1
|
Gibaut QM, Li C, Cheng A, Moranguinho I, Mori LP, Valente ST. FUBP3 enhances HIV-1 transcriptional activity and regulates immune response pathways in T cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102525. [PMID: 40248217 PMCID: PMC12005928 DOI: 10.1016/j.omtn.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Far-upstream element-binding protein 3 (FUBP3) was identified at actively transcribing HIV promoters through chromatin affinity purification and mass spectrometry. Known for regulating cellular processes such as transcription and translation by binding to DNAs and RNAs, FUBP3's role in HIV transcriptional regulation was previously unrecognized. This study reveals that FUBP3 enhances HIV-1 transcriptional activation by interacting with Tat and trans-activation response (TAR)-RNA, critical for boosting viral transcription through recruitment of activating factors that promote RNA polymerase II (RNAPII) elongation. Transcriptomic analysis, chromatin immunoprecipitation, and biochemical assays demonstrated that FUBP3 associates with and stabilizes TAR-RNA, in a Tat-dependent manner, and enhances Tat steady-state levels via interaction with Tat's basic domain. Suppressing FUBP3 decreased HIV-1 transcription and altered expression of host genes linked to T cell activation and inflammation, underscoring its broad regulatory impact. Additionally, FUBP3 was enriched at active promoters, confirming its role in transcriptional regulation at specific genomic locations. These findings highlight FUBP3's critical role in the HIV-1 life cycle and suggest its potential as a therapeutic target in HIV-1 infection. Additionally, this study expands our understanding of FUBP3's functions in oncogenic and inflammatory pathways.
Collapse
Affiliation(s)
- Quentin M.R. Gibaut
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Chuan Li
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Anqi Cheng
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Ines Moranguinho
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Luisa P. Mori
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Susana T. Valente
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Tainer JA, Tsutakawa SE. RNA sculpting by the primordial Helix-clasp-Helix-Strand-Loop (HcH-SL) motif enforces chemical recognition enabling diverse KH domain functions. J Biol Chem 2025; 301:108474. [PMID: 40185232 DOI: 10.1016/j.jbc.2025.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025] Open
Abstract
In all domains of life, the ancient K homology (KH) domain superfamily is central to RNA processes including splicing, transcription, posttranscriptional gene regulation, signaling, and translation. Proteins with 1 to 15 KH domains bind single-strand (ss) RNA or DNA with base sequence specificity. Here, we examine over 40 KH domain experimental structures in complex with nucleic acid (NA) and define a novel Helix-clasp-Helix-Strand-Loop (HcH-SL) NA recognition motif binding 4 to 5 nucleotides using 10 to 18 residues. HcH-SL includes and extends the Gly-X-X-Gly (GXXG) signature sequence "clasp" that brings together two helices as an ∼90° helical corner. The first helix primarily provides side chain interactions to unstack and sculpt 2 to 3 bases on the 5' end for recognition of sequence and chemistry. The clasp and second helix amino dipole recognize a central phosphodiester. Following the helical corner, a beta strand and its loop extension recognize the two 3' nucleotides, primarily through main chain interactions. The HcH-SL structural motif forms a right-handed triangle and concave functional interface for NA interaction that unexpectedly splays four bound nucleotides into conformations matching RNA recognition motif (RRM) bound RNA structures. Evolutionary analyses and its ability to recognize base sequence and chemistry make HcH-SL a primordial NA binding motif distinguished by its binding mode from other NA structural recognition motifs: helix-turn-helix, helix-hairpin-helix, and beta strand RRM motifs. Combined results explain its vulnerability as a viral hijacking target and how mutations and expression defects lead to diverse diseases spanning cancer, cardiovascular, fragile X syndrome, neurodevelopmental disorders, and paraneoplastic disease.
Collapse
Affiliation(s)
- John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
3
|
Freitag K, Marlow M, Joseph J, Ta R, Krekhno J, Schuett E, Yang A, Ray D, Hughes T, Rafferty S, Yee J. A TATA-box binding protein binds single stranded DNA in two modes: to poly(G) tracts and to flexible DNA regions. J Biol Chem 2025:108552. [PMID: 40300727 DOI: 10.1016/j.jbc.2025.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
The TATA-box binding protein (TBP) homolog from Giardia intestinalis (gTBP) is highly divergent, lacking key phenylalanines crucial for binding and unwinding double-stranded DNA. Surprisingly, we determined that gTBP exhibits unconventional DNA binding properties and preferentially binds to single stranded DNA (ssDNA) using a DNA-binding pocket that is narrower relative to other eukaryotic TBPs. Additionally, we showed that gTBP binds in two distinct modes, which we call the A and B modes, that are dependent on ssDNA sequence and protein concentration. For the A mode, gTBP binds as an oligomer to ssDNA that contains four or more consecutive guanine bases. For the B mode, using base stacking energy potentials between adjacent dinucleotides as a simple proxy for per-nucleotide flexibility, gTBP binds as a monomer to ssDNA in a manner that is dependent on DNA structural properties. To validate the latter concept, we designed de novo DNA sequences with base stacking energy profiles comparable to two DNA sequences that bind gTBP and showed that these designed sequences can compete for gTBP binding against the two original sequences. Overall, we present a potential new perspective on eukaryotic transcription regulation based on our findings around unconventional gTBP-ssDNA binding. Comprehensive understanding of the binding modes of gTBP could yield insights into Giardia's biology and eukaryotic transcription in general.
Collapse
Affiliation(s)
- Kieran Freitag
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Melanie Marlow
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Joella Joseph
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Robert Ta
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Jessica Krekhno
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Evan Schuett
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Ally Yang
- Department of Molecular Genetics, University of Toronto, Toronto, ON
| | - Debashish Ray
- Department of Molecular Genetics, University of Toronto, Toronto, ON
| | - Timothy Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, ON
| | - Steven Rafferty
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Janet Yee
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| |
Collapse
|
4
|
Phung DK, Pilotto S, Matelska D, Blombach F, Pinotsis N, Hovan L, Gervasio FL, Werner F. Archaeal NusA2 is the ancestor of ribosomal protein eS7 in eukaryotes. Structure 2025; 33:149-159.e6. [PMID: 39504966 DOI: 10.1016/j.str.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
N-utilization substance A (NusA) is a regulatory factor with pleiotropic functions in gene expression in bacteria. Archaea encode two conserved small proteins, NusA1 and NusA2, with domains orthologous to the two RNA binding K Homology (KH) domains of NusA. Here, we report the crystal structures of NusA2 from Sulfolobus acidocaldarius and Saccharolobus solfataricus obtained at 3.1 Å and 1.68 Å, respectively. NusA2 comprises an N-terminal zinc finger followed by two KH-like domains lacking the GXXG signature. Despite the loss of the GXXG motif, NusA2 binds single-stranded RNA. Mutations in the zinc finger domain compromise the structural integrity of NusA2 at high temperatures and molecular dynamics simulations indicate that zinc binding provides an energy barrier preventing the domain from reaching unfolded states. A structure-guided phylogenetic analysis of the KH-like domains supports the notion that the NusA2 clade is ancestral to the ribosomal protein eS7 in eukaryotes, implying a potential role of NusA2 in translation.
Collapse
Affiliation(s)
- Duy Khanh Phung
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Simona Pilotto
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Dorota Matelska
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Fabian Blombach
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Nikos Pinotsis
- Institute for Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Ladislav Hovan
- Pharmaceutical Sciences, University of Geneva, 1206 Genève, Switzerland
| | - Francesco Luigi Gervasio
- Pharmaceutical Sciences, University of Geneva, 1206 Genève, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland; Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Zhang F, Xiong Q, Wang M, Cao X, Zhou C. FUBP1 in human cancer: Characteristics, functions, and potential applications. Transl Oncol 2024; 48:102066. [PMID: 39067088 PMCID: PMC11338137 DOI: 10.1016/j.tranon.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Far upstream element-binding protein 1 (FUBP1) is a single-stranded nucleic acid-binding protein that binds to the Far Upstream Element (FUSE) sequence and is involved in important biological processes, including DNA transcription, RNA biogenesis, and translation. Recent studies have highlighted the significance of aberrant expression or mutations in FUBP1 in the development of various tumors, with FUBP1 overexpression often indicating oncogenic roles in different tumor types. However, it is worth noting that recent research has discovered its tumor-suppressive role in cancer, which is not yet fully understood and appears to be tissue- or context-dependent. This review summarizes the association between FUBP1 and diverse cancers and discusses the functions of FUBP1 in cancer. In addition, this review proposes potential clinical implications and outlines future research directions to pave the way for the development of targeted therapeutic strategies focusing on FUBP1.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, No 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, No 69 Xijuyuan lane, Xi'an, 710002, Shaanxi, China
| | - Ximing Cao
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
7
|
Xiong Q, Zhang Y, Xu Y, Yang Y, Zhang Z, Zhou Y, Zhang S, Zhou L, Wan X, Yang X, Zeng Z, Liu J, Zheng Y, Han J, Zhu Q. tiRNA-Val-CAC-2 interacts with FUBP1 to promote pancreatic cancer metastasis by activating c‑MYC transcription. Oncogene 2024; 43:1274-1287. [PMID: 38443680 PMCID: PMC11035144 DOI: 10.1038/s41388-024-02991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Cumulative studies have established the significance of transfer RNA-derived small RNA (tsRNA) in tumorigenesis and progression. Nevertheless, its function and mechanism in pancreatic cancer metastasis remain largely unclear. Here, we screened and identified tiRNA-Val-CAC-2 as highly expressed in pancreatic cancer metastasis samples by tsRNA sequencing. We also observed elevated levels of tiRNA-Val-CAC-2 in the serum of pancreatic cancer patients who developed metastasis, and patients with high levels of tiRNA-Val-CAC-2 exhibited a worse prognosis. Additionally, knockdown of tiRNA-Val-CAC-2 inhibited the metastasis of pancreatic cancer in vivo and in vitro, while overexpression of tiRNA-Val-CAC-2 promoted the metastasis of pancreatic cancer. Mechanically, we discovered that tiRNA-Val-CAC-2 interacts with FUBP1, leading to enhanced stability of FUBP1 protein and increased FUBP1 enrichment in the c-MYC promoter region, thereby boosting the transcription of c-MYC. Of note, rescue experiments confirmed that tiRNA-Val-CAC-2 could influence pancreatic cancer metastasis via FUBP1-mediated c-MYC transcription. These findings highlight a potential novel mechanism underlying pancreatic cancer metastasis, and suggest that both tiRNA-Val-CAC-2 and FUBP1 could serve as promising prognostic biomarkers and potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaguang Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongfeng Xu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiwei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lian Zhou
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojuan Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Zeng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Li X, Zhou Y, Lu Z, Shan R, Sun D, Li J, Li P. Switchable enzyme mimics based on self-assembled peptides for polyethylene terephthalate degradation. J Colloid Interface Sci 2023; 646:198-208. [PMID: 37196493 DOI: 10.1016/j.jcis.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Polyethylene terephthalate (PET), the most abundant polyester plastic, has become a global concern due to its refractoriness and accumulation in the environment. In this study, inspired by the structure and catalytic mechanism of the native enzyme, peptides, based on supramolecular self-assembly, were developed to construct enzyme mimics for PET degradation, which were achieved by combining the enzymatic active sites of serine, histidine and aspartate with the self-assembling polypeptide MAX. The two designed peptides with differences in hydrophobic residues at two positions exhibited a conformational transition from random coil to β-sheet by changing the pH and temperature, and the catalytic activity followed the self-assembly "switch" with the fibrils formed β-sheet, which could catalyze PET efficiently. Although the two peptides possessed same catalytic site, they showed different catalytic activities. Analysis of the structure - activity relationship of the enzyme mimics suggested that the high catalytic activity of the enzyme mimics for PET could be attributed to the formation of stable fibers of peptides and ordered arrangement of molecular conformation; in addition, hydrogen bonding and hydrophobic interactions, as the major forces, promoted effects of enzyme mimics on PET degradation. Enzyme mimics with PET-hydrolytic activity are a promising material for degrading PET and reducing environmental pollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Yaoling Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Zirui Lu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Ruida Shan
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China.
| |
Collapse
|
9
|
Zhang C, Wei S, Dai S, Li X, Wang H, Zhang H, Sun G, Shan B, Zhao L. The NR_109/FUBP1/c-Myc axis regulates TAM polarization and remodels the tumor microenvironment to promote cancer development. J Immunother Cancer 2023; 11:jitc-2022-006230. [PMID: 37217247 DOI: 10.1136/jitc-2022-006230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and exert an important role in tumor progression. Due to the heterogeneity and plasticity of TAMs, modulating the polarization states of TAMs is considered as a potential therapeutic strategy for tumors. Long noncoding RNAs (lncRNAs) have been implicated in various physiological and pathological processes, yet the underlying mechanism on how lncRNAs manipulate the polarization states of TAMs is still unclear and remains to be further investigated. METHODS Microarray analyses were employed to characterize the lncRNA profile involved in THP-1-induced M0, M1 and M2-like macrophage. Among those differentially expressed lncRNAs, NR_109 was further studied, for its function in M2-like macrophage polarization and the effects of the condition medium or macrophages mediated by NR_109 on tumor proliferation, metastasis and TME remodeling both in vitro and in vivo. Moreover, we revealed how NR_109 interacted with far upstream element-binding protein 1 (FUBP1) to regulate the protein stability through hindering ubiquitination modification by competitively binding with JVT-1. Finally, we examined sections of tumor patients to probe the correlation among the expression of NR_109 and related proteins, showing the clinical significance of NR_109. RESULTS We found that lncRNA NR_109 was highly expressed in M2-like macrophages. Knockdown NR_109 impeded IL-4 induced M2-like macrophage polarization and significantly reduced the activity of M2-like macrophages to support the proliferation and metastasis of tumor cells in vitro and in vivo. Mechanistically, NR_109 competed with JVT-1 to bind FUBP1 at its C-terminus domain, impeded the ubiquitin-mediated degradation of FUBP1, activated c-Myc transcription and thus promoted M2-like macrophages polarization. Meanwhile, as a transcription factor, c-Myc could bind to the promoter of NR_109 and enhance the transcription of NR_109. Clinically, high NR_109 expression was found in CD163+ TAMs from tumor tissues and was positively correlated with poor clinical stages of patients with gastric cancer and breast cancer. CONCLUSIONS Our work revealed for the first time that NR_109 exerted a crucial role in regulating the phenotype-remodeling and function of M2-like macrophages via a NR_109/FUBP1/c-Myc positive feedback loop. Thus, NR_109 has great translational potentials in the diagnosis, prognosis and immunotherapy of cancer.
Collapse
Affiliation(s)
- Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixia Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy; Clinical Oncology Research Center, Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Dobrovolskaite A, Moots H, Tantak MP, Shah K, Thomas J, Dinara S, Massaro C, Hershberger PM, Maloney PR, Peddibhotla S, Sugarman E, Litherland S, Arnoletti JP, Jha RK, Levens D, Phanstiel O. Discovery of Anthranilic Acid Derivatives as Difluoromethylornithine Adjunct Agents That Inhibit Far Upstream Element Binding Protein 1 (FUBP1) Function. J Med Chem 2022; 65:15391-15415. [PMID: 36382923 PMCID: PMC10512781 DOI: 10.1021/acs.jmedchem.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyamine biosynthesis is regulated by ornithine decarboxylase (ODC), which is transcriptionally activated by c-Myc. A large library was screened to find molecules that potentiate the ODC inhibitor, difluoromethylornithine (DFMO). Anthranilic acid derivatives were identified as DFMO adjunct agents. Further studies identified the far upstream binding protein 1 (FUBP1) as the target of lead compound 9. FUBP1 is a single-stranded DNA/RNA binding protein and a master controller of specific genes including c-Myc and p21. We showed that 9 does not inhibit 3H-spermidine uptake yet works synergistically with DFMO to limit cell growth in the presence of exogenous spermidine. Compound 9 was also shown to inhibit the KH4 FUBP1-FUSE interaction in a gel shift assay, bind to FUBP1 in a ChIP assay, reduce both c-Myc mRNA and protein expression, increase p21 mRNA and protein expression, and deplete intracellular polyamines. This promising hit opens the door to new FUBP1 inhibitors with increased potency.
Collapse
Affiliation(s)
- Aiste Dobrovolskaite
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Holly Moots
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Mukund P Tantak
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Kunal Shah
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jenna Thomas
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Sharifa Dinara
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Chelsea Massaro
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Paul M Hershberger
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | - Patrick R Maloney
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | | | - Eliot Sugarman
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | - Sally Litherland
- Advent Health Cancer Institute, 2520 North Orange Ave, Suite 104, Orlando, Florida 32804, United States
| | - Juan Pablo Arnoletti
- Advent Health Cancer Institute, 2520 North Orange Ave, Suite 104, Orlando, Florida 32804, United States
| | - Rajiv Kumar Jha
- Laboratory of Pathology, Center for Cancer Research, 10 Center Drive, Building 10, Room 2N106, Bethesda, Maryland 20892-1500, United States
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, 10 Center Drive, Building 10, Room 2N106, Bethesda, Maryland 20892-1500, United States
| | - Otto Phanstiel
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
11
|
Yao Q, Xie Y, Xu D, Qu Z, Wu J, Zhou Y, Wei Y, Xiong H, Zhang XL. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell Mol Immunol 2022; 19:883-897. [PMID: 35637281 PMCID: PMC9149337 DOI: 10.1038/s41423-022-00878-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of intracellular pathogens. However, the role and mechanism of the important lncRNAs in Mycobacterium tuberculosis (M.tb) infection remain largely unexplored. Recently, we found that a secreted M.tb Rv1579c (an early secreted target with a molecular weight of 12 kDa, named EST12) protein activates NLRP3-gasdermin D (GSDMD)-mediated pyroptosis and plays a pivotal role in M.tb-induced immunity. In the present study, M.tb and the EST12 protein negatively regulated the expression of a key lncRNA (named lnc-EST12) in mouse macrophages by activating the JAK2-STAT5a signaling pathway. Lnc-EST12, with a size of 1583 bp, is mainly expressed in immune-related organs (liver, lung and spleen). Lnc-EST12 not only reduces the expression of the proinflammatory cytokines IL-1β, IL-6, and CCL5/8 but also suppresses the NLRP3 inflammasome and GSDMD pyroptosis-IL-1β immune pathway through its interaction with the transcription factor far upstream element-binding protein 3 (FUBP3). The KH3 and KH4 domains of FUBP3 are the critical sites for binding to lnc-EST12. Deficiency of mouse lnc-EST12 or FUBP3 in macrophages increased M.tb clearance and inflammation in mouse macrophages or mice. In conclusion, we report a new immunoregulatory mechanism in which mouse lnc-EST12 negatively regulates anti-M.tb innate immunity through FUBP3.
Collapse
Affiliation(s)
- Qili Yao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Dandan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Zilu Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Jian Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuanyuan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuying Wei
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
12
|
Li J, Zhang Z, Guo K, Wu S, Guo C, Zhang X, Wang Z. Identification of a key glioblastoma candidate gene, FUBP3, based on weighted gene co-expression network analysis. BMC Neurol 2022; 22:139. [PMID: 35413821 PMCID: PMC9004042 DOI: 10.1186/s12883-022-02661-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common aggressive malignant brain tumor. However, the molecular mechanism of glioblastoma formation is still poorly understood. To identify candidate genes that may be connected to glioma growth and development, weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network between gene sets and clinical characteristics. We also explored the function of the key candidate gene. METHODS Two GBM datasets were selected from GEO Datasets. The R language was used to identify differentially expressed genes. WGCNA was performed to construct a gene co-expression network in the GEO glioblastoma samples. A custom Venn diagram website was used to find the intersecting genes. The GEPIA website was applied for survival analysis to determine the significant gene, FUBP3. OS, DSS, and PFI analyses, based on the UCSC Cancer Genomics Browser, were performed to verify the significance of FUBP3. Immunohistochemistry was performed to evaluate the expression of FUBP3 in glioblastoma and adjacent normal tissue. KEGG and GO enrichment analyses were used to reveal possible functions of FUBP3. Microenvironment analysis was used to explore the relationship between FUBP3 and immune infiltration. Immunohistochemistry was performed to verify the results of the microenvironment analysis. RESULTS GSE70231 and GSE108474 were selected from GEO Datasets, then 715 and 694 differentially expressed genes (DEGs) from GSE70231 and GSE108474, respectively, were identified. We then performed weighted gene co-expression network analysis (WGCNA) and identified the most downregulated gene modules of GSE70231 and GSE108474, and 659 and 3915 module genes from GSE70231 and GSE108474, respectively, were selected. Five intersection genes (FUBP3, DAD1, CLIC1, ABR, and DNM1) were calculated by Venn diagram. FUBP3 was then identified as the only significant gene by survival analysis using the GEPIA website. OS, DSS, and PFI analyses verified the significance of FUBP3. Immunohistochemical analysis revealed FUBP3 expression in GBM and adjacent normal tissue. KEGG and GO analyses uncovered the possible function of FUBP3 in GBM. Tumor microenvironment analysis showed that FUBP3 may be connected to immune infiltration, and immunohistochemistry identified a positive correlation between immune cells (CD4 + T cells, CD8 + T cells, and macrophages) and FUBP3. CONCLUSION FUBP3 is associated with immune surveillance in GBM, indicating that it has a great impact on GBM development and progression. Therefore, interventions involving FUBP3 and its regulatory pathway may be a new approach for GBM treatment.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China.
| | - Zhao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| | - Ke Guo
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| | - Shuhua Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Chong Guo
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| | - Xinfan Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| | - Zi Wang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Qian X, Yang J, Qiu Q, Li X, Jiang C, Li J, Dong L, Ying K, Lu B, Chen E, Liu P, Lu Y. LCAT3, a novel m6A-regulated long non-coding RNA, plays an oncogenic role in lung cancer via binding with FUBP1 to activate c-MYC. J Hematol Oncol 2021; 14:112. [PMID: 34274028 PMCID: PMC8285886 DOI: 10.1186/s13045-021-01123-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are important epigenetic regulators, which play critical roles in diverse physiological and pathological processes. However, the regulatory mechanism of lncRNAs in lung carcinogenesis remains elusive. Here, we characterized a novel oncogenic lncRNA, designated as Lung Cancer Associated Transcript 3 (LCAT3). METHODS We predicted and validated LCAT3 by analyzing RNA-sequencing (RNA-seq) data of lung cancer tissues from TCGA. Methylated RNA immunoprecipitation was performed to assess m6A modification on LCAT3. The LCAT3-FUBP1-MYC axis was assessed by dual-luciferase reporter, RNA immunoprecipitation and Chromatin immunoprecipitation assays. Signaling pathways altered by LCAT3 knockdown were identified using RNA-seq. Furthermore, the mechanism of LCAT3 was investigated using loss-of-function and gain-of-function assays in vivo and in vitro. RESULTS LCAT3 was found to be up-regulated in lung adenocarcinomas (LUAD), and its over-expression was associated with the poor prognosis of LUAD patients. LCAT3 upregulation is attributable to N6-methyladenosine (m6A) modification mediated by methyltransferase like 3 (METTL3), leading to LCAT3 stabilization. Biologically, loss-of-function assays revealed that LCAT3 knockdown significantly suppressed lung cancer cell proliferation, migration and invasion in vitro, and inhibited tumor growth and metastasis in vivo. LCAT3 knockdown induced cell cycle arrest at the G1 phase. Mechanistically, LCAT3 recruited Far Upstream Element Binding Protein 1 (FUBP1) to the MYC far-upstream element (FUSE) sequence, thereby activating MYC transcription to promote proliferation, survival, invasion and metastasis of lung cancer cells. CONCLUSIONS Taken together, we identified and characterized LCAT3 as a novel oncogenic lncRNA in the lung, and validated the LCAT3-FUBP1-MYC axis as a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xinyi Qian
- Center for Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Juze Yang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Qiongzi Qiu
- Center for Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xufan Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Chengxi Jiang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jia Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Liangliang Dong
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Kejing Ying
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China
| | - Bingjian Lu
- Center for Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
- Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, 53226, WI, USA.
| | - Yan Lu
- Center for Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
14
|
Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, Zeng A, Wang S, Zhou X, Li H, Zhang Q, Mo Q, Long J, Lan F, Chen Y, Hu J. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun 2021; 12:3005. [PMID: 34021134 PMCID: PMC8139980 DOI: 10.1038/s41467-021-22782-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Defective cholesterol biosynthesis in eye lens cells is often associated with cataracts; however, how genes involved in cholesterol biosynthesis are regulated in lens cells remains unclear. Here, we show that Quaking (Qki) is required for the transcriptional activation of genes involved in cholesterol biosynthesis in the eye lens. At the transcriptome level, lens-specific Qki-deficient mice present downregulation of genes associated with the cholesterol biosynthesis pathway, resulting in a significant reduction of total cholesterol level in the eye lens. Mice with Qki depletion in lens epithelium display progressive accumulation of protein aggregates, eventually leading to cataracts. Notably, these defects are attenuated by topical sterol administration. Mechanistically, we demonstrate that Qki enhances cholesterol biosynthesis by recruiting Srebp2 and Pol II in the promoter regions of cholesterol biosynthesis genes. Supporting its function as a transcription co-activator, we show that Qki directly interacts with single-stranded DNA. In conclusion, we propose that Qki-Srebp2-mediated cholesterol biosynthesis is essential for maintaining the cholesterol level that protects lens from cataract development.
Collapse
Affiliation(s)
- Seula Shin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunfei Wang
- Clinical Science Division, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Takashi Shingu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailiang Zeng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Jilin, China
| | - Hongtao Li
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qinling Mo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
15
|
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 2021; 29:787-803. [PMID: 34022128 DOI: 10.1016/j.str.2021.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Corinna Jessica Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
16
|
TNPO1-Mediated Nuclear Import of FUBP1 Contributes to Tumor Immune Evasion by Increasing NRP1 Expression in Cervical Cancer. J Immunol Res 2021; 2021:9994004. [PMID: 33987449 PMCID: PMC8093035 DOI: 10.1155/2021/9994004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Far upstream element binding protein 1 (FUBP1), a DNA-binding protein, participates in diverse tumor-promoting behaviors by regulating the expression of oncogenes in the nucleus, but the underlying mechanisms remain to be elucidated. In the present study, we found that FUBP1 mRNA and protein expressions were markedly upregulated and closely linked with poor prognosis in cervical cancer. In vitro, functional experiments showed that knockdown of FUBP1 inhibited CC cell proliferation and migration. Therefore, FUBP1 plays a prooncogenic function in CC progression. Further investigations for the first time demonstrated that nuclear localization of FUBP1 regulated the gene expression of immune checkpoint NRP1. Moreover, our work demonstrated that FUBP1 translocated into the nucleus which was mediated by interacting with Transportin-1 (TNPO1). Collectively, this study revealed that FUBP1 might be a potential therapeutic target for the restriction of tumor progression.
Collapse
|
17
|
Dai W, Qu H, Zhang J, Thongkum A, Dinh TN, Kappeler KV, Chen QM. Far Upstream Binding Protein 1 (FUBP1) participates in translational regulation of Nrf2 protein under oxidative stress. Redox Biol 2021; 41:101906. [PMID: 33676361 PMCID: PMC7937566 DOI: 10.1016/j.redox.2021.101906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is ubiquitously involved in disease etiology or progression. While the damaging effects have been well characterized, how cells deal with oxidative stress for prevention or removal of damage remains to be fully elucidated. Works from our laboratory have revealed de novo Nrf2 protein translation when cells are encountering low to mild levels of oxidative stress. Nrf2 encodes a transcription factor controlling a myriad of genes important for antioxidation, detoxification, wound repair and tissue remodeling. Here we report a role of FUBP1 in regulating de novo Nrf2 protein translation. An increase of FUBP1 binding to Nrf2 5′UTR due to H2O2 treatment has been found by LC-MS/MS, Far Western blot and ribonucleoprotein immunoprecipitation assays. Blocking FUBP1 expression using siRNA abolished H2O2 from inducing Nrf2 protein elevation or Nrf2 5′UTR activity. While no nuclear to cytoplasmic translocation was detected, cytosolic redistribution to the ribosomal fractions was observed due to oxidant treatment. The presence of FUBP1 in 40/43S ribosomal fractions confirm its involvement in translation initiation of Nrf2 protein. When tested by co-immunoprecipitation with eIF4E, eIF2a, eIF3η and eIF1, only eIF3η was found to gain physical interaction with FUBP1 due to H2O2 treatment. Our data support a role of FUBP1 for promoting the attachment of 40S ribosomal subunit to Nrf2 mRNA and formation of 43S pre-initiation complex for translation initiation of Nrf2 protein under oxidative stress.
Collapse
Affiliation(s)
- Wujing Dai
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA; Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Han Qu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA; Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Jack Zhang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Angkana Thongkum
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Thai Nho Dinh
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Kyle V Kappeler
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA; Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
18
|
Zheng Y, Dubois W, Benham C, Batchelor E, Levens D. FUBP1 and FUBP2 enforce distinct epigenetic setpoints for MYC expression in primary single murine cells. Commun Biol 2020; 3:545. [PMID: 33005010 PMCID: PMC7530719 DOI: 10.1038/s42003-020-01264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Physiologically, MYC levels must be precisely set to faithfully amplify the transcriptome, but in cancer MYC is quantitatively misregulated. Here, we study the variation of MYC amongst single primary cells (B-cells and murine embryonic fibroblasts, MEFs) for the repercussions of variable cellular MYC-levels and setpoints. Because FUBPs have been proposed to be molecular “cruise controls” that constrain MYC expression, their role in determining basal or activated MYC-levels was also examined. Growing cells remember low and high-MYC setpoints through multiple cell divisions and are limited by the same expression ceiling even after modest MYC-activation. High MYC MEFs are enriched for mRNAs regulating inflammation and immunity. After strong stimulation, many cells break through the ceiling and intensify MYC expression. Lacking FUBPs, unstimulated MEFs express levels otherwise attained only with stimulation and sponsor MYC chromatin changes, revealed by chromatin marks. Thus, the FUBPs enforce epigenetic setpoints that restrict MYC expression. Ying Zheng et al. characterize MYC gene and protein expression in single mammalian cells in response to various external signals. They find that individual cells show either high or low basal MYC expression setpoints, and that adherence to these setpoints as well as the magnitude of the response of MYC to stimulation, is controlled by FUBP1 and FUBP2.
Collapse
Affiliation(s)
- Ying Zheng
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA
| | - Wendy Dubois
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, Bethesda, MD, USA
| | - Craig Benham
- Biomedical Engineering, University of California, Davis, CA, USA
| | - Eric Batchelor
- Masonic Cancer Center and Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA.
| |
Collapse
|
19
|
Comparative structural analyses and nucleotide-binding characterization of the four KH domains of FUBP1. Sci Rep 2020; 10:13459. [PMID: 32778776 PMCID: PMC7417555 DOI: 10.1038/s41598-020-69832-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The FUBP1-FUSE complex is an essential component of a transcription molecular machinery that is necessary for tight regulation of expression of many key genes including c-Myc and p21. FUBP1 utilizes its four articulated KH modules, which function cooperatively, for FUSE nucleotide binding. To understand molecular mechanisms fundamental to the intermolecular interaction, we present a set of crystal structures, as well ssDNA-binding characterization of FUBP1 KH domains. All KH1-4 motifs were highly topologically conserved, and were able to interact with FUSE individually and independently. Nevertheless, differences in nucleotide binding properties among the four KH domains were evident, including higher nucleotide-binding potency for KH3 as well as diverse nucleotide sequence preferences. Variations in amino acid compositions at one side of the binding cleft responsible for nucleobase resulted in diverse shapes and electrostatic charge interaction, which might feasibly be a contributing factor for different nucleotide-binding propensities among KH1-4. Nonetheless, conservation of structure and nucleotide-binding property in all four KH motifs is essential for the cooperativity of multi KH modules present in FUBP1 towards nanomolar affinity for FUSE interaction. Comprehensive structural comparison and ssDNA binding characteristics of all four KH domains presented here provide molecular insights at a fundamental level that might be beneficial for elucidating the mechanisms of the FUBP1-FUSE interaction.
Collapse
|
20
|
Carazo F, Romero JP, Rubio A. Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors. Brief Bioinform 2020; 20:1358-1375. [PMID: 29390045 DOI: 10.1093/bib/bby005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) has shown to play a pivotal role in the development of diseases, including cancer. Specifically, all the hallmarks of cancer (angiogenesis, cell immortality, avoiding immune system response, etc.) are found to have a counterpart in aberrant splicing of key genes. Identifying the context-specific regulators of splicing provides valuable information to find new biomarkers, as well as to define alternative therapeutic strategies. The computational models to identify these regulators are not trivial and require three conceptual steps: the detection of AS events, the identification of splicing factors that potentially regulate these events and the contextualization of these pieces of information for a specific experiment. In this work, we review the different algorithmic methodologies developed for each of these tasks. Main weaknesses and strengths of the different steps of the pipeline are discussed. Finally, a case study is detailed to help the reader be aware of the potential and limitations of this computational approach.
Collapse
|
21
|
Elman JS, Ni TK, Mengwasser KE, Jin D, Wronski A, Elledge SJ, Kuperwasser C. Identification of FUBP1 as a Long Tail Cancer Driver and Widespread Regulator of Tumor Suppressor and Oncogene Alternative Splicing. Cell Rep 2019; 28:3435-3449.e5. [PMID: 31553912 PMCID: PMC7297508 DOI: 10.1016/j.celrep.2019.08.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Comprehensive sequencing approaches have allowed for the identification of the most frequent contributors to cancer, known as drivers. They have also revealed a class of mutations in understudied, infrequently altered genes, referred to as "long tail" (LT) drivers. A key challenge has been to find clinically relevant LT drivers and to understand how they cooperate to drive disease. Here, we identified far upstream binding protein 1 (FUBP1) as an LT driver using an in vivo CRISPR screen. FUBP1 cooperates with other tumor suppressor genes to transform mammary epithelial cells by disrupting cellular differentiation and tissue architecture. Mechanistically, FUBP1 participates in regulating N6-methyladenosine (m6A) RNA methylation, and its loss leads to global changes in RNA splicing and widespread expression of aberrant driver isoforms. These findings suggest that somatic alteration of a single gene involved in RNA splicing and m6A methylation can produce the necessary panoply of contributors for neoplastic transformation.
Collapse
Affiliation(s)
- Jessica S Elman
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Thomas K Ni
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Kristen E Mengwasser
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dexter Jin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ania Wronski
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA, USA; Department of Genetics, Program in Virology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| |
Collapse
|
22
|
Jiang P, Huang M, Qi W, Wang F, Yang T, Gao T, Luo C, Deng J, Yang Z, Zhou T, Zou Y, Gao G, Yang X. FUBP1 promotes neuroblastoma proliferation via enhancing glycolysis-a new possible marker of malignancy for neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:400. [PMID: 31511046 PMCID: PMC6737630 DOI: 10.1186/s13046-019-1414-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Background Neuroblastoma (NB) is one of the deadliest paediatric solid tumours due to its rapid proliferative characteristics. Amplified copies of MYCN are considered the most important marker for the prediction of tumour relapse and progression in NB, but they were only detected in 20–30% of NB patients, indicating there might be other oncogenes in the development of NB. The far upstream element binding protein 1 (FUBP1) was first identified as a transcriptional regulator of the proto-oncogene MYC. However, the expression and role of FUBP1 in NB have not been documented. Methods FUBP1 expression was analysed from GEO database and verified by immunohistochemistry (IHC) and western blotting (WB) in NB tissues and cell lines. Cell proliferation and apoptosis were detected by Cell Counting Kit-8, Colony formation assay, EDU, TUNEL staining and flow cytometric analysis. Several glycolytic metabolites production was confirmed by ELISA and oxygen consuming rate (OCR). Luciferase assay, WB, chromatin immunoprecipitation (CHIP) were used to explore the mechanisms of the effect of FUBP1 on NB. Results FUBP1 mRNA levels were increased along with the increase in International Neuroblastoma Staging System (INSS) stages. High expression of FUBP1 with low N-Myc expression accounted for 44.6% of NB patient samples (n = 65). In addition, FUBP1 protein levels were remarkably increased with NB malignancy in the NB tissue microarray (NB: n = 65; ganglioneuroblastoma: n = 31; ganglioneuroma: n = 27). Furthermore, FUBP1 expression was negatively correlated with patient survival rate but positively correlated with ki67 content. In vitro experiments showed that FUBP1 promotes NB cell proliferation and inhibits cell apoptosis via enhancing glycolysis and ATP production. Mechanistically, FUBP1 inhibited the degradation of HIF1α via downregulation of Von Hippel-Lindau (VHL), the E3 ligase for HIF1α, resulting in upregulation of lactate dehydrogenase isoform B (LDHB) expression to enhance glycolysis. Overexpressed or silenced N-Myc could not regulate FUBP1 or LDHB levels. Conclusions Taken together, our findings demonstrate for the first time that elevated FUBP1 promotes NB glycolysis and growth by targeting HIF1α rather than N-Myc, suggesting that FUBP1 is a novel and powerful oncogene in the development of NB independent of N-Myc and may have potential in the diagnosis and treatment of NB.
Collapse
Affiliation(s)
- Ping Jiang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Mao Huang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Fenghua Wang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianyou Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxiao Gao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuanghua Luo
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jing Deng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yan Zou
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
24
|
Kang M, Lee SM, Kim W, Lee KH, Kim DY. Fubp1 supports the lactate-Akt-mTOR axis through the upregulation of Hk1 and Hk2. Biochem Biophys Res Commun 2019; 512:93-99. [PMID: 30871777 DOI: 10.1016/j.bbrc.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
Cells require energy for homeostatic activities, growth and division. By utilizing glucose as the main energy source, cells generate ATP and metabolic precursors through glycolysis and citric acid cycle. Although the oxidative phosphorylation can produce more ATP molecules from one molecule of glucose than glycolysis, rapidly growing cells primarily metabolize glucose via aerobic glycolysis. This aerobic glycolysis makes cells to uptake glucose at a higher rate and to efficiently convert glucose into the macromolecules required for new daughter cells. Recent evidence suggests that Fubp1 promotes cell proliferation and survival, and it is overexpressed in a variety of cancers. However, the role of Fubp1 in cellular metabolism remains unclear. In the present study, we demonstrated that Fubp1 upregulates the mRNA levels of two hexokinase genes, Hk1 and Hk2. We also found the positive correlation in mRNA expression between Fubp1 and both of hexokinase genes in several types of cancers. We suggest that Fubp1 contributes to cell survival through supporting lactate-Akt-mTOR axis.
Collapse
Affiliation(s)
- Mingyu Kang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Sang Min Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Wanil Kim
- Department of Cosmetic Science and Technology, College of Bio-industry, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Kyung-Ha Lee
- Department of Cosmetic Science and Technology, College of Bio-industry, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
25
|
Debaize L, Troadec MB. The master regulator FUBP1: its emerging role in normal cell function and malignant development. Cell Mol Life Sci 2019; 76:259-281. [PMID: 30343319 PMCID: PMC11105487 DOI: 10.1007/s00018-018-2933-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
The human Far Upstream Element (FUSE) Binding Protein 1 (FUBP1) is a multifunctional DNA- and RNA-binding protein involved in diverse cellular processes. FUBP1 is a master regulator of transcription, translation, and RNA splicing. FUBP1 has been identified as a potent pro-proliferative and anti-apoptotic factor by modulation of complex networks. FUBP1 is also described either as an oncoprotein or a tumor suppressor. Especially, FUBP1 overexpression is observed in a growing number of cancer and leads to a deregulation of targets that includes the fine-tuned MYC oncogene. Moreover, recent loss-of-function analyses of FUBP1 establish its essential functions in hematopoietic stem cell maintenance and survival. Therefore, FUBP1 appears as an emerging suspect in hematologic disorders in addition to solid tumors. The scope of the present review is to describe the advances in our understanding of the molecular basis of FUBP1 functions in normal cells and carcinogenesis. We also delineate the recent progresses in the understanding of the master role of FUBP1 in normal and pathological hematopoiesis. We conclude that FUBP1 is not only worth studying biologically but is also of clinical relevance through its pivotal role in regulating multiple cellular processes and its involvement in oncogenesis.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France.
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.
- CHRU de Brest, laboratoire de cytogénétique, F-29200, Brest, France.
| |
Collapse
|
26
|
Debaize L, Jakobczyk H, Avner S, Gaudichon J, Rio AG, Sérandour AA, Dorsheimer L, Chalmel F, Carroll JS, Zörnig M, Rieger MA, Delalande O, Salbert G, Galibert MD, Gandemer V, Troadec MB. Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation. Nucleic Acids Res 2018; 46:11214-11228. [PMID: 30500954 PMCID: PMC6265458 DOI: 10.1093/nar/gky756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Hélène Jakobczyk
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Stéphane Avner
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Jérémie Gaudichon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Anne-Gaëlle Rio
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aurélien A Sérandour
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, 44035 Nantes, France
- Ecole Centrale de Nantes, Nantes, France
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60528 Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Olivier Delalande
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Gilles Salbert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Génétique Somatique des Cancers, Centre Hospitalier Universitaire, 35033 Rennes, France
| | - Virginie Gandemer
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Department of pediatric oncohematology, Centre Hospitalier Universitaire, 35203 Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
27
|
Structural characterization of a novel KH-domain containing plant chloroplast endonuclease. Sci Rep 2018; 8:13750. [PMID: 30214061 PMCID: PMC6137056 DOI: 10.1038/s41598-018-31142-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/02/2018] [Indexed: 11/08/2022] Open
Abstract
Chlamydomonas reinhardtii is a single celled alga that undergoes apoptosis in response to UV-C irradiation. UVI31+, a novel UV-inducible DNA endonuclease in C. reinhardtii, which normally localizes near cell wall and pyrenoid regions, gets redistributed into punctate foci within the whole chloroplast, away from the pyrenoid, upon UV-stress. Solution NMR structure of the first putative UV inducible endonuclease UVI31+ revealed an α1–β1–β2–α2–α3–β3 fold similar to BolA and type II KH-domain ubiquitous protein families. Three α−helices of UVI31+ constitute one side of the protein surface, which are packed to the other side, made of three-stranded β–sheet, with intervening hydrophobic residues. A twenty-three residues long polypeptide stretch (D54-H76) connecting β1 and β2 strands is found to be highly flexible. Interestingly, UVI31+ recognizes the DNA primarily through its β–sheet. We propose that the catalytic triad residues involving Ser114, His95 and Thr116 facilitate DNA endonuclease activity of UVI31+. Further, decreased endonuclease activity of the S114A mutant is consistent with the direct participation of Ser114 in the catalysis. This study provides the first structural description of a plant chloroplast endonuclease that is regulated by UV-stress response.
Collapse
|
28
|
Zaytseva O, Quinn LM. DNA Conformation Regulates Gene Expression: The MYC Promoter and Beyond. Bioessays 2018; 40:e1700235. [PMID: 29504137 DOI: 10.1002/bies.201700235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Indexed: 01/07/2023]
Abstract
Emerging evidence suggests that DNA topology plays an instructive role in cell fate control through regulation of gene expression. Transcription produces torsional stress, and the resultant supercoiling of the DNA molecule generates an array of secondary structures. In turn, local DNA architecture is harnessed by the cell, acting within sensory feedback mechanisms to mediate transcriptional output. MYC is a potent oncogene, which is upregulated in the majority of cancers; thus numerous studies have focused on detailed understanding of its regulation. Dissection of regulatory regions within the MYC promoter provided the first hint that intimate feedback between DNA topology and associated DNA remodeling proteins is critical for moderating transcription. As evidence of such regulation is also found in the context of many other genes, here we expand on the prototypical example of the MYC promoter, and also explore DNA architecture in a genome-wide context as a global mechanism of transcriptional control.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| |
Collapse
|
29
|
Grosheva AS, Zharkov DO, Stahl J, Gopanenko AV, Tupikin AE, Kabilov MR, Graifer DM, Karpova GG. Recognition but no repair of abasic site in single-stranded DNA by human ribosomal uS3 protein residing within intact 40S subunit. Nucleic Acids Res 2017; 45:3833-3843. [PMID: 28334742 PMCID: PMC5397187 DOI: 10.1093/nar/gkx052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/04/2023] Open
Abstract
Isolated human ribosomal protein uS3 has extra-ribosomal functions including those related to base excision DNA repair, e.g. AP lyase activity that nicks double-stranded (ds) DNA 3΄ to the abasic (AP) site. However, the ability of uS3 residing within ribosome to recognize and cleave damaged DNA has never been addressed. Here, we compare interactions of single-stranded (ss) DNA and dsDNA bearing AP site with human ribosome-bound uS3 and with the isolated protein, whose interactions with ssDNA were not yet studied. The AP lyase activity of free uS3 was much higher with ssDNA than with dsDNA, whereas ribosome-bound uS3 was completely deprived of this activity. Nevertheless, an exposed peptide of ribosome-bound uS3 located far away from the putative catalytic center previously suggested for isolated uS3 cross-linked to full-length uncleaved ssDNA, but not to dsDNA. In contrast, free uS3 cross-linked mainly to the 5΄-part of the damaged DNA strand after its cleavage at the AP site. ChIP-seq analysis showed preferential uS3 binding to nucleolus-associated chromatin domains. We conclude that free and ribosome-bound uS3 proteins interact with AP sites differently, exhibiting their non-translational functions in DNA repair in and around the nucleolus and in regulation of DNA damage response in looped DNA structures, respectively.
Collapse
Affiliation(s)
- Anastasia S. Grosheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Joachim Stahl
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Alexander V. Gopanenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitri M. Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Galina G. Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
30
|
Chakraborty K, Sinha SK, Bandyopadhyay S. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein. J Chem Phys 2017; 144:205105. [PMID: 27250333 DOI: 10.1063/1.4952441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitable statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4-DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3-DNA complex.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
31
|
Abstract
Drosophila genetic studies demonstrate that cell and tissue growth regulation is a primary developmental function of P-element somatic inhibitor (Psi), the sole ortholog of FUBP family RNA/DNA-binding proteins. Psi achieves growth control through interaction with Mediator, observations that should put to rest controversy surrounding Pol II transcriptional functions for these KH domain proteins.
Collapse
Affiliation(s)
- Leonie M Quinn
- a Department of Cancer Biology and Therapeutics , The John Curtin School of Medical Research, The Australian National University , Canberra , ACT , Australia
| |
Collapse
|
32
|
Duan J, Bao X, Ma X, Zhang Y, Ni D, Wang H, Zhang F, Du Q, Fan Y, Chen J, Wu S, Li X, Gao Y, Zhang X. Upregulation of Far Upstream Element-Binding Protein 1 (FUBP1) Promotes Tumor Proliferation and Tumorigenesis of Clear Cell Renal Cell Carcinoma. PLoS One 2017; 12:e0169852. [PMID: 28076379 PMCID: PMC5226774 DOI: 10.1371/journal.pone.0169852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/22/2016] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The far upstream element (FUSE)-binding protein 1 (FUBP1) is a transactivator of human c-myc proto-oncogene transcription, with important roles in carcinogenesis. However, the expression pattern and potential biological function of FUBP1 in clear cell renal cell carcinoma (ccRCC) is yet to be established. METHODS FUBP1 expression was detected in ccRCC tissues and cell lines by real-time RT-PCR, Western blot analysis, and immunohistochemistry. The correlations of FUBP1 mRNA expression levels with clinicopathological factors were evaluated. The biological function of FUBP1 during tumor cell proliferation was studied by MTS, colony formation, and soft-agar colony formation. The effects of FUBP1 on cell cycle distribution and apoptosis were analyzed by flow cytometry. Western blot analysis was used to identify the potential mechanism of FUBP1 regulating cell cycle and apoptosis. RESULTS The levels of FUBP1 mRNA and protein expression were upregulated in human ccRCC tissues compared with adjacent noncancerous tissues. High levels of FUBP1 mRNA expression were associated with higher tumor stage and tumor size. FUBP1 knockdown inhibited cell proliferation and induced cell cycle arrest and apoptosis. Meanwhile, the expression levels of c-myc and p21 mRNA were correlated with that of FUBP1 mRNA. CONCLUSIONS FUBP1 acts as a potential oncogene in ccRCC and may be considered as a novel biomarker or an attractive treatment target of ccRCC.
Collapse
Affiliation(s)
- Junyao Duan
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Bao
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Yu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Dong Ni
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Hanfeng Wang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Fan Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Qingshan Du
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Yang Fan
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Jianwen Chen
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Shengpan Wu
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Xintao Li
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Yu Gao
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Kralovicova J, Vorechovsky I. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons. Nucleic Acids Res 2016; 45:417-434. [PMID: 27566151 PMCID: PMC5224494 DOI: 10.1093/nar/gkw733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
34
|
Venditti V, Egner TK, Clore GM. Hybrid Approaches to Structural Characterization of Conformational Ensembles of Complex Macromolecular Systems Combining NMR Residual Dipolar Couplings and Solution X-ray Scattering. Chem Rev 2016; 116:6305-22. [PMID: 26739383 PMCID: PMC5590664 DOI: 10.1021/acs.chemrev.5b00592] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Solving structures or structural ensembles of large macromolecular systems in solution poses a challenging problem. While NMR provides structural information at atomic resolution, increased spectral complexity, chemical shift overlap, and short transverse relaxation times (associated with slow tumbling) render application of the usual techniques that have been so successful for medium sized systems (<50 kDa) difficult. Solution X-ray scattering, on the other hand, is not limited by molecular weight but only provides low resolution structural information related to the overall shape and size of the system under investigation. Here we review how combining atomic resolution structures of smaller domains with sparse experimental data afforded by NMR residual dipolar couplings (which yield both orientational and shape information) and solution X-ray scattering data in rigid-body simulated annealing calculations provides a powerful approach for investigating the structural aspects of conformational dynamics in large multidomain proteins. The application of this hybrid methodology is illustrated for the 128 kDa dimer of bacterial Enzyme I which exists in a variety of open and closed states that are sampled at various points in the catalytic cycles, and for the capsid protein of the human immunodeficiency virus.
Collapse
Affiliation(s)
- Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Timothy K. Egner
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
35
|
Guo L, Zaysteva O, Nie Z, Mitchell NC, Amanda Lee JE, Ware T, Parsons L, Luwor R, Poortinga G, Hannan RD, Levens DL, Quinn LM. Defining the essential function of FBP/KSRP proteins: Drosophila Psi interacts with the mediator complex to modulate MYC transcription and tissue growth. Nucleic Acids Res 2016; 44:7646-58. [PMID: 27207882 PMCID: PMC5027480 DOI: 10.1093/nar/gkw461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
Despite two decades of research, the major function of FBP-family KH domain proteins during animal development remains controversial. The literature is divided between RNA processing and transcriptional functions for these single stranded nucleic acid binding proteins. Using Drosophila, where the three mammalian FBP proteins (FBP1-3) are represented by one ortholog, Psi, we demonstrate the primary developmental role is control of cell and tissue growth. Co-IP-mass spectrometry positioned Psi in an interactome predominantly comprised of RNA Polymerase II (RNA Pol II) transcriptional machinery and we demonstrate Psi is a potent transcriptional activator. The most striking interaction was between Psi and the transcriptional mediator (MED) complex, a known sensor of signaling inputs. Moreover, genetic manipulation of MED activity modified Psi-dependent growth, which suggests Psi interacts with MED to integrate developmental growth signals. Our data suggest the key target of the Psi/MED network in controlling developmentally regulated tissue growth is the transcription factor MYC. As FBP1 has been implicated in controlling expression of the MYC oncogene, we predict interaction between MED and FBP1 might also have implications for cancer initiation and progression.
Collapse
Affiliation(s)
- Linna Guo
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Olga Zaysteva
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zuqin Nie
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naomi C Mitchell
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jue Er Amanda Lee
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Ware
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3010, Australia
| | - Linda Parsons
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rodney Luwor
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3010, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC 3002, Australia
| | - Ross D Hannan
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC 3010, Australia Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra City, ACT 2600, Australia
| | - David L Levens
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Leonie M Quinn
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
36
|
Vandivier LE, Anderson SJ, Foley SW, Gregory BD. The Conservation and Function of RNA Secondary Structure in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:463-88. [PMID: 26865341 PMCID: PMC5125251 DOI: 10.1146/annurev-arplant-043015-111754] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance (NMR) imaging to chemical and nuclease probing methods. Combining these latter methods with high-throughput sequencing has enabled them to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure.
Collapse
Affiliation(s)
- Lee E Vandivier
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | - Shawn W Foley
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Brian D Gregory
- Department of Biology, School of Arts and Sciences, and
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
37
|
Chakraborty K, Bandyopadhyay S. Effects of protein-DNA complex formation on the intermolecular vibrational density of states of interfacial water. Phys Chem Chem Phys 2016; 18:7780-8. [PMID: 26912116 DOI: 10.1039/c5cp07562a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-stranded DNAs (ss-DNAs) are formed as intermediates during DNA metabolic processes. ss-DNA binding (SSB) proteins specifically bind to the single-stranded segments of the DNA and protect it from being degraded. We have performed room temperature molecular dynamics simulations of the aqueous solution of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element (FUSE) binding protein (FBP) complexed with two ss-DNA oligomers. Efforts have been made to explore the influence of complex formation on low-frequency vibrational density of states of the surface water molecules. It is revealed that increased back scattering of water confined around the complexed structures leads to significant blue shifts of the band corresponding to the O···O···O bending or restricted transverse motions of water, the effect being more for the bridged water molecules. Importantly, it is demonstrated that the formation of such complexed structures of a similar type may often influence the transverse and longitudinal degrees of freedom of the surrounding water molecules in a nonuniform manner.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India.
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India.
| |
Collapse
|
38
|
Deshmukh L, Schwieters CD, Grishaev A, Clore GM. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering. Chemphyschem 2016; 17:1548-52. [PMID: 26946052 DOI: 10.1002/cphc.201600212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/08/2022]
Abstract
Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function.
Collapse
Affiliation(s)
- Lalit Deshmukh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892-0520, USA
| | - Charles D Schwieters
- Imaging Sciences Laboratory, Center for Information and Technology, Bethesda, MD, 20892-5624, USA
| | - Alexander Grishaev
- Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
39
|
Zhou W, Chung YJ, Parrilla Castellar ER, Zheng Y, Chung HJ, Bandle R, Liu J, Tessarollo L, Batchelor E, Aplan PD, Levens D. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:701-15. [PMID: 26774856 DOI: 10.1016/j.ajpath.2015.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022]
Abstract
The transcription factor far upstream element binding protein (FBP) binds and activates the MYC promoter when far upstream element is via TFIIH helicase activity early in the transcription cycle. The fundamental biology and pathology of FBP are complex. In some tumors FBP seems pro-oncogenic, whereas in others it is a tumor suppressor. We generated an FBP knockout (Fubp1(-/-)) mouse to study FBP deficiency. FBP is embryo lethal from embryonic day 10.5 to birth. A spectrum of pathology is associated with FBP loss; besides cerebral hyperplasia and pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size were all indicative of anemia. Immunophenotyping of hematopoietic cells in wild-type versus knockout livers revealed irregular trilineage anemia, with deficits in colony formation. Despite normal numbers of hematopoietic stem cells, transplantation of Fubp1(-/-) hematopoietic stem cells into irradiated mice entirely failed to reconstitute hematopoiesis. In competitive transplantation assays against wild-type donor bone marrow, Fubp1(-/-) hematopoietic stem cells functioned only sporadically at a low level. Although cultures of wild-type mouse embryo fibroblasts set Myc levels precisely, Myc levels of mouse varied wildly between fibroblasts harvested from different Fubp1(-/-) embryos, suggesting that FBP contributes to Myc set point fixation. FBP helps to hold multiple physiologic processes to close tolerances, at least in part by constraining Myc expression.
Collapse
Affiliation(s)
- Weixin Zhou
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yang Jo Chung
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Ying Zheng
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hye-Jung Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Russell Bandle
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Juhong Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lino Tessarollo
- Mouse Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eric Batchelor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Peter D Aplan
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
40
|
Chakraborty K, Bandyopadhyay S. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules. J Chem Phys 2015; 143:045106. [DOI: 10.1063/1.4927568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
41
|
Nelles DA, Fang MY, Aigner S, Yeo GW. Applications of Cas9 as an RNA-programmed RNA-binding protein. Bioessays 2015; 37:732-9. [PMID: 25880497 DOI: 10.1002/bies.201500001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Streptococcus pyogenes CRISPR-Cas system has gained widespread application as a genome editing and gene regulation tool as simultaneous cellular delivery of the Cas9 protein and guide RNAs enables recognition of specific DNA sequences. The recent discovery that Cas9 can also bind and cleave RNA in an RNA-programmable manner indicates the potential utility of this system as a universal nucleic acid-recognition technology. RNA-targeted Cas9 (RCas9) could allow identification and manipulation of RNA substrates in live cells, empowering the study of cellular gene expression, and could ultimately spawn patient- and disease-specific diagnostic and therapeutic tools. Here we describe the development of RCas9 and compare it to previous methods for RNA targeting, including engineered RNA-binding proteins and other types of CRISPR-Cas systems. We discuss potential uses ranging from live imaging of transcriptional dynamics to patient-specific therapies and applications in synthetic biology.
Collapse
Affiliation(s)
- David A Nelles
- Department of Cellular and Molecular Medicine, Stem Cell Program, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mark Y Fang
- Department of Cellular and Molecular Medicine, Stem Cell Program, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, Stem Cell Program, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.,Molecular Engineering Laboratory, Biomedical Sciences Institutes, Agency for Science, Technology & Research and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
42
|
Chakraborty K, Bandyopadhyay S. Correlated Conformational Motions of the KH Domains of Far Upstream Element Binding Protein Complexed with Single-Stranded DNA Oligomers. J Phys Chem B 2015; 119:10998-1009. [DOI: 10.1021/acs.jpcb.5b01687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory,
Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory,
Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| |
Collapse
|
43
|
Singh H, Verma D, Rao BJ, Chary KVR. (1)H, (13)C and (15)N NMR assignments of Mg (2+) bound form of UV inducible transcript protein (UVI31+) from Chlamydomonas reinhardtii. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:93-97. [PMID: 24638198 DOI: 10.1007/s12104-014-9551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Almost complete sequence specific (1)H, (13)C and (15)N resonance assignments of Mg(2+) bound form of UV inducible transcript protein (UVI31+) from Chlamydomonas reinhardtii are reported, as a prelude to its structural and functional characterization.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Bombay, 400005, India
| | | | | | | |
Collapse
|
44
|
Chen J, Hackett CS, Zhang S, Song YK, Bell RJA, Molinaro AM, Quigley DA, Balmain A, Song JS, Costello JF, Gustafson WC, Van Dyke T, Kwok PY, Khan J, Weiss WA. The genetics of splicing in neuroblastoma. Cancer Discov 2015; 5:380-95. [PMID: 25637275 PMCID: PMC4390477 DOI: 10.1158/2159-8290.cd-14-0892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/26/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Regulation of mRNA splicing, a critical and tightly regulated cellular function, underlies the majority of proteomic diversity and is frequently disrupted in disease. Using an integrative genomics approach, we combined both genomic data and exon-level transcriptome data in two somatic tissues (cerebella and peripheral ganglia) from a transgenic mouse model of neuroblastoma, a tumor that arises from the peripheral neural crest. Here, we describe splicing quantitative trait loci associated with differential splicing across the genome that we use to identify genes with previously unknown functions within the splicing pathway and to define de novo intronic splicing motifs that influence splicing from hundreds of bases away. Our results show that these splicing motifs represent sites for functional recurrent mutations and highlight novel candidate genes in human cancers, including childhood neuroblastoma. SIGNIFICANCE Somatic mutations with predictable downstream effects are largely relegated to coding regions, which comprise less than 2% of the human genome. Using an unbiased in vivo analysis of a mouse model of neuroblastoma, we have identified intronic splicing motifs that translate into sites for recurrent somatic mutations in human cancers.
Collapse
Affiliation(s)
- Justin Chen
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California. Department of Neurology, University of California, San Francisco, San Francisco, California. Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - Christopher S Hackett
- Department of Neurology, University of California, San Francisco, San Francisco, California. Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - Shile Zhang
- Program in Bioinformatics, Boston University, Boston, Massachusetts. Oncogenomics Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Young K Song
- Oncogenomics Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Robert J A Bell
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Annette M Molinaro
- Department of Neurology, University of California, San Francisco, San Francisco, California. Department of Neurosurgery, University of California, San Francisco, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California. Institute for Cancer Research, Oslo, Norway
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Jun S Song
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, Illinois. Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Joseph F Costello
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - W Clay Gustafson
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Terry Van Dyke
- Mouse Cancer Genetics Program, Center for Advanced Preclinical Research, National Cancer Institute, Frederick, Maryland
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California. Department of Dermatology, University of California, San Francisco, San Francisco, California. Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, California. Department of Neurosurgery, University of California, San Francisco, San Francisco, California. Department of Pediatrics, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
45
|
Miro J, Laaref AM, Rofidal V, Lagrafeuille R, Hem S, Thorel D, Méchin D, Mamchaoui K, Mouly V, Claustres M, Tuffery-Giraud S. FUBP1: a new protagonist in splicing regulation of the DMD gene. Nucleic Acids Res 2015; 43:2378-89. [PMID: 25662218 PMCID: PMC4344520 DOI: 10.1093/nar/gkv086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the molecular mechanisms for in-frame skipping of DMD exon 39 caused by the nonsense c.5480T>A mutation in a patient with Becker muscular dystrophy. RNase-assisted pull down assay coupled with mass spectrometry revealed that the mutant RNA probe specifically recruits hnRNPA1, hnRNPA2/B1 and DAZAP1. Functional studies in a human myoblast cell line transfected with DMD minigenes confirmed the splicing inhibitory activity of hnRNPA1 and hnRNPA2/B1, and showed that DAZAP1, also known to activate splicing, acts negatively in the context of the mutated exon 39. Furthermore, we uncovered that recognition of endogenous DMD exon 39 in muscle cells is promoted by FUSE binding protein 1 (FUBP1), a multifunctional DNA- and RNA-binding protein whose role in splicing is largely unknown. By serial deletion and mutagenesis studies in minigenes, we delineated a functional intronic splicing enhancer (ISE) in intron 38. FUBP1 recruitment to the RNA sequence containing the ISE was established by RNA pull down and RNA EMSA, and further confirmed by RNA-ChIP on endogenous DMD pre-mRNA. This study provides new insights about the splicing regulation of DMD exon 39, highlighting the emerging role of FUBP1 in splicing and describing the first ISE for constitutive exon inclusion in the mature DMD transcript.
Collapse
Affiliation(s)
- Julie Miro
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Abdelhamid Mahdi Laaref
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Valérie Rofidal
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060 Montpellier cedex, France
| | - Rosyne Lagrafeuille
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Sonia Hem
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060 Montpellier cedex, France
| | - Delphine Thorel
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Déborah Méchin
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Kamel Mamchaoui
- Institut de Myologie, UM76 Université Pierre et Marie Curie (UPMC), Paris, France INSERM U 974, Paris, France CNRS UMR 7215, Paris, France
| | - Vincent Mouly
- Institut de Myologie, UM76 Université Pierre et Marie Curie (UPMC), Paris, France INSERM U 974, Paris, France CNRS UMR 7215, Paris, France
| | - Mireille Claustres
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Sylvie Tuffery-Giraud
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| |
Collapse
|
46
|
Nicastro G, Taylor IA, Ramos A. KH-RNA interactions: back in the groove. Curr Opin Struct Biol 2015; 30:63-70. [PMID: 25625331 DOI: 10.1016/j.sbi.2015.01.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/20/2014] [Accepted: 01/08/2015] [Indexed: 12/30/2022]
Abstract
The hnRNP K-homology (KH) domain is a single stranded nucleic acid binding domain that mediates RNA target recognition by a large group of gene regulators. The structure of the KH fold is well characterised and some initial rules for KH-RNA recognition have been drafted. However, recent findings have shown that these rules need to be revisited and have now provided a better understanding of how the domain can recognise a sequence landscape larger than previously thought as well as revealing the diversity of structural expansions to the KH domain. Finally, novel structural and functional data show how multiple KH domains act in a combinatorial fashion to both allow recognition of longer RNA motifs and remodelling of the RNA structure. These advances set the scene for a detailed molecular understanding of KH selection of the cellular targets.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Ian A Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, London, UK; Division of Molecular Structure, MRC National Institute for Medical Research, London, UK.
| |
Collapse
|
47
|
Applications of Magnetic Resonance to Biology. METHODS OF BIOCHEMICAL ANALYSIS 2015; 55:315-330. [PMID: 26173317 DOI: 10.1002/9781118859148.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
48
|
Kang J, Jung J, Kim SK. Flexibility of single-stranded DNA measured by single-molecule FRET. Biophys Chem 2014; 195:49-52. [DOI: 10.1016/j.bpc.2014.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/16/2014] [Accepted: 08/16/2014] [Indexed: 10/24/2022]
|
49
|
Jacob AG, Singh RK, Mohammad F, Bebee TW, Chandler DS. The splicing factor FUBP1 is required for the efficient splicing of oncogene MDM2 pre-mRNA. J Biol Chem 2014; 289:17350-64. [PMID: 24798327 DOI: 10.1074/jbc.m114.554717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of the oncogene MDM2 is a phenomenon that occurs in cells in response to genotoxic stress and is also a hallmark of several cancer types with important implications in carcinogenesis. However, the mechanisms regulating this splicing event remain unclear. Previously, we uncovered the importance of intron 11 in MDM2 that affects the splicing of a damage-responsive MDM2 minigene. Here, we have identified discrete cis regulatory elements within intron 11 and report the binding of FUBP1 (Far Upstream element-Binding Protein 1) to these elements and the role it plays in MDM2 splicing. Best known for its oncogenic role as a transcription factor in the context of c-MYC, FUBP1 was recently described as a splicing regulator with splicing repressive functions. In the case of MDM2, we describe FUBP1 as a positive splicing regulatory factor. We observed that blocking the function of FUBP1 in in vitro splicing reactions caused a decrease in splicing efficiency of the introns of the MDM2 minigene. Moreover, knockdown of FUBP1 in cells induced the formation of MDM2-ALT1, a stress-induced splice variant of MDM2, even under normal conditions. These results indicate that FUBP1 is also a strong positive splicing regulator that facilitates efficient splicing of the MDM2 pre-mRNA by binding its introns. These findings are the first report describing the regulation of alternative splicing of MDM2 mediated by the oncogenic factor FUBP1.
Collapse
Affiliation(s)
- Aishwarya G Jacob
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Ravi K Singh
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and
| | - Fuad Mohammad
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Thomas W Bebee
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and
| | - Dawn S Chandler
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
50
|
Dickey TH, Altschuler SE, Wuttke DS. Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure 2014; 21:1074-84. [PMID: 23823326 DOI: 10.1016/j.str.2013.05.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.
Collapse
Affiliation(s)
- Thayne H Dickey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|