1
|
Tanaka M, Hanawa T, Suda T, Tanji Y, Minh LN, Kondo K, Azam AH, Kiga K, Yonetani S, Yashiro R, Ohmori T, Matsuda T. Comparative analysis of virulence-associated genes in ESBL-producing Escherichia coli isolates from bloodstream and urinary tract infections. Front Microbiol 2025; 16:1571121. [PMID: 40342604 PMCID: PMC12058657 DOI: 10.3389/fmicb.2025.1571121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025] Open
Abstract
The prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) is a global health concern due to the multidrug antimicrobial resistance in extraintestinal pathogenic E. coli (ExPEC). ExPEC causes severe infections such as bloodstream infections, meningitis, and sepsis. Uropathogenic E. coli (UPEC), a subset of ExPEC, is responsible for urinary tract infections (UTIs), ranging from asymptomatic bacteriuria and cystitis to more severe conditions, such as pyelonephritis, bacteremia, and sepsis (urosepsis). Although ESBL-producing E. coli may have a significant impact on patient outcomes, comparisons of genotype and virulence factors between ESBL-producing and non-ESBL-producing E. coli have not fully elucidated the factors influencing its pathogenicity. Therefore, in the present study, we analyzed the genotypes and virulence-associated genes of ESBL-producing strains isolated from the blood of patients with UTIs to determine the characteristics of ESBL-producing UPEC strains associated with severe infections. Most of the clinical isolates belonged to phylogroup B2, with the exception of three strains from phylogroup D. The MLST was ST131, followed by ST73, ST95, and ST38, which are commonly found in UPEC strains. Intriguingly, ST131 strains were associated with fewer sepsis cases compared to non-ST131 strains (8 of 38 cases by ST131 and 5 of 8 cases by non-ST131 [OR, 0.16; 95% CI, 0.038-0.873; p = 0.031]). In silico analysis of 23 clinical isolates revealed that the genes detected in all strains may play a significant role in the pathogenesis of invasive UTIs. Clustering and gene locus analysis highlighted the genotype-MLST dependence of UPEC-specific virulence-associated genes. ST38-specific strains were atypical, characterized by the absence of several UPEC-specific genes, including pap loci, pathogenicity island marker (malX), and ompT, as well as the presence of genes encoding Ycb fimbriae and a Type 3 secretion system, which are typically found in enteropathogenic E. coli (EPEC). These results suggest that the virulence of clinical isolates causing invasive infections can vary, and that the pathogenicity of UPEC should be considered when analyzing the correlation between MLST and the repertoire of virulence-associated genes.
Collapse
Affiliation(s)
- Mayuko Tanaka
- Department of General Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomoko Hanawa
- Department of General Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomoya Suda
- Department of General Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasunori Tanji
- Department of General Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Le Nhat Minh
- Department of Traumatology and Critical Care Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Disease, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shota Yonetani
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Ryu Yashiro
- Department of Traumatology and Critical Care Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Takuya Ohmori
- Center for Data Science Education and Research, Kyorin University, Tokyo, Japan
| | - Takeaki Matsuda
- Department of General Medicine, Kyorin University School of Medicine, Tokyo, Japan
- Department of Traumatology and Critical Care Medicine, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Lopatto EDB, Pinkner JS, Sanick DA, Potter RF, Liu LX, Bazán Villicaña J, Tamadonfar KO, Ye Y, Zimmerman MI, Gualberto NC, Dodson KW, Janetka JW, Hunstad DA, Hultgren SJ. Conformational ensembles in Klebsiella pneumoniae FimH impact uropathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409655121. [PMID: 39288182 PMCID: PMC11441496 DOI: 10.1073/pnas.2409655121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Klebsiella pneumoniae is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting. Uropathogenic E. coli (UPEC) is the most prevalent cause of UTI. Like UPEC, K. pneumoniae relies on type 1 pili, tipped with the mannose-binding adhesin FimH, to cause cystitis. However, K. pneumoniae FimH is a poor binder of mannose, despite a mannose-binding pocket identical to UPEC FimH. FimH is composed of two domains that are in an equilibrium between tense (low-affinity) and relaxed (high-affinity) conformations. Substantial interdomain interactions in the tense conformation yield a low-affinity, deformed mannose-binding pocket, while domain-domain interactions are broken in the relaxed state, resulting in a high-affinity binding pocket. Using crystallography, we identified the structural basis by which domain-domain interactions direct the conformational equilibrium of K. pneumoniae FimH, which is strongly shifted toward the low-affinity tense state. Removal of the pilin domain restores mannose binding to the lectin domain, thus showing that poor mannose binding by K. pneumoniae FimH is not an inherent feature of the mannose-binding pocket. Phylogenetic analyses of K. pneumoniae genomes found that FimH sequences are highly conserved. However, we surveyed a collection of K. pneumoniae isolates from patients with long-term indwelling catheters and identified isolates that possessed relaxed higher-binding FimH variants, which increased K. pneumoniae fitness in bladder infection models, suggesting that long-term residence within the urinary tract may select for higher-binding FimH variants.
Collapse
Affiliation(s)
- Edward D. B. Lopatto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Denise A. Sanick
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Lily X. Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jesús Bazán Villicaña
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Yijun Ye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Maxwell I. Zimmerman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Nathaniel C. Gualberto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - James W. Janetka
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - David A. Hunstad
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
3
|
Lin Q, Lin S, Fan Z, Liu J, Ye D, Guo P. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut. Microorganisms 2024; 12:1026. [PMID: 38792855 PMCID: PMC11124445 DOI: 10.3390/microorganisms12051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy animal intestine hosts a diverse population of bacteria in a symbiotic relationship. These bacteria utilize nutrients in the host's intestinal environment for growth and reproduction. In return, they assist the host in digesting and metabolizing nutrients, fortifying the intestinal barrier, defending against potential pathogens, and maintaining gut health. Bacterial colonization is a crucial aspect of this interaction between bacteria and the intestine and involves the attachment of bacteria to intestinal mucus or epithelial cells through nonspecific or specific interactions. This process primarily relies on adhesins. The binding of bacterial adhesins to host receptors is a prerequisite for the long-term colonization of bacteria and serves as the foundation for the pathogenicity of pathogenic bacteria. Intervening in the adhesion and colonization of bacteria in animal intestines may offer an effective approach to treating gastrointestinal diseases and preventing pathogenic infections. Therefore, this paper reviews the situation and mechanisms of bacterial colonization, the colonization characteristics of various bacteria, and the factors influencing bacterial colonization. The aim of this study was to serve as a reference for further research on bacteria-gut interactions and improving animal gut health.
Collapse
Affiliation(s)
- Qingjie Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Shiying Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Zitao Fan
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Dingcheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Pingting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| |
Collapse
|
4
|
Goh KJ, Stubenrauch CJ, Lithgow T. The TAM, a Translocation and Assembly Module for protein assembly and potential conduit for phospholipid transfer. EMBO Rep 2024; 25:1711-1720. [PMID: 38467907 PMCID: PMC11014939 DOI: 10.1038/s44319-024-00111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The assembly of β-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the β-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of β-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia.
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
5
|
Flores-Oropeza MA, Ochoa SA, Cruz-Córdova A, Chavez-Tepecano R, Martínez-Peñafiel E, Rembao-Bojórquez D, Zavala-Vega S, Hernández-Castro R, Flores-Encarnacion M, Arellano-Galindo J, Vélez D, Xicohtencatl-Cortes J. Comparative genomic analysis of uropathogenic Escherichia coli strains from women with recurrent urinary tract infection. Front Microbiol 2024; 14:1340427. [PMID: 38328583 PMCID: PMC10848155 DOI: 10.3389/fmicb.2023.1340427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Recurrent urinary tract infections (RUTIs) caused by uropathogenic Escherichia coli are costly public health problems impacting patients' quality of life. Aim In this work, a comparative genomics analysis of three clinical RUTI strains isolated from bladder biopsy specimens was performed. Materials and methods One hundred seventy-two whole genomes of urinary tract E. coli strains were selected from the NCBI database. The search for virulence factors, fitness genes, regions of interest, and genetic elements associated with resistance was manually carried out. The phenotypic characterization of antibiotic resistance, haemolysis, motility, and biofilm formation was performed. Moreover, adherence and invasion assays with human bladder HTB-5 cells, and transmission electron microscopy (TEM) were performed. Results The UTI-1_774U and UTI-3_455U/ST1193 strains were associated with the extraintestinal pathotypes, and the UTI-2_245U/ST295 strain was associated with the intestinal pathotype, according to a phylogenetic analysis of 172 E. coli urinary strains. The three RUTI strains were of clinical, epidemiological, and zoonotic relevance. Several resistance genes were found within the plasmids of these strains, and a multidrug resistance phenotype was revealed. Other virulence genes associated with CFT073 were not identified in the three RUTI strains (genes for type 1 and P fimbriae, haemolysin hlyA, and sat toxin). Quantitative adherence analysis showed that UTI-1_774U was significantly (p < 0.0001) more adherent to human bladder HTB-5 cells. Quantitative invasion analysis showed that UTI-2_245U was significantly more invasive than the control strains. No haemolysis or biofilm activity was detected in the three RUTI strains. The TEM micrographs showed the presence of short and thin fimbriae only in the UTI-2_245U strain. Conclusion The high variability and genetic diversity of the RUTI strains indicate that are a mosaic of virulence, resistance, and fitness genes that could promote recurrence in susceptible patients.
Collapse
Affiliation(s)
- Marco A. Flores-Oropeza
- Posgrado en Ciencias Biomédicas, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | | | - Eva Martínez-Peñafiel
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Daniel Rembao-Bojórquez
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
- Laboratorio Clínico y Banco de Sangre, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Rigoberto Hernández-Castro
- Departmento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Mexico City, Mexico
| | - Marcos Flores-Encarnacion
- Laboratorio de Microbiología Molecular y Celular, Biomedicina, Facultad de Medicina, BUAP, Puebla, Mexico
| | - José Arellano-Galindo
- Laboratorio de Virología Clínica y Experimental, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Daniel Vélez
- Hospital Militar de Especialidades de la Mujer y Neonatología, Mexico City, Mexico
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 3 IMSS, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
6
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
7
|
Böhning J, Dobbelstein AW, Sulkowski N, Eilers K, von Kügelgen A, Tarafder AK, Peak-Chew SY, Skehel M, Alva V, Filloux A, Bharat TAM. Architecture of the biofilm-associated archaic Chaperone-Usher pilus CupE from Pseudomonas aeruginosa. PLoS Pathog 2023; 19:e1011177. [PMID: 37058467 PMCID: PMC10104325 DOI: 10.1371/journal.ppat.1011177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/03/2023] [Indexed: 04/15/2023] Open
Abstract
Chaperone-Usher Pathway (CUP) pili are major adhesins in Gram-negative bacteria, mediating bacterial adherence to biotic and abiotic surfaces. While classical CUP pili have been extensively characterized, little is known about so-called archaic CUP pili, which are phylogenetically widespread and promote biofilm formation by several human pathogens. In this study, we present the electron cryomicroscopy structure of the archaic CupE pilus from the opportunistic human pathogen Pseudomonas aeruginosa. We show that CupE1 subunits within the pilus are arranged in a zigzag architecture, containing an N-terminal donor β-strand extending from each subunit into the next, where it is anchored by hydrophobic interactions, with comparatively weaker interactions at the rest of the inter-subunit interface. Imaging CupE pili on the surface of P. aeruginosa cells using electron cryotomography shows that CupE pili adopt variable curvatures in response to their environment, which might facilitate their role in promoting cellular attachment. Finally, bioinformatic analysis shows the widespread abundance of cupE genes in isolates of P. aeruginosa and the co-occurrence of cupE with other cup clusters, suggesting interdependence of cup pili in regulating bacterial adherence within biofilms. Taken together, our study provides insights into the architecture of archaic CUP pili, providing a structural basis for understanding their role in promoting cellular adhesion and biofilm formation in P. aeruginosa.
Collapse
Affiliation(s)
- Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Adrian W. Dobbelstein
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Nina Sulkowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kira Eilers
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Abul K. Tarafder
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sew-Yeu Peak-Chew
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Tanmay A. M. Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|
8
|
Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Cell Surf 2022; 8:100077. [PMID: 35493982 PMCID: PMC9046445 DOI: 10.1016/j.tcsw.2022.100077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Collapse
|
9
|
Downing T, Lee MJ, Archbold C, McDonnell A, Rahm A. Informing plasmid compatibility with bacterial hosts using protein-protein interaction data. Genomics 2022; 114:110509. [PMID: 36273742 DOI: 10.1016/j.ygeno.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
The compatibility of plasmids with new host cells is significant given their role in spreading antimicrobial resistance (AMR) and virulence factor genes. Evaluating this using in vitro screening is laborious and can be informed by computational analyses of plasmid-host compatibility through rates of protein-protein interactions (PPIs) between plasmid and host cell proteins. We identified large excesses of such PPIs in eight important plasmids, including pOXA-48, using most known bacteria (n = 4363). 23 species had high rates of interactions with four blaOXA-48-positive plasmids. We also identified 48 species with high interaction rates with plasmids common in Escherichia coli. We found a strong association between one plasmid and the fimbrial adhesin operon pil, which could enhance host cell adhesion in aqueous environments. An excess rate of PPIs could be a sign of host-plasmid compatibility, which is important for AMR control given that plasmids like pOXA-48 move between species with ease.
Collapse
Affiliation(s)
- Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland; The Pirbright Institute, UK.
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Conor Archbold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Adam McDonnell
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexander Rahm
- GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
10
|
Wang L, Xu H, Yang H, Zhou J, Zhao L, Zhang F. Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Front Immunol 2022; 13:952398. [PMID: 36203617 PMCID: PMC9530352 DOI: 10.3389/fimmu.2022.952398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates serve as important energy sources and structural substances for human body as well as for gut microbes. As evidenced by the advances in immunometabolism, glucose metabolism and adenosine triphosphate (ATP) generation are deeply involved in immune cell activation, proliferation, and signaling transduction as well as trafficking and effector functions, thus contributing to immune response programming and assisting in host adaption to microenvironment changes. Increased glucose uptake, aberrant expression of glucose transporter 1 (e.g., GLU1), and abnormal glycosylation patterns have been identified in autoimmunity and are suggested as partially responsible for the dysregulated immune response and the modification of gut microbiome composition in the autoimmune pathogenesis. The interaction between gut microbiota and host carbohydrate metabolism is complex and bidirectional. Their impact on host immune homeostasis and the development of autoimmune diseases remains to be elucidated. This review summarized the current knowledge on the crosstalk of glucose metabolism and glycosylation in the host with intestinal microbiota and discussed their possible role in the development and progression of autoimmune diseases. Potential therapeutic strategies targeting glucose metabolism and glycosylation in modulating gut ecosystem and treating autoimmune diseases were discussed as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
11
|
Song CH, Kim YH, Naskar M, Hayes BW, Abraham MA, Noh JH, Suk G, Kim MJ, Cho KS, Shin M, Lee EJ, Abraham SN, Choi HW. Lactobacillus crispatus Limits Bladder Uropathogenic E. coli Infection by Triggering a Host Type I Interferon Response. Proc Natl Acad Sci U S A 2022; 119:e2117904119. [PMID: 35939684 PMCID: PMC9388105 DOI: 10.1073/pnas.2117904119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/22/2022] [Indexed: 01/03/2023] Open
Abstract
Many urinary tract infections (UTIs) are recurrent because uropathogens persist within the bladder epithelial cells (BECs) for extended periods between bouts of infection. Because persistent uropathogens are intracellular, they are often refractive to antibiotic treatment. The recent discovery of endogenous Lactobacillus spp. in the bladders of healthy humans raised the question of whether these endogenous bacteria directly or indirectly impact intracellular bacterial burden in the bladder. Here, we report that in contrast to healthy women, female patients experiencing recurrent UTIs have a bladder population of Lactobacilli that is markedly reduced. Exposing infected human BECs to L. crispatus in vitro markedly reduced the intracellular uropathogenic Escherichia coli (UPEC) load. The adherence of Lactobacilli to BECs was found to result in increased type I interferon (IFN) production, which in turn enhanced the expression of cathepsin D within lysosomes harboring UPECs. This lysosomal cathepsin D-mediated UPEC killing was diminished in germ-free mice and type I IFN receptor-deficient mice. Secreted metabolites of L. crispatus seemed to be responsible for the increased expression of type I IFN in human BECs. Intravesicular administration of Lactobacilli into UPEC-infected murine bladders markedly reduced their intracellular bacterial load suggesting that components of the endogenous microflora can have therapeutic effects against UTIs.
Collapse
Affiliation(s)
- Chang Hyun Song
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Young Ho Kim
- Department of Urology, Soonchunhyang University Bucheon Hospital, Bucheon-si, 14584, South Korea
| | - Manisha Naskar
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Byron W. Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Mathew A. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Joo Hwan Noh
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Gyeongseo Suk
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Min Jung Kim
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Kyu Sang Cho
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Minhye Shin
- Department of Microbiology, Inha University School of Medicine, Incheon, 22212, South Korea
| | - Eun-Jin Lee
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Soman N. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
- Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
12
|
A Newly Identified Group of P-like (PL) Fimbria Genes from Extraintestinal Pathogenic Escherichia coli (ExPEC) Encode Distinct Adhesin Subunits and Mediate Adherence to Host Cells. Appl Environ Microbiol 2022; 88:e0142121. [PMID: 35758695 PMCID: PMC9275220 DOI: 10.1128/aem.01421-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fimbrial adhesins promote bacterial adherence and biofilm formation. Sequencing of avian pathogenic Escherichia coli (APEC) strain QT598 identified new fimbriae belonging to the π group, which we named PL (P-like) fimbriae since the genetic organization and sequence are similar to those of P and related fimbriae. Genes encoding PL fimbriae located on IncF plasmids are present in diverse E. coli isolates from poultry, human systemic infections, and other sources. As with P fimbriae, PL fimbriae exhibit divergence in adhesin-encoding genes and could be divided into 5 classes based on sequence differences in the PlfG adhesin. plf genes from two predominant PlfG adhesin classes, PlfG class I (PlfGI) and PlfGII, were cloned. PL fimbriae were visualized by electron microscopy, associated with increased biofilm, demonstrated distinct hemagglutination profiles, and promoted adherence to human bladder and kidney epithelial cells. The genes encoding hybrid fimbriae were comprised of genes from plfQT598, wherein plfG was replaced by papG; the adhesin-encoding genes were also functional and mediated adherence to epithelial cells, demonstrating compatibility between the components of these two types of fimbriae. Deletion of plf genes did not reduce colonization of the mouse urinary tract in a single-strain infection model. In contrast, loss of plf genes significantly reduced competitive colonization in the mouse kidneys. Furthermore, plf gene expression was increased over 40-fold in the bladder compared to during in vitro culture. Overall, PL fimbriae represent a new group of fimbriae demonstrating both functional differences from and similarities to P fimbriae, which mediated adherence to host cells and improved competitive colonization of the mouse kidney. IMPORTANCE Fimbriae are important colonization factors in many bacterial species. The identification of a new type of fimbriae encoded on some IncF plasmids in E. coli was investigated. Genomic sequences demonstrated these fimbrial gene clusters have genetic diversity, particularly in the adhesin-encoding plfG gene. Functional studies demonstrated differences in hemagglutination specificity, although both types of Plf adhesin under study mediated adherence to human urinary epithelial cells. A plf mutant also showed decreased colonization of the kidneys in a mouse competitive infection model. PL fimbriae may represent previously unrecognized adhesins that could contribute to host specificity and tissue tropism of some E. coli strains.
Collapse
|
13
|
Allard N, Neil K, Grenier F, Rodrigue S. The Type IV Pilus of Plasmid TP114 Displays Adhesins Conferring Conjugation Specificity and Is Important for DNA Transfer in the Mouse Gut Microbiota. Microbiol Spectr 2022; 10:e0230321. [PMID: 35293798 PMCID: PMC9045228 DOI: 10.1128/spectrum.02303-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Type IV pili (T4P) are common bacterial surface appendages involved in different biological processes such as adherence, motility, competence, pathogenesis, and conjugation. In this work, we describe the T4P of TP114, an IncI2 enterobacterial conjugative plasmid recently shown to disseminate at high rates in the mouse intestinal tract. This pilus is composed of the major PilS and minor PilV pilins that are both important for conjugation in broth and in the gut microbiota but not on a solid support. The PilV-coding sequence is part of a shufflon and can bear different C-terminal domains. The shufflon is a multiple DNA inversion system containing many DNA cassettes flanked by recombination sites that are recognized by a shufflon-specific tyrosine recombinase (shufflase) promoting the recombination between DNA segments. The different PilV variants act as adhesins that can modify the affinity for different recipient bacteria. Eight PilV variants were identified in TP114, including one that has not been described in other shufflons. All PilV variants allowed conjugative transfer with different recipient Escherichia coli strains. We conclude that the T4P carried by TP114 plays a major role in mating pair stabilization in broth as well as in the gut microbiota and that the shufflon acts as a biological switch modifying the conjugative host range specificity. IMPORTANCE Conjugative plasmids are involved in horizontal gene transfer in the gut microbiota, which constitutes an important antibiotic resistance gene reservoir. However, the molecular mechanisms used by conjugative plasmids to select recipient bacteria and transfer at high rates in the mouse gut microbiota remain poorly characterized. We studied the type IV pilus carried by TP114 and demonstrated that the minor pilin PilV acts as an adhesin that can efficiently select target cells for conjugative transfer. Moreover, the pilV gene can be rapidly modified by a shufflon, hence modulating the nature of the recipient bacteria during conjugation. Our study highlights the role of mating pair stabilization for conjugation in broth as well as in the gut microbiome and explains how the host spectrum of a plasmid can be expanded simply by remodeling the PilV adhesin.
Collapse
Affiliation(s)
- Nancy Allard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kevin Neil
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédéric Grenier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
14
|
Hasegawa Y, Nagano K. Porphyromonas gingivalis FimA and Mfa1 fimbriae: Current insights on localization, function, biogenesis, and genotype. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:190-200. [PMID: 34691295 PMCID: PMC8512630 DOI: 10.1016/j.jdsr.2021.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
In general, the periodontal pathogen Porphyromonas gingivalis expresses distinct FimA and Mfa1 fimbriae. Each of these consists of five FimA–E and five Mfa1–5 proteins encoded by the fim and mfa gene clusters, respectively. The main shaft portion comprises FimA and Mfa1, whereas FimB and Mfa2 are localized on the basal portion and function as anchors and elongation terminators. FimC–E and Mfa3–5 participate in the assembly of an accessory protein complex on the tips of each fimbria. Hence, they serve as ligands for the receptors on host cells and other oral bacterial species. The crystal structures of FimA and Mfa1 fimbrial proteins were recently elucidated and new insights into the localization, function, and biogenesis of these proteins have been reported. Several studies indicated a correlation between P. gingivalis pathogenicity and the fimA genotype but not the mfa1 genotype. We recently revealed polymorphisms of all genes in the fim and mfa gene clusters. Intriguingly, mfa5 occurred in numerous different forms and underwent duplication. Detailed structural and functional knowledge of the fimbrial proteins in the context of the entire filament could facilitate the development of innovative therapeutic strategies for structure-based drug design.
Collapse
Affiliation(s)
- Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
15
|
Complete Whole Genome Sequences of Escherichia coli Surrogate Strains and Comparison of Sequence Methods with Application to the Food Industry. Microorganisms 2021; 9:microorganisms9030608. [PMID: 33809423 PMCID: PMC8001026 DOI: 10.3390/microorganisms9030608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/23/2023] Open
Abstract
In 2013, the U.S. Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) began transitioning to whole genome sequencing (WGS) for foodborne disease outbreak- and recall-associated isolate identification of select bacterial species. While WGS offers greater precision, certain hurdles must be overcome before widespread application within the food industry is plausible. Challenges include diversity of sequencing platform outputs and lack of standardized bioinformatics workflows for data analyses. We sequenced DNA from USDA-FSIS approved, non-pathogenic E. coli surrogates and a derivative group of rifampicin-resistant mutants (rifR) via both Oxford Nanopore MinION and Illumina MiSeq platforms to generate and annotate complete genomes. Genome sequences from each clone were assembled separately so long-read, short-read, and combined sequence assemblies could be directly compared. The combined sequence data approach provides more accurate completed genomes. The genomes from these isolates were verified to lack functional key E. coli elements commonly associated with pathogenesis. Genetic alterations known to confer rifR were also identified. As the food industry adopts WGS within its food safety programs, these data provide completed genomes for commonly used surrogate strains, with a direct comparison of sequence platforms and assembly strategies relevant to research/testing workflows applicable for both processors and regulators.
Collapse
|
16
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Decano AG, Tran N, Al-Foori H, Al-Awadi B, Campbell L, Ellison K, Mirabueno LP, Nelson M, Power S, Smith G, Smyth C, Vance Z, Woods C, Rahm A, Downing T. Plasmids shape the diverse accessory resistomes of Escherichia coli ST131. Access Microbiol 2020; 3:acmi000179. [PMID: 33997610 PMCID: PMC8115979 DOI: 10.1099/acmi.0.000179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.
Collapse
Affiliation(s)
- Arun Gonzales Decano
- School of Biotechnology, Dublin City University, Ireland.,Present address: School of Medicine, University of St., Andrews, UK
| | - Nghia Tran
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland
| | | | | | | | - Kevin Ellison
- School of Biotechnology, Dublin City University, Ireland
| | - Louisse Paolo Mirabueno
- School of Biotechnology, Dublin City University, Ireland.,Present address: National Institute of Agricultural Botany - East Malling Research, Kent, UK
| | - Maddy Nelson
- School of Biotechnology, Dublin City University, Ireland
| | - Shane Power
- School of Biotechnology, Dublin City University, Ireland
| | | | - Cian Smyth
- School of Biotechnology, Dublin City University, Ireland.,Present address: Dept of Biology, Maynooth University, Dublin, Ireland
| | - Zoe Vance
- School of Genetics & Microbiology, Trinity College Dublin, Ireland
| | | | - Alexander Rahm
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland.,Present address: GAATI Lab, Université de la Polynésie Française, Puna'auia, French Polynesia
| | - Tim Downing
- School of Biotechnology, Dublin City University, Ireland
| |
Collapse
|
18
|
Shoji M, Shibata S, Sueyoshi T, Naito M, Nakayama K. Biogenesis of Type V pili. Microbiol Immunol 2020; 64:643-656. [DOI: 10.1111/1348-0421.12838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Satoshi Shibata
- Molecular Cryo‐Electron Microscopy Unit Okinawa Institute of Science and Technology Graduate University Onna Okinawa Japan
| | - Takayuki Sueyoshi
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| |
Collapse
|
19
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
20
|
Hospenthal MK, Waksman G. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0010-2018. [PMID: 30681068 PMCID: PMC11588285 DOI: 10.1128/microbiolspec.psib-0010-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/02/2023] Open
Abstract
Chaperone-usher (CU) pili are long, supramolecular protein fibers tethered to the surface of numerous bacterial pathogens. These virulence factors function primarily in bacterial adhesion to host tissues, but they also mediate biofilm formation. Type 1 and P pili of uropathogenic Escherichia coli (UPEC) are the two best-studied CU pilus examples, and here we primarily focus on the former. UPEC can be transmitted to the urinary tract by fecal shedding. It can then ascend up the urinary tract and cause disease by invading and colonizing host tissues of the bladder, causing cystitis, and the kidneys, causing pyelonephritis. FimH is the subunit displayed at the tip of type 1 pili and mediates adhesion to mannosylated host cells via a unique catch-bond mechanism. In response to shear forces caused by urine flow, FimH can transition from a low-affinity to high-affinity binding mode. This clever allosteric mechanism allows UPEC cells to remain tightly attached during periods of urine flow, while loosening their grip to allow dissemination through the urinary tract during urine stasis. Moreover, the bulk of a CU pilus is made up of the rod, which can reversibly uncoil in response to urine flow to evenly spread the tensile forces over the entire pilus length. We here explore the novel structural and mechanistic findings relating to the type 1 pilus FimH catch-bond and rod uncoiling and explain how they function together to enable successful attachment, spread, and persistence in the hostile urinary tract.
Collapse
Affiliation(s)
- Manuela K Hospenthal
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
| |
Collapse
|
21
|
Virulence potential of commensal multidrug resistant Escherichia coli isolated from poultry in Brazil. INFECTION GENETICS AND EVOLUTION 2018; 65:251-256. [PMID: 30071311 DOI: 10.1016/j.meegid.2018.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/06/2018] [Accepted: 07/28/2018] [Indexed: 11/22/2022]
Abstract
There is an increasing number of reports worldwide about multidrug resistance (MDR) with potential of ExPEC in commensal E. coli. The present study evaluated the potential ExPEC in selected 44 MDR E.coli isolates, collected from livestock. ExPEC isolates were characterized by analysis of five main groups of virulence genes (papA and/or papC, sfa and/or foc, afa and/or dra, kpsMT II and iutA). We also determined the increased virulence potential analyzing other 29 virulence genes, the epidemiology of these isolates. Additionally, fifteen ExPEC isolates were selected to evaluate the adhesion and invasion capacity in vitro using Caco-2 cells. Based on the analysis of the five main virulence genes, 72.7% (32/44) strains were classified as ExPEC. The presence of each gene was iutA 88.6%, KpsMT II 70.4%, papC 25%, sfa/focDE 4.5%; afa/draBC genes were not found. All E. coli isolates were classified into: phylogenetic groups A (34%), B1 (10%), B2 (20%), and D (36%). MLST revealed 7 different STs among isolates, including a new ST identified (ST5687). The in vitro assay in Caco-2 cells showed that all isolates were capable to adhere or invade the epithelial cells, although this occurred at variable levels. The ExPEC isolate LO122 reached similar levels of invasion to the positive control strain Salmonella Typhimurium LT2. These results showed that the apparently commensal microbiota of poultry harbors MDR ExPEC isolates with high adhesion and invasion potential.
Collapse
|
22
|
Baum LG, Cobb BA. The direct and indirect effects of glycans on immune function. Glycobiology 2018; 27:619-624. [PMID: 28460052 DOI: 10.1093/glycob/cwx036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/26/2022] Open
Abstract
The biological impact of glycans is as diverse and complex as the impact of proteins on biology. Familiar roles include those as a protein folding checkpoint in the endoplasmic reticulum and as a modulator of the serum half-life of secreted glycoproteins, but it has become clear over the last several decades that glycans are key signaling moieties, participate in cell-cell interactions and modulate the function of individual proteins, to name but a few examples. In the immune system, the majority of microbial "patterns" are glycans or glycoconjugates, while virtually all cell surface receptors are glycoproteins, and antibody glycosylation critically influences antibody function. In order to provide a simple contextual framework to understand the myriad roles, glycans play in immunity, we propose that glycan effects are considered direct or indirect, depending on their direct participation or their indirect effects on other components in a given biological process or pathway. Here, we present the published evidence that supports this framework, which ultimately leads to the conclusion that we should learn to embrace the complexity inherent to the glycome and its potential as a largely uncharted but target rich area of new therapeutic investigation.
Collapse
Affiliation(s)
- Linda G Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Solanki V, Tiwari M, Tiwari V. Host-bacteria interaction and adhesin study for development of therapeutics. Int J Biol Macromol 2018; 112:54-64. [PMID: 29414732 DOI: 10.1016/j.ijbiomac.2018.01.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Host-pathogen interaction is one of the most important areas of study to understand the adhesion of the pathogen to the host organisms. To adhere on the host cell surface, bacteria assemble the diverse adhesive structures on its surface, which play a foremost role in targeting to the host cell. We have highlighted different bacterial adhesins which are either protein mediated or glycan mediated. The present article listed examples of different bacterial adhesin proteins involved in the interactions with their host, types and subtypes of the fimbriae and non-fimbriae bacterial adhesins. Different bacterial surface adhesin subunits interact with host via different host surface biomolecules. We have also discussed the interactome of some of the pathogens with their host. Therefore, the present study will help researchers to have a detailed understanding of different interacting bacterial adhesins and henceforth, develop new therapies, adhesin specific antibodies and vaccines, which can effectively control pathogenicity of the pathogens.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
24
|
Maharjan P, Dey S, Huff G, Zhang W, Phillips GK, Watkins S. Effect of chlorine treatment on inhibition of E. coli serogroup O2 incorporation into 7-day-old biofilm on polyvinylchloride surface. Poult Sci 2017; 96:2862-2870. [PMID: 28419339 DOI: 10.3382/ps/pex088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Poultry waterlines are constructed using polyvinylchloride (PVC) material on which bacterial biofilm can easily form. Biofilm can harbor pathogens including avian pathogenic E. coli (APEC) strains. An in vitro evaluation was performed to determine if E. coli sero group O2 (avian pathogenic) could attach on a PVC surface that had pre-formed biofilm and if this phenomenon could be affected when water was treated with chlorine. Initially, biofilm growth was induced in PVC test coupons (15.16 cm2) for a 7-day period mimicking the waterline scenario in the first wk of poultry brooding; and then this biofilm was challenged with E. coli O2 seeded water in presence/absence of chlorine treatment. After rinsing, test coupons were sampled for bacterial (APC) and E. coli O2 enumeration at various occasions post seeding the pathogen and chlorine treatment. Day 7 APC recovered from coupons was 4.35 log10 cfu/cm2 in trial 1 and 3.66 log10 cfu/cm2 in trial 2. E. coli O2 was not recovered from chlorine treated test coupons (P < 0.05), whereas it was retrieved from untreated coupons (untreated contained > 3 log10 cfu/cm2 in trial 1 and > 2 log10 cfu/cm2 in trial 2). This study suggests that E. coli O2 can incorporate into pre-formed biofilm on a PVC surface within 24 h if water sanitation is not present, and the attachment time of the pathogen can prolong in the absence of already formed biofilm.
Collapse
Affiliation(s)
- P Maharjan
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| | - S Dey
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville 72701.,Department of Biological Sciences, University of Arkansas, Fayetteville 72701
| | - G Huff
- USDA-ARS Poultry Production and Product Safety Research, University of Arkansas, Fayetteville 72701
| | - W Zhang
- Department of Civil Engineering, University of Arkansas, Fayetteville, 72701
| | - G K Phillips
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| | - S Watkins
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| |
Collapse
|
25
|
Mydock-McGrane LK, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discov 2017; 12:711-731. [PMID: 28506090 DOI: 10.1080/17460441.2017.1331216] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The bacterial adhesin FimH is a virulence factor and an attractive therapeutic target for urinary tract infection (UTI) and Crohn's Disease (CD). Located on type 1 pili of uropathogenic E. coli (UPEC), the FimH adhesin plays an integral role in the pathogenesis of UPEC. Recent efforts have culminated in the development of small-molecule mannoside FimH antagonists that target the mannose-binding lectin domain of FimH, inhibiting its function and preventing UPEC from binding mannosylated host cells in the bladder, thereby circumventing infection. Areas covered: The authors describe the structure-guided design of mannoside ligands, and review the structural biology of the FimH lectin domain. Additionally, they discuss the lead optimization of mannosides for therapeutic application in UTI and CD, and describe various assays used to measure mannoside potency in vitro and mouse models used to determine efficacy in vivo. Expert opinion: To date, mannoside optimization has led to a diverse set of small-molecule FimH antagonists with oral bioavailability. With clinical trials already initiated in CD and on the horizon for UTI, it is the authors, opinion that mannosides will be a 'first-in-class' treatment strategy for UTI and CD, and will pave the way for treatment of other Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - James W Janetka
- b Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
26
|
Structural and Molecular Biology of a Protein-Polymerizing Nanomachine for Pilus Biogenesis. J Mol Biol 2017; 429:2654-2666. [PMID: 28551336 DOI: 10.1016/j.jmb.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/23/2023]
Abstract
Bacteria produce protein polymers on their surface called pili or fimbriae that serve either as attachment devices or as conduits for secreted substrates. This review will focus on the chaperone-usher pathway of pilus biogenesis, a widespread assembly line for pilus production at the surface of Gram-negative bacteria and the archetypical protein-polymerizing nanomachine. Comparison with other nanomachines polymerizing other types of biological units, such as nucleotides during DNA replication, provides some unifying principles as to how multidomain proteins assemble biological polymers.
Collapse
|
27
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
28
|
Li Y, Wang H, Ren J, Chen L, Zhuge X, Hu L, Li D, Tang F, Dai J. The YfcO fimbriae gene enhances adherence and colonization abilities of avian pathogenic Escherichia coli in vivo and in vitro. Microb Pathog 2016; 100:56-61. [PMID: 27616446 DOI: 10.1016/j.micpath.2016.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022]
Abstract
Chaperone-usher (CU) fimbriae, which are adhesive surface organelles found in many Gram-negative bacteria, mediate tissue tropism through the interaction of fimbrial adhesins with specific receptors expressed on the host cell surface. A CU fimbrial gene yfcO, was identified in avian pathogenic E. coli (APEC) strain DE205B via gene functional analysis. In this study, yfcO was found in 13.41% (11/82) of E. coli strains, including phylogenetic groups A, B1, B2 and D, with the highest percentage in group B2. The expression of yfcO in biofilm forming bacteria was significantly higher (P < 0.05) than that in the planktonic bacteria. A yfcO deletion mutant was constructed, and adherence to DF-1 chicken embryo fibroblast cells was analyzed in vitro. Compared to the wild-type (WT), adherence of the mutant to DF-1 cells was significantly decreased (P < 0.01). The mutant bacterial loads in the heart, brain and liver were significantly lower (P < 0.05) than those of the WT strain. Resistance of the mutant to acidic (acetic, pH 4.0, 20 min) and high osmolarity (2.5 M NaCl, 1 h) stress conditions decreased by 51.28% (P < 0.001) and 80.34% (P < 0.01), respectively. These results suggest that yfcO contributes to APEC virulence through bacterial adherence to host tissues.
Collapse
Affiliation(s)
- Yaxin Li
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haojin Wang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianluan Ren
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Chen
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Hu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dezhi Li
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Tang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Hornef MW, Bogdan C. The role of epithelial Toll-like receptor expression in host defense and microbial tolerance. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110020901] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The recognition of microbial structures by Toll-like receptors (TLRs) on professional immune cells situated at sterile internal body sites occurs during invasive microbial infection. It indicates infectious non-self and thereby represents the adequate co-stimulatory signal to initiate activation of the adaptive immune system against the invading pathogen. In contrast, most epithelial body surfaces are permanently colonized by microbial organisms of the normal flora and thus TLR ligands are present under physiological conditions. In the following, we discuss the characteristics of TLR-mediated recognition by epithelial cells, the subsequent activation of the host immune system, and protective mechanisms that might help to avoid inadequate stimulation and allow differentiation between commensal or pathogenic micro-organisms. Recent findings suggest that the role of epithelial cells in the maintenance of stable microbial colonization of host surfaces and the immediate host response to infectious challenges might have to be revised.
Collapse
Affiliation(s)
- Mathias W. Hornef
- Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany, Swedish Institute for Infectious Disease Control (SMI), Stockholm, Sweden,
| | - Christian Bogdan
- Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany
| |
Collapse
|
30
|
Sarowar S, Hu OJ, Werneburg GT, Thanassi DG, Li H. The Escherichia coli P and Type 1 Pilus Assembly Chaperones PapD and FimC Are Monomeric in Solution. J Bacteriol 2016; 198:2360-9. [PMID: 27353649 PMCID: PMC4984555 DOI: 10.1128/jb.00366-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/19/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The chaperone/usher pathway is used by Gram-negative bacteria to assemble adhesive surface structures known as pili or fimbriae. Uropathogenic strains of Escherichia coli use this pathway to assemble P and type 1 pili, which facilitate colonization of the kidney and bladder, respectively. Pilus assembly requires a periplasmic chaperone and outer membrane protein termed the usher. The chaperone allows folding of pilus subunits and escorts the subunits to the usher for polymerization into pili and secretion to the cell surface. Based on previous structures of mutant versions of the P pilus chaperone PapD, it was suggested that the chaperone dimerizes in the periplasm as a self-capping mechanism. Such dimerization is counterintuitive because the chaperone G1 strand, important for chaperone-subunit interaction, is buried at the dimer interface. Here, we show that the wild-type PapD chaperone also forms a dimer in the crystal lattice; however, the dimer interface is different from the previously solved structures. In contrast to the crystal structures, we found that both PapD and the type 1 pilus chaperone, FimC, are monomeric in solution. Our findings indicate that pilus chaperones do not sequester their G1 β-strand by forming a dimer. Instead, the chaperones may expose their G1 strand for facile interaction with pilus subunits. We also found that the type 1 pilus adhesin, FimH, is flexible in solution while in complex with its chaperone, whereas the P pilus adhesin, PapGII, is rigid. Our study clarifies a crucial step in pilus biogenesis and reveals pilus-specific differences that may relate to biological function. IMPORTANCE Pili are critical virulence factors for many bacterial pathogens. Uropathogenic E. coli relies on P and type 1 pili assembled by the chaperone/usher pathway to adhere to the urinary tract and establish infection. Studying pilus assembly is important for understanding mechanisms of protein secretion, as well as for identifying points for therapeutic intervention. Pilus biogenesis is a multistep process. This work investigates the oligomeric state of the pilus chaperone in the periplasm, which is important for understanding early assembly events. Our work unambiguously demonstrates that both PapD and FimC chaperones are monomeric in solution. We further demonstrate that the solution behavior of the FimH and PapGII adhesins differ, which may be related to functional differences between the two pilus systems.
Collapse
Affiliation(s)
- Samema Sarowar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stonybrook, New York, USA Biology Department, Brookhaven National Laboratory, Stonybrook, New York, USA
| | - Olivia J Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stonybrook, New York, USA Biology Department, Brookhaven National Laboratory, Stonybrook, New York, USA
| | - Glenn T Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stonybrook, New York, USA Center for Infectious Diseases, Stony Brook University, Stonybrook, New York, USA
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stonybrook, New York, USA Center for Infectious Diseases, Stony Brook University, Stonybrook, New York, USA
| | - Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stonybrook, New York, USA Biology Department, Brookhaven National Laboratory, Stonybrook, New York, USA
| |
Collapse
|
31
|
Hasegawa Y, Iijima Y, Persson K, Nagano K, Yoshida Y, Lamont RJ, Kikuchi T, Mitani A, Yoshimura F. Role of Mfa5 in Expression of Mfa1 Fimbriae in Porphyromonas gingivalis. J Dent Res 2016; 95:1291-7. [PMID: 27323953 DOI: 10.1177/0022034516655083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fimbriae are protein-based filamentous appendages that protrude from the bacterial cell surface and facilitate host adhesion. Two types of fimbriae, FimA and Mfa1, of the periodontal pathogen Porphyromonas gingivalis are responsible for adherence to other bacteria and to host cells in the oral cavity. Both fimbrial forms are composed of 5 proteins, but there is limited information about their polymerization mechanisms. Here, the authors evaluated the function of Mfa5, one of the Mfa1 fimbrial accessory proteins. Using mfa5 gene disruption and complementation studies, the authors revealed that Mfa5 affects the incorporation of other accessory proteins, Mfa3 and Mfa4, into fibers and the expression of fimbriae on the cell surface. Mfa5 is predicted to have a C-terminal domain (CTD) that uses the type IX secretion system (T9SS), which is limited to this organism and related Bacteroidetes species, for translocation across the outer membrane. To determine the relationship between the putative Mfa5 CTD and the T9SS, mutants were constructed with in-frame deletion of the CTD and deletion of porU, a C-terminal signal peptidase linked to T9SS-mediated secretion. The ∆CTD-expressing strain presented a similar phenotype to the mfa5 disruption mutant with reduced expression of fimbriae lacking all accessory proteins. The ∆porU mutants and the ∆CTD-expressing strain showed intracellular accumulation of Mfa5. These results indicate that Mfa5 function requires T9SS-mediated translocation across the outer membrane, which is dependent on the CTD, and subsequent incorporation into fibers. These findings suggest the presence of a novel polymerization mechanism of the P. gingivalis fimbriae.
Collapse
Affiliation(s)
- Y Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Y Iijima
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - K Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - K Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Y Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - T Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - A Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - F Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
32
|
Stubenrauch C, Belousoff MJ, Hay ID, Shen HH, Lillington J, Tuck KL, Peters KM, Phan MD, Lo AW, Schembri MA, Strugnell RA, Waksman G, Lithgow T. Effective assembly of fimbriae in Escherichia coli depends on the translocation assembly module nanomachine. Nat Microbiol 2016; 1:16064. [DOI: 10.1038/nmicrobiol.2016.64] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
|
33
|
Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane. Antimicrob Agents Chemother 2016; 60:2028-38. [PMID: 26824945 DOI: 10.1128/aac.02221-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022] Open
Abstract
Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly.
Collapse
|
34
|
Wurpel DJ, Totsika M, Allsopp LP, Webb RI, Moriel DG, Schembri MA. Comparative proteomics of uropathogenic Escherichia coli during growth in human urine identify UCA-like (UCL) fimbriae as an adherence factor involved in biofilm formation and binding to uroepithelial cells. J Proteomics 2015; 131:177-189. [PMID: 26546558 DOI: 10.1016/j.jprot.2015.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 01/15/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infection (UTI) in humans. For the successful colonisation of the human urinary tract, UPEC employ a diverse collection of secreted or surface-exposed virulence factors including toxins, iron acquisition systems and adhesins. In this study, a comparative proteomic approach was utilised to define the UPEC pan and core surface proteome following growth in pooled human urine. Identified proteins were investigated for subcellular origin, prevalence and homology to characterised virulence factors. Fourteen core surface proteins were identified, as well as eleven iron uptake receptor proteins and four distinct fimbrial types, including type 1, P, F1C/S and a previously uncharacterised fimbrial type, designated UCA-like (UCL) fimbriae in this study. These pathogenicity island (PAI)-associated fimbriae are related to UCA fimbriae of Proteus mirabilis, associated with UPEC and exclusively found in members of the E. coli B2 and D phylogroup. We further demonstrated that UCL fimbriae promote significant biofilm formation on abiotic surfaces and mediate specific attachment to exfoliated human uroepithelial cells. Combined, this study has defined the surface proteomic profiles and core surface proteome of UPEC during growth in human urine and identified a new type of fimbriae that may contribute to UTI.
Collapse
Affiliation(s)
- Daniël J Wurpel
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Luke P Allsopp
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Richard I Webb
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Danilo G Moriel
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Mark A Schembri
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
35
|
Abstract
Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among Escherichia and Salmonella isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.
Collapse
|
36
|
Ikai R, Hasegawa Y, Izumigawa M, Nagano K, Yoshida Y, Kitai N, Lamont RJ, Yoshimura F, Murakami Y. Mfa4, an Accessory Protein of Mfa1 Fimbriae, Modulates Fimbrial Biogenesis, Cell Auto-Aggregation, and Biofilm Formation in Porphyromonas gingivalis. PLoS One 2015; 10:e0139454. [PMID: 26437277 PMCID: PMC4593637 DOI: 10.1371/journal.pone.0139454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/13/2015] [Indexed: 12/23/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is considered to be a key pathogen in periodontal disease. The bacterium expresses Mfa1 fimbriae, which are composed of polymers of Mfa1. The minor accessory components Mfa3, Mfa4, and Mfa5 are incorporated into these fimbriae. In this study, we characterized Mfa4 using genetically modified strains. Deficiency in the mfa4 gene decreased, but did not eliminate, expression of Mfa1 fimbriae. However, Mfa3 and Mfa5 were not incorporated because of defects in posttranslational processing and leakage into the culture supernatant, respectively. Furthermore, the mfa4-deficient mutant had an increased tendency to auto-aggregate and form biofilms, reminiscent of a mutant completely lacking Mfa1. Notably, complementation of mfa4 restored expression of structurally intact and functional Mfa1 fimbriae. Taken together, these results indicate that the accessory proteins Mfa3, Mfa4, and Mfa5 are necessary for assembly of Mfa1 fimbriae and regulation of auto-aggregation and biofilm formation of P. gingivalis. In addition, we found that Mfa3 and Mfa4 are processed to maturity by the same RgpA/B protease that processes Mfa1 subunits prior to polymerization.
Collapse
Affiliation(s)
- Ryota Ikai
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Yoshiaki Hasegawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
- * E-mail:
| | - Masashi Izumigawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Noriyuki Kitai
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States of America
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| |
Collapse
|
37
|
Chahales P, Thanassi DG. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0018-2013. [PMID: 26542038 PMCID: PMC4638162 DOI: 10.1128/microbiolspec.uti-0018-2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 01/02/2023] Open
Abstract
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Peter Chahales
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - David G Thanassi
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
38
|
Sure S, Torriero AAJ, Gaur A, Li LH, Chen Y, Tripathi C, Adholeya A, Ackland ML, Kochar M. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling. Antonie van Leeuwenhoek 2015; 108:1213-25. [PMID: 26319534 DOI: 10.1007/s10482-015-0576-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles.
Collapse
Affiliation(s)
- Sandeep Sure
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Gurgaon Faridabad Road, Gurgaon, 122 001, Haryana, India
| | - Angel A J Torriero
- Centre for Cellular and Molecular Biology, Deakin University, 221 Burwood Highway, Burwood, Melbourne, VIC, 3125, Australia
| | - Aditya Gaur
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Gurgaon Faridabad Road, Gurgaon, 122 001, Haryana, India
| | - Lu Hua Li
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC, 3216, Australia
| | - Ying Chen
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC, 3216, Australia
| | - Chandrakant Tripathi
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Gurgaon Faridabad Road, Gurgaon, 122 001, Haryana, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Gurgaon Faridabad Road, Gurgaon, 122 001, Haryana, India
| | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, Deakin University, 221 Burwood Highway, Burwood, Melbourne, VIC, 3125, Australia
| | - Mandira Kochar
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Gurgaon Faridabad Road, Gurgaon, 122 001, Haryana, India.
| |
Collapse
|
39
|
Jamnongkan T, Sukumaran SK, Sugimoto M, Hara T, Takatsuka Y, Koyama K. Towards novel wound dressings: antibacterial properties of zinc oxide nanoparticles and electrospun fiber mats of zinc oxide nanoparticle/poly(vinyl alcohol) hybrids. JOURNAL OF POLYMER ENGINEERING 2015. [DOI: 10.1515/polyeng-2014-0319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Zinc oxide (ZnO) nanoparticles possess antibacterial properties. Being less toxic to humans than silver, they are attractive as antibacterial agents in biomedical applications. In this study, we focus on the influence of the size of ZnO nanoparticles on their antibacterial action against strains of three bacteria: one Gram-negative, Escherichia coli and two Gram-positive, Bacillus subtilis and Staphylococcus aureus. The antibacterial efficacy of the nanoparticles increases with decreasing particle size. A major contributor to antibacterial action is the oxidative stress induced by the ZnO. To understand the relationship between antibacterial action and induced oxidative stress, we measured the dependence of the nanoparticle diameter on H2O2 concentration. Even at a fixed nanoparticle concentration, the H2O2 concentration increased with decreasing nanoparticle diameter. This is qualitatively similar to the dependence of the antibacterial activity on the nanoparticle diameter. In addition, in the presence of ZnO nanoparticles, we detected increased quantities of endogenous H2O2 in the E. coli. For use as antibacterial wound dressings, we fabricated nonwoven fiber mats from poly(vinyl alcohol) (PVA)/ZnO nanoparticle suspensions. The antibacterial efficacy of the PVA/ZnO electrospun fiber mats also increased with a decrease in the diameter and an increase in the concentration of the ZnO nanoparticles.
Collapse
|
40
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|
42
|
Geibel S, Waksman G. The molecular dissection of the chaperone–usher pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1559-67. [DOI: 10.1016/j.bbamcr.2013.09.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 01/11/2023]
|
43
|
Steadman D, Lo A, Waksman G, Remaut H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol 2014; 9:887-900. [DOI: 10.2217/fmb.14.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rise of multidrug resistant bacteria is a major worldwide health concern. There is currently an unmet need for the development of new and selective antibacterial drugs. Therapies that target and disarm the crucial virulence factors of pathogenic bacteria, while not actually killing the cells themselves, could prove to be vital for the treatment of numerous diseases. This article discusses the main surface architectures of pathogenic Gram-negative bacteria and the small molecules that have been discovered, which target their specific biogenesis pathways and/or actively block their virulence. The future perspective for the use of antivirulence compounds is also assessed.
Collapse
Affiliation(s)
- David Steadman
- Institute of Structural & Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, UK
| | - Alvin Lo
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gabriel Waksman
- Institute of Structural & Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, UK
| | - Han Remaut
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
44
|
McCarthy RR, Mooij MJ, Reen FJ, Lesouhaitier O, O'Gara F. A new regulator of pathogenicity (bvlR) is required for full virulence and tight microcolony formation in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2014; 160:1488-1500. [PMID: 24829363 DOI: 10.1099/mic.0.075291-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LysR-type transcriptional regulators (LTTRs) are the most common family of transcriptional regulators found in the opportunistic pathogen Pseudomonas aeruginosa. They are known to regulate a wide variety of virulence determinants and have emerged recently as positive global regulators of pathogenicity in a broad spectrum of important bacterial pathogens. However, in spite of their key role in modulating expression of key virulence determinants underpinning pathogenic traits associated with the process of infection, surprisingly few are found to be transcriptionally altered by contact with host cells. BvlR (PA14_26880) an LTTR of previously unknown function, has been shown to be induced in response to host cell contact, and was therefore investigated for its potential role in virulence. BvlR expression was found to play a pivotal role in the regulation of acute virulence determinants such as type III secretion system and exotoxin A production. BvlR also played a key role in P. aeruginosa pathogenicity within the Caenorhabditis elegans acute model of infection. Loss of BvlR led to an inability to form tight microcolonies, a key step in biofilm formation in the cystic fibrosis lung, although surface attachment was increased. Unusually for LTTRs, BvlR was shown to exert its influence through the transcriptional repression of many genes, including the virulence-associated cupA and alg genes. This highlights the importance of BvlR as a new virulence regulator in P. aeruginosa with a central role in modulating key events in the pathogen-host interactome.
Collapse
Affiliation(s)
- Ronan R McCarthy
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Marlies J Mooij
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen, 55 rue Saint Germain, 27000 Evreux, France
| | - Fergal O'Gara
- Curtin University, School of Biomedical Sciences, Perth, WA, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Lim JY, Pinkner JS, Cegelski L. Community behavior and amyloid-associated phenotypes among a panel of uropathogenic E. coli. Biochem Biophys Res Commun 2014; 443:345-50. [PMID: 24239885 PMCID: PMC3932320 DOI: 10.1016/j.bbrc.2013.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 11/15/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infection and engage in a coordinated genetic and molecular cascade to colonize the urinary tract. Disrupting the assembly and/or function of virulence factors and bacterial biofilms has emerged as an attractive target for the development of new therapeutic strategies to prevent and treat urinary tract infection, particularly in the era of increasing antibiotic resistance among human pathogens. UPEC vary widely in their genetic and molecular phenotypes and more data are needed to understand the features that distinguish isolates as more or less virulent and as more robust biofilm formers or poor biofilm formers. Curli are extracellular functional amyloid fibers produced by E. coli that contribute to pathogenesis and influence the host response during urinary tract infection (UTI). We have examined the production of curli and curli-associated phenotypes including biofilm formation among a specific panel of human clinical UPEC that has been studied extensively in the mouse model of UTI. Motility, curli production, and curli-associated biofilm formation attached to plastic were the most prevalent behaviors, shared by most clinical isolates. We discuss these results in the context on the previously reported behavior and phenotypes of these isolates in the murine cystitis model in vivo.
Collapse
Affiliation(s)
- Ji Youn Lim
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
46
|
Structural and population characterization of MrkD, the adhesive subunit of type 3 fimbriae. J Bacteriol 2013; 195:5602-13. [PMID: 24123820 DOI: 10.1128/jb.00753-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Type 3 fimbriae are adhesive organelles found in enterobacterial pathogens. The fimbriae promote biofilm formation on biotic and abiotic surfaces; however, the exact identity of the receptor for the type 3 fimbriae adhesin, MrkD, remains elusive. We analyzed naturally occurring structural and functional variabilities of the MrkD adhesin from Klebsiella pneumoniae and Escherichia coli isolates of diverse origins. We identified a total of 33 allelic variants of mrkD among 90 K. pneumoniae isolates and 10 allelic variants among 608 E. coli isolates, encoding 11 and 9 protein variants, respectively. Based on the level of accumulated silent variability between the alleles, mrkD was acquired a relatively long time ago in K. pneumoniae but recently in E. coli. However, unlike K. pneumoniae, mrkD in E. coli is actively evolving under a strong positive selection by accumulation of mutations, often targeting the same positions in the protein. Several naturally occurring MrkD protein variants from E. coli were found to be significantly less adherent when tested in a mannan-binding assay and showed reduced biofilm-forming capacity. Functional examination of the MrkD adhesin in flow chamber experiments determined that it interacts with Saccharomyces cerevisiae cells in a shear-dependent manner, i.e., the binding is catch-bond-like and enhanced under increasing shear conditions. Homology modeling strongly suggested that MrkD has a two-domain structure, comprising a pilin domain anchoring the adhesin to the fimbrial shaft and a lectin domain containing the binding pocket; this is similar to structures found in other catch-bond-forming fimbrial adhesins in enterobacteria.
Collapse
|
47
|
Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc Natl Acad Sci U S A 2013; 110:15530-7. [PMID: 24003161 DOI: 10.1073/pnas.1315203110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chaperone-usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and formation of biofilm-like intracellular bacterial communities. The mannose-binding pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH with variant residues outside the binding pocket affect FimH-mediated acute and chronic pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding studies revealed that, whereas all pathoadaptive variants tested displayed the same high affinity for mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated into pilus tip-like, FimCGH complexes. Structural studies have shown that FimH adopts an elongated conformation when complexed with FimC, but, when incorporated into the pilus tip, FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure, were attenuated during chronic bladder infection, implying that FimH's ability to switch between conformations is important in pathogenesis. Our studies argue that positively selected residues modulate fitness during UTI by affecting FimH conformation and function, providing an example of evolutionary tuning of structural dynamics impacting in vivo survival.
Collapse
|
48
|
Ordered and ushered; the assembly and translocation of the adhesive type I and p pili. BIOLOGY 2013; 2:841-60. [PMID: 24833049 PMCID: PMC3960871 DOI: 10.3390/biology2030841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022]
Abstract
Type I and P pili are chaperone-usher pili of uropathogenic Escherichia coli, which allow bacteria to adhere to host cell receptors. Pilus formation and secretion are orchestrated by two accessory proteins, a chaperone, which catalyses pilus subunit folding and maintains them in a polymerization-competent state, and an outer membrane-spanning nanomachine, the usher, which choreographs their assembly into a pilus and drives their secretion through the membrane. In this review, recent structures and kinetic studies are combined to examine the mechanism of type I and P pili assembly, as it is currently known. We also investigate how the knowledge of pilus biogenesis mechanisms has been exploited to design selective inhibitors of the process.
Collapse
|
49
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
50
|
Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA. Chaperone-usher fimbriae of Escherichia coli. PLoS One 2013; 8:e52835. [PMID: 23382825 PMCID: PMC3559732 DOI: 10.1371/journal.pone.0052835] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/22/2012] [Indexed: 11/29/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are adhesive surface organelles common to many Gram-negative bacteria. Escherichia coli genomes contain a large variety of characterised and putative CU fimbrial operons, however, the classification and annotation of individual loci remains problematic. Here we describe a classification model based on usher phylogeny and genomic locus position to categorise the CU fimbrial types of E. coli. Using the BLASTp algorithm, an iterative usher protein search was performed to identify CU fimbrial operons from 35 E. coli (and one Escherichia fergusonnii) genomes representing different pathogenic and phylogenic lineages, as well as 132 Escherichia spp. plasmids. A total of 458 CU fimbrial operons were identified, which represent 38 distinct fimbrial types based on genomic locus position and usher phylogeny. The majority of fimbrial operon types occupied a specific locus position on the E. coli chromosome; exceptions were associated with mobile genetic elements. A group of core-associated E. coli CU fimbriae were defined and include the Type 1, Yad, Yeh, Yfc, Mat, F9 and Ybg fimbriae. These genes were present as intact or disrupted operons at the same genetic locus in almost all genomes examined. Evaluation of the distribution and prevalence of CU fimbrial types among different pathogenic and phylogenic groups provides an overview of group specific fimbrial profiles and insight into the ancestry and evolution of CU fimbriae in E. coli.
Collapse
Affiliation(s)
- Daniël J. Wurpel
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicola K. Petty
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|