could potentially be applied to eradicate reactivated HIV-1 in latently infected CD4+ T lymphocytes. Although the existence of HIV-1-specific CD8+ T memory stem cells (TSCMs) is well established, there are currently no reports regarding methods using CD8+ TSCMs to treat HIV-1 infection. In this study, we quantified peripheral blood antigen-specific CD8+ TSCMs and then expanded HIV-1-specific TSCMs that targeted optimal antigen epitopes (SL9, IL9, and TL9) in the presence of interleukin- (IL-) 21 or IL-15. The suppressive capacity of the expanded CD8+ TSCMs on HIV-1 production was measured by assessing cell-associated viral RNA and performing viral outgrowth assays. We found that the number of unmutated TL9-specific CD8+ TSCMs positively correlated with the abundance of CD4+ T cells and that the expression of IFN-γ was higher in TL9-specific CD8+ TSCMs than that in non-TL9-specific CD8+ TSCMs. Moreover, the antiviral capacities of IL-21-stimulated CD8+ TSCMs exceeded those of conventional CD8+ memory T cells and IL-15-stimulated CD8+ TSCMs. Thus, we demonstrated that IL-21 could efficiently expand HIV-1-specific CD8+ TSCMs to suppress HIV-1 replication. Our study provides new insight into the function of IL-21 in the in vitro suppression of HIV-1 replication.
Collapse
|
29
|
Angulo JMC, Cuesta TAC, Menezes EP, Pedroso C, Brites C. A SYSTEMATIC REVIEW ON THE INFLUENCE OF HLA-B POLYMORPHISMS ON HIV-1 MOTHER-TO-CHILD-TRANSMISSION. Braz J Infect Dis 2019; 23:53-59. [PMID: 30772367 PMCID: PMC9428023 DOI: 10.1016/j.bjid.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 11/21/2022] Open
Abstract
Background Mother-to-child-transmission (MTCT) is the main route of HIV-1 infection in children. Genetic studies suggest HLA-B alleles play an important role on HIV-1 transmission, progression, and control of HIV-1 infection. Objective To evaluate which polymorphisms of HLA-B are involved in HIV-1 MTCT. Methods Two independent reviewers performed a systematic review on search engines PubMed, Europe PMC, Cochrane, Scientific Electronic Library Online (SciELO), and Literatura Latino-americana e do Caribe em Ciências da Saúde (Lilacs), using the following key terms: “HIV infection”, “HIV newborn”, “HLA polymorphisms”, “HLA-B”, and “Mother to child transmission”. All studies focusing on evaluation of HIV-1 MTCT, HIV infection evolution, and molecular analyses of HLA-B in children were selected. Results Nine studies fulfilled the inclusion criteria. Sixteen HLA-B alleles groups were associated with HIV-1 infection; seven of them (43.8%) were related to slow disease progression or reduced risk of MTCT, while six (37.5%) alleles groups were linked to a faster progression of HIV infection in children and to increased risk of MTCT. The available evidence suggest that HLA-B*57 group allele is associated with slow disease progression, while HLA-B*35 group allele is associated to increased risk of MTCT and rapid disease progression in infected children. The role of HLA-B*18, B*58 and B*44 are still controversial because they were associated to both, protection against MTCT, and to higher HIV replicative capacity, in different studies. Conclusion HLA-B*57 group allele can be protective against MTCT while HLA-B*35 groups alleles are consistently associated with HIV-1 MTCT.
Collapse
Affiliation(s)
- Juan Manuel Cubillos Angulo
- Universidade Federal da Bahia, Complexo Hospitalar Prof. Edgard Santos, Laboratório de Pesquisa em Infectologia, Salvador, BA, Brazil; Universidade Federal da Bahia, Programa de Pós-Graduação em Medicina e Saúde, Salvador, BA, Brazil
| | | | - Eliane Pereira Menezes
- Universidade Federal da Bahia, Faculdade de Medicina, Departamento de Medicina, Salvador, BA, Brazil
| | - Celia Pedroso
- Universidade Federal da Bahia, Complexo Hospitalar Prof. Edgard Santos, Laboratório de Pesquisa em Infectologia, Salvador, BA, Brazil
| | - Carlos Brites
- Universidade Federal da Bahia, Complexo Hospitalar Prof. Edgard Santos, Laboratório de Pesquisa em Infectologia, Salvador, BA, Brazil; Universidade Federal da Bahia, Faculdade de Medicina, Departamento de Medicina, Salvador, BA, Brazil.
| |
Collapse
|
30
|
Bavaro DF, Saracino A, Fiordelisi D, Bruno G, Ladisa N, Monno L, Angarano G. Influence of HLA-B18 on liver fibrosis progression in a cohort of HIV/HCV coinfected individuals. J Med Virol 2019; 91:751-757. [PMID: 30578670 DOI: 10.1002/jmv.25385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is accelerated in human immunodeficiency virus/hepatitis C virus (HIV/HCV) coinfected compared with HCV monoinfected patients, due to multiple cofactors. Recently, HLA-B18 haplotype has been associated with short-term liver disease progression in this population. Our aim was to assess the influence of HLA-B18 on the fibrosis process in HIV/HCV coinfected individuals, untreated for HCV, during a long-term follow-up. All consecutive HIV/HCV co-infectedcoinfected patients followed in our center, with positive HCV-RNA and available human leukocyte antigen (HLA) haplotypes (determined by sequence-specific oligonucleotide primed polymerase chain reaction and simple sequence repeats polymerase chain reaction using Luminex Technology) were included. Liver fibrosis progression was assessed by means of fibrosis-4 index for liver fibrosis (FIB-4) and AST to platelet ratio index. The association between FIB-4 score over time and laboratory and clinical parameters, including HLA, was evaluated by univariate and multivariate multilevel generalized linear models. A total of 29 out of 148 screened patients were excluded because of spontaneous HCV clearance (27% were HLA-B18+). Among the remaining 119 individuals (82% males; median age at first visit = 30 years [interquartile range, IQR, 26-35]; median follow-up = 21.5 years [IQR, 15-25]), 26% were HLA-B18+. No baseline differences were evidenced between HLA-B18+ and B18- patients. Fibrosis progression was significantly faster in HLA-B18+ than in HLA-B18- patients ( P < 0.001) (Figure 1). At univariate analysis, age ( P < 0.001), HLA-B18 haplotype ( P = 0.02) and HIV-RNA viral load overtime ( P < 0.001) were associated with liver disease progression. At multivariate analysis, only age ( P < 0.001) remained independently associated with liver fibrosis progression. Our data suggest a possible association between HLA-B18 and an accelerated liver fibrosis in HIV/HCV coinfected with a long-term follow-up.
Collapse
Affiliation(s)
- Davide Fiore Bavaro
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro,", Bari, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro,", Bari, Italy
| | - Deborah Fiordelisi
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro,", Bari, Italy
| | - Giuseppe Bruno
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro,", Bari, Italy
| | - Nicoletta Ladisa
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro,", Bari, Italy
| | - Laura Monno
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro,", Bari, Italy
| | - Gioacchino Angarano
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro,", Bari, Italy
| |
Collapse
|
31
|
Ogunshola F, Anmole G, Miller RL, Goering E, Nkosi T, Muema D, Mann J, Ismail N, Chopera D, Ndung'u T, Brockman MA, Ndhlovu ZM. Dual HLA B*42 and B*81-reactive T cell receptors recognize more diverse HIV-1 Gag escape variants. Nat Commun 2018; 9:5023. [PMID: 30479346 PMCID: PMC6258674 DOI: 10.1038/s41467-018-07209-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022] Open
Abstract
Some closely related human leukocyte antigen (HLA) alleles are associated with variable clinical outcomes following HIV-1 infection despite presenting the same viral epitopes. Mechanisms underlying these differences remain unclear but may be due to intrinsic characteristics of the HLA alleles or responding T cell repertoires. Here we examine CD8+ T cell responses against the immunodominant HIV-1 Gag epitope TL9 (TPQDLNTML180–188) in the context of the protective allele B*81:01 and the less protective allele B*42:01. We observe a population of dual-reactive T cells that recognize TL9 presented by both B*81:01 and B*42:01 in individuals lacking one allele. The presence of dual-reactive T cells is associated with lower plasma viremia, suggesting a clinical benefit. In B*42:01 expressing individuals, the dual-reactive phenotype defines public T cell receptor (TCR) clones that recognize a wider range of TL9 escape variants, consistent with enhanced control of viral infection through containment of HIV-1 sequence adaptation. Closely related HLA alleles presenting similar HIV-1 epitopes can be associated with variable clinical outcome. Here the authors report their findings on CD8+ T cell responses to the HIV-1 Gag-p24 TL9 immunodominant epitope in the context of closely related protective and less protective HLA alleles, and their differential effect on viral control
Collapse
Affiliation(s)
- Funsho Ogunshola
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Gursev Anmole
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Rachel L Miller
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Emily Goering
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Thandeka Nkosi
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Muema
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismail
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Denis Chopera
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mark A Brockman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada.
| | - Zaza M Ndhlovu
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
32
|
Moyo N, Vogel AB, Buus S, Erbar S, Wee EG, Sahin U, Hanke T. Efficient Induction of T Cells against Conserved HIV-1 Regions by Mosaic Vaccines Delivered as Self-Amplifying mRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:32-46. [PMID: 30547051 PMCID: PMC6258890 DOI: 10.1016/j.omtm.2018.10.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Focusing T cell responses on the most vulnerable parts of HIV-1, the functionally conserved regions of HIV-1 proteins, is likely a key prerequisite for vaccine success. For a T cell vaccine to efficiently control HIV-1 replication, the vaccine-elicited individual CD8+ T cells and as a population have to display a number of critical traits. If any one of these traits is suboptimal, the vaccine is likely to fail. Fine-tuning of individual protective characteristics of T cells will require iterative stepwise improvements in clinical trials. Although the second-generation tHIVconsvX immunogens direct CD8+ T cells to predominantly protective and conserved epitopes, in the present work, we have used formulated self-amplifying mRNA (saRNA) to deliver tHIVconsvX to the immune system. We demonstrated in BALB/c and outbred mice that regimens employing saRNA vaccines induced broadly specific, plurifunctional CD8+ and CD4+ T cells, which displayed structured memory subpopulations and were maintained at relatively high frequencies over at least 22 weeks post-administration. This is one of the first thorough analyses of mRNA vaccine-elicited T cell responses. The combination of tHIVconsvX immunogens and the highly versatile and easily manufacturable saRNA platform may provide a long-awaited opportunity to define and optimize induction of truly protective CD8+ T cell parameters in human volunteers.
Collapse
Affiliation(s)
- Nathifa Moyo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Annette B Vogel
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Stephanie Erbar
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
33
|
Alteri C, Fabeni L, Scutari R, Berno G, Di Carlo D, Gori C, Bertoli A, Vergori A, Mastrorosa I, Bellagamba R, Mussini C, Colafigli M, Montella F, Pennica A, Mastroianni CM, Girardi E, Andreoni M, Antinori A, Svicher V, Ceccherini-Silberstein F, Perno CF, Santoro MM. Genetic divergence of HIV-1 B subtype in Italy over the years 2003-2016 and impact on CTL escape prevalence. Sci Rep 2018; 8:15739. [PMID: 30356083 PMCID: PMC6200748 DOI: 10.1038/s41598-018-34058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/04/2018] [Indexed: 12/05/2022] Open
Abstract
HIV-1 is characterized by high genetic variability, with implications for spread, and immune-escape selection. Here, the genetic modification of HIV-1 B subtype over time was evaluated on 3,328 pol and 1,152 V3 sequences belonging to B subtype and collected from individuals diagnosed in Italy between 2003 and 2016. Sequences were analyzed for genetic-distance from consensus-B (Tajima-Nei), non-synonymous and synonymous rates (dN and dS), CTL escapes, and intra-host evolution over four time-spans (2003–2006, 2007–2009, 2010–2012, 2013–2016). Genetic-distance increased over time for both pol and V3 sequences (P < 0.0001 and 0.0003). Similar results were obtained for dN and dS. Entropy-value significantly increased at 16 pol and two V3 amino acid positions. Seven of them were CTL escape positions (protease: 71; reverse-transcriptase: 35, 162, 177, 202, 207, 211). Sequences with ≥3 CTL escapes increased from 36.1% in 2003–2006 to 54.0% in 2013–2016 (P < 0.0001), and showed better intra-host adaptation than those containing ≤2 CTL escapes (intra-host evolution: 3.0 × 10−3 [2.9 × 10−3–3.1 × 10−3] vs. 4.3 × 10−3 [4.0 × 10−3–5.0 × 10−3], P[LRT] < 0.0001[21.09]). These data provide evidence of still ongoing modifications, involving CTL escape mutations, in circulating HIV-1 B subtype in Italy. These modifications might affect the process of HIV-1 adaptation to the host, as suggested by the slow intra-host evolution characterizing viruses with a high number of CTL escapes.
Collapse
Affiliation(s)
- Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy.
| | - Lavinia Fabeni
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Rossana Scutari
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giulia Berno
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Domenico Di Carlo
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Milan, 20133, Italy
| | - Caterina Gori
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Ada Bertoli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alessandra Vergori
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Ilaria Mastrorosa
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Rita Bellagamba
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | | | | | | | | | | | - Enrico Girardi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | | | - Andrea Antinori
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| | | | - Carlo Federico Perno
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy.,Department of Oncology, University of Milan, Milan, 20122, Italy
| | - Maria Mercedes Santoro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| |
Collapse
|
34
|
Colbert RA, Navid F, Gill T. The role of HLA-B*27 in spondyloarthritis. Best Pract Res Clin Rheumatol 2018; 31:797-815. [PMID: 30509441 DOI: 10.1016/j.berh.2018.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
The mechanism by which HLA-B*27 predisposes to spondyloarthritis remains unresolved. Arthritogenic peptides have not been defined in humans and are not involved in experimental models of spondyloarthritis. Aberrant properties of HLA-B*27 can activate the IL-23/IL-17 axis in HLA-B*27 transgenic rats and humans. In HLA-B*27-independent rodent models, spondyloarthritis can be driven by IL-23 triggering entheseal-resident CD4-/CD8- T cells or CD4+ Th17 T cells. These findings point toward noncanonical mechanisms linking HLA-B*27 to the disease and provide a potential explanation for HLA-B*27-negative spondyloarthritis. Gut microbial dysbiosis may be important in the development of spondyloarthritis. HLA-B*27-induced changes in gut microbiota are complex and suggest an ecological model of dysbiosis in rodents. The importance of the IL-23/IL-17 axis in ankylosing spondylitis has been demonstrated by studies showing efficacy of IL-17. Although deciphering the precise role(s) of HLA-B*27 in disease requires further investigation, considerable progress has been made in understanding this complex relationship.
Collapse
Affiliation(s)
- Robert A Colbert
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| |
Collapse
|
35
|
Hu X, Lu Z, Valentin A, Rosati M, Broderick KE, Sardesai NY, Marx PA, Mullins JI, Pavlakis GN, Felber BK. Gag and env conserved element CE DNA vaccines elicit broad cytotoxic T cell responses targeting subdominant epitopes of HIV and SIV Able to recognize virus-infected cells in macaques. Hum Vaccin Immunother 2018; 14:2163-2177. [PMID: 29939820 PMCID: PMC6183272 DOI: 10.1080/21645515.2018.1489949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HIV sequence diversity and the propensity of eliciting immunodominant responses targeting inessential variable regions are hurdles in the development of an effective AIDS vaccine. We developed a DNA vaccine comprising conserved elements (CE) of SIV p27Gag and HIV-1 Env and found that priming vaccination with CE DNA is critical to efficiently overcome the dominance imposed by Gag and Env variable regions. Here, we show that DNA vaccinated macaques receiving the CE prime/CE+full-length DNA co-delivery booster vaccine regimens developed broad, potent and durable cytotoxic T cell responses targeting conserved protein segments of SIV Gag and HIV Env. Gag CE-specific T cells showed robust anamnestic responses upon infection with SIVmac239 which led to the identification of CE-specific cytotoxic lymphocytes able to recognize epitopes covering distinct CE on the surface of SIV infected cells in vivo. Though not controlling infection overall, we found an inverse correlation between Gag CE-specific CD8+ T cell responses and peak viremia. The T cell responses induced by the HIV Env CE immunogen were recalled in some animals upon SIV infection, leading to the identification of two cross-reactive epitopes between HIV and SIV Env based in sequence homology. These data demonstrate that a vaccine combining Gag and Env CE DNA subverted the normal immunodominance patterns, eliciting immune responses that included subdominant, highly conserved epitopes. These vaccine regimens augment cytotoxic T cell responses to highly conserved epitopes in the viral proteome and maximize response breadth. The vaccine-induced CE-specific T cells were expanded upon SIV infection, indicating that the predicted CE epitopes incorporated in the DNA vaccine are processed and exposed by infected cells in their natural context within the viral proteome.
Collapse
Affiliation(s)
- Xintao Hu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Zhongyan Lu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Antonio Valentin
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | - Margherita Rosati
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | | | | | - Preston A Marx
- d Tulane National Primate Research Center and Department of Tropical Medicine, School of Public Health and Tropical Medicine , Tulane University , New Orleans , LA , USA
| | - James I Mullins
- e Departments of Microbiology, Medicine and Laboratory Medicine , University of Washington , Seattle , WA , USA
| | - George N Pavlakis
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | - Barbara K Felber
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| |
Collapse
|
36
|
Potential immune escape mutations under inferred selection pressure in HIV-1 strains circulating in Medellín, Colombia. INFECTION GENETICS AND EVOLUTION 2018; 69:267-278. [PMID: 30808498 DOI: 10.1016/j.meegid.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
Abstract
The introduction of highly active antiretroviral therapy (HAART) has significantly improved life expectancy of HIV-infected patients; nevertheless, it does not eliminate the virus from hosts, so a cure for this infection is crucial. Some strategies have employed the induction of anti-HIV CD8+ T cells. However, the high genetic variability of HIV-1 represents the biggest obstacle for these strategies, since immune escape mutations within epitopes restricted by Human Leukocyte Antigen class I molecules (HLA-I) abrogate the antiviral activity of these cells. We used a bioinformatics pipeline for the determination of such mutations, based on selection pressure and docking/refinement analyses. Fifty HIV-1 infected patients were recruited; HLA-A and HLA-B alleles were typified using sequence-specific oligonucleotide approach, and viral RNA was extracted for the amplification of HIV-1 gag, which was bulk sequenced and aligned to perform selection pressure analysis, using Single Likelihood Ancestor Counting (SLAC) and Fast Unconstrained Bayesian Approximation (FUBAR) algorithms. Positively selected sites were mapped into HLA-I-specific epitopes, and both mutated and wild type epitopes were modelled using PEP-FOLD. Molecular docking and refinement assays were carried out using AutoDock Vina 4 and FlexPepDock. Five positively selected sites were found: S54 at HLA-A*02 GC9, T84 at HLA-A*02 SL9, S125 at HLA-B*35 HY9, S173 at HLA-A*02/B*57 KS12 and I223 at HLA-B*35 HA9. Although some mutations have been previously described as immune escape mutations, the majority of them have not been reported. Molecular docking/refinement analysis showed that one combination of mutations at GC9, one at SL9, and eight at HY9 epitopes could act as immune escape mutations. Moreover, HLA-A*02-positive patients harbouring mutations at KS12, and HLA-B*35-positive patients with mutations at HY9 have significantly higher plasma viral loads than patients lacking such mutations. Thus, HLA-A and -B alleles could be shaping the genetic diversity of HIV-1 through the selection of potential immune escape mutations.
Collapse
|
37
|
Haran KP, Hajduczki A, Pampusch MS, Mwakalundwa G, Vargas-Inchaustegui DA, Rakasz EG, Connick E, Berger EA, Skinner PJ. Simian Immunodeficiency Virus (SIV)-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication. Front Immunol 2018; 9:492. [PMID: 29616024 PMCID: PMC5869724 DOI: 10.3389/fimmu.2018.00492] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh) located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV)-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh) cells using antiviral chimeric antigen receptor (CAR) T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure) of HIV and SIV infections.
Collapse
Affiliation(s)
- Kumudhini Preethi Haran
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Agnes Hajduczki
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mary S Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Gwantwa Mwakalundwa
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Diego A Vargas-Inchaustegui
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
38
|
Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes. mBio 2017; 8:mBio.01050-17. [PMID: 29184023 PMCID: PMC5705913 DOI: 10.1128/mbio.01050-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain “protective” major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.
Collapse
|
39
|
Cummins NW, Rizza S, Litzow MR, Hua S, Lee GQ, Einkauf K, Chun TW, Rhame F, Baker JV, Busch MP, Chomont N, Dean PG, Fromentin R, Haase AT, Hampton D, Keating SM, Lada SM, Lee TH, Natesampillai S, Richman DD, Schacker TW, Wietgrefe S, Yu XG, Yao JD, Zeuli J, Lichterfeld M, Badley AD. Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study. PLoS Med 2017; 14:e1002461. [PMID: 29182633 PMCID: PMC5705162 DOI: 10.1371/journal.pmed.1002461] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Notwithstanding 1 documented case of HIV-1 cure following allogeneic stem cell transplantation (allo-SCT), several subsequent cases of allo-SCT in HIV-1 positive individuals have failed to cure HIV-1 infection. The aim of our study was to describe changes in the HIV reservoir in a single chronically HIV-infected patient on suppressive antiretroviral therapy who underwent allo-SCT for treatment of acute lymphoblastic leukemia. METHODS AND FINDINGS We prospectively collected peripheral blood mononuclear cells (PBMCs) by leukapheresis from a 55-year-old man with chronic HIV infection before and after allo-SCT to measure the size of the HIV-1 reservoir and characterize viral phylogeny and phenotypic changes in immune cells. At day 784 post-transplant, when HIV-1 was undetectable by multiple measures-including PCR measurements of both total and integrated HIV-1 DNA, replication-competent virus measurement by large cell input quantitative viral outgrowth assay, and in situ hybridization of colon tissue-the patient consented to an analytic treatment interruption (ATI) with frequent clinical monitoring. He remained aviremic off antiretroviral therapy until ATI day 288, when a low-level virus rebound of 60 HIV-1 copies/ml occurred, which increased to 1,640 HIV-1 copies/ml 5 days later, prompting reinitiation of ART. Rebounding plasma HIV-1 sequences were phylogenetically distinct from proviral HIV-1 DNA detected in circulating PBMCs before transplantation. The main limitations of this study are the insensitivity of reservoir measurements, and the fact that it describes a single case. CONCLUSIONS allo-SCT led to a significant reduction in the size of the HIV-1 reservoir and a >9-month-long ART-free remission from HIV-1 replication. Phylogenetic analyses suggest that the origin of rebound virus was distinct from the viruses identified pre-transplant in the PBMCs.
Collapse
Affiliation(s)
- Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stacey Rizza
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark R. Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephane Hua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Guinevere Q. Lee
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kevin Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tae-Wook Chun
- HIV Immunovirology Unit, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frank Rhame
- Abbott Northwestern Hospital, Allina Health, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason V. Baker
- Division of Infectious Diseases, Hennepin County Medical Center, Minneapolis, Minnesota, United States of America
| | - Michael P. Busch
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM, University of Montreal Hospital Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
| | - Patrick G. Dean
- Division of Transplantation Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rémi Fromentin
- Centre de Recherche du CHUM, University of Montreal Hospital Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
| | - Ashley T. Haase
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dylan Hampton
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Sheila M. Keating
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Steven M. Lada
- University of California, San Diego, San Diego, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Sekar Natesampillai
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Douglas D. Richman
- University of California, San Diego, San Diego, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen Wietgrefe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Joseph D. Yao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John Zeuli
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
40
|
Yaseen MM, Abuharfeil NM, Alqudah MA, Yaseen MM. Mechanisms and Factors That Drive Extensive Human Immunodeficiency Virus Type-1 Hypervariability: An Overview. Viral Immunol 2017; 30:708-726. [PMID: 29064351 DOI: 10.1089/vim.2017.0065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extensive hypervariability of human immunodeficiency virus type-1 (HIV-1) populations represents a major barrier against the success of currently available antiretroviral therapy. Moreover, it is still the most important obstacle that faces the development of an effective preventive vaccine against this infectious virus. Indeed, several factors can drive such hypervariability within and between HIV-1 patients. These factors include: first, the very low fidelity nature of HIV-1 reverse transcriptase; second, the extremely high HIV-1 replication rate; and third, the high genomic recombination rate that the virus has. All these factors together with the APOBEC3 proteins family and the immune and antiviral drugs pressures drive the extensive hypervariability of HIV-1 populations. Studying these factors and the mechanisms that drive such hypervariability will provide valuable insights that may guide the development of effective therapeutic and preventive strategies against HIV-1 infection in the near future. To this end, in this review, we summarized recent advances in this area of HIV-1 research.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- 1 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology , Irbid, Jordan
| | - Nizar Mohammad Abuharfeil
- 2 Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology , Irbid, Jordan
| | - Mohammad Ali Alqudah
- 3 Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology , Irbid, Jordan
| | - Mohammad Mahmoud Yaseen
- 4 Department of Public Health, College of Medicine, Jordan University of Science and Technology , Irbid, Jordan
| |
Collapse
|
41
|
Leitman EM, Thobakgale CF, Adland E, Ansari MA, Raghwani J, Prendergast AJ, Tudor-Williams G, Kiepiela P, Hemelaar J, Brener J, Tsai MH, Mori M, Riddell L, Luzzi G, Jooste P, Ndung'u T, Walker BD, Pybus OG, Kellam P, Naranbhai V, Matthews PC, Gall A, Goulder PJR. Role of HIV-specific CD8 + T cells in pediatric HIV cure strategies after widespread early viral escape. J Exp Med 2017; 214:3239-3261. [PMID: 28983013 PMCID: PMC5679167 DOI: 10.1084/jem.20162123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/22/2017] [Accepted: 08/30/2017] [Indexed: 11/04/2022] Open
Abstract
Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Christina F Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - M Azim Ansari
- Oxford Martin School, University of Oxford, Oxford, England, UK
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, England, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Division of Medicine, Department of Paediatrics, Imperial College London, London, England, UK
| | - Photini Kiepiela
- Medical Research Council, Durban, South Africa.,Witwatersrand Health Consortium, Johannesburg, South Africa
| | - Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, England, UK.,Linacre Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Jacqui Brener
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Masahiko Mori
- Department of Paediatrics, University of Oxford, Oxford, England, UK.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Lynn Riddell
- Northampton Healthcare NHS Foundation Trust, Cliftonville, England, UK
| | - Graz Luzzi
- Buckinghampshire Healthcare NHS Foundation Trust, High Wycombe, England, UK
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Babraham, England, UK.,Department of Medicine, Division of Infectious Diseases, Imperial College Faculty of Medicine, London, England, UK
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA.,Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Philippa C Matthews
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, England, UK
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Hinxton, England, UK
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, England, UK .,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to review recent advances in immunotherapeutic approaches aiming at reducing the latent HIV reservoir. RECENT FINDINGS HIV-1 establishes early during infection a pool of latently infected cells that persist long term and are largely undetectable to the immune system. Highly active antiretroviral therapy has dramatically improved the life expectancy and life quality of HIV-1-infected individuals, but is incapable of eliminating the pool of latently HIV-1-infected cells. Recent studies have started to test immunotherapeutic interventions in combination with latency reversing agents to reduce the latent HIV-1 reservoir, including approaches aimed at enhancing antiviral T-cell immunity, innate immunity, and virus-specific antibodies. SUMMARY The better understanding of virus-specific immunity and the pathways used by HIV-1 to evade host immune responses have enabled the development of new strategies focusing on targeting latently HIV-1-infected cells, with the goal to reduce the HIV-1 reservoir. Here, we will review recent advances in harnessing effector cells of the immune system, including CD8 T cells and natural killer cells, antiviral antibodies and new immunomodulatory molecules, to target HIV-1 persistence.
Collapse
|
43
|
Tarosso LF, Vieira VA, Sauer MM, Tomiyama HI, Kalil J, Kallas EG. Conserved HIV-1 Gag p24 Epitopes Elicit Cellular Immune Responses That Impact Disease Outcome. AIDS Res Hum Retroviruses 2017; 33:832-842. [PMID: 28594230 DOI: 10.1089/aid.2016.0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the breadth of the human immunodeficiency virus type 1 (HIV-1)-specific cellular immune response and its impact on the control of viral replication have already been addressed, reported data have proven controversial. We hypothesize that the nature of targeted epitopes, rather than the simple breadth or magnitude of responses, correlates with disease outcome. In this study, we explore the occurrence of patterns of Gag p24 recognition among untreated HIV-1-infected patients by identifying the epitopes that compose such patterns and how they distinctly associate with disease progression. Utilizing enzyme-linked immunospot (ELISPOT) interferon gamma (IFN-γ), we screened cellular responses of 27 HIV-1-infected subjects against 15-mer peptides encompassing the whole Gag p24 protein. Obtained data were used to develop a clustering analysis that allowed definition of two groups of individuals with totally distinct patterns of recognition. Although targeted Gag p24 peptides were completely different between the two groups, the breadth and magnitude of the responses were not. Interestingly, viral control and preservation of CD4+ T cells were increased in one group. In addition, we compared genetic conservation of amino acid sequences of the recognized peptides, as well as of the human leucocyte antigen class I (HLA-I)-restricted epitopes within them. Subjects presenting higher control of HIV-1 replication targeted more conserved epitopes, and higher genetic variation was present mainly in anchor residues for HLA-I molecules. We strengthen the existing evidence from cases of HIV-1 infection in humans that, cellular immune responses targeting conserved epitopes, rather than the magnitude and breadth of responses, associate with a better control of viral replication and maintenance of peripheral CD4+ T cell counts.
Collapse
Affiliation(s)
- Leandro F. Tarosso
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Vinicius A. Vieira
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mariana M. Sauer
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Helena I. Tomiyama
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Jorge Kalil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Esper G. Kallas
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
44
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B. Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Moyo N, Borthwick NJ, Wee EG, Capucci S, Crook A, Dorrell L, Hanke T. Long-term follow up of human T-cell responses to conserved HIV-1 regions elicited by DNA/simian adenovirus/MVA vaccine regimens. PLoS One 2017; 12:e0181382. [PMID: 28719652 PMCID: PMC5515449 DOI: 10.1371/journal.pone.0181382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Durability of vaccine-elicited immune responses is one of the key determinants for vaccine success. Our aim is to develop a vaccination strategy against the human immunodeficiency virus type 1 (HIV-1), which induces protective and durable CD8+ T-cell responses. The central theorem of our approach is to focus T cells on highly conserved regions of the HIV-1 proteome and this is achieved through the use of the first-generation conserved vaccine immunogen HIVconsv. This immunogen vectored by plasmid DNA, simian adenovirus and poxvirus MVA was tested in healthy, HIV-1-negative adults in UK and induced high magnitudes of HIVconsv-specific plurifunctional CD8+ T cells capable of in vitro HIV-1 inhibition. Here, we assessed the durability of these responses. METHODS Vaccine recipients in trial HIV-CORE 002 were invited to provide a blood sample at 1 and 2 years after vaccination. Their PBMCs were tested in IFN-γ ELISPOT, 25-analyte Luminex, CFSE proliferation and intracellular cytokine staining assays, the last enhanced by HLA-peptide dextramer analysis. RESULTS 12/12 (1 year) and 8/8 (2 years) returning subjects had median (range) of 990 (150-2495) and 763 (70-1745) IFN-γ SFU/106 PBMC specific for HIVconsv, respectively, and recognized 5 (1-6) out of 6 peptide pools at 2 years. Over one-half of the HIVconsv-specific cells expressed at least 3 functions IFN-γ, TNF-α and CD107a, and were capable of proliferation. Among dextramer-reactive cells, naïve, transitional, effector and terminally differentiated memory subsets were similarly represented. CONCLUSIONS First generation HIVconsv vaccine induced human T cells, which were plurifunctional and persisted for at least 2 years. TRIAL REGISTRATION ClinicalTrials.gov NCT01151319.
Collapse
Affiliation(s)
- Nathifa Moyo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola J Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Capucci
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alison Crook
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lucy Dorrell
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
46
|
Silver ZA, Watkins DI. The role of MHC class I gene products in SIV infection of macaques. Immunogenetics 2017; 69:511-519. [PMID: 28695289 PMCID: PMC5537376 DOI: 10.1007/s00251-017-0997-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Human immunodeficiency virus (HIV) remains among the most significant public health threats worldwide. Despite three decades of research following the discovery of HIV, a preventive vaccine remains elusive. The study of HIV elite controllers has been crucial to elaborate the genetic and immunologic determinants that underlie control of HIV replication. Coordinated studies of elite control in humans have, however, been limited by variability among infecting viral strains, host genotype, and the uncertainty of the timing and route of infection. In this review, we discuss the role of nonhuman primate (NHP) models for the elucidation of the immunologic correlates that underlie control of AIDS virus replication. We discuss the importance of major histocompatibility complex class I (MHC-I) alleles in activating CD8+ T-cell populations that promote control of both HIV and simian immunodeficiency virus (SIV) replication. Provocatively, we make the argument that T-cell subsets recognizing the HIV/SIV viral infectivity factor (Vif) protein may be crucial for control of viral replication. We hope that this review demonstrates how an in-depth understanding of the MHC-I gene products associated with elite control of HIV/SIV, and the epitopes that they present, can provide researchers with a glimpse into the protective immune responses that underlie AIDS nonprogression.
Collapse
Affiliation(s)
- Zachary A Silver
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape. Nat Struct Mol Biol 2017; 24:387-394. [PMID: 28218747 DOI: 10.1038/nsmb.3381] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/20/2017] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex class I (MHC-I) molecules play a crucial role in immunity by capturing peptides for presentation to T cells and natural killer (NK) cells. The peptide termini are tethered within the MHC-I antigen-binding groove, but it is unknown whether other presentation modes occur. Here we show that 20% of the HLA-B*57:01 peptide repertoire comprises N-terminally extended sets characterized by a common motif at position 1 (P1) to P2. Structures of HLA-B*57:01 presenting N-terminally extended peptides, including the immunodominant HIV-1 Gag epitope TW10 (TSTLQEQIGW), showed that the N terminus protrudes from the peptide-binding groove. The common escape mutant TSNLQEQIGW bound HLA-B*57:01 canonically, adopting a dramatically different conformation than the TW10 peptide. This affected recognition by killer cell immunoglobulin-like receptor (KIR) 3DL1 expressed on NK cells. We thus define a previously uncharacterized feature of the human leukocyte antigen class I (HLA-I) immunopeptidome that has implications for viral immune escape. We further suggest that recognition of the HLA-B*57:01-TW10 epitope is governed by a 'molecular tension' between the adaptive and innate immune systems.
Collapse
|
48
|
Kamori D, Ueno T. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations. Front Microbiol 2017; 8:80. [PMID: 28194140 PMCID: PMC5276809 DOI: 10.3389/fmicb.2017.00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/11/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the effective use of antiretroviral therapy, the remainder of a latently HIV-1-infected reservoir mainly in the resting memory CD4+ T lymphocyte subset has provided a great setback toward viral eradication. While host transcriptional silencing machinery is thought to play a dominant role in HIV-1 latency, HIV-1 protein such as Tat, may affect both the establishment and the reversal of latency. Indeed, mutational studies have demonstrated that insufficient Tat transactivation activity can result in impaired transcription of viral genes and the establishment of latency in cell culture experiments. Because Tat protein is one of highly variable proteins within HIV-1 proteome, it is conceivable that naturally occurring Tat mutations may differentially modulate Tat functions, thereby influencing the establishment and/or the reversal of viral latency in vivo. In this mini review, we summarize the recent findings of Tat naturally occurring polymorphisms associating with host immune responses and we highlight the implication of Tat sequence variations in relation to HIV latency.
Collapse
Affiliation(s)
- Doreen Kamori
- Center for AIDS Research, Kumamoto University Kumamoto, Japan
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto UniversityKumamoto, Japan; International Research Center for Medical Sciences, Kumamoto UniversityKumamoto, Japan
| |
Collapse
|
49
|
Abstract
In this chapter, we will review recent research on the virology of HIV-1 transmission and the impact of the transmitted virus genotype on subsequent disease progression. In most instances of HIV-1 sexual transmission, a single genetic variant, or a very limited number of variants from the diverse viral quasi-species present in the transmitting partner establishes systemic infection. Transmission involves both stochastic and selective processes, such that in general a minority variant in the donor is transmitted. While there is clear evidence for selection, the biological properties that mediate transmission remain incompletely defined. Nevertheless, the genotype of the transmitted founder virus, which reflects prior exposure to and escape from host immune responses, clearly influences disease progression. Some escape mutations impact replicative capacity, while others effectively cloak the virus from the newly infected host's immune response by preventing recognition. It is the balance between the impact of escape mutations on viral fitness and susceptibility to the host immunogenetics that defines HIV-1 disease progression.
Collapse
|
50
|
Winternitz J, Abbate JL, Huchard E, Havlíček J, Garamszegi LZ. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis. Mol Ecol 2016; 26:668-688. [DOI: 10.1111/mec.13920] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Affiliation(s)
- J. Winternitz
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Ploen Germany
- Institute of Vertebrate Biology; Czech Academy of Sciences; v.v.i. Květná 8 603 65 Brno Czech Republic
- Institute of Botany; Czech Academy of Sciences; v.v.i. Lidická 25/27 657 20 Brno Czech Republic
| | - J. L. Abbate
- Institute of Ecology and Evolution; University of Bern; Balterstrasse 6 3006 Bern Switzerland
- INRA - UMR 1062 CBGP (INRA; IRD; CIRAD; Montpellier SupAgro); 755 Avenue du campus Agropolis 34988 Montferrier-sur-Lez France
| | - E. Huchard
- CEFE UMR5175; CNRS - Université de Montpellier - EPHE; 1919 Route de Mende 34295 Montpellier Cedex 5 France
| | - J. Havlíček
- Department of Zoology; Faculty of Science; Charles University; Viničná 7 128 44 Prague 2 Czech Republic
| | - L. Z. Garamszegi
- Department of Evolutionary Ecology; Estación Biológica de Doñana-CSIC; c/Americo Vespucio s/n 41092 Seville Spain
| |
Collapse
|