1
|
Singh SR, Bhaskar R, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Mladenov M, Hadzi-Petrushev N, Stojchevski R, Sinha JK, Avtanski D. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers (Basel) 2025; 17:1082. [PMID: 40227591 PMCID: PMC11988167 DOI: 10.3390/cancers17071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer is complex because of the critical imbalance in genetic regulation as characterized by both the overexpression of oncogenes (OGs), mainly through mutations, amplifications, and translocations, and the inactivation of tumor-suppressor genes (TSGs), which entail the preservation of genomic integrity by inducing apoptosis to counter the malignant growth. Reviewing the intricate molecular interplay between OGs and TSGs draws attention to their cell cycle, apoptosis, and cancer metabolism regulation. In the present review, we discuss seminal discoveries, such as Knudson's two-hit hypothesis, which framed the field's understanding of cancer genetics, leading to the next breakthroughs with next-generation sequencing and epigenetic profiling, revealing novel insights into OG and TSG dysregulation with opportunities for targeted therapy. The key pathways, such as MAPK/ERK, PI3K/AKT/mTOR, and Wnt/β-catenin, are presented in the context of tumor progression. Importantly, we further highlighted the advances in therapeutic strategies, including inhibitors of KRAS and MYC and restoration of TSG function, despite which mechanisms of resistance and tumor heterogeneity pose daunting challenges. A high-level understanding of interactions between OG-TSGs forms the basis for effective, personalized cancer treatment-something to strive for in better clinical outcomes. This synthesis should integrate foundational biology with translation and, in this case, contribute to the ongoing effort against cancer.
Collapse
Affiliation(s)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, India
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
2
|
Ali RH, Orellana EA, Lee SH, Chae YC, Chen Y, Clauwaert J, Kennedy AL, Gutierrez AE, Papke DJ, Valenzuela M, Silverman B, Falzetta A, Ficarro SB, Marto JA, Fletcher CDM, Perez-Atayde A, Alcindor T, Shimamura A, Prensner JR, Gregory RI, Gutierrez A. A methyltransferase-independent role for METTL1 in tRNA aminoacylation and oncogenic transformation. Mol Cell 2025; 85:948-961.e11. [PMID: 39892392 PMCID: PMC11925124 DOI: 10.1016/j.molcel.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Amplification of chromosomal material derived from 12q13-15 is common in human cancer and believed to result in overexpression of multiple collaborating oncogenes. To define the oncogenes involved, we overexpressed genes recurrently amplified in human liposarcoma using a zebrafish model of the disease. We found several genes whose overexpression collaborated with AKT in sarcomagenesis, including the tRNA methyltransferase METTL1. This was surprising, because AKT phosphorylates METTL1 to inactivate its enzymatic activity. Indeed, phosphomimetic S27D or catalytically dead alleles phenocopied the oncogenic activity of wild-type METTL1. We found that METTL1 binds the multi-tRNA synthetase complex, which contains many of the cellular aminoacyl-tRNA synthetases and promotes tRNA aminoacylation, polysome formation, and protein synthesis independent of its methyltransferase activity. METTL1-amplified liposarcomas were hypersensitive to actinomycin D, a clinical inhibitor of ribosome biogenesis. We propose that METTL1 overexpression promotes sarcomagenesis by stimulating tRNA aminoacylation, protein synthesis, and tumor cell growth independent of its methyltransferase activity.
Collapse
Affiliation(s)
- Raja H Ali
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Esteban A Orellana
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun-Cheol Chae
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yantao Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jim Clauwaert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley E Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mateo Valenzuela
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Brianna Silverman
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Amanda Falzetta
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Scott B Ficarro
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Thierry Alcindor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard I Gregory
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, MA, USA; Department of Molecular, Cell & Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Wang W, Du Y, Datta S, Fowler JF, Sang HT, Albadari N, Li W, Foster J, Zhang R. Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable? Genes Dis 2025; 12:101156. [PMID: 39802403 PMCID: PMC11719324 DOI: 10.1016/j.gendis.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2025] Open
Abstract
Targeting oncogenes and their interactive partners is an effective approach to developing novel targeted therapies for cancer and other chronic diseases. We and others have long suggested the MDM2 oncogene being an excellent target for cancer therapy, based on its p53-dependent and -independent oncogenic activities in a variety of cancers. The MYC family proteins are transcription factors that also regulate diverse biological functions. Dysregulation of MYC, such as amplification of MYCN, is associated with tumorigenesis, especially for neuroblastoma. Although the general survival rate of neuroblastoma patients has significantly improved over the past few decades, high-risk neuroblastoma still presents a poor prognosis. Therefore, innovative and more potent therapeutic strategies are needed to eradicate these aggressive neoplasms. This review focuses on the oncogenic properties of MYCN and its molecular regulation and summarizes the major therapeutic strategies being developed based on preclinical findings. We also highlight the potential benefits of targeting both the MYCN and MDM2 oncogenes, providing preclinical evidence of the efficacy and safety of this approach. In conclusion, the development of effective small molecules that inhibit both MYCN and MDM2 represents a promising new strategy for the treatment of neuroblastoma and other cancers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Josef F. Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Hannah T. Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Najah Albadari
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Foster
- Texas Children's Hospital, Department of Pediatrics, Section of Hematology-Oncology Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
4
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Zhang B, Zhang H, Qin Y. A Primer on the Role of TP53 Mutation and Targeted Therapy in Endometrial Cancer. FRONT BIOSCI-LANDMRK 2025; 30:25447. [PMID: 39862074 DOI: 10.31083/fbl25447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 01/27/2025]
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. TP53 mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME). The changes in the TME subsequently promote the development of tumors and assist in immune escape by tumor cells, making it more challenging to treat EC and resulting in a poor prognosis. Therefore, it is important to understand the effects of TP53 mutation in EC and to conduct further research in relation to the targeting of TP53 mutations. This article reviews current research progress on the role of TP53 mutations in regulating the TME and in the mechanism of EC tumorigenesis, as well as progress on drugs that target TP53 mutations.
Collapse
Affiliation(s)
- Bohao Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Haozhe Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| |
Collapse
|
6
|
Twarda-Clapa A. An update patent review of MDM2-p53 interaction inhibitors (2019-2023). Expert Opin Ther Pat 2024; 34:1177-1198. [PMID: 39435470 DOI: 10.1080/13543776.2024.2419836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION The activity of the major tumor suppressor protein p53 is disrupted in nearly all human cancer types, either by mutations in TP53 gene or by overexpression of its negative regulator, Mouse Double Minute 2 (MDM2). The release of p53 from MDM2 and its homolog MDM4 with inhibitors based on different chemistries opened up a prospect for a broad, non-genotoxic anticancer therapy. AREAS COVERED This article reviews the patents and patent applications between years 2019 and 2023 in the field of MDM2-p53 interaction inhibitors. The newly reported molecules searched in Espacenet, Google Patents, and PubMed were grouped into five general categories: compounds having single-ring, multi-ring, or spiro-oxindole scaffolds, peptide derivatives, and proteolysis-targeting chimeras (PROTACs). The article also presents the progress of MDM2 antagonists of various structures in recruiting or completed cancer clinical trials. EXPERT OPINION Despite 20 years of intensive studies after the discovery of the first-in-class small-molecule inhibitor, Nutlin-3, no drugs targeting MDM2-p53 interaction have reached the market. Nevertheless, more than 10 compounds are still being evaluated in clinics, both as standalone drugs and in combinations with other targeted therapies or standard chemotherapy agents, including two inhibitors in phase 3 studies and two compounds granted orphan-drug/fast-track designation by the FDA.
Collapse
Affiliation(s)
- Aleksandra Twarda-Clapa
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
7
|
Shi P, Sha Y, Wang X, Yang T, Wu J, Zhou J, Liu K, Guan X, Wang S, Liu Y, Gao J, Sun H, Ban T, Cao Y. Targeted Delivery and ROS-Responsive Release of Lutein Nanoassemblies Inhibit Myocardial Ischemia-Reperfusion Injury by Improving Mitochondrial Function. Int J Nanomedicine 2024; 19:11973-11996. [PMID: 39583319 PMCID: PMC11585303 DOI: 10.2147/ijn.s488532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Myocardial ischemia-reperfusion injury (MI/RI) is associated with increased oxidative damage and mitochondrial dysfunction, resulting in an elevated risk of mortality. MI/RI may be alleviated by protecting cardiomyocytes from oxidative stress. Lutein, which belongs to a class of carotenoids, has proven to be effective in cardiovascular disease treatment due to its remarkable antioxidant properties, but its application is limited due to its poor stability and low bioavailability in vivo. Methods In this study, a delivery system was developed based on distearoyl phosphatidyl ethanolamine (DSPE)-thiol-ketone (TK)-PEG2K (polyethylene glycol 2000) (abbreviated as DTP) and PCM-SH (CWLSEAGPVVTVRALRGTGSW) to deliver lutein (abbreviated as lutein@DTPP) to damaged myocardium. First, lutein, lutein@DTP, or lutein@DTPP were injected through the tail vein once a day for 3 days and then MI/RI model rats were established by exposing rats to ischemia for 45 min and reperfusion for 6 h. We employed a range of experimental techniques including qRT-PCR, Western blotting, transmission electron microscopy, immunohistochemistry, immunofluorescence, flow cytometry, immunoprecipitation, molecular docking, and molecular dynamics simulations. Results Lutein@DTPP exhibited good myocardial targeting and ROS-responsive release. Our data suggested that lutein@DTPP effectively suppresses ferroptosis in cardiomyocytes. Mechanistically, we observed an upregulation of mouse double minute-2 (MDM2) in the hearts of MI/RI models and cardiomyocytes exposed to hypoxia/reoxygenation (H/R) conditions. In addition, NADH-ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1) translocation from the cytosol to the mitochondria was inhibited by MDM2 upregulation. Notably, no significant variation in the total NDUFS1 expression was observed in H/R-exposed cardiomyocytes following treatment with siMDM2. Further study indicated that lutein facilitates the translocation of NDUFS1 from the cytosol to mitochondria by directly binding and sequestering MDM2, thereby improving mitochondrial function and inhibiting ferroptosis. Conclusion Lutein@DTPP promoted the mitochondrial translocation of NDUFS1 to restore mitochondrial function and inhibited the ferroptosis of cardiomyocytes by directly binding and sequestering MDM2.
Collapse
Affiliation(s)
- Pilong Shi
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yuetong Sha
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Xinran Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Tao Yang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jiawei Wu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jiajun Zhou
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Kai Liu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Xue Guan
- Morphological Experiment Center, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Song Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yongsheng Liu
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jingquan Gao
- Department of Nursing, School of Medicine, Lishui University, Lishui, People’s Republic of China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Tao Ban
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| |
Collapse
|
8
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
9
|
Huwaimel B, Younes KM, Abouzied AS, Elkashlan AM, Alheibshy FN, Alobaida A, Turki A, Alquwaiay SA, Alqahatani N, Alsuwayagh SA. Phytochemical composition, in vitro cytotoxicity, and in silico docking properties of Tamarix tetragyna L. Sci Rep 2024; 14:25462. [PMID: 39462121 PMCID: PMC11513052 DOI: 10.1038/s41598-024-73961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Tamarix tetragyna is a plant grows in Mediterranean area and some Arab countries. It possesses numerous medicinal values. Purpose of our study is to explore biological activity of tamarix tetragyna extracts of both leaves and stem with investigating their phytochemical composition. The investigated extracts' phyto-constituent composition was determined using gas chromatographic-mass spectrometric method. In addition, in vitro cytoxicity activity versus cancer cell lines such MCF-7, HepG-2, HCT-116, and A-549 was examined by MTT assay method, together with exploring its apoptosis effect by flow cytometry and western blot analysis techniques. Moreover, some phytochemical compounds were identified, and in-silico evaluated against anticancer molecular targets. Plant extracts showed good cytotoxic activity against both A-549 and HCT-116 cancer cell lines. With an IC50 value of 23.90 µg/ml that led to apoptosis and G2/M-phase arrest in A-549 cells, cytotoxicity data demonstrate leaves' extract effectiveness against these cells. Upon GC-MS analysis, it revealed presence of some bioactive components such as Stigmast-5-en-3-ol and 2-methoxy-4-vinyl phenol, which are known for their cytotoxic activity. Our findings suggest that methanolic extracts of Tamarix tetragyna parts may have potential therapeutic uses as anticancer against A-549 cells, which opens up further avenues for investigation into its industrial applications.
Collapse
Affiliation(s)
- Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail, 55473, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Akram M Elkashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Cairo, Egypt.
| | - Fawaz N Alheibshy
- Department of pharmaceutics, College of Pharmacy, University of Ha'il, Hail, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Aden University, 6075, Aden, Yemen
| | - Ahmed Alobaida
- Department of pharmaceutics, College of Pharmacy, University of Ha'il, Hail, Saudi Arabia
| | - Abdullah Turki
- College of Pharmacy, University of Ha'il, Hail, 81442, Saudi Arabia
| | | | - Naif Alqahatani
- College of Pharmacy, University of Ha'il, Hail, 81442, Saudi Arabia
| | | |
Collapse
|
10
|
Pang WK, Kuznetsova E, Holota H, De Haze A, Beaudoin C, Volle DH. Understanding the role of endocrine disrupting chemicals in testicular germ cell cancer: Insights into molecular mechanisms. Mol Aspects Med 2024; 99:101307. [PMID: 39213722 DOI: 10.1016/j.mam.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs). Evidence suggests that EDCs disrupt endocrine pathways and induce epigenetic changes that contribute to the development of TGCTs. However, the direct link between EDCs and TGCTs remains elusive and requires further investigation of the molecular mechanisms. We also highlighted the importance of studying nuclear receptors as potential targets for understanding TGCT etiology. In addition, recent evidence implicates PFAs/PFCs in TGCT incidence, highlighting the need for further research into their impact on human health. Overall, this review provides valuable insights into the potential role of EDCs in TGCT development and suggests avenues for future research, while also highlighting how understanding their influence may pave the way for novel therapeutic approaches to improve disease management.
Collapse
Affiliation(s)
- Won-Ki Pang
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| | - Ekaterina Kuznetsova
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
11
|
Ryu S, Nakashima H, Tanaka Y, Mukai R, Ishihara Y, Tominaga T, Ohshima T. Ribosomal Protein S4 X-Linked as a Novel Modulator of MDM2 Stability by Suppressing MDM2 Auto-Ubiquitination and SCF Complex-Mediated Ubiquitination. Biomolecules 2024; 14:885. [PMID: 39199272 PMCID: PMC11351588 DOI: 10.3390/biom14080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Mouse double minute 2 (MDM2) is an oncoprotein that is frequently overexpressed in tumors and enhances cellular transformation. Owing to the important role of MDM2 in modulating p53 function, it is crucial to understand the mechanism underlying the regulation of MDM2 levels. We identified ribosomal protein S4X-linked (RPS4X) as a novel binding partner of MDM2 and showed that RPS4X promotes MDM2 stability. RPS4X suppressed polyubiquitination of MDM2 by suppressing homodimer formation and preventing auto-ubiquitination. Moreover, RPS4X inhibited the interaction between MDM2 and Cullin1, a scaffold protein of the Skp1-Cullin1-F-box protein (SCF) complex and an E3 ubiquitin ligase for MDM2. RPS4X expression in cells enhanced the steady-state level of MDM2 protein. RPS4X was associated not only with MDM2 but also with Cullin1 and then blocked the MDM2/Cullin1 interaction. This is the first report of an interaction between ribosomal proteins (RPs) and Cullin1. Our results contribute to the elucidation of the MDM2 stabilization mechanism in cancer cells, expanding our understanding of the new functions of RPs.
Collapse
Affiliation(s)
- Satsuki Ryu
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Hiroki Nakashima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Yuka Tanaka
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101-1709, USA;
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan;
| | - Takashi Tominaga
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Takayuki Ohshima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| |
Collapse
|
12
|
Ntwasa M. Targeting Hdm2 and Hdm4 in Anticancer Drug Discovery: Implications for Checkpoint Inhibitor Immunotherapy. Cells 2024; 13:1124. [PMID: 38994976 PMCID: PMC11240505 DOI: 10.3390/cells13131124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Hdm2 and Hdm4 are structural homologs that regulate the tumor suppressor protein, p53. Since some tumors express wild-type p53, Hdm2 and Hdm4 are plausible targets for anticancer drugs, especially in tumors that express wild-type p53. Hdm4 can enhance and antagonize the activity of Tp53, thereby playing a critical role in the regulation of p53's activity and stability. Moreover, Hdm2 and Hdm4 are overexpressed in many cancers, some expressing wild-type Tp53. Due to experimental evidence suggesting that the activation of wild-type Tp53 can augment the antitumor activity by some checkpoint inhibitors, drugs targeting Hdm2 and Hdm4 may be strong candidates for combining with checkpoint inhibitor immunotherapy. However, other evidence suggests that the overexpression of Hdm2 and Hdm4 may indicate poor response to immune checkpoint inhibitors. These findings require careful examination and scrutiny. In this article, a comprehensive analysis of the Hdm2/Hdm4 partnership will be conducted. Furthermore, this article will address the current progress of drug development regarding molecules that target the Hdm2/Hdm4/Tp53 partnership.
Collapse
Affiliation(s)
- Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Cnr Pioneer Road and Christiaan de Wet Road, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
13
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Zhao B, Xia Z, Yang B, Guo Y, Zhou R, Gu M, Liu M, Li Q, Bai W, Huang J, Zhang X, Zhu C, Leung KT, Chen C, Dong J. USP7 promotes IgA class switching through stabilizing RUNX3 for germline transcription activation. Cell Rep 2024; 43:114194. [PMID: 38735043 DOI: 10.1016/j.celrep.2024.114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Class switch recombination (CSR) diversifies the effector functions of antibodies and involves complex regulation of transcription and DNA damage repair. Here, we show that the deubiquitinase USP7 promotes CSR to immunoglobulin A (IgA) and suppresses unscheduled IgG switching in mature B cells independent of its role in DNA damage repair, but through modulating switch region germline transcription. USP7 depletion impairs Sα transcription, leading to abnormal activation of Sγ germline transcription and increased interaction with the CSR center via loop extrusion for unscheduled IgG switching. Rescue of Sα transcription by transforming growth factor β (TGF-β) in USP7-deleted cells suppresses Sγ germline transcription and prevents loop extrusion toward IgG CSR. Mechanistically, USP7 protects transcription factor RUNX3 from ubiquitination-mediated degradation to promote Sα germline transcription. Our study provides evidence for active transcription serving as an anchor to impede loop extrusion and reveals a functional interplay between USP7 and TGF-β signaling in promoting RUNX3 expression for efficient IgA CSR.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhigang Xia
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Beibei Yang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yao Guo
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruizhi Zhou
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Mingyu Gu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Meiling Liu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qingcheng Li
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wanyu Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Junbin Huang
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xuefei Zhang
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Chengming Zhu
- Center for Scientific Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
15
|
Kavčič L, Ilc G, Wang B, Vlahoviček-Kahlina K, Jerić I, Plavec J. α-Hydrazino Acid Insertion Governs Peptide Organization in Solution by Local Structure Ordering. ACS OMEGA 2024; 9:22175-22185. [PMID: 38799301 PMCID: PMC11112695 DOI: 10.1021/acsomega.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
In this work, we have applied the concept of α-hydrazino acid insertion in a peptide sequence as a means of structurally organizing a potential protein-protein interactions (PPI) inhibitor. Hydrazino peptides characterized by the incorporation of an α-hydrazino acid at specific positions introduce an additional nitrogen atom into their backbone. This modification leads to a change in the electrostatic properties of the peptide and induces the restructuring of its hydrogen bonding network, resulting in conformational changes toward more stable structural motifs. Despite the successful use of synthetic hydrazino oligomers in binding to nucleic acids, the structural changes due to the incorporation of α-hydrazino acid into short natural peptides in solution are still poorly understood. Based on NMR data, we report structural models of p53-derived hydrazino peptides with elements of localized peptide structuring in the form of an α-, β-, or γ-turn as a result of hydrazino modification in the peptide backbone. The modifications could potentially lead to the preorganization of a helical secondary peptide structure in a solution that is favorable for binding to a biological receptor. Spectroscopically, we observed that the ensemble averaged rapidly interconverting conformations, including isomerization of the E-Z hydrazide bond. This further increases the adaptability by expanding the conformational space of hydrazine peptides as potential protein-protein interaction antagonists.
Collapse
Affiliation(s)
- Luka Kavčič
- Slovenian
NMR Centre, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Gregor Ilc
- Slovenian
NMR Centre, National Institute of Chemistry, Ljubljana 1000, Slovenia
- EN-FIST
Centre of Excellence, Ljubljana 1000, Slovenia
| | - Baifan Wang
- Slovenian
NMR Centre, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | | | - Ivanka Jerić
- Division
of Organic Chemistry and Biochemistry, Rudjer
Bošković Institute, Zagreb 10000, Croatia
| | - Janez Plavec
- Slovenian
NMR Centre, National Institute of Chemistry, Ljubljana 1000, Slovenia
- EN-FIST
Centre of Excellence, Ljubljana 1000, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
16
|
Pourebrahim R, Montoya RH, Akiyama H, Ostermann L, Khazaei S, Muftuoglu M, Baran N, Zhao R, Lesluyes T, Liu B, Khoury JD, Gagea M, Van Loo P, Andreeff M. Age-specific induction of mutant p53 drives clonal hematopoiesis and acute myeloid leukemia in adult mice. Cell Rep Med 2024; 5:101558. [PMID: 38733986 PMCID: PMC11148800 DOI: 10.1016/j.xcrm.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53. The second model mimics clonal hematopoiesis by inducing mutant p53 in adult hematopoietic stem cells, demonstrating that the timing of p53 mutation determines AML vs. lymphoma development. In this context, age-related changes in hematopoietic stem cells (HSCs) collaborate with mutant p53 to predispose toward myeloid transformation rather than lymphoma development. Our study unveils new insights into the cooperative impact of HSC age, Trp53 mutations, and Mdm2 haploinsufficiency on clonal hematopoiesis and the development of myeloid malignancies.
Collapse
Affiliation(s)
- Rasoul Pourebrahim
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Heinz Montoya
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroki Akiyama
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shayuan Khazaei
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muharrem Muftuoglu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ran Zhao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tom Lesluyes
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
18
|
Watanabe K, Zhao Q, Iwatsuki R, Fukui R, Ren W, Sugita Y, Nishida N. Deciphering the Multi-state Conformational Equilibrium of HDM2 in the Regulation of p53 Binding: Perspectives from Molecular Dynamics Simulation and NMR Analysis. J Am Chem Soc 2024; 146:9790-9800. [PMID: 38549219 DOI: 10.1021/jacs.3c14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Qingci Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryosuke Iwatsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryota Fukui
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Weitong Ren
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako 351-0918, Saitama, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako 351-0918, Saitama, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
19
|
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer 2024; 24:192-215. [PMID: 38287107 DOI: 10.1038/s41568-023-00658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.
Collapse
Affiliation(s)
- Sylvain Peuget
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Selivanova
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Dymerska D, Marusiak AA. Drivers of cancer metastasis - Arise early and remain present. Biochim Biophys Acta Rev Cancer 2024; 1879:189060. [PMID: 38151195 DOI: 10.1016/j.bbcan.2023.189060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Cancer and its metastases arise from mutations of genes, drivers that promote a tumor's growth. Analyses of driver events provide insights into cancer cell history and may lead to a better understanding of oncogenesis. We reviewed 27 metastatic research studies, including pan-cancer studies, individual cancer studies, and phylogenetic analyses, and summarized our current knowledge of metastatic drivers. All of the analyzed studies had a high level of consistency of driver mutations between primary tumors and metastasis, indicating that most drivers appear early in cancer progression and are maintained in metastatic cells. Additionally, we reviewed data from around 50,000 metastatic cancer patients and compiled a list of genes altered in metastatic lesions. We performed Gene Ontology analysis and confirmed that the most significantly enriched processes in metastatic lesions were the epigenetic regulation of gene expression, signal transduction, cell cycle, programmed cell death, DNA damage, hypoxia and EMT. In this review, we explore the most recent discoveries regarding genetic factors in the advancement of cancer, specifically those that drive metastasis.
Collapse
Affiliation(s)
- Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
21
|
Chen X, Luo Z, Hu Z, Sun D, He Y, Lu J, Chen L, Liu S. Discovery of potent thiazolidin-4-one sulfone derivatives for inhibition of proliferation of osteosarcoma in vitro and in vivo. Eur J Med Chem 2024; 266:116082. [PMID: 38232462 DOI: 10.1016/j.ejmech.2023.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Chemotherapy combining with surgical treatment has been the main strategy for osteosarcoma treatment in clinical. Due to unclear pathogenesis and unidentified drug targets, significant progress has not been made in the development of targeted drugs for osteosarcoma during the past 50 years. Our previous discovery reported compound R-8i with a high potency for the treatment of osteosarcoma by phenotypic screening. However, both the metabolic stability and bioavailability of R-8i are poor (T1/2 = 5.36 min, mouse liver microsome; and bioavailability in vivo F = 52.1 %, intraperitoneal administration) which limits it use for further drug development. Here, we described an extensive structure-activity relationship study of thiazolidine-4-one sulfone inhibitors from R-8i, which led to the discovery of compound 68. Compound 68 had a potent cellular activity with an IC50 value of 0.217 μM, much higher half-life (T1/2 = 73.8 min, mouse liver microsome) and an excellent pharmacokinetic profile (in vivo bioavailability F = 115 %, intraperitoneal administration). Compound 68 also showed good antitumor effects and low toxicity in a xenograft model (44.6 % inhibition osteosarcoma growth in BALB/c mice). These results suggest that compound 68 is a potential drug candidate for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhengli Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zongjing Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Donghui Sun
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yingying He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
22
|
Lavernia J, Claramunt R, Romero I, López-Guerrero JA, Llombart-Bosch A, Machado I. Soft Tissue Sarcomas with Chromosomal Alterations in the 12q13-15 Region: Differential Diagnosis and Therapeutic Implications. Cancers (Basel) 2024; 16:432. [PMID: 38275873 PMCID: PMC10814159 DOI: 10.3390/cancers16020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The chromosomal region 12q13-15 is rich in oncogenes and contains several genes involved in the pathogenesis of various mesenchymal neoplasms. Notable genes in this region include MDM2, CDK4, STAT6, DDIT3, and GLI1. Amplification of MDM2 and CDK4 genes can be detected in various mesenchymal and nonmesenchymal neoplasms. Therefore, gene amplification alone is not entirely specific for making a definitive diagnosis and requires the integration of clinical, radiological, morphological, and immunohistochemical findings. Neoplasms with GLI1 alterations may exhibit either GLI1 rearrangements or amplifications of this gene. Despite the diagnostic implications that the overlap of genetic alterations in neoplasms with changes in genes within the 12q13-15 region could create, the discovery of coamplifications of MDM2 with CDK4 and GLI1 offers new therapeutic targets in neoplasms with MDM2/CDK4 amplification. Lastly, it is worth noting that MDM2 or CDK4 amplification is not exclusive to mesenchymal neoplasms; this genetic alteration has also been observed in other epithelial neoplasms or melanomas. This suggests the potential use of MDM2 or CDK4 inhibitors in neoplasms where alterations in these genes do not aid the pathological diagnosis but may help identify potential therapeutic targets. In this review, we delve into the diagnosis and therapeutic implications of tumors with genetic alterations involving the chromosomal region 12q13-15, mainly MDM2, CDK4, and GLI1.
Collapse
Affiliation(s)
- Javier Lavernia
- Oncology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Reyes Claramunt
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.C.); (J.A.L.-G.)
| | - Ignacio Romero
- Oncology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - José Antonio López-Guerrero
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.C.); (J.A.L.-G.)
| | | | - Isidro Machado
- Pathology Department, University of Valencia, 46010 Valencia, Spain;
- Pathology Department, Instituto Valenciano de Oncología, 46010 Valencia, Spain
- CIBERONC Cancer, 28029 Madrid, Spain
- Patologika Laboratory, Hospital Quiron-Salud, 46010 Valencia, Spain
| |
Collapse
|
23
|
Mehri A, Mahnam K, Sirous H, Aghaei M, Rafiei L, Rostami M. Dihydropyrimidine derivatives as MDM2 inhibitors. Chem Biol Drug Des 2024; 103:e14399. [PMID: 38011915 DOI: 10.1111/cbdd.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
One of the chief pathways to regulate p53 levels is MDM2 protein, which negatively controls p53 by direct inhibition. Many cancers overproduce MDM2 protein to interrupt p53 functions. Therefore, impeding MDM2's binding to p53 can reactivate p53 in tumor cells may suggest an effective approach for tumor therapy. Here, some Monastrol derivatives were designed in silico as MDM2 inhibitors, and their initial cytotoxicity was evaluated in vitro on MFC-7 and MDA-MB-231 cells. A small library of Monastrol derivatives was created, and virtual screening (VS) was performed on them. The first-ranked compound, which was extracted from VS, and the other six compounds 5a-5f were selected to carry out the single-docking and docking with explicit waters. The compound with the best average results was then subjected to molecular dynamic (MD) simulation. Compounds 5a-5f were chemically synthesized and evaluated in vitro for their initial cytotoxicity on MFC-7 and MDA-MB-231 cells by MTT assay. The best compound was compound 5d with ΔGave = -10.35 kcal/mol. MD simulation revealed a median potency in comparison with Nutlin-3a. The MTT assay confirmed the docking and MD experiments. 5d has an IC50 of 60.09 μM on MCF-7 cells. We attempted to use Monastrol scaffold as a potent inhibitor of MDM2 rather than an Eg5 inhibitor using in silico modification. The results obtained from the in silico and in vitro evaluations were noteworthy and warranted much more effort in the future.
Collapse
Affiliation(s)
- Ali Mehri
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Leila Rafiei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
24
|
Abdullazade S, Behrens HM, Krüger S, Haag J, Röcken C. MDM2 amplification is rare in gastric cancer. Virchows Arch 2023; 483:795-807. [PMID: 37821635 DOI: 10.1007/s00428-023-03674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The MDM2 proto-oncogene (MDM2) is a primary negative regulator of p53. The latter is frequently mutated in gastric cancer (GC). In the present study, we aimed to validate gene amplification, protein expression, and the putative tumor biological function of MDM2 in a well-characterized Western GC cohort. MDM2 amplification and protein expression were studied in a cohort of 327 GCs by fluorescence in situ hybridization (FISH) and immunohistochemistry. Gene amplification and protein expression were correlated with diverse clinicopathological patient characteristics including patient outcome. Immunohistochemically, 97 GCs (29.7%) were categorized as MDM2 positive and 230 GCs (70.3%) as negative. An amplification of MDM2 was found in 11 (3.4%) cases without evidence of intratumoral heterogeneity. Nine of these eleven (81.8%) cases showed MDM2 protein expression. MDM2 amplification correlated significantly with MDM2 protein expression (p < 0.001). On a case-by-case analysis, MDM2-amplified cases showed varied histological phenotypes and were most commonly microsatellite stable; EBV, HER2, and MET negative; and FGFR2 positive. A single case harbored both, MDM2 amplification and TP53 mutation. MDM2 amplification and MDM2 expression, respectively, did not correlate with overall or tumor-specific survival. Our targeted analysis of MDM2 in a well-characterized cohort of GC patients showed that MDM2 amplification is rare, of no specific histological phenotype, and may not be always mutually exclusive with TP53 mutations. Given the low number of cases, currently, no diagnostic or therapeutic recommendation related to MDM2 amplification can be given for GC of Western origin.
Collapse
Affiliation(s)
- Samir Abdullazade
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany
| | - Hans-Michael Behrens
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany
| | - Sandra Krüger
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany
| | - Jochen Haag
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany
| | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany.
| |
Collapse
|
25
|
Li F, Chen D, Sun Q, Wu J, Gan Y, Leong KW, Liang XJ. MDM2-Targeting Reassembly Peptide (TRAP) Nanoparticles for p53-Based Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305164. [PMID: 37474204 DOI: 10.1002/adma.202305164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Gene mutations and functional inhibition are the major obstacles for p53-mediated oncotherapy. For p53-wild-type tumors, the underlying mechanisms of functional inhibition of p53 during oncogenesis are unknown. The results reveal that the expression of the MDM2 inhibitor ARF is inhibited in p53-wild-type tumors, indicating that the restoration of ARF could be a potential oncotherapy strategy for p53-wild-type tumors. Therefore, ARF-mimetic MDM2-targeting reassembly peptide nanoparticles (MtrapNPs) for p53-based tumor therapy is developed. The results elucidated that the MtrapNPs respond to and form a nanofiber structure with MDM2. By trapping MDM2, the MtrapNPs stabilize and activate p53 for the inhibition of p53-wild-type tumors. In most cases, reactivated mutant p53 is inhibited and degraded by MDM2. In the present study, MtrapNPs are used to load and deliver arsenic trioxide, a p53 mutation rescuer, for p53-mutated tumor treatment in both orthotopic and metastatic models, and they exhibit significant therapeutic effects. Therefore, the study provides evidence supporting a link between decreased ARF expression and tumor development in patients with p53-wild-type tumors. Thus, the MDM2-trap strategy, which addresses both the inhibition and mutations of p53, is an efficient strategy for the treatment of p53-mutated tumors.
Collapse
Affiliation(s)
- Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Delin Chen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10033, USA
| | - Qianqian Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P. R. China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yaling Gan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, 10032, United States
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
27
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
28
|
Shoaib TH, Abdelmoniem N, Mukhtar RM, Alqhtani AT, Alalawi AL, Alawaji R, Althubyani MS, Mohamed SGA, Mohamed GA, Ibrahim SRM, Hussein HGA, Alzain AA. Molecular Docking and Molecular Dynamics Studies Reveal the Anticancer Potential of Medicinal-Plant-Derived Lignans as MDM2-P53 Interaction Inhibitors. Molecules 2023; 28:6665. [PMID: 37764441 PMCID: PMC10536213 DOI: 10.3390/molecules28186665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the tumor suppressor protein p53 and its negative regulator, the MDM2 oncogenic protein, has gained significant attention in cancer drug discovery. In this study, 120 lignans reported from Ferula sinkiangensis and Justicia procumbens were assessed for docking simulations on the active pocket of the MDM2 crystal structure bound to Nutlin-3a. The docking analysis identified nine compounds with higher docking scores than the co-crystallized reference. Subsequent AMDET profiling revealed satisfactory pharmacokinetic and safety parameters for these natural products. Three compounds, namely, justin A, 6-hydroxy justicidin A, and 6'-hydroxy justicidin B, were selected for further investigation due to their strong binding affinities of -7.526 kcal/mol, -7.438 kcal/mol, and -7.240 kcal/mol, respectively, which surpassed the binding affinity of the reference inhibitor Nutlin-3a (-6.830 kcal/mol). To assess the stability and reliability of the binding of the candidate hits, a molecular dynamics simulation was performed over a duration of 100 ns. Remarkably, the thorough analysis demonstrated that all the hits exhibited stable molecular dynamics profiles. Based on their effective binding to MDM2, favorable pharmacokinetic properties, and molecular dynamics behavior, these compounds represent a promising starting point for further refinement. Nevertheless, it is essential to synthesize the suggested compounds and evaluate their activity through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Tagyedeen H. Shoaib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Nihal Abdelmoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Rua M. Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Amal Th. Alqhtani
- Pharmaceutical Care Services, Madinah Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (A.T.A.); (M.S.A.)
| | - Abdullah L. Alalawi
- Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Razan Alawaji
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
| | - Mashael S. Althubyani
- Pharmaceutical Care Services, Madinah Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (A.T.A.); (M.S.A.)
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hazem G. A. Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| |
Collapse
|
29
|
Zhai F, Wang J, Luo X, Ye M, Jin X. Roles of NOLC1 in cancers and viral infection. J Cancer Res Clin Oncol 2023; 149:10593-10608. [PMID: 37296317 DOI: 10.1007/s00432-023-04934-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nucleolus is considered the center of metabolic control and an important organelle for the biogenesis of ribosomal RNA (rRNA). Nucleolar and coiled-body phosphoprotein 1(NOLC1), which was originally identified as a nuclear localization signal-binding protein is a nucleolar protein responsible for nucleolus construction and rRNA synthesis, as well as chaperone shuttling between the nucleolus and cytoplasm. NOLC1 plays an important role in a variety of cellular life activities, including ribosome biosynthesis, DNA replication, transcription regulation, RNA processing, cell cycle regulation, apoptosis, and cell regeneration. PURPOSE In this review, we introduce the structure and function of NOLC1. Then we elaborate its upstream post-translational modification and downstream regulation. Meanwhile, we describe its role in cancer development and viral infection which provide a direction for future clinical applications. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION NOLC1 plays an important role in the progression of multiple cancers and viral infection. In-depth study of NOLC1 provides a new perspective for accurate diagnosis of patients and selection of therapeutic targets.
Collapse
Affiliation(s)
- Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
30
|
Cho H, Song I, Jo U, Jeong J, Koo HJ, Yang DH, Jung S, Song JS, Cho K. Primary cardiac sarcomas: A clinicopathologic study in a single institution with 25 years of experience with an emphasis on MDM2 expression and adjuvant therapy for prognosis. Cancer Med 2023; 12:16815-16828. [PMID: 37395142 PMCID: PMC10501235 DOI: 10.1002/cam4.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Primary cardiac sarcomas are rare and their clinicopathologic features are heterogeneous. Among them, particularly intimal sarcoma is a diagnostic challenge due to nonspecific histologic features. Recently, MDM2 amplification reported to be a characteristic genetic event in the intimal sarcoma. In this study, we aimed to identify the types and incidence of primary cardiac sarcomas that occurred over 25 years in tertiary medical institutions, and to find clinicopatholgical significance through reclassification of diagnoses using additional immunohistochemistry (IHC). METHODS We reviewed the primary cardiac sarcoma cases between January 1993 and June 2018 at Asan Medical Center, South Korea, with their clinicopathologic findings, and reclassified the subtypes, especially using IHC for MDM2 and then, analyzed the significance of prognosis. RESULTS Forty-eight (6.8%) cases of a primary cardiac sarcoma were retrieved. The tumors most frequently involved the right atrium (n = 25, 52.1%), and the most frequent tumor subtype was angiosarcoma (n = 23, 47.9%). Seven cases (53.8%) were newly reclassified as an intimal sarcoma by IHC for MDM2. Twenty-nine (60.4%) patients died of disease (mean, 19.8 months). Four patients underwent a heart transplantation and had a median survival of 26.8 months. This transplantation group tended to show good clinical outcomes in the earlier stages, but this was not statistically significant (p = 0.318). MDM2 positive intimal sarcoma showed the better overall survival (p = 0.003) than undifferentiated pleomorphic sarcoma. Adjuvant treatment is beneficial for patient survival (p < 0.001), particularly in angiosarcoma (p < 0.001), but not in intimal sarcoma (p = 0.154). CONCLUSION Our study supports the use of adjuvant treatment in primary cardiac sarcoma, as it was associated with a significantly better overall survival rate. Further consideration of tumor histology may be important in determining the optimal use of adjuvant treatment for different types of sarcomas. Therefore, accurate diagnosis by MDM2 test is important condsidering patient's prognosis and treatment.
Collapse
Affiliation(s)
- Haeyon Cho
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - In‐Hye Song
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Uiree Jo
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Ji‐Seon Jeong
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Hyun Jung Koo
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Sung‐Ho Jung
- Department of Thoracic and Cardiovascular SurgeryUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Joon Seon Song
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Kyung‐Ja Cho
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| |
Collapse
|
31
|
Bevill SM, Casaní-Galdón S, El Farran CA, Cytrynbaum EG, Macias KA, Oldeman SE, Oliveira KJ, Moore MM, Hegazi E, Adriaens C, Najm FJ, Demetri GD, Cohen S, Mullen JT, Riggi N, Johnstone SE, Bernstein BE. Impact of supraphysiologic MDM2 expression on chromatin networks and therapeutic responses in sarcoma. CELL GENOMICS 2023; 3:100321. [PMID: 37492096 PMCID: PMC10363746 DOI: 10.1016/j.xgen.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 07/27/2023]
Abstract
Amplification of MDM2 on supernumerary chromosomes is a common mechanism of P53 inactivation across tumors. Here, we investigated the impact of MDM2 overexpression on chromatin, gene expression, and cellular phenotypes in liposarcoma. Three independent regulatory circuits predominate in aggressive, dedifferentiated tumors. RUNX and AP-1 family transcription factors bind mesenchymal gene enhancers. P53 and MDM2 co-occupy enhancers and promoters associated with P53 signaling. When highly expressed, MDM2 also binds thousands of P53-independent growth and stress response genes, whose promoters engage in multi-way topological interactions. Overexpressed MDM2 concentrates within nuclear foci that co-localize with PML and YY1 and could also contribute to P53-independent phenotypes associated with supraphysiologic MDM2. Importantly, we observe striking cell-to-cell variability in MDM2 copy number and expression in tumors and models. Whereas liposarcoma cells are generally sensitive to MDM2 inhibitors and their combination with pro-apoptotic drugs, MDM2-high cells tolerate them and may underlie the poor clinical efficacy of these agents.
Collapse
Affiliation(s)
- Samantha M. Bevill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Chadi A. El Farran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Eli G. Cytrynbaum
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin A. Macias
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvie E. Oldeman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kayla J. Oliveira
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Molly M. Moore
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Esmat Hegazi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Carmen Adriaens
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Fadi J. Najm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - George D. Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sonia Cohen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John T. Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicolò Riggi
- Department of Cell and Tissue Genomics (CTG), Genentech Inc, South San Francisco, CA 94080, USA
| | - Sarah E. Johnstone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bradley E. Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Albadari N, Xie Y, Liu T, Wang R, Gu L, Zhou M, Wu Z, Li W. Synthesis and biological evaluation of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold. Eur J Med Chem 2023; 255:115423. [PMID: 37130471 PMCID: PMC10246915 DOI: 10.1016/j.ejmech.2023.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Overexpression of both human murine double minute 2 (MDM2) and X-linked inhibitor of apoptosis protein (XIAP) is detected in tumor cells from several cancer types, including childhood acute leukemia lymphoma (ALL), neuroblastoma (NB), and prostate cancer, and is associated with disease progression and treatment resistance. In this report, we described the design and syntheses of a series of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold from our previously reported lead compound JW-2-107 and tested their cytotoxicity in a panel of human cancer cell lines. The best compound identified in this study is compound 3e. Western blot analyses demonstrated that treatments with 3e decreased MDM2 and XIAP protein levels and increased expression of p53, resulting in cancer cell growth inhibition and cell death. Furthermore, compound 3e effectively inhibited tumor growth in vivo when tested using a human 22Rv1 prostate cancer xenograft model. Collectively, results in this study strongly suggest that the tetrahydroquinoline scaffold, represented by 3e and our earlier lead compound JW-2-107, has abilities to dual target MDM2 and XIAP and is promising for further preclinical development.
Collapse
Affiliation(s)
- Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Yang Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Rui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| |
Collapse
|
33
|
Sun SY, Crago A. MDM2 Implications for Potential Molecular Pathogenic Therapies of Soft-Tissue Tumors. J Clin Med 2023; 12:3638. [PMID: 37297833 PMCID: PMC10253559 DOI: 10.3390/jcm12113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Murine double minute 2 (MDM2, gene name MDM2) is an oncogene that mainly codes for a protein that acts as an E3 ubiquitin ligase, which targets the tumor suppressor protein p53 for degradation. Overexpression of MDM2 regulates the p53 protein levels by binding to it and promoting its degradation by the 26S proteasome. This leads to the inhibition of p53's ability to regulate cell cycle progression and apoptosis, allowing for uncontrolled cell growth, and can contribute to the development of soft-tissue tumors. The application of cellular stress leads to changes in the binding of MDM2 to p53, which prevents MDM2 from degrading p53. This results in an increase in p53 levels, which triggers either cell cycle arrest or apoptosis. Inhibiting the function of MDM2 has been identified as a potential therapeutic strategy for treating these types of tumors. By blocking the activity of MDM2, p53 function can be restored, potentially leading to tumor cell death and inhibiting the growth of tumors. However, further research is needed to fully understand the implications of MDM2 inhibition for the treatment of soft-tissue tumors and to determine the safety and efficacy of these therapies in clinical trials. An overview of key milestones and potential uses of MDM2 research is presented in this review.
Collapse
Affiliation(s)
- Sylvia Yao Sun
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, 417 E 618 St, New York, NY 10065, USA
| | - Aimee Crago
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Surgery, Weill Cornell Medical Center, 525 E 68th St M 404, New York, NY 10065, USA
| |
Collapse
|
34
|
Wang C, Zhu M, Long X, Wang Q, Wang Z, Ouyang G. Design, Synthesis and Antitumor Activity of 1 H-indazole-3-amine Derivatives. Int J Mol Sci 2023; 24:ijms24108686. [PMID: 37240028 DOI: 10.3390/ijms24108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A series of indazole derivatives were designed and synthesized by molecular hybridization strategy, and these compounds were evaluated the inhibitory activities against human cancer cell lines of lung (A549), chronic myeloid leukemia (K562), prostate (PC-3), and hepatoma (Hep-G2) by methyl thiazolyl tetrazolium (MTT) colorimetric assay. Among these, compound 6o exhibited a promising inhibitory effect against the K562 cell line with the IC50 (50% inhibition concentration) value of 5.15 µM, and this compound showed great selectivity for normal cell (HEK-293, IC50 = 33.2 µM). Moreover, compound 6o was confirmed to affect apoptosis and cell cycle possibly by inhibiting Bcl2 family members and the p53/MDM2 pathway in a concentration-dependent manner. Overall, this study indicates that compound 6o could be a promising scaffold to develop an effective and low-toxic anticancer agent.
Collapse
Affiliation(s)
- Congyu Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Mei Zhu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xuesha Long
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Qin Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Zhenchao Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guiping Ouyang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
35
|
Islam MS, Al-Majid AM, Sholkamy EN, Barakat A, Viale M, Menichini P, Speciale A, Loiacono F, Azam M, Verma VP, Yousuf S, Teleb M. Optimized spirooxindole-pyrazole hybrids targeting the p53-MDM2 interplay induce apoptosis and synergize with doxorubicin in A549 cells. Sci Rep 2023; 13:7441. [PMID: 37156796 PMCID: PMC10167355 DOI: 10.1038/s41598-023-31209-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/08/2023] [Indexed: 05/10/2023] Open
Abstract
Recently, cancer research protocols have introduced clinical-stage spirooxindole-based MDM2 inhibitors. However, several studies reported tumor resistance to the treatment. This directed efforts to invest in designing various combinatorial libraries of spirooxindoles. Herein, we introduce new series of spirooxindoles via hybridization of the chemically stable core spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one and the pyrazole motif inspired by lead pyrazole-based p53 activators, the MDM2 inhibitor BI-0252 and promising molecules previously reported by our group. Single crystal X-ray diffraction analysis confirmed the chemical identity of a representative derivative. Fifteen derivatives were screened for cytotoxic activities via MTT assay against a panel of four cancer cell lines expressing wild-type p53 (A2780, A549, HepG2) and mutant p53 (MDA-MB-453). The hits were 8h against A2780 (IC50 = 10.3 µM) and HepG2 (IC50 = 18.6 µM), 8m against A549 (IC50 = 17.7 µM), and 8k against MDA-MB-453 (IC50 = 21.4 µM). Further MTT experiments showed that 8h and 8j potentiated doxorubicin activity and reduced its IC50 by at least 25% in combinations. Western blot analysis demonstrated that 8k and 8m downmodulated MDM2 in A549 cells. Their possible binding mode with MDM2 were simulated by docking analysis.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Essam Nageh Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Paola Menichini
- U.O.C. Mutagenesi e Prevenzione Oncologica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Andrea Speciale
- U.O.C. Mutagenesi e Prevenzione Oncologica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Fabrizio Loiacono
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
36
|
Cui J, Wang Y, Li X, Xiao F, Ren H, Wu M. Synthesis and Antineoplastic Activity of a Dimer, Spiroindolinone Pyrrolidinecarboxamide. Molecules 2023; 28:molecules28093912. [PMID: 37175323 PMCID: PMC10180320 DOI: 10.3390/molecules28093912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The mutation or function loss of tumour suppressor p53 plays an important role in abnormal cell proliferation and cancer generation. Murine Double Minute 2 (MDM2) is one of the key negative regulators of p53. p53 reactivation by inhibiting MDM2-p53 interaction represents a promising therapeutic option in cancer treatment. Here, to develop more effective MDM2 inhibitors with lower off-target toxicities, we synthesized a dimer, spiroindolinone pyrrolidinecarboxamide XR-4, with potent MDM2-p53 inhibition activity. Western blotting and qRT-PCR were performed to detect the impact of XR-4 on MDM2 and p53 protein levels and p53 downstream target gene levels in different cancers. Cancer cell proliferation inhibition and clonogenic activity were also investigated via the CCK8 assay and colony formation assay. A subcutaneous 22Rv1-derived xenografts mice model was used to investigate the in vivo anti-tumour activity of XR-4. The results reveal that XR-4 can induce wild-type p53 accumulation in cancer cells, upregulate the levels of the p53 target genes p21 and PUMA levels, and then inhibit cancer cell proliferation and induce cell apoptosis. XR-4 can also act as a homo-PROTAC that induces MDM2 protein degradation. Meanwhile, the in vivo study results show that XR-4 possesses potent antitumour efficacy and a favourable safety property. In summary, XR-4 is an interesting spiroindolinone pyrrolidinecarboxamide-derivative dimer with effective p53 activation activity and a cancer inhibition ability.
Collapse
Affiliation(s)
- Jingyi Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan Santiao, Beijing 100730, China
| | - Yujie Wang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoxin Li
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan Santiao, Beijing 100730, China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, China
| | - Meng Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
37
|
Menon AA, Deshpande V, Suster D. MDM2 for the practicing pathologist: a primer. J Clin Pathol 2023; 76:285-290. [PMID: 36898827 DOI: 10.1136/jcp-2022-208687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
The mouse double minute 2 (MDM2) gene is located on the long arm of chromosome 12 and is the primary negative regulator of p53. The MDM2 gene encodes an E3 ubiquitin-protein ligase that mediates the ubiquitination of p53, leading to its degradation. MDM2 enhances tumour formation by inactivating the p53 tumour suppressor protein. The MDM2 gene also has many p53-independent functions. Alterations of MDM2 may occur through various mechanisms and contribute to the pathogenesis of many human tumours and some non-neoplastic diseases. Detection of MDM2 amplification is used in the clinical practice setting to help diagnose multiple tumour types, including lipomatous neoplasms, low-grade osteosarcomas and intimal sarcoma, among others. It is generally a marker of adverse prognosis, and MDM2-targeted therapies are currently in clinical trials. This article provides a concise overview of the MDM2 gene and discusses practical diagnostic applications pertaining to human tumour biology.
Collapse
Affiliation(s)
- Aswathy Ashok Menon
- Department of Pathology, Neuberg Anand Reference Laboratory, Bengaluru, Karnataka, India
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Suster
- Department of Pathology, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
38
|
Sousa A, Dugourd A, Memon D, Petursson B, Petsalaki E, Saez‐Rodriguez J, Beltrao P. Pan-Cancer landscape of protein activities identifies drivers of signalling dysregulation and patient survival. Mol Syst Biol 2023; 19:e10631. [PMID: 36688815 PMCID: PMC9996241 DOI: 10.15252/msb.202110631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Genetic alterations in cancer cells trigger oncogenic transformation, a process largely mediated by the dysregulation of kinase and transcription factor (TF) activities. While the mutational profiles of thousands of tumours have been extensively characterised, the measurements of protein activities have been technically limited until recently. We compiled public data of matched genomics and (phospho)proteomics measurements for 1,110 tumours and 77 cell lines that we used to estimate activity changes in 218 kinases and 292 TFs. Co-regulation of kinase and TF activities reflects previously known regulatory relationships and allows us to dissect genetic drivers of signalling changes in cancer. We find that loss-of-function mutations are not often associated with the dysregulation of downstream targets, suggesting frequent compensatory mechanisms. Finally, we identified the activities most differentially regulated in cancer subtypes and showed how these can be linked to differences in patient survival. Our results provide broad insights into the dysregulation of protein activities in cancer and their contribution to disease severity.
Collapse
Affiliation(s)
- Abel Sousa
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3s)PortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA)Abel Salazar Biomedical Sciences Institute, University of PortoPortoPortugal
| | - Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
- Faculty of MedicineInstitute of Experimental Medicine and Systems Biology, RWTH Aachen UniversityAachenGermany
| | - Danish Memon
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Borgthor Petursson
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
| | - Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
39
|
Expression and Clinical Significance of MDM2 in Non-Functioning PitNETs. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020373. [PMID: 36837574 PMCID: PMC9963423 DOI: 10.3390/medicina59020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Background and Objective: Non-functioning pituitary neuroendocrine tumors (NF-PitNETs) represent a heterogeneous tumor type that lacks effective medical treatment. MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. In this study, we measured the expression levels and role of MDM2 in non-functioning PitNET patients' combined clinical features and investigated the effect of etoposide on the cell bioactivity of the GT1-1 cell line in vivo and in vitro. Methods: RT-PCR and immunochemistry measured the expression levels and role of MDM2 in 103 NF-PitNET patients' combined clinical features. Cell proliferation, migration, colony and apoptosis experiments measured the effect of etoposide on the GT1-1 cell line in vivo and in vitro. Results: There was more invasive behavior (p = 0.013) in patients with high MDM2, who were also younger (p = 0.007), were more frequently female (p = 0.049) and had larger tumor sizes (p = 0.018) compared with patients with low MDM2. Patients with high p53 were younger (p = 0.017) and had larger tumor sizes (p = 0.034) compared with patients with low p53. Univariate (p = 0.018) and multivariate (p = 0.023) Cox regression analysis showed that MDM2 was the independent factor for invasive behavior in NF-PitNET patients. Log-rank analysis showed that the average progression-free survival (PFS) time in the low MDM2 patients was longer than that in the high MDM2 patients (p = 0.044). Functional studies indicated that etoposide inhibited cell proliferation and cell migration and induced apoptosis in p53 independence in GT1-1 cells. Furthermore, etoposide significantly inhibited the growth of GT1-1-xenograft in BALB/c nude mice. The tumor growth inhibition rate of etoposide was 67.4 ± 4.6% after 14 d of treatment, which suggested the anti-tumor activity of etoposide. Conclusions: MDM2 played the role of tumorigenesis of NF-PitNET in a p53 independence manner, and an MDM2 inhibitor could be a potential choice for the treatment of NF-PitNET patients.
Collapse
|
40
|
Ivanenkov YA, Kukushkin ME, Beloglazkina AA, Shafikov RR, Barashkin AA, Ayginin AA, Serebryakova MS, Majouga AG, Skvortsov DA, Tafeenko VA, Beloglazkina EK. Synthesis and Biological Evaluation of Novel Dispiro-Indolinones with Anticancer Activity. Molecules 2023; 28:molecules28031325. [PMID: 36770991 PMCID: PMC9919490 DOI: 10.3390/molecules28031325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Novel variously substituted thiohydantoin-based dispiro-indolinones were prepared using a regio- and diastereoselective synthetic route from 5-arylidene-2-thiohydantoins, isatines, and sarcosine. The obtained molecules were subsequently evaluated in vitro against the cancer cell lines LNCaP, PC3, HCTwt, and HCT(-/-). Several compounds demonstrated a relatively high cytotoxic activity vs. LNCaP cells (IC50 = 1.2-3.5 µM) and a reasonable selectivity index (SI = 3-10). Confocal microscopy revealed that the conjugate of propargyl-substituted dispiro-indolinone with the fluorescent dye Sulfo-Cy5-azide was mainly localized in the cytoplasm of HEK293 cells. P388-inoculated mice and HCT116-xenograft BALB/c nude mice were used to evaluate the anticancer activity of compound 29 in vivo. Particularly, the TGRI value for the P388 model was 93% at the final control timepoint. No mortality was registered among the population up to day 31 of the study. In the HCT116 xenograft model, the compound (170 mg/kg, i.p., o.d., 10 days) provided a T/C ratio close to 60% on day 8 after the treatment was completed. The therapeutic index-estimated as LD50/ED50-for compound 29 in mice was ≥2.5. Molecular docking studies were carried out to predict the possible binding modes of the examined molecules towards MDM2 as the feasible biological target. However, such a mechanism was not confirmed by Western blot data and, apparently, the synthesized compounds have a different mechanism of cytotoxic action.
Collapse
Affiliation(s)
- Yan A. Ivanenkov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute (VNIIA), 22. ul. Sushchevskaya, 127055 Moscow, Russia
| | - Maxim E. Kukushkin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | | | - Radik R. Shafikov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, GSP-7, Ulitsa Mklukho-Maklaya 16/10, 17997 Moscow, Russia
- A. N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia
| | - Alexander A. Barashkin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Andrey A. Ayginin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Marina S. Serebryakova
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexander G. Majouga
- College of New Materials and Nanotechnologies, National University of Science and Technology MISiS, 119049 Moscow, Russia
| | - Dmitry A. Skvortsov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Viktor A. Tafeenko
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
41
|
Splicing Modulation Results in Aberrant Isoforms and Protein Products of p53 Pathway Genes and the Sensitization of B Cells to Non-Genotoxic MDM2 Inhibition. Int J Mol Sci 2023; 24:ijms24032410. [PMID: 36768733 PMCID: PMC9916657 DOI: 10.3390/ijms24032410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Several molecular subtypes of cancer are highly dependent on splicing for cell survival. There is a general interest in the therapeutic targeting of splicing by small molecules. E7107, a first-in-class spliceosome inhibitor, showed strong growth inhibitory activities against a large variety of human cancer xenografts. Chronic lymphocytic leukaemia (CLL) is a clinically heterogeneous hematologic malignancy, with approximately 90% of cases being TP53 wild-type at diagnosis. An increasing number of studies are evaluating alternative targeted agents in CLL, including MDM2-p53 binding antagonists. In this study, we report the effect of splicing modulation on key proteins in the p53 signalling pathway, an important cell death pathway in B cells. Splicing modulation by E7107 treatment reduced full-length MDM2 production due to exon skipping, generating a consequent reciprocal p53 increase in TP53WT cells. It was especially noteworthy that a novel p21WAF1 isoform with compromised cyclin-dependent kinase inhibitory activity was produced due to intron retention. E7107 synergized with the MDM2 inhibitor RG7388, via dual MDM2 inhibition; by E7107 at the transcript level and by RG7388 at the protein level, producing greater p53 stabilisation and apoptosis. This study provides evidence for a synergistic MDM2 and spliceosome inhibitor combination as a novel approach to treat CLL and potentially other haematological malignancies.
Collapse
|
42
|
Pérez-Rodríguez D, Penedo MA, Rivera-Baltanás T, Peña-Centeno T, Burkhardt S, Fischer A, Prieto-González JM, Olivares JM, López-Fernández H, Agís-Balboa RC. MiRNA Differences Related to Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24031891. [PMID: 36768211 PMCID: PMC9916039 DOI: 10.3390/ijms24031891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Schizophrenia (SZ) is a serious mental disorder that is typically treated with antipsychotic medication. Treatment-resistant schizophrenia (TRS) is the condition where symptoms remain after pharmacological intervention, resulting in long-lasting functional and social impairments. As the identification and treatment of a TRS patient requires previous failed treatments, early mechanisms of detection are needed in order to quicken the access to effective therapy, as well as improve treatment adherence. In this study, we aim to find a microRNA (miRNA) signature for TRS, as well as to shed some light on the molecular pathways potentially involved in this severe condition. To do this, we compared the blood miRNAs of schizophrenia patients that respond to medication and TRS patients, thus obtaining a 16-miRNA TRS profile. Then, we assessed the ability of this signature to separate responders and TRS patients using hierarchical clustering, observing that most of them are grouped correctly (~70% accuracy). We also conducted a network, pathway analysis, and bibliography search to spot molecular pathways potentially altered in TRS. We found that the response to stress seems to be a key factor in TRS and that proteins p53, SIRT1, MDM2, and TRIM28 could be the potential mediators of such responses. Finally, we suggest a molecular pathway potentially regulated by the miRNAs of the TRS profile.
Collapse
Affiliation(s)
- Daniel Pérez-Rodríguez
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Grupo de Neurofarmacología de Las Adicciones y Los Trastornos Degenerativos (NEUROFAN), Universidad CEU San Pablo, 28925 Madrid, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
| | - Tonatiuh Peña-Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - José M. Prieto-González
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Grupo Trastornos del Movimiento, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Department of Psychiatry, Área Sanitaria de Vigo, 36312 Vigo, Spain
| | - Hugo López-Fernández
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence: (H.L.-F.); (R.C.A.-B.)
| | - Roberto Carlos Agís-Balboa
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Grupo Trastornos del Movimiento, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Correspondence: (H.L.-F.); (R.C.A.-B.)
| |
Collapse
|
43
|
Xiao Y, Li M, Ma T, Ning H, Liu L. AMG232 inhibits angiogenesis in glioma through the p53-RBM4-VEGFR2 pathway. J Cell Sci 2023; 136:jcs260270. [PMID: 36601864 DOI: 10.1242/jcs.260270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
AMG232 effectively inhibits cancers with wild-type p53 (also known as TP53) by reactivating p53, but whether it inhibits glioma angiogenesis remains unclear. This study confirms that AMG232 inhibits the proliferation of glioma endothelial cells (GECs) in a dose-dependent manner and inhibits the angiogenesis of GECs. p53 and RNA-binding motif protein 4 (RBM4) were expressed at low levels in GECs, while MDM2 and vascular endothelial growth factor receptor 2 (VEGFR2, also known as KDR) were highly expressed. In vitro and in vivo experiments confirmed that AMG232 upregulated p53 and RBM4, and downregulated MDM2 and VEGFR2 by blocking the MDM2-p53 interaction. Both p53 silencing and RBM4 silencing significantly upregulated the expression of VEGFR2, promoted the proliferation, migration and tube formation of GECs, and reversed the effects of AMG232 on downregulating VEGFR2 and inhibiting the angiogenesis of GECs. AMG232 increased RBM4 expression by upregulating p53, and p53 bound to RBM4 and promoted its transcription. RBM4 bound to and shortened the half-life of VEGFR2, promoting its degradation. Finally, AMG232 produced a significant decrease in new vessels and hemoglobin content in vivo. This study proves that AMG232 inhibits glioma angiogenesis by blocking the MDM2-p53 interaction, in which the p53-RBM4-VEGFR2 pathway plays an important role.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingliang Li
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
44
|
Abstract
Mutations in the TP53 tumour suppressor gene are very frequent in cancer, and attempts to restore the functionality of p53 in tumours as a therapeutic strategy began decades ago. However, very few of these drug development programmes have reached late-stage clinical trials, and no p53-based therapeutics have been approved in the USA or Europe so far. This is probably because, as a nuclear transcription factor, p53 does not possess typical drug target features and has therefore long been considered undruggable. Nevertheless, several promising approaches towards p53-based therapy have emerged in recent years, including improved versions of earlier strategies and novel approaches to make undruggable targets druggable. Small molecules that can either protect p53 from its negative regulators or restore the functionality of mutant p53 proteins are gaining interest, and drugs tailored to specific types of p53 mutants are emerging. In parallel, there is renewed interest in gene therapy strategies and p53-based immunotherapy approaches. However, major concerns still remain to be addressed. This Review re-evaluates the efforts made towards targeting p53-dysfunctional cancers, and discusses the challenges encountered during clinical development.
Collapse
Affiliation(s)
- Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
45
|
Luo L, Liu H, Yan F. Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2321-2347. [PMID: 36899536 DOI: 10.3934/mbe.2023109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The tumor suppressor protein P53 can regulate the cell cycle, thereby preventing cell abnormalities. In this paper, we study the dynamic characteristics of the P53 network under the influence of time delay and noise, including stability and bifurcation. In order to study the influence of several factors on the concentration of P53, bifurcation analysis on several important parameters is conducted; the results show that the important parameters could induce P53 oscillations within an appropriate range. Then we study the stability of the system and the existing conditions of Hopf bifurcation by using Hopf bifurcation theory with time delays as the bifurcation parameter. It is found that time delay plays a key role in inducing Hopf bifurcation and regulating the period and amplitude of system oscillation. Meanwhile, the combination of time delays can not only promote the oscillation of the system but it also provides good robustness. Changing the parameter values appropriately can change the bifurcation critical point and even the stable state of the system. In addition, due to the low copy number of the molecules and the environmental fluctuations, the influence of noise on the system is also considered. Through numerical simulation, it is found that noise not only promotes system oscillation but it also induces system state switching. The above results may help us to further understand the regulation mechanism of the P53-Mdm2-Wip1 network in the cell cycle.
Collapse
Affiliation(s)
- LanJiang Luo
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| | - Haihong Liu
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| | - Fang Yan
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| |
Collapse
|
46
|
Salomao N, Maslah N, Giulianelli A, Drevon L, Aguinaga L, Gu X, Cassinat B, Giraudier S, Fenaux P, Fahraeus R. Reduced murine double minute 2 and
4
protein, but not
messenger RNA
, expression is associated with more severe disease in myelodysplastic syndromes and acute myeloblastic leukaemia. Br J Haematol 2022; 201:234-248. [PMID: 36546586 DOI: 10.1111/bjh.18608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The human homologues of murine double minute 2 (MDM2) and 4 (MDM4) negatively regulate p53 tumour suppressor activity and are reported to be frequently overexpressed in human malignancies, prompting clinical trials with drugs that prevent interactions between MDM2/MDM4 and p53. Bone marrow samples from 111 patients with acute myeloblastic leukaemia, myelodysplastic syndrome or chronic myelomonocytic leukaemia were examined for protein (fluorescence-activated cell sorting) and messenger RNA (mRNA) expression (quantitative polymerase chain reaction) of MDM2, MDM4 and tumour protein p53 (TP53). Low protein expression of MDM2 and MDM4 was observed in immature cells from patients with excess of marrow blasts (>5%) compared with CD34+ /CD45low cells from healthy donors and patients without excess of marrow blasts (<5%). The mRNA levels were indistinguishable in all samples examined regardless of disease status or blast levels. Low MDM2 and MDM4 protein expression were correlated with poor survival. These data show a poor correlation between mRNA and protein expression levels, suggesting that quantitative flow cytometry analysis of protein expression levels should be used to predict and validate the efficacy of MDM2 and MDM4 inhibitors. These findings show that advanced disease is associated with reduced MDM2 and MDM4 protein expression and indicate that the utility of MDM2 and MDM4 inhibitors may have to be reconsidered in the treatment of advanced myeloid malignancies.
Collapse
Affiliation(s)
- Norman Salomao
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
| | - Nabih Maslah
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
| | - Anouk Giulianelli
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Louis Drevon
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Lorea Aguinaga
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Xiaolian Gu
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
| | - Bruno Cassinat
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Stephane Giraudier
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Pierre Fenaux
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
- RECAMO, Masaryk Memorial Cancer Institute Brno Czech Republic
| |
Collapse
|
47
|
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022; 123:1891-1937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The protein p53 has been extensively investigated since it was found 43 years ago and has become a "guardian of the genome" that regulates the division of cells by preventing the growth of cells and dividing them, that is, inhibits the development of tumors. Initial proof of protein existence by researchers in the mid-1970s was found by altering and regulating the SV40 big T antigen termed the A protein. Researchers demonstrated how viruses play a role in cancer by employing viruses' ability to create T-antigens complex with viral tumors, which was discovered in 1979 following a viral analysis and cancer analog research. Researchers later in the year 1989 explained that in Murine Friend, a virus-caused erythroleukemia, commonly found that p53 was inactivated to suggest that p53 could be a "tumor suppressor gene." The TP53 gene, encoding p53, is one of human cancer's most frequently altered genes. The protein-regulated biological functions of all p53s include cell cycles, apoptosis, senescence, metabolism of the DNA, angiogenesis, cell differentiation, and immunological response. We tried to unfold the history of the p53 protein, which was discovered long back in 1979, that is, 43 years of research on p53, and how p53's function has been developed through time in this article.
Collapse
Affiliation(s)
- Manisha R Patil
- Department of Computer-Applications, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
48
|
El Habbash AI, Aljoundi A, Elamin G, Soliman MES. Probing Alterations in MDM2 Catalytic Core Structure Effect of Garcinia Mangostana Derivatives: Insight from Molecular Dynamics Simulations. Cell Biochem Biophys 2022; 80:633-645. [PMID: 36184717 DOI: 10.1007/s12013-022-01101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/17/2022] [Indexed: 01/10/2023]
Abstract
The MDM2-p53 protein-protein interaction is a promising model for researchers to design, study, and discover new anticancer drugs. The design of therapeutically active compounds that can maintain or restore the binding of MDM2 to p53 has been found to limit the oncogenic activities of both. This led to the current development of a group of xanthone-core and cis-imidazoline analogs compounds, among which γ-Mangostin (GM), α-Mangostin (AM), and Nutlin exhibited their MDM2-p53 interaction inhibitory effects. Therefore, in this study, we seek to determine the mechanisms by which these compounds elicit MDM2-p53 interaction targeting. Unique to the binding of GM, AM, and Nutlin, from our findings, they share the same three active site residues Val76, Tyr50, and Gly41, which represent the top active side residues that contribute to high electrostatic energy. Consequently, the free binding energy contributed enormously to the binding of these compounds, which culminated in the high binding affinities of GM, AM, and Nutlin with high values. Furthermore, GM, AM, and Nutlin commonly interrupted the stable and compact conformation of MDM2 coupled with its active site, where Cα deviations were relatively high. We believe that our findings would assist in the design of more potent active anticancer drugs.
Collapse
Affiliation(s)
- Aisha I El Habbash
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
49
|
Peng Y, Li N, Tang F, Qian C, Jia T, Liu J, Xu Y. Corosolic acid sensitizes ferroptosis by upregulating HERPUD1 in liver cancer cells. Cell Death Dis 2022; 8:376. [PMID: 36038536 PMCID: PMC9424261 DOI: 10.1038/s41420-022-01169-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Primary liver cancer is the third leading cause of cancer death in the world, and the lack of effective treatments is the main reason for the high mortality. Corosolic acid (CA) has been proved to have antitumor activity. In this study, we found that CA can sensitize liver cancer cells to ferroptosis, which is a regulated form of cell death characterized by iron-dependent lipid peroxides reaching lethal levels. Here, we revealed that CA can inhibit glutathione (GSH) synthesis via HERPUD1, decreasing the cellular GSH level and causing liver cancer cells to become more sensitive to ferroptosis. Mechanistically, further studies found that HERPUD1 reduced the ubiquitination of the GSS-associated E3 ubiquitin ligase MDM2, which promoted ubiquitination of GSS, thereby inhibiting GSH synthesis to increase ferroptosis susceptibility. Importantly, a mouse xenograft model also demonstrated that CA inhibits tumor growth via HERPUD1. Collectively, our findings suggesting that CA is a candidate component for the development of treatments against liver cancer.
Collapse
Affiliation(s)
- Yingxiu Peng
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Ning Li
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Feifeng Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Chunmei Qian
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Tingting Jia
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Jingjin Liu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Yanfeng Xu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China.
| |
Collapse
|
50
|
Muhammad Sarfaraz Iqbal, Mehboob I, Khaliq S, Sardar N, Sherzada S, Ali Q. Protooncogene MDM2 SNP309 (rs2279744) Analysis of Polymorphism in Thyroid Cancer: Pakistani Population. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|