1
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
2
|
Li YY, Wang XY, Li Y, Wang XM, Liao J, Wang YZ, Hong H, Yi W, Chen J. Targeting CD43 optimizes cancer immunotherapy through reinvigorating antitumor immune response in colorectal cancer. Cell Oncol (Dordr) 2023; 46:777-791. [PMID: 36920728 DOI: 10.1007/s13402-023-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common malignancies worldwide, with dramatically increasing incidence and mortality for decades. However, current therapeutic strategies for CRC, including chemotherapies and immunotherapies, have only demonstrated limited efficacy. Here, we report a novel immune molecule, CD43, that can regulate the tumor immune microenvironment (TIME) and serves as a promising target for CRC immunotherapy. METHODS The correlation of CD43 expression with CRC patient prognosis was revealed by public data analysis. CD43 knockout (KO) CRC cell lines were generated by CRISPR-Cas9 technology, and a syngenetic murine CRC model was established to investigate the in vivo function of CD43. The TIME was analyzed via immunohistochemical staining, flow cytometry and RNA-seq. Immune functions were investigated by depletion of immune subsets in vivo and T-cell functional assays in vitro, including T-cell priming, cytotoxicity, and chemotaxis experiments. RESULTS In this study, we found that high expression of CD43 was correlated with poor survival of CRC patients and the limited infiltration of CD8+ T cells in human CRC tissues. Importantly, CD43 expressed on tumor cells, rather than host cells, promoted tumor progression in a syngeneic tumor model. Loss of CD43 facilitated the infiltration of immune cells and immunological memory in the TIME of CRC tumors. Mechanistically, the protumor effect of CD43 depends on T cells, thereby attenuating T-cell-mediated cytotoxicity and cDC1-mediated antigen-specific T-cell activation. Moreover, targeting CD43 synergistically improved PD-L1 blockade immunotherapy for CRC. CONCLUSION Our findings revealed that targeting tumor-intrinsic CD43 could activate the antitumor immune response and provide particular value for optimized cancer immunotherapy by regulating the TIME in CRC patients.
Collapse
Affiliation(s)
- Yi-Yi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin-Yu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Mei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Ying-Zhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai Hong
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Ning X, Wei X, Chen B, Li Z, Zheng Z, Yi Z, Wei Q, Guo X, Kang Q, Feng R, Wei Y. CD43 is an adverse prognostic factor in newly diagnosed multiple myeloma. Leuk Lymphoma 2022; 63:2573-2578. [PMID: 35819872 DOI: 10.1080/10428194.2022.2092854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Currently, the expression pattern and prognostic value of CD43 expression in multiple myeloma (MM) remain unknown. 109 newly diagnosed MM patients were recruited and CD43 expression was determined by multiparameter flow cytometry, of which 77 (70.6%) were CD43 positive. Patients with positive CD43 expression were more likely to present with, hemoglobin < 85 g/L (p = 0.008), International Staging System (ISS) stage III (p = 0.044), 13q14 deletion (p = 0.034) and more monoclonal plasma cells (p = 0.003). Patients with CD43 positive had significantly poor treatment response (p = 0.021), progression-free survival (PFS) (p = 0.012), and overall survival (OS) (p = 0.023) than those without CD43. The poorer prognosis of CD43-positive patients was retained in multivariate analysis (p = 0.005 for PFS; p = 0.013 for OS). Our study indicated that CD43 was an independent adverse prognostic factor in multiple myeloma.
Collapse
Affiliation(s)
- Xueqin Ning
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyuan Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengshan Yi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xutao Guo
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoxi Kang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongqiang Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zheng S, Huang K, Xia W, Shi J, Liu Q, Zhang X, Li G, Chen J, Wang T, Chen X, Xiang AP. Mesenchymal Stromal Cells Rapidly Suppress TCR Signaling-Mediated Cytokine Transcription in Activated T Cells Through the ICAM-1/CD43 Interaction. Front Immunol 2021; 12:609544. [PMID: 33692786 PMCID: PMC7937648 DOI: 10.3389/fimmu.2021.609544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-cell contact participates in the process of mesenchymal stromal cell (MSC)-mediated T cell modulation and thus contributes to MSC-based therapies for various inflammatory diseases, especially T cell-mediated diseases. However, the mechanisms underlying the adhesion interactions between MSCs and T cells are still poorly understood. In this study, we explored the interaction between MSCs and T cells and found that activated T cells could rapidly adhere to MSCs, leading to significant reduction of TNF-α and IFN-γ mRNA expression. Furthermore, TCR-proximal signaling in activated T cells was also dramatically suppressed in the MSC co-culture, resulting in weakened Ca2+ signaling. MSCs rapidly suppressed TCR signaling and its downstream signaling in a cell-cell contact-dependent manner, partially through the ICAM-1/CD43 adhesion interaction. Blockade of either ICAM-1 on MSCs or CD43 on T cells significantly reversed this rapid suppression of proinflammatory cytokine expression in T cells. Mechanistically, MSC-derived ICAM-1 likely disrupts CD43-mediated TCR microcluster formation to limit T cell activation. Taken together, our results reveal a fast mechanism of activated T cell inhibition by MSCs, which provides new clues to unravel the MSC-mediated immunoregulatory mechanism for aGVHD and other severe acute T cell-related diseases.
Collapse
Affiliation(s)
- Shuwei Zheng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ke Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Xia
- Guangzhou Blood Centre, Institute of Blood Transfusion, Guangzhou, China
| | - Jiahao Shi
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jieying Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
5
|
Yang R, Huo Z, Duan Y, Tong W, Zheng Y, Su Y, Lou L, Zhang Q, Xu S, Peng C, Kuang D, Wang G. SOX11 inhibits tumor proliferation and promotes cell adhesion mediated-drug resistance via a CD43 dependent manner in mantle cell lymphoma. Leuk Lymphoma 2020; 61:2068-2081. [PMID: 32449421 DOI: 10.1080/10428194.2020.1762877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SOX11 is a critical biomarker for mantle cell lymphoma (MCL) diagnosis; however, its role remains unclear in MCL. Here, clinical-pathological analysis showed Ki67 index was negatively relevant to SOX11 expression only in CD43 positive cases. Coexpression of SOX11/CD43 indicated longer overall survival. In vitro, knockout/overexpression of SOX11 or CD43 promoted/inhibited cell proliferation respectively. CD43 overexpression reversed tumor proliferation induced by SOX11 knockdown. Furthermore, overexpressing/silencing the SOX11/CD43 gene affects phosphorylation of p38-MAPK while p38 inhibitor reversed proliferation induced by si-SOX11 or si-CD43, respectively. In CAM-DR model, both SOX11 and CD43 in MCL cells were elevated when co-cultured with M2-10B4 bone marrow fibroblasts or fibronectin. Knockdown/overexpression of SOX11 decreased/increased cell adhesion, respectively, and the effect induced by silencing SOX11 was reversed by overexpression of CD43. Collectively, SOX11 could inhibit tumor proliferation and promote CAM-DR in a CD43 dependent manner.
Collapse
Affiliation(s)
- Rumeng Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zitian Huo
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Weilin Tong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yiyun Zheng
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yinxia Su
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Liping Lou
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qian Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Changqing Peng
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
6
|
Velázquez FE, Anastasiou M, Carrillo-Salinas FJ, Ngwenyama N, Salvador AM, Nevers T, Alcaide P. Sialomucin CD43 regulates T helper type 17 cell intercellular adhesion molecule 1 dependent adhesion, apical migration and transendothelial migration. Immunology 2019; 157:52-69. [PMID: 30690734 DOI: 10.1111/imm.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
T helper type 17 lymphocytes (Th17 cells) infiltrate the central nervous system (CNS), induce inflammation and demyelination and play a pivotal role in the pathogenesis of multiple sclerosis. Sialomucin CD43 is highly expressed in Th17 cells and mediates adhesion to endothelial selectin (E-selectin), an initiating step in Th17 cell recruitment to sites of inflammation. CD43-/- mice have impaired Th17 cell recruitment to the CNS and are protected from experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. However, E-selectin is dispensable for the development of EAE, in contrast to intercellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1). We report that CD43-/- mice have decreased demyelination and T-cell infiltration, but similar up-regulation of ICAM-1 and VCAM-1 in the spinal cord, compared with wild-type (WT) mice, at the initiation of EAE. CD43-/- Th17 cells have impaired adhesion to ICAM-1 under flow conditions in vitro, despite having similar expression of LFA-1, the main T-cell ligand for ICAM-1, as WT Th17 cells. Regardless of the route of integrin activation, CD43-/- Th17 cell firm arrest on ICAM-1 was comparable to that of WT Th17 cells, but CD43-/- Th17 cells failed to optimally apically migrate on immobilized ICAM-1-coated coverslips and endothelial cells, and to transmigrate under shear flow conditions in an ICAM-1-dependent manner. Collectively, these findings unveil novel roles for CD43, facilitating adhesion of Th17 cells to ICAM-1 and modulating apical and transendothelial migration, as mechanisms potentially responsible for Th17 cell recruitment to sites of inflammation such as the CNS.
Collapse
Affiliation(s)
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,Laboratory of Autoimmunity and Inflammation, University of Crete Medical School, Crete, Greece
| | | | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Ane M Salvador
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Tania Nevers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
8
|
Sundar Rajan V, Laurent VM, Verdier C, Duperray A. Unraveling the Receptor-Ligand Interactions between Bladder Cancer Cells and the Endothelium Using AFM. Biophys J 2017; 112:1246-1257. [PMID: 28355551 DOI: 10.1016/j.bpj.2017.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 01/18/2023] Open
Abstract
Adhesion of cancer cells to endothelial cells is a key step in cancer metastasis; therefore, identifying the key molecules involved during this process promises to aid in efforts to block the metastatic cascade. We have previously shown that intercellular adhesion molecule-1 (ICAM-1) expressed by endothelial cells is involved in the interactions of bladder cancer cells (BCs) with the endothelium. However, the ICAM-1 ligands have never been investigated. In this study, we combined adhesion assays and atomic force microscopy (AFM) to identify the ligands involved and to quantify the forces relevant in such interactions. We report the expression of MUC1 and CD43 on BCs, and demonstrate that these ligands interact with ICAM-1 to mediate cancer cell-endothelial cell adhesion in the case of the more invasive BCs. This was achieved with the use of adhesion assays, which showed a strong decrease in the attachment of BCs to endothelial cells when MUC1 and CD43 were blocked by antibodies. In addition, AFM measurements showed a similar decrease, by up to 70%, in the number of rupture events that occurred when MUC1 and CD43 were blocked. When we applied a Gaussian mixture model to the AFM data, we observed a distinct force range for receptor-ligand bonds, which allowed us to precisely identify the interactions of ICAM-1 with MUC1 or CD43. Furthermore, a detailed analysis of the rupture events suggested that CD43 is strongly connected to the cytoskeleton and that its interaction with ICAM-1 mainly corresponds to force ramps followed by sudden jumps. In contrast, MUC1 seems to be weakly connected to the cytoskeleton, as its interactions with ICAM-1 are mainly associated with the formation of tethers. This analysis is quite promising and may also be applied to other types of cancer cells.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- INSERM U1209, CNRS UMR5309, IAB, Grenoble, France; University Grenoble Alpes, IAB, Grenoble, France
| | - Valérie M Laurent
- CNRS UMR 5588, LIPhy, Grenoble, France; University Grenoble Alpes, LIPhy, Grenoble, France
| | - Claude Verdier
- CNRS UMR 5588, LIPhy, Grenoble, France; University Grenoble Alpes, LIPhy, Grenoble, France
| | - Alain Duperray
- INSERM U1209, CNRS UMR5309, IAB, Grenoble, France; University Grenoble Alpes, IAB, Grenoble, France.
| |
Collapse
|
9
|
Ali AJ, Abuelela AF, Merzaban JS. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells. Front Immunol 2017; 8:492. [PMID: 28515724 PMCID: PMC5413510 DOI: 10.3389/fimmu.2017.00492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/10/2017] [Indexed: 01/26/2023] Open
Abstract
Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.
Collapse
Affiliation(s)
- Amal J Ali
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Ayman F Abuelela
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Jasmeen S Merzaban
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
10
|
Interaction of the CD43 Sialomucin with the Mycobacterium tuberculosis Cpn60.2 Chaperonin Leads to Tumor Necrosis Factor Alpha Production. Infect Immun 2017; 85:IAI.00915-16. [PMID: 28069816 DOI: 10.1128/iai.00915-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/18/2016] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium tuberculosis is the causal agent of tuberculosis. Tumor necrosis factor alpha (TNF-α), transforming growth factor β (TGF-β), and gamma interferon (IFN-γ) secreted by activated macrophages and lymphocytes are considered essential to contain Mycobacterium tuberculosis infection. The CD43 sialomucin has been reported to act as a receptor for bacilli through its interaction with the chaperonin Cpn60.2, facilitating mycobacterium-macrophage contact. We report here that Cpn60.2 induces both human THP-1 cells and mouse-derived bone marrow-derived macrophages (BMMs) to produce TNF-α and that this production is CD43 dependent. In addition, we present evidence that the signaling pathway leading to TNF-α production upon interaction with Cpn60.2 requires active Src family kinases, phospholipase C-γ (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38, and Jun N-terminal protein kinase (JNK), both in BMMs and in THP-1 cells. Our data highlight the role of CD43 and Cpn60.2 in TNF-α production and underscore an important role for CD43 in the host-mycobacterium interaction.
Collapse
|
11
|
Non-pathogenic tissue-resident CD8 + T cells uniquely accumulate in the brains of lupus-prone mice. Sci Rep 2017; 7:40838. [PMID: 28098193 PMCID: PMC5241651 DOI: 10.1038/srep40838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/13/2016] [Indexed: 11/08/2022] Open
Abstract
Severe lupus often includes psychiatric and neurological sequelae, although the cellular contributors to CNS disease remain poorly defined. Using intravascular staining to discriminate tissue-localized from blood-borne cells, we find substantial accumulation of CD8+ T cells relative to other lymphocytes in brain tissue, which correlates with lupus disease and limited neuropathology. This is in contrast to all other affected organs, where infiltrating CD4+ cells are predominant. Brain-infiltrating CD8+ T cells represent an activated subset of those found in the periphery, having a resident-memory phenotype (CD69+CD122−PD1+CD44+CD62L−) and expressing adhesion molecules (VLA-4+LFA-1+) complementary to activated brain endothelium. Remarkably, infiltrating CD8+ T cells do not cause tissue damage in lupus-prone mice, as genetic ablation of these cells via β2 m deficiency does not reverse neuropathology, but exacerbates disease both in the brain and globally despite decreased serum IgG levels. Thus, lupus-associated inflammation disrupts the blood-brain barrier in a discriminating way biased in favor of non-pathogenic CD8+ T cells relative to other infiltrating leukocytes, perhaps preventing further tissue damage in such a sensitive organ.
Collapse
|
12
|
Anoxia and glucose supplementation preserve neutrophil viability and function. Blood 2016; 128:993-1002. [DOI: 10.1182/blood-2015-11-680918] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/25/2016] [Indexed: 12/23/2022] Open
Abstract
Key Points
Anoxia combined with glucose supplementation maintains viability of neutrophils for 20 hours without affecting their functions. Such conditioned neutrophils are suitable for efficient DNA transfection and transfusion.
Collapse
|
13
|
Modak M, Majdic O, Cejka P, Jutz S, Puck A, Gerwien JG, Steinberger P, Zlabinger GJ, Strobl H, Stöckl J. Engagement of distinct epitopes on CD43 induces different co-stimulatory pathways in human T cells. Immunology 2016; 149:280-296. [PMID: 27392084 PMCID: PMC5046061 DOI: 10.1111/imm.12642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 06/07/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022] Open
Abstract
Co‐receptors, being either co‐stimulatory or co‐inhibitory, play a pivotal role in T‐cell immunity. Several studies have indicated that CD43, one of the abundant T‐cell surface glycoproteins, acts not only as a potent co‐receptor but also as a negative regulator for T‐cell activation. Here we demonstrate that co‐stimulation of human peripheral blood (PB) T cells through two distinct CD43 epitopes recognized by monoclonal antibodies (mAb) CD43‐6E5 (T6E5‐act) and CD43‐10G7 (T10G7‐act) potently induced T‐cell proliferation. However, T‐cell co‐stimulation through two CD43 epitopes differentially regulated activation of nuclear factor of activated T cells (NFAT) and nuclear factor‐κB (NF‐κB) transcription factors, T‐cell cytokine production and effector function. T6E5‐act produced high levels of interleukin‐22 (IL‐22) and interferon‐γ (IFN‐γ) similar to T cells activated via CD28 (TCD28‐act), whereas T10G7‐act produced low levels of inflammatory cytokines but higher levels of regulatory cytokines transforming growth factor‐β (TGF‐β) and interleukin‐35 (IL‐35). Compared with T6E5‐act or to TCD28‐act, T10G7‐act performed poorly in response to re‐stimulation and further acquired a T‐cell suppressive function. T10G7‐act did not directly inhibit proliferation of responder T cells, but formed stable heterotypic clusters with dendritic cells (DC) via CD2 to constrain activation of responder T cells. Together, our data demonstrate that CD43 is a unique and polarizing regulator of T‐cell function.
Collapse
Affiliation(s)
- Madhura Modak
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Otto Majdic
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Cejka
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexander Puck
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jens G Gerwien
- Biopharmaceuticals Research Unit, Inflammation Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Peter Steinberger
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Stöckl
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Dhawan A, Friedrichs J, Bonin MV, Bejestani EP, Werner C, Wobus M, Chavakis T, Bornhäuser M. Breast cancer cells compete with hematopoietic stem and progenitor cells for intercellular adhesion molecule 1-mediated binding to the bone marrow microenvironment. Carcinogenesis 2016; 37:759-767. [PMID: 27207667 DOI: 10.1093/carcin/bgw057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/29/2016] [Indexed: 01/03/2023] Open
Abstract
Adhesion-based cellular interactions involved in breast cancer metastasis to the bone marrow remain elusive. We identified that breast cancer cells directly compete with hematopoietic stem and progenitor cells (HSPCs) for retention in the bone marrow microenvironment. To this end, we established two models of competitive cell adhesion-simultaneous and sequential-to study a potential competition for homing to the niche and displacement of the endogenous HSPCs upon invasion by tumor cells. In both models, breast cancer cells but not non-tumorigenic cells competitively reduced adhesion of HSPCs to bone marrow-derived mesenchymal stromal cells (MSCs) in a tumor cell number-dependent manner. Higher adhesive force between breast cancer cells and MSCs, as compared with HSPCs, assessed by quantitative atomic force microscopy-based single-cell force spectroscopy could partially account for tumor cell mediated reduction in HSPC adhesion to MSCs. Genetic inactivation and blockade studies revealed that homophilic interactions between intercellular adhesion molecule 1 (ICAM-1) expressed on tumor cells and MSCs, respectively, regulate the competition between tumor cells and HSPCs for binding to MSCs. Moreover, tumor cell-secreted soluble ICAM-1(sICAM-1) also impaired HSPC adhesion via blocking CD18-ICAM-1 binding between HSPCs and MSCs. Xenotransplantation studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice revealed reduction of human HSPCs in the bone marrow via metastatic breast cancer cells. These findings point to a direct competitive interaction between disseminated breast cancer cells and HSPCs within the bone marrow micro environment. This interaction might also have implications on niche-based tumor support. Therefore, targeting this cross talk may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Abhishek Dhawan
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Jens Friedrichs
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Malte von Bonin
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany.,German Consortium for Translational Cancer Research (DKTK), Partner Site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany and
| | - Elham Peshali Bejestani
- German Consortium for Translational Cancer Research (DKTK), Partner Site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany and
| | - Carsten Werner
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Manja Wobus
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | | | - Martin Bornhäuser
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany.,German Consortium for Translational Cancer Research (DKTK), Partner Site, Dresden, Germany
| |
Collapse
|
15
|
Velázquez F, Grodecki-Pena A, Knapp A, Salvador AM, Nevers T, Croce K, Alcaide P. CD43 Functions as an E-Selectin Ligand for Th17 Cells In Vitro and Is Required for Rolling on the Vascular Endothelium and Th17 Cell Recruitment during Inflammation In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 196:1305-1316. [PMID: 26700769 DOI: 10.4049/jimmunol.1501171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Endothelial E- and P-selectins mediate lymphocyte trafficking in inflammatory processes by interacting with lymphocyte selectin ligands. These are differentially expressed among different T cell subsets and function alone or in cooperation to mediate T cell adhesion. In this study, we characterize the expression and functionality of E-selectin ligands in Th type 17 lymphocytes (Th17 cells) and report that CD43 functions as a Th17 cell E-selectin ligand in vitro that mediates Th17 cell rolling on the vascular endothelium and recruitment in vivo. We demonstrate Th17 cells express CD44, P-selectin glycoprotein ligand (PSGL)-1, and CD43. Few PSGL-1(-/-)CD43(-/-) Th17 cells accumulated on E-selectin under shear flow conditions compared with wild-type cells. CD43(-/-) Th17 cell accumulation on E-selectin was impaired as compared with wild-type and PSGL-1(-/-), and similar to that observed for PSGL-1(-/-)CD43(-/-) Th17 cells, indicating that CD43 alone is a dominant ligand for E-selectin. Notably, this finding is Th17 cell subset specific because CD43 requires cooperation with PSGL-1 in Th1 cells for binding to E-selectin. In vivo, Th17 cell recruitment into the air pouch was reduced in CD43(-/-) mice in response to CCL20 or TNF-α, and intravital microscopy studies demonstrated that CD43(-/-) Th17 cells had impaired rolling on TNF-α-treated microvessels. Furthermore, CD43(-/-) mice were protected from experimental autoimmune encephalomyelitis and had impaired recruitment of Th17 cells in the spinal cord. Our findings demonstrate that CD43 is a major E-selectin ligand in Th17 cells that functions independent of PSGL-1, and they suggest that CD43 may hold promise as a therapeutic target to modulate Th17 cell recruitment.
Collapse
Affiliation(s)
- Francisco Velázquez
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111.,Sackler School of Biomedical Sciences Immunology program, Tufts University School of Medicine, Boston, MA 02111
| | - Anna Grodecki-Pena
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Andrew Knapp
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Ane M Salvador
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Tania Nevers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Kevin Croce
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Pilar Alcaide
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111.,Sackler School of Biomedical Sciences Immunology program, Tufts University School of Medicine, Boston, MA 02111.,800 Washington St, Box #80, Boston, MA 02111
| |
Collapse
|
16
|
Meiler S, Baumer Y, McCurdy S, Lee BH, Kitamoto S, Boisvert WA. Cluster of differentiation 43 deficiency in leukocytes leads to reduced atherosclerosis--brief report. Arterioscler Thromb Vasc Biol 2014; 35:309-11. [PMID: 25524774 DOI: 10.1161/atvbaha.114.304513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the role of cluster of differentiation 43 (CD43), an integral membrane glycoprotein with both proadhesive and antiadhesive activities, in atherosclerosis. APPROACH AND RESULTS Low-density lipoprotein receptor-deficient mice were lethally irradiated and reconstituted with either bone marrow from CD43(-/-) mice or from wild-type controls. We found that mice lacking the CD43 on their leukocytes had significantly less severe atherosclerosis and that, contrary to our expectation, macrophage infiltration into the vessel wall was not affected by the lack of CD43 in the leukocytes. However, we found that CD43 mediates cholesterol homeostasis in macrophages by facilitating cholesterol efflux. This resulted in a significant reduction in storage of cholesterol in the aorta of mice lacking CD43 in the leukocytes. CONCLUSIONS CD43 may be an important mediator of macrophage lipid homeostasis, thereby affecting macrophage foam cell formation and ultimately atherosclerotic plaque development.
Collapse
Affiliation(s)
- Svenja Meiler
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., S.M., W.A.B.); Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, Korea (B.-H.L.); Departments of Cardiovascular Medicine and Advanced Therapeutics for Cardiovascular Diseases, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (S.K.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - Yvonne Baumer
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., S.M., W.A.B.); Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, Korea (B.-H.L.); Departments of Cardiovascular Medicine and Advanced Therapeutics for Cardiovascular Diseases, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (S.K.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - Sara McCurdy
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., S.M., W.A.B.); Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, Korea (B.-H.L.); Departments of Cardiovascular Medicine and Advanced Therapeutics for Cardiovascular Diseases, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (S.K.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - Bog-Hieu Lee
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., S.M., W.A.B.); Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, Korea (B.-H.L.); Departments of Cardiovascular Medicine and Advanced Therapeutics for Cardiovascular Diseases, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (S.K.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - Shiro Kitamoto
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., S.M., W.A.B.); Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, Korea (B.-H.L.); Departments of Cardiovascular Medicine and Advanced Therapeutics for Cardiovascular Diseases, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (S.K.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - William A Boisvert
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., S.M., W.A.B.); Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, Korea (B.-H.L.); Departments of Cardiovascular Medicine and Advanced Therapeutics for Cardiovascular Diseases, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (S.K.); and Kazan Federal University, Kazan, Russia (W.A.B.).
| |
Collapse
|
17
|
Kim S, Hong JW, Cho WD, Moon YR, Yoon SS, Kim MY, Hong KP, Lee YM, Yi JH, Ham YJ, Rah HC, Kim SR, Song HG. Characterization of Two Novel mAbs Recognizing Different Epitopes on CD43. Immune Netw 2014; 14:164-70. [PMID: 24999313 PMCID: PMC4079823 DOI: 10.4110/in.2014.14.3.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/26/2014] [Accepted: 06/01/2014] [Indexed: 12/01/2022] Open
Abstract
JL1, a specific epitope on CD43, is a potential biomarker for the diagnosis of acute leukemia. Although qualitative assays for detecting leukemia-specific CD43 exist, there is a need to develop quantitative assays for the same. Here, we developed two novel monoclonal antibodies (mAbs), 2C8 and 8E10, recognizing different epitopes on CD43. These clones are capable of pairing with YG5, another mAb against JL1 epitope, because they were selectively obtained using sandwich ELISA. Antigens recognized by 2C8 and 8E10 were confirmed as CD43 by western blotting using the CD43-hFC recombinant protein. When expression on various leukemic cell lines was investigated, 2C8 and 8E10 displayed a disparity in the distribution of the epitope. Enzyme assays revealed that these mAbs recognized a sialic acid-dependent epitope on CD43. Using normal thymus and lymph node paraffin-embedded tissues, we confirmed a difference in the epitopes recognized by the two mAbs that was predicted based on the maturity of the cells in the tissue. In summary, we developed and characterized two mAbs, 2C8 and 8E10, which can be used with YG5 in a sandwich ELISA for detecting leukemia-specific CD43.
Collapse
Affiliation(s)
- Soseul Kim
- Department of Pathology, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea. ; Research Institute, DiNonA Inc, Iksan 570-912, Korea
| | | | - Woon-Dong Cho
- Department of Pathology, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | - Yoo Ri Moon
- Department of Pathology, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea. ; Research Institute, DiNonA Inc, Iksan 570-912, Korea
| | | | - Min-Young Kim
- Department of Pathology, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | - Kwon Pyo Hong
- Research Institute, DiNonA Inc, Iksan 570-912, Korea
| | - Yong-Moon Lee
- Department of Pathology, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | - Young Jun Ham
- Research Institute, DiNonA Inc, Iksan 570-912, Korea. ; Graduate School of Health Science Convergence, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | - Hyung Chul Rah
- Graduate School of Health Science Convergence, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | - Seung Ryul Kim
- Graduate School of Health Science Convergence, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | - Hyung Geun Song
- Department of Pathology, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea. ; Graduate School of Health Science Convergence, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|
18
|
Laurent VM, Duperray A, Sundar Rajan V, Verdier C. Atomic force microscopy reveals a role for endothelial cell ICAM-1 expression in bladder cancer cell adherence. PLoS One 2014; 9:e98034. [PMID: 24857933 PMCID: PMC4032264 DOI: 10.1371/journal.pone.0098034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022] Open
Abstract
Cancer metastasis is a complex process involving cell-cell interactions mediated by cell adhesive molecules. In this study we determine the adhesion strength between an endothelial cell monolayer and tumor cells of different metastatic potentials using Atomic Force Microscopy. We show that the rupture forces of receptor-ligand bonds increase with retraction speed and range between 20 and 70 pN. It is shown that the most invasive cell lines (T24, J82) form the strongest bonds with endothelial cells. Using ICAM-1 coated substrates and a monoclonal antibody specific for ICAM-1, we demonstrate that ICAM-1 serves as a key receptor on endothelial cells and that its interactions with ligands expressed by tumor cells are correlated with the rupture forces obtained with the most invasive cancer cells (T24, J82). For the less invasive cancer cells (RT112), endothelial ICAM-1 does not seem to play any role in the adhesion process. Moreover, a detailed analysis of the distribution of rupture forces suggests that ICAM-1 interacts preferentially with one ligand on T24 cancer cells and with two ligands on J82 cancer cells. Possible counter receptors for these interactions are CD43 and MUC1, two known ligands for ICAM-1 which are expressed by these cancer cells.
Collapse
Affiliation(s)
- Valérie M. Laurent
- Univ. Grenoble Alpes, LIPHY, F-38000, Grenoble, France
- CNRS, LIPHY, F-38000, Grenoble, France
- * E-mail:
| | - Alain Duperray
- INSERM, IAB, F-38000, Grenoble, France
- Univ. Grenoble Alpes, IAB, F-38000, Grenoble, France
- CHU de Grenoble, IAB, F-38000, Grenoble, France
| | - Vinoth Sundar Rajan
- INSERM, IAB, F-38000, Grenoble, France
- Univ. Grenoble Alpes, IAB, F-38000, Grenoble, France
- CHU de Grenoble, IAB, F-38000, Grenoble, France
| | - Claude Verdier
- Univ. Grenoble Alpes, LIPHY, F-38000, Grenoble, France
- CNRS, LIPHY, F-38000, Grenoble, France
| |
Collapse
|
19
|
Aberrant glycosylation as biomarker for cancer: focus on CD43. BIOMED RESEARCH INTERNATIONAL 2014; 2014:742831. [PMID: 24689054 PMCID: PMC3943294 DOI: 10.1155/2014/742831] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/10/2013] [Indexed: 11/23/2022]
Abstract
Glycosylation is a posttranslational modification of proteins playing a major role in cell signalling, immune recognition, and cell-cell interaction because of their glycan branches conferring structure variability and binding specificity to lectin ligands. Aberrant expression of glycan structures as well as occurrence of truncated structures, precursors, or novel structures of glycan may affect ligand-receptor interactions and thus interfere with regulation of cell adhesion, migration, and proliferation. Indeed, aberrant glycosylation represents a hallmark of cancer, reflecting cancer-specific changes in glycan biosynthesis pathways such as the altered expression of glycosyltransferases and glycosidases. Most studies have been carried out to identify changes in serum glycan structures. In most cancers, fucosylation and sialylation are significantly modified. Thus, aberrations in glycan structures can be used as targets to improve existing serum cancer biomarkers. The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. In this review, we discuss the aberrant protein glycosylation associated with human cancer and the identification of protein glycoforms as cancer biomarkers. In particular, we will focus on the aberrant CD43 glycosylation as cancer biomarker and the potential to exploit the UN1 monoclonal antibody (UN1 mAb) to identify aberrant CD43 glycoforms.
Collapse
|
20
|
Intracellular patterns of sialophorin expression define a new molecular classification of breast cancer and represent new targets for therapy. Br J Cancer 2013; 110:146-55. [PMID: 24281005 PMCID: PMC3887278 DOI: 10.1038/bjc.2013.526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Sialophorin is a transmembrane sialoglycoprotein. Normally, the molecule is only produced by white blood cells where it regulates functions such as intercellular adhesion, intracellular signalling, apoptosis, migration and proliferation. METHODS Normal breast tissue and primary breast tumours were analysed by immunohistochemistry for sialophorin expression. The sialophorin-positive breast cancer cell line MCF7 was engineered to stably express either non-targeted or sialophorin-targeted small interfering RNA (siRNA). Assays were then performed in vitro to assess apoptosis, intracellular adhesion, transendothelial migration and cytotoxicity. An orthotopic mouse model assayed ability to produce tumours in vivo. RESULTS Normal breast epithelial cells exhibit expression of the N-terminal domain of sialophorin in the cytoplasm but not the nucleus. The majority of these normal cells are also negative for expression of the C-terminal domain. In contrast, malignant breast epithelial cells exhibit N-terminal expression both in the cytoplasm and nucleus and the majority express the C-terminus in the nucleus. Using differential patterns of intracellular expression of the N and C termini of sialophorin, we define six subtypes of breast cancer that are independent of histological and receptor status classification. Targeting sialophorin with siRNA resulted in the MCF7 breast cancer cell line exhibiting increased homotypic adhesion, decreased transendothelial migration, increased susceptibility to apoptosis, increased vulnerability to lysis by natural killer cells and decreased ability to produce tumours in mice. CONCLUSION Our results indicate that intracellular patterns of sialophorin expression define a new molecular classification of breast cancer and that sialophorin represents a novel therapeutic target.
Collapse
|
21
|
Fu Q, Cash SE, Andersen JJ, Kennedy CR, Oldenburg DG, Zander VB, Foley GR, Simon Shelley C. CD43 in the nucleus and cytoplasm of lung cancer is a potential therapeutic target. Int J Cancer 2012; 132:1761-70. [PMID: 23015282 DOI: 10.1002/ijc.27873] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 08/31/2012] [Indexed: 12/27/2022]
Abstract
CD43 is a transmembrane sialoglycoprotein. Normally the molecule is only produced by white blood cells where it regulates functions such as intercellular adhesion, intracellular signaling, apoptosis, migration and proliferation. Two CD43 antibodies were used to interrogate 66 cases of non-small cell lung cancer (NSCLC) and 24 cases of small cell lung cancer (SCLC). In addition, we engineered the CD43-positive lung cancer cell line A549 to stably express either non-targeted or CD43-targeted small-interfering RNA (siRNA). These lines were then subjected to in vitro assays of apoptosis, natural killer (NK) cell cytotoxicity, intercellular adhesion and transendothelial migration. A xenograft mouse model evaluated the ability of the lines to grow primary tumors in vivo. CD43 was found to be expressed in the majority of both SCLC and NSCLC. Inclusive of CD43-negative tumors, differential patterns of nuclear and cytoplasmic expression of CD43 define four molecular subcategories of lung cancer. Targeting CD43 in A549 lung cancer cells, increased homotypic adhesion, decreased heterotypic adhesion and transendothelial migration, increased susceptibility to apoptosis and increased vulnerability to lysis by NK cells. Furthermore, targeting inhibited the growth of primary tumors in nude mice.
Collapse
Affiliation(s)
- Qiangwei Fu
- Department of Hematology/Oncology, Gundersen Medical Foundation, La Crosse, WI 54601, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also ‘direct’ leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues.
Collapse
|
23
|
Drago L, Vassena C, Dozio E, Corsi MM, De Vecchi E, Mattina R, Romanò C. Procalcitonin, C-reactive protein, interleukin-6, and soluble intercellular adhesion molecule-1 as markers of postoperative orthopaedic joint prosthesis infections. Int J Immunopathol Pharmacol 2011; 24:433-40. [PMID: 21658317 DOI: 10.1177/039463201102400216] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is a universally recognized need to identify new, reliable markers of inflammation that can aid in the rapid diagnosis of orthopaedic joint prosthesis infections (OJP-Is). Since prompt diagnosis is key to timely intervention in the course of infection, different molecules have been studied. In this study, we examined three groups of patients: those with prosthesis infection, those without infection, and a third group with previous infection in whom the infection had been cleared. Four presumed markers of infection were tested: procalcitonin (PCT); C-reactive protein (CRP); interleukin-6 (IL-6); and soluble intercellular adhesion molecule-1 (sICAM-1). The results showed that PCT cannot be considered as a good marker of periprosthetic infection as no statistically significant difference in serum PCT levels emerged between patients with infection and controls or patients without infection. In contrast, both sICAM-1 and CRP may be considered as good markers of infection, as measurement of their levels allowed us to distinguish between patients with and without infection, and between patients with infection and those with previous infection, since marker levels quickly returned to baseline values after clearance of the infection. IL-6 was found to be a good marker for inflammation, as it distinguished between patients with infection and the other groups. In the patients with previous infection, the IL-6 values remained high versus the controls but lower and with a statistically significant difference versus the patients with infection. Further studies are needed to determine the cut-off value of IL-6 between patients with infection and those with previous infection.
Collapse
Affiliation(s)
- L Drago
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Institute, Milan
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Monocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14(++)CD16(-), intermediate CD14(++)CD16(+), and nonclassical CD14(+)CD16(++) monocytes. Current knowledge on human monocyte heterogeneity is still incomplete: while it is increasingly acknowledged that CD14(++)CD16(+) monocytes are of outstanding significance in 2 global health issues, namely HIV-1 infection and atherosclerosis, CD14(++)CD16(+) monocytes remain the most poorly characterized subset so far. We therefore developed a method to purify the 3 monocyte subsets from human blood and analyzed their transcriptomes using SuperSAGE in combination with high-throughput sequencing. Analysis of 5 487 603 tags revealed unique identifiers of CD14(++)CD16(+) monocytes, delineating these cells from the 2 other monocyte subsets. Gene Ontology (GO) enrichment analysis suggests diverse immunologic functions, linking CD14(++)CD16(+) monocytes to Ag processing and presentation (eg, CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (eg, TGFB1, AIF1, PTPN6), and to angiogenesis (eg, TIE2, CD105). In conclusion, we provide genetic evidence for a distinct role of CD14(++)CD16(+) monocytes in human immunity. After CD14(++)CD16(+) monocytes have earlier been discussed as a potential therapeutic target in inflammatory diseases, we are hopeful that our data will spur further research in the field of monocyte heterogeneity.
Collapse
|
25
|
de Laurentiis A, Gaspari M, Palmieri C, Falcone C, Iaccino E, Fiume G, Massa O, Masullo M, Tuccillo FM, Roveda L, Prati U, Fierro O, Cozzolino I, Troncone G, Tassone P, Scala G, Quinto I. Mass spectrometry-based identification of the tumor antigen UN1 as the transmembrane CD43 sialoglycoprotein. Mol Cell Proteomics 2011; 10:M111.007898. [PMID: 21372249 DOI: 10.1074/mcp.m111.007898] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The UN1 monoclonal antibody recognized the UN1 antigen as a heavily sialylated and O-glycosylated protein with the apparent molecular weight of 100-120 kDa; this antigen was peculiarly expressed in fetal tissues and several cancer tissues, including leukemic T cells, breast, and colon carcinomas. However, the lack of primary structure information has limited further investigation on the role of the UN1 antigen in neoplastic transformation. In this study, we have identified the UN1 antigen as CD43, a transmembrane sialoglycoprotein involved in cell adhesion, differentiation, and apoptosis. Indeed, mass spectrometry detected two tryptic peptides of the membrane-purified UN1 antigen that matched the amino acidic sequence of the CD43 intracellular domain. Immunological cross-reactivity, migration pattern in mono- and bi-dimensional electrophoresis, and CD43 gene-dependent expression proved the CD43 identity of the UN1 antigen. Moreover, the monosaccharide GalNAc-O-linked to the CD43 peptide core was identified as an essential component of the UN1 epitope by glycosidase digestion of specific glycan branches. UN1-type CD43 glycoforms were detected in colon, sigmoid colon, and breast carcinomas, whereas undetected in normal tissues from the same patients, confirming the cancer-association of the UN1 epitope. Our results highlight UN1 monoclonal antibody as a suitable tool for cancer immunophenotyping and analysis of CD43 glycosylation in tumorigenesis.
Collapse
Affiliation(s)
- Annamaria de Laurentiis
- Department of Experimental and Clinical Medicine, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Montiel JL, Monsiváis-Urenda A, Figueroa-Vega N, Moctezuma JF, Burgos-Vargas R, González-Amaro R, Rosenstein Y. Anti-CD43 and anti-galectin-1 autoantibodies in patients with systemic lupus erythematosus. Scand J Rheumatol 2010; 39:50-7. [DOI: 10.3109/03009740903013213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Differential expression of c-kit and CD43 in histological subtypes of adenoid cystic carcinoma of salivary gland. Saudi Dent J 2010; 22:27-34. [PMID: 23960476 DOI: 10.1016/j.sdentj.2009.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/22/2009] [Accepted: 05/23/2009] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Adenoid cystic carcinoma (ACC) of the salivary gland is characterized by a prolonged but inevitably unfavorable clinical course. Recent studies have suggested that the transmembrane tyrosine kinase receptor, c-kit proto-oncogene is involved in ACC pathogenesis. CD43 is a sialoglycoprotein that is typically expressed by hematopoietic cells and their derivative neoplasms, although positivity in epithelial tumors has only been recognized recently. OBJECTIVE The aim of this study was to evaluate c-kit and CD43 immunoreactivity in ACCs and to compare the extent of their expression in various histologically defined subgroups of ACC, and their probable involvement in ACC pathogenesis. STUDY DESIGN Formalin-fixed paraffin-embedded sections from 35 ACCs were immunostained for c-kit and CD43 using monoclonal antibodies. RESULTS Cytoplasmic and membranous c-kit immunoreactivity was detected in 25/35 ACCs (71.4%) with strong immunostaining observed in solid pattern of ACC. Cytoplasmic and membranous CD43 immunoreactivity was detected in 18/35 (51.4%) of ACCs with strong immunostaining seen in the cribriform pattern. CONCLUSIONS These results suggested that c-kit could be used as a prognostic marker for ACC and specific c-kit tyrosine kinase inhibitors such as imatinib, might be used in future therapeutic approaches against subgroups of ACC. CD43 appears to be preferentially expressed in salivary gland ACCs. Its expression decreased with cellular dedifferentiation and there was an inverse relationship between immunoexpression of c-kit and CD43 among ACC of salivary gland.
Collapse
|
28
|
Matsumoto M, Miyasaka M, Hirata T. P-selectin glycoprotein ligand-1 negatively regulates T-cell immune responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:7204-11. [PMID: 19890058 DOI: 10.4049/jimmunol.0902173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell surface sialomucins often act as antiadhesive molecules by virtue of their extended structure and negative charge. CD43 is one such sialomucin, expressed on most leukocytes. P-selectin glycoprotein ligand-1 (PSGL-1) is another sialomucin expressed by leukocytes. It serves as a major selectin ligand, but no antiadhesive role for it has been described. In this study, we showed that PSGL-1-deficient T cells, like CD43-deficient T cells, exhibited increased adhesion and proliferation compared with wild-type cells. The loss of both PSGL-1 and CD43 led to a further increase in T cell adhesion and proliferation. The reexpression of full-length PSGL-1 or CD43 in double-deficient CD4(+) T cells reversed their increased adhesion and proliferation phenotype. Using chimeric constructs of human CD8 and either PSGL-1 or CD43, we demonstrated that the intracellular domain of PSGL-1 or CD43 is required for suppressing proliferation but not adhesion. Furthermore, in a mouse model of inflammatory bowel disease induced by the adoptive transfer of naive T cells into RAG-deficient hosts, a PSGL-1 deficiency exacerbated the development of inflammation. These results reveal a novel regulatory role for PSGL-1 in T cell adhesion and proliferation and suggest that PSGL-1 negatively regulates T cell immune responses in vivo.
Collapse
Affiliation(s)
- Masanori Matsumoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Graduate School of Medicine and World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
29
|
Ancuta P, Liu KY, Misra V, Wacleche VS, Gosselin A, Zhou X, Gabuzda D. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics 2009; 10:403. [PMID: 19712453 PMCID: PMC2741492 DOI: 10.1186/1471-2164-10-403] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/27/2009] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human peripheral blood monocytes (Mo) consist of subsets distinguished by expression of CD16 (FCgammaRIII) and chemokine receptors. Classical CD16- Mo express CCR2 and migrate in response to CCL2, while a minor CD16+ Mo subset expresses CD16 and CX3CR1 and migrates into tissues expressing CX3CL1. CD16+ Mo produce pro-inflammatory cytokines and are expanded in certain inflammatory conditions including sepsis and HIV infection. RESULTS To gain insight into the developmental relationship and functions of CD16+ and CD16- Mo, we examined transcriptional profiles of these Mo subsets in peripheral blood from healthy individuals. Of 16,328 expressed genes, 2,759 genes were differentially expressed and 228 and 250 were >2-fold upregulated and downregulated, respectively, in CD16+ compared to CD16- Mo. CD16+ Mo were distinguished by upregulation of transcripts for dendritic cell (DC) (SIGLEC10, CD43, RARA) and macrophage (MPhi) (CSF1R/CD115, MafB, CD97, C3aR) markers together with transcripts relevant for DC-T cell interaction (CXCL16, ICAM-2, LFA-1), cell activation (LTB, TNFRSF8, LST1, IFITM1-3, HMOX1, SOD-1, WARS, MGLL), and negative regulation of the cell cycle (CDKN1C, MTSS1), whereas CD16- Mo were distinguished by upregulation of transcripts for myeloid (CD14, MNDA, TREM1, CD1d, C1qR/CD93) and granulocyte markers (FPR1, GCSFR/CD114, S100A8-9/12). Differential expression of CSF1R, CSF3R, C1QR1, C3AR1, CD1d, CD43, CXCL16, and CX3CR1 was confirmed by flow cytometry. Furthermore, increased expression of RARA and KLF2 transcripts in CD16+ Mo coincided with absence of cell surface cutaneous lymphocyte associated antigen (CLA) expression, indicating potential imprinting for non-skin homing. CONCLUSION These results suggest that CD16+ and CD16- Mo originate from a common myeloid precursor, with CD16+ Mo having a more MPhi - and DC-like transcription program suggesting a more advanced stage of differentiation. Distinct transcriptional programs, together with their recruitment into tissues via different mechanisms, also suggest that CD16+ and CD16- Mo give rise to functionally distinct DC and MPhi in vivo.
Collapse
Affiliation(s)
- Petronela Ancuta
- CRCHUM, Université de Montréal, INSERM Unit 743, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Gaddi E, Laucella S, Balbaryski J, Cantisano C, Barboni G, Candi M, Giraudi V. Prognostic Value of Soluble Intercellular Adhesion Molecule-1 (s-ICAM-1) in HIV-Infected Children. Scand J Immunol 2008. [DOI: 10.1111/j.1365-3083.2000.00820.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Takahashi M, Furihata M, Akimitsu N, Watanabe M, Kaul S, Yumoto N, Okada T. A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1. Clin Exp Metastasis 2008; 25:517-29. [PMID: 18340424 DOI: 10.1007/s10585-008-9163-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 03/03/2008] [Indexed: 11/28/2022]
Abstract
To understand the mechanisms underlying bone marrow metastasis precisely, we established the highly metastatic 4T1E/M3 murine breast cancer cell line. 4T1 murine breast cancer cells were transfected with the neomycin resistance gene, selected in G418, intravenously injected into mice, and harvested from bone marrow. By repeating this protocol three times, we established the 4T1E/M3 cells. The clonality of 4T1E/M3 cells was markedly high confirmed by genomic southern analysis using neo-gene probe. When tissues harvested from mice after intravenous injection of 4T1E/M3 cells were examined histologically, markedly enhanced bone marrow metastasis was observed; 77% of spines from 4T1E/M3-injected mouse showed metastasis as compared to 14% metastasis seen with the parent cells. In vitro, 4T1E/M3 cells attached more strongly to the plastic plate and to bone marrow-derived endothelial cells. DNA micro arrays, real time RT-PCR and FACS analyses revealed that the expression of ICAM-1 and beta2 integrin was upregulated in 4T1E/M3 cells at both the mRNA and cell surface protein levels. 4T1E/M3 cells also showed greater anchorage-independent proliferation in soft agar, and migrated markedly faster than the parent cells in wound healing assays. Anti-ICAM-1 antibodies strongly inhibited both the colony formation and the migration activity of 4T1E/M3 suggesting the importance of the role of ICAM-1. Our newly established highly metastatic 4T1E/M3 cells may provide a potentially powerful tool to study the molecular mechanisms of bone marrow metastasis and to identify new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Munehisa Takahashi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Khunkaewla P, Schiller HB, Paster W, Leksa V, Čermák L, Anděra L, Hořejší V, Stockinger H. LFA-1-mediated leukocyte adhesion regulated by interaction of CD43 with LFA-1 and CD147. Mol Immunol 2008; 45:1703-11. [DOI: 10.1016/j.molimm.2007.09.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
|
33
|
|
34
|
Abnormal O-glycosylation of CD43 may account for some features of Wiskott-Aldrich syndrome. Med Hypotheses 2007; 70:269-72. [PMID: 17664047 DOI: 10.1016/j.mehy.2007.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 11/18/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder characterized by eczema, recurrent infections, thrombocytopenia and small platelets. There is an increased incidence of autoimmune phenomena particularly autoimmune haemolytic anaemias and vasculitic disorders. Mutations in the WASP gene encoding the cytoskeleton regulatory protein WASp (Wiskott-Aldrich syndrome protein) result in abnormal protein activity with defective cytoplasmic signaling and actin polymerization. This accounts for abnormal T cell responses to proliferation and susceptibility to infections, but does not fully explain the autoimmune phenomena nor the progressive lymphopenia seen in these patients. Wiskott Aldrich patients also demonstrate abnormal O-glycosylation of a highly conserved transmembrane glycoprotein CD43 that is expressed on most haemopoeitic cells. The altered glycosylation pattern on WAS lymphocytes is due to increased beta1-->6 GlcNACtransferase activity which leads to branched core 2 glycans or lower molecular forms of CD43 glycoprotein. The clinical hypothesis put forward is that abnormal O-glycosylation of CD43 may underlie the development of the autoimmune disorders and the progressive lymphopenia observed in WAS patients. Regulation of glycosylation of CD43 is important in the selection process of T cells within the thymus and abnormalities of glycosylation may cause many immune perturbations, such as the escape of self-reactive T cells into the periphery and subsequent development of autoimmune disease in these patients.
Collapse
|
35
|
Matsumoto M, Shigeta A, Furukawa Y, Tanaka T, Miyasaka M, Hirata T. CD43 collaborates with P-selectin glycoprotein ligand-1 to mediate E-selectin-dependent T cell migration into inflamed skin. THE JOURNAL OF IMMUNOLOGY 2007; 178:2499-506. [PMID: 17277158 DOI: 10.4049/jimmunol.178.4.2499] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Activated T cell migration into nonlymphoid tissues is initiated by the interactions of P- and E-selectin expressed on endothelial cells and their ligands on T cells. P-selectin glycoprotein ligand-1 (PSGL-1) has been the only E-selectin ligand demonstrated to function during the in vivo migration of activated T cells. We show in this study that CD43-deficient Th1 cells, like PSGL-1-deficient cells, exhibited reduced E-selectin-binding activity compared with wild-type cells. Th1 cells with a PSGL-1 and CD43 double deficiency showed even less E-selectin-binding activity. In migration assays in which adoptively transferred cells migrate to inflamed skin P- and E-selectin dependently, CD43 contributed significantly to PSGL-1-independent Th1 cell migration. In addition, in vivo activated T cells from the draining lymph nodes of sensitized mice deficient in PSGL-1 and/or CD43 showed significantly decreased E-selectin-binding activity and migration efficiency, with T cells from double-deficient mice showing the most profound decrease. Collectively, these results demonstrate that the CD43 expressed on activated T cells functions as an E-selectin ligand and thereby mediates T cell migration to inflamed sites, in collaboration with PSGL-1.
Collapse
Affiliation(s)
- Masanori Matsumoto
- The 21st Century Center of Excellence Program, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Kaatz M, Berod L, Lagadari M, Fluhr JW, Elsner P, Norgauer J. Microtubules Regulate Expression of ICAM-1 in Epidermoid Cells (KB Cells). Skin Pharmacol Physiol 2006; 19:322-8. [PMID: 16931899 DOI: 10.1159/000095252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 01/30/2006] [Indexed: 11/19/2022]
Abstract
The intercellular adhesion molecule-1/CD54 (ICAM-1) functions as a counterreceptor for other adhesion molecules (e.g. the lymphocyte function-associated antigen-1/CD11a/CD18) required for the interaction of a large variety of cells with leucocytes. Constitutive expression of ICAM-1 in human epidermoid cells (KB cells) is low, but inducible by interferon-gamma (IFN-gamma). Treatment of KB cells with microtubule-disrupting agents, like colchicine, nocodazole and vinblastine, potentiated the constitutive and cytokine-induced ICAM-1 expression on the cell surface. Actinomycin D inhibited microtubule-disrupting agent-induced ICAM-1 surface expression. Increased steady-state levels of ICAM-1 transcripts were found after treatment of KB cells with microtubule-disrupting agents. However, microtubule-disrupting agents neither altered the glyceraldehyde-3-phosphate dehydrogenase mRNA levels nor the amount of expressed alpha(2)-, alpha(3)-and beta(1)-integrins at the cell surface. In addition, they did not change the ICAM-1 mRNA half-life. These studies indicate a control function of the microtubule network on the expression of ICAM-1.
Collapse
Affiliation(s)
- M Kaatz
- Department of Dermatology, University of Jena, Jena, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Abdul-Salam F, Mansour MH, Al-Shemary T. The selective expression of distinct fucosylated glycoproteins on murine T and B lymphocyte subsets. Immunobiology 2006; 210:695-708. [PMID: 16323706 DOI: 10.1016/j.imbio.2005.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The putative expression of distinct terminally fucosylated glycoconjugates among murine lymphocyte subpopulations was sought using Ulex europaeus agglutinin-I (UEA-I) and Anguilla anguilla agglutinin (AAA), each with a distinctive primary binding preference to type II and type I blood group H oligosaccharide determinants, respectively. In newly born and adult mice, direct labeling of isolated lymphocyte subsets in suspension, as well as immunohistochemical assays were indicative of the age-regulated co-expression of the UEA-I-reactive ligand among thymic epithelial cells and a subset of the mature (PNA-), medullary thymocytes. In the spleen, UEA-I-ligand expression was selectively confined to a subset of the CD4+ T lymphocytes scattered around red pulp sinuses in newly born mice, but distinctively localized within the T cell-dependent periarteriolar lymphoid sheath compartment in adult mice. Among thymocytes of adult mice, two-dimensional Western blots demonstrated the expression of the UEA-I-reactive ligand among multiple isoforms of three major 50, 114 and 180kDa acidic glycoproteins, of which, heterogeneous weight and charge variants of the 114kDa component were also evident among splenocytes. The expression of the AAA-reactive ligand was, on the other hand, restricted to a single major 120 kDa acidic glycoprotein, in addition to a minor molecular weight variant of 115kDa, associated with a subset of immature IgM+ B lymphocytes localized within the red pulp, in both newly born and adult mice. The significance of these findings is discussed in relation to mechanisms that govern lymphocyte maturation, selection and migration.
Collapse
Affiliation(s)
- Fatma Abdul-Salam
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat
| | | | | |
Collapse
|
38
|
Woo VL, Bhuiya T, Kelsch R. Assessment of CD43 expression in adenoid cystic carcinomas, polymorphous low-grade adenocarcinomas, and monomorphic adenomas. ACTA ACUST UNITED AC 2006; 102:495-500. [PMID: 16997117 DOI: 10.1016/j.tripleo.2005.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/08/2005] [Accepted: 08/30/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Distinguishing between adenoid cystic carcinoma (ACC), polymorphous low-grade adenocarcinoma (PLGA), and monomorphic adenoma (MA) can occasionally pose a diagnostic challenge. It is of interest to identify a marker that can differentiate between these tumors. CD43 is a sialoglycoprotein that is typically expressed by hematopoietic cells and their derivative neoplasms, although positivity in epithelial tumors has been recently recognized. Our aim was to investigate CD43 immunoreactivity in ACCs, PLGAs, and MAs. STUDY DESIGN Formalin-fixed paraffin-embedded sections from 40 salivary gland tumors (12 ACCs, 14 PLGAs, and 14 MAs) accessioned from 1989 to 2002 were retrieved from the files at the Department of Pathology, Long Island Jewish Medical Center. Immunohistochemical staining with anti-CD43 monoclonal antibody was performed. RESULTS Cytoplasmic and membranous immunoreactivity was detected in 12/12 ACCs (100%), 1/14 PLGAs (7.1%), and 3/14 MAs (21.4%). CONCLUSIONS CD43 appears to be preferentially expressed in salivary gland ACCs compared to PLGAs and MAs. Although the mechanism of this overexpression remains obscure at this time, our results suggest that the use of CD43 immunostaining as an adjunct to histological examination may be helpful in differentiating ACC from its mimics.
Collapse
Affiliation(s)
- Victoria L Woo
- Columbia University College of Dental Medicine, Division of Oral Pathology, New York, NY 11040, USA
| | | | | |
Collapse
|
39
|
Vodyanik MA, Thomson JA, Slukvin II. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 2006; 108:2095-105. [PMID: 16757688 PMCID: PMC1895535 DOI: 10.1182/blood-2006-02-003327] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During hematopoietic differentiation of human embryonic stem cells (hESCs), early hematopoietic progenitors arise along with endothelial cells within the CD34(+) population. Although hESC-derived hematopoietic progenitors have been previously identified by functional assays, their phenotype has not been defined. Here, using hESC differentiation in coculture with OP9 stromal cells, we demonstrate that early progenitors committed to hematopoietic development could be identified by surface expression of leukosialin (CD43). CD43 was detected on all types of emerging clonogenic progenitors before expression of CD45, persisted on differentiating hematopoietic cells, and reliably separated the hematopoietic CD34(+) population from CD34(+)CD43(-)CD31(+)KDR(+) endothelial and CD34(+)CD43(-)CD31(-)KDR(-) mesenchymal cells. Furthermore, we demonstrated that the first-appearing CD34(+)CD43(+)CD235a(+)CD41a(+/-)CD45(-) cells represent precommitted erythro-megakaryocytic progenitors. Multipotent lymphohematopoietic progenitors were generated later as CD34(+)CD43(+)CD41a(-)CD235a(-)CD45(-) cells. These cells were negative for lineage-specific markers (Lin(-)), expressed KDR, VE-cadherin, and CD105 endothelial proteins, and expressed GATA-2, GATA-3, RUNX1, C-MYB transcription factors that typify initial stages of definitive hematopoiesis originating from endothelial-like precursors. Acquisition of CD45 expression by CD34(+)CD43(+)CD45(-)Lin(-) cells was associated with progressive myeloid commitment and a decrease of B-lymphoid potential. CD34(+)CD43(+)CD45(+)Lin(-) cells were largely devoid of VE-cadherin and KDR expression and had a distinct FLT3(high)GATA3(low)RUNX1(low)PU1(high)MPO(high)IL7RA(high) gene expression profile.
Collapse
Affiliation(s)
- Maxim A Vodyanik
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI 53715, USA
| | | | | |
Collapse
|
40
|
Fierro NA, Pedraza-Alva G, Rosenstein Y. TCR-Dependent Cell Response Is Modulated by the Timing of CD43 Engagement. THE JOURNAL OF IMMUNOLOGY 2006; 176:7346-53. [PMID: 16751378 DOI: 10.4049/jimmunol.176.12.7346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Binding of Ag by the Ag receptor in combination with other stimuli provided by costimulatory receptors triggers the expansion and differentiation of T lymphocytes. However, it is unclear whether the time when costimulatory molecules interact with their counterreceptors with regards to Ag recognition leads to different T cell responses. Provided that the coreceptor molecule CD43 is a very abundant molecule evenly distributed on the membrane of T cell surface protruding 45 nm from the cell, we hypothesized that CD43 is one of the first molecules that interacts with the APC and thus modulates TCR activation. We show that engaging CD43 before or simultaneously with the TCR inhibited Lck-Src homology 2 domain containing phosphatase-1 interaction, preventing the onset of a negative feedback loop on TCR signals, favoring high levels of IL-2, cell proliferation, and secretion of proinflammatory cytokines and chemokines. In contrast, the intracellular signals resulting of engaging the TCR before CD43 were insufficient to induce IL-2 production and cell proliferation. Interestingly, when stimulated through the TCR and CD28, cells proliferated vigorously, independent of the order with which molecules were engaged. These results indicate that CD43 induces a signaling cascade that prolongs the duration of TCR signaling and support the temporal summation model for T cell activation. In addition to the strength and duration of intracellular signals, our data underscore temporality with which certain molecules are engaged as yet another mechanism to fine tune T cell signal quality, and ultimately immune function.
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Cell Proliferation
- Cells, Cultured
- Clonal Anergy/immunology
- Cytokines/biosynthesis
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- JNK Mitogen-Activated Protein Kinases/physiology
- Leukosialin/immunology
- Leukosialin/metabolism
- Leukosialin/physiology
- Ligands
- Lymphocyte Activation/immunology
- MAP Kinase Signaling System/immunology
- Membrane Proteins/metabolism
- Mitogen-Activated Protein Kinase 1/physiology
- Phosphorylation
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Nora A Fierro
- Instituto de Biotecnología and Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | |
Collapse
|
41
|
Matsumoto M, Atarashi K, Umemoto E, Furukawa Y, Shigeta A, Miyasaka M, Hirata T. CD43 functions as a ligand for E-Selectin on activated T cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:8042-50. [PMID: 16339541 DOI: 10.4049/jimmunol.175.12.8042] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
E-selectin, an inducible cell adhesion molecule expressed on endothelial cells, mediates the rolling on endothelium of leukocytes expressing E-selectin ligands, such as neutrophils and activated T cells. Although previous studies using mice lacking P-selectin glycoprotein ligand-1 (PSGL-1) have indicated that PSGL-1 on Th1 cells functions as an E-selectin ligand, the molecular nature of E-selectin ligands other than PSGL-1 remains unknown. In this study, we show that a 130-kDa glycoprotein was precipitated by an E-selectin-IgG chimera from mouse Th1 cells. This protein was cleaved by O-sialoglycoprotein endopeptidase and required sialic acid for E-selectin binding. The mAb 1B11, which recognizes the 130-kDa glycoform of CD43, recognized the 130-kDa band in the E-selectin-IgG precipitate. In addition, immunoprecipitation of the E-selectin-IgG precipitate with 1B11 depleted the 130-kDa protein, further confirming its identity as CD43. CD43 was also precipitated with E-selectin-IgG from cultured human T cells. E-selectin-dependent cell rolling on CD43 was observed under flow conditions using a CD43-IgG chimera generated in Chinese hamster ovary cells expressing alpha-1,3-fucosyltransferase VII and a core 2 beta-1,6-N-acetylglucosaminyltransferase. These results suggest that CD43, when modified by a specific set of glycosyltranferases, can function as an E-selectin ligand and therefore potentially mediate activated T cell migration into inflamed sites.
Collapse
Affiliation(s)
- Masanori Matsumoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The recruitment of memory T cells from blood into tissues is a central element of immune surveillance and adaptive immune responses and a key feature of chronic cutaneous inflammatory diseases such as psoriasis and atopic dermatitis. Human memory T cells that infiltrate skin express the carbohydrate epitope cutaneous lymphocyte-associated antigen (CLA). Expression of the CLA epitope on T cells has been described on P-selectin glycoprotein ligand-1 (PSGL-1) and associated with the acquisition of both E-selectin and P-selectin ligand functions. In this report, we show that CD43, a sialomucin expressed constitutively on T cells, can also be decorated with the CLA epitope and serve as an E-selectin ligand. CLA expressed on CD43 was found exclusively on the high-molecular-weight (125 kDa) glycoform bearing core-2-branched O-linked glycans. CLA+ CD43 purified from human T cells supported tethering and rolling in shear flow via E-selectin but did not support binding of P-selectin. The identification and characterization of CD43 as a T-cell E-selectin ligand distinct from PSGL-1 expands the role of CD43 in the regulation of T-cell trafficking and provides new targets for the modulation of immune functions in skin.
Collapse
Affiliation(s)
- Robert C Fuhlbrigge
- Department of Dermatology, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Ave Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
43
|
Grazia TJ, Gill RG, Gelhaus HC, Doan AN, Sleater ML, Pietra BA. Perturbation of Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Results in Differential Outcomes in Cardiac Vs Islet Allograft Survival. J Heart Lung Transplant 2005; 24:1410-4. [PMID: 16143264 DOI: 10.1016/j.healun.2004.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 08/18/2004] [Accepted: 09/04/2004] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Various studies indicate the requirements for tolerance induction may vary between different transplanted tissues and organs. Consequently, we compared the efficacy of anti-leukocyte function-associated antigen-1 (LFA-1)/anti-intercellular adhesion molecule-1 (ICAM-1) monoclonal antibody therapy for facilitating cardiac vs islet long-term allograft acceptance in mice. METHODS BALB/c (H-2d) mouse cardiac or islet allografts were transplanted into recipient CBA/J (H-2k) mice. Monoclonal anti-body therapy with anti-LFA-1, anti-ICAM-1, the combination, or control rat immunoglobulin (Ig) was administered intraperitoneally on Days 0 to 5. Cardiac allograft function was assessed by palpation and islet graft function by blood glucose monitoring. Mixed lymphocyte assays were performed to assess proliferation of CD4 and CD8 T-cells under conditions of stimulator-cell ICAM-1 and/or LFA-1 deficiency. RESULTS Anti-ICAM-1 therapy resulted in a modest prolongation of cardiac allografts but in pronounced survival of islet allografts. Anti-LFA-1 therapy promoted significant long-term survival of both cardiac and islet allografts. Surprisingly, combined anti-LFA-1/anti-ICAM-1 therapy abrogated long-term islet, but not cardiac, allograft acceptance relative to either monotherapy. Mixed lymphocyte reactions demonstrated complete blockade of CD4 and CD8 T-cell proliferation under conditions of ICAM-1 deficiency alone or in combination with anti-LFA-1 therapy. CONCLUSION These results indicate that optimal therapies for some allografts (vascularized-heart) may not translate to other types of allografts (cellular-islet). Thus, the type of transplant represents an independent variable for optimizing strategies to promote indefinite allograft acceptance. Complete inhibition of CD4 and CD8 T-cell proliferation during ICAM-1/LFA-1 blockade suggests a threshold signal may be dependent upon ICAM-1/LFA-1 for regulatory tolerance to occur and that this signal may be lost under conditions of minimal graft cellular mass.
Collapse
Affiliation(s)
- Todd J Grazia
- Division of Pulmonary Sciences and Critical Care Medicine, The Children's Hospital, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.
Collapse
Affiliation(s)
- Ajit Varki
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan.
| | | |
Collapse
|
45
|
Ziprin P, Alkhamesi NA, Ridgway PF, Peck DH, Darzi AW. Tumour-expressed CD43 (sialophorin) mediates tumourmesothelial cell adhesion. Biol Chem 2005; 385:755-61. [PMID: 15449712 DOI: 10.1515/bc.2004.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mesothelial cell intercellular adhesion molecule-1 (ICAM-1) has recently been shown to play a role in tumour cell adherence to the peritoneum. However, solid tumours poorly express its most ubiquitous ligand, beta2 integrin. The aim of this study was to investigate the role of the beta2 integrin subunit and CD43, a known ligand for ICAM-1, in the development of peritoneal metastases. beta2 Integrin subunit and CD43 expression was assessed on a number of tumour cell lines. Adhesion of SW1222 and PSN-1 cells to human peritoneal mesothelial cells was investigated using a fluorometric assay incorporating an inhibitory antibody to beta2 integrin and CD43. beta2 Integrin expression was not inducible on these tumour cell lines, but Western blotting demonstrated CD43 expression in all the cancer cell lines examined and cell surface expression was confirmed by flow cytometry. The anti-CD43 antibody significantly reduced adhesion of PSN-1 and SW1222 cells to HPMC, however beta2 integrin inhibition did not reduce tumour cell adhesion. CD43 is expressed by a variety of carcinoma cell lines, and plays a role in tumour cell-peritoneal adhesion probably via interactions with its putative ligand ICAM-1.
Collapse
Affiliation(s)
- Paul Ziprin
- Department of Surgical Oncology and Technology, Faculty of Medicine, Imperial College of Science Technology and Medicine, St. Mary's Hospital, London W2 1NY, UK.
| | | | | | | | | |
Collapse
|
46
|
del Rio R, Rincón M, Layseca-Espinosa E, Fierro NA, Rosenstein Y, Pedraza-Alva G. PKCtheta is required for the activation of human T lymphocytes induced by CD43 engagement. Biochem Biophys Res Commun 2005; 325:133-43. [PMID: 15522211 DOI: 10.1016/j.bbrc.2004.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Indexed: 12/12/2022]
Abstract
The turnover of phosphoinositides leading to PKC activation constitutes one of the principal axes of intracellular signaling. In T lymphocytes, the enhanced and prolonged PKC activation resulting from the engagement of the TcR and co-receptor molecules ensures a productive T cell response. The CD43 co-receptor promotes activation and proliferation, by inducing IL-2 secretion and CD69 expression. CD43 engagement has been shown to promote phosphoinositide turnover and DAG production. Moreover, PKC activation was found to be required for the activation of the MAP kinase pathway in response to CD43 ligation. Here we show that CD43 engagement led to the membrane translocation and enzymatic activity of specific PKC isoenzymes: cPKC (alpha/beta), nPKC (epsilon and theta;), aPKC (zeta) and PKCmu. We also show that activation of PKCtheta; resulting from CD43 ligation induced CD69 expression through an ERK-dependent pathway leading to AP-1, NF-kappaB activation and an ERK independent pathway promoting NFAT activation. Together, these data suggest that PKCtheta; plays a critical role in the co-stimulatory functions of CD43 in human T cells.
Collapse
Affiliation(s)
- Roxana del Rio
- Instituto de Biotecnología/Universidad Nacional Autónoma de México, AP 510-3 Cuernavaca, Mor. 62250, Mexico
| | | | | | | | | | | |
Collapse
|
47
|
Sia C. Autoimmune diabetes: ongoing development of immunological intervention strategies targeted directly against autoreactive T cells. Rev Diabet Stud 2004; 1:9-17. [PMID: 17491660 PMCID: PMC1783534 DOI: 10.1900/rds.2004.1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is well known that autoimmunity associated with the onset of insulin-dependent diabetes mellitus (IDDM) involves the generation of autoreactive T and B cells. The findings that diabetics mount humoral and cellular immune responses against islet cell antigens (ICAs) have led to the testing of ICAs and their analogs as candidates for therapeutic agents for better treatment of IDDM at its prediabetic and diabetic stages. Apart from this type of approach, various immunological intervention strategies aimed at direct targeting of the autoreactive T cells have also been investigated. The present review covers the ongoing aspects of these developments focusing on the preclinical findings made in NOD (nonobese diabetic) mice which have been commonly used as a disease model for human autoimmune diabetes. Other types of approaches involving the mobilization of regulatory T cells to indirectly control or modulate the pathological activity of autoreactive T cells will not be discussed within this scope.
Collapse
Affiliation(s)
- Charles Sia
- United Biomedical Inc., 25 Davids Drive, Hauppauge, New York 11788, USA.
| |
Collapse
|
48
|
Layseca-Espinosa E, Pedraza-Alva G, Montiel JL, del Río R, Fierro NA, González-Amaro R, Rosenstein Y. T cell aggregation induced through CD43: intracellular signals and inhibition by the immunomodulatory drug leflunomide. J Leukoc Biol 2003; 74:1083-93. [PMID: 12972508 DOI: 10.1189/jlb.0303095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The CD43 coreceptor molecule has been shown to participate in lymphocyte adhesion and activation. Leukocyte homotypic aggregation results from a cascade of intracellular signals delivered to the cells upon engagement of different cell-surface molecules with their natural ligands. This phenomenon requires an active metabolism, reorganization of the cytoskeleton, and relocalization of cell-surface molecules. The aim of this study was to identify some of the key members of the signaling cascade leading to T lymphocyte homotypic aggregation following CD43 engagement. CD43-mediated homotypic aggregation of T lymphocytes required the participation of Src kinases, phospholipase C-gamma2, protein kinase C, phosphatidylinositol-3 kinase, as well as extracellular-regulated kinase 1/2 and p38. Data shown here suggest that these signaling molecules play a central role in regulating actin cytoskeleton remodeling after CD43 ligation. We also evaluated the ability of immunomodulatory drugs such as leflunomide to block the CD43-mediated homotypic aggregation. Leflunomide blocked the recruitment of targets of the Src family kinases as well as actin polymerization, diminishing the ability of T lymphocytes to aggregate in response to CD43-specific signals, suggesting that this drug might control the migration and recruitment of lymphoid cells to inflamed tissues.
Collapse
|
49
|
Bélizaire AK, Tchistiakova L, St-Pierre Y, Alakhov V. Identification of a murine ICAM-1-specific peptide by subtractive phage library selection on cells. Biochem Biophys Res Commun 2003; 309:625-30. [PMID: 12963036 DOI: 10.1016/j.bbrc.2003.08.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ICAM-1 adhesion molecule is expressed selectively at low levels on endothelial cells but is strongly upregulated in dysfunctional endothelial cells associated with inflammation, cancer, and atherogenesis. Using COS-7 cells transfected with murine ICAM-1 (mICAM-1) as a target receptor, a phage display library was screened. Clones were selected by elution with a mAb specific for a functional epitope of ICAM-1 and a novel peptide sequence binding to the extracellular domain of mICAM-1 was identified that can potentially be used as a targeting vector aimed at dysfunctional endothelium. We further showed that the targeting specificity of the peptide was retained following its incorporation at the N terminal end of a large chimeric protein. Moreover, this chimeric protein containing the mICAM-1-specific sequence was found to inhibit ICAM-1-mediated intercellular adhesion during antigen presentation. Taken together, these results demonstrate the potential for improving the cell-selectivity and properties of therapeutical agents toward targeting adhesion molecules involved in cell-cell interactions.
Collapse
|
50
|
McCann FE, Vanherberghen B, Eleme K, Carlin LM, Newsam RJ, Goulding D, Davis DM. The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2862-70. [PMID: 12626536 DOI: 10.4049/jimmunol.170.6.2862] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we report the organization of cytoskeletal and large transmembrane proteins at the inhibitory and activating NK cell immunological or immune synapse (IS). Filamentous actin accumulates at the activating, but not the inhibitory, NK cell IS. However, surprisingly, ezrin and the associated protein CD43 are excluded from the inhibitory, but not the activating, NK cell IS. This distribution of ezrin and CD43 at the inhibitory NK cell IS is similar to that previously seen at the activating T cell IS. CD45 is also excluded from the inhibitory, but not activating, NK cell IS. In addition, electron microscopy reveals wide and narrow domains across the synaptic cleft. Target cell HLA-C, located by immunogold labeling, clusters where the synaptic cleft spans the size of HLA-C bound to the inhibitory killer Ig-like receptor. These data are consistent with assembly of the NK cell IS involving a combination of cytoskeletal-driven mechanisms and thermodynamics favoring the organization of receptor/ligand pairs according to the size of their extracellular domains.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/ultrastructure
- Actins/metabolism
- Actins/ultrastructure
- Antigens, CD
- Cell Communication/immunology
- Cell Line, Transformed
- Clone Cells
- Cytoskeletal Proteins
- Cytotoxicity, Immunologic
- HLA-C Antigens/metabolism
- Humans
- Intercellular Junctions/immunology
- Intercellular Junctions/metabolism
- Intercellular Junctions/ultrastructure
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/ultrastructure
- Leukocyte Common Antigens/biosynthesis
- Leukocyte Common Antigens/metabolism
- Leukocyte Common Antigens/ultrastructure
- Leukosialin
- Lymphocyte Activation/immunology
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Phosphoproteins/biosynthesis
- Phosphoproteins/metabolism
- Phosphoproteins/ultrastructure
- Receptors, Immunologic/biosynthesis
- Receptors, KIR2DL1
- Sialoglycoproteins/biosynthesis
- Sialoglycoproteins/metabolism
- Sialoglycoproteins/ultrastructure
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Fiona E McCann
- Department of Biological Sciences, Imperial College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|