1
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2025; 21:2-27. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
2
|
Murphy R, Martin KR. Genetic engineering and the eye. Eye (Lond) 2025; 39:57-68. [PMID: 39516652 PMCID: PMC11733221 DOI: 10.1038/s41433-024-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The transformative potential of genetic engineering in ophthalmology is remarkable, promising new treatments for a wide range of blinding eye diseases. The eye is an attractive target organ for genetic engineering approaches, in part due to its relatively immune-privileged status, its accessibility, and the ease of monitoring of efficacy and safety. Consequently, the eye has been at the forefront of genetic engineering advances in recent years. The development of Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), base editors, prime editors, and transposases have enabled efficient and specific gene modification. Ocular gene therapy continues to progress, with recent advances in delivery systems using viral / non-viral vectors and novel promoters and enhancers. New strategies to achieve neuroprotection and neuroregeneration are evolving, including direct in-vivo cell reprogramming and optogenetic approaches. In this review, we discuss recent advances in ocular genetic engineering, examine their current therapeutic roles, and explore their potential use in future strategies to reduce the growing burden of vision loss and blindness.
Collapse
Affiliation(s)
- Rory Murphy
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
- Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Keith R Martin
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Gharib E, Rejali L, Piroozkhah M, Zonoobi E, Nasrabadi PN, Arabsorkhi Z, Baghdar K, Shams E, Sadeghi A, Kuppen PJK, Salehi Z, Nazemalhosseini-Mojarad E. IL-2RG as a possible immunotherapeutic target in CRC predicting poor prognosis and regulated by miR-7-5p and miR-26b-5p. J Transl Med 2024; 22:439. [PMID: 38720389 PMCID: PMC11080123 DOI: 10.1186/s12967-024-05251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Despite advances in treatment strategies, colorectal cancer (CRC) continues to cause significant morbidity and mortality, with mounting evidence a close link between immune system dysfunctions issued. Interleukin-2 receptor gamma (IL-2RG) plays a pivotal role as a common subunit receptor in the IL-2 family cytokines and activates the JAK-STAT pathway. This study delves into the role of Interleukin-2 receptor gamma (IL-2RG) within the tumor microenvironment and investigates potential microRNAs (miRNAs) that directly inhibit IL-2RG, aiming to discern their impact on CRC clinical outcomes. Bioinformatics analysis revealed a significant upregulation of IL-2RG mRNA in TCGA-COAD samples and showed strong correlations with the infiltration of various lymphocytes. Single-cell analysis corroborated these findings, highlighting IL-2RG expression in critical immune cell subsets. To explore miRNA involvement in IL-2RG dysregulation, mRNA was isolated from the tumor tissues and lymphocytes of 258 CRC patients and 30 healthy controls, and IL-2RG was cloned into the pcDNA3.1/CT-GFP-TOPO vector. Human embryonic kidney cell lines (HEK-293T) were transfected with this construct. Our research involved a comprehensive analysis of miRPathDB, miRWalk, and Targetscan databases to identify the miRNAs associated with the 3' UTR of human IL-2RG. The human microRNA (miRNA) molecules, hsa-miR-7-5p and hsa-miR-26b-5p, have been identified as potent suppressors of IL-2RG expression in CRC patients. Specifically, the downregulation of hsa-miR-7-5p and hsa-miR-26b-5p has been shown to result in the upregulation of IL-2RG mRNA expression in these patients. Prognostic evaluation of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p, using TCGA-COAD data and patient samples, established that higher IL-2RG expression and lower expression of both miRNAs were associated with poorer outcomes. Additionally, this study identified several long non-coding RNAs (LncRNAs), such as ZFAS1, SOX21-AS1, SNHG11, SNHG16, SNHG1, DLX6-AS1, GAS5, SNHG6, and MALAT1, which may act as competing endogenous RNA molecules for IL2RG by sequestering shared hsa-miR-7-5p and hsa-miR-26b-5p. In summary, this investigation underscores the potential utility of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p as serum and tissue biomarkers for predicting CRC patient prognosis while also offering promise as targets for immunotherapy in CRC management.
Collapse
Affiliation(s)
- Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Parinaz Nasri Nasrabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arabsorkhi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghdar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman Street, Chamran Expressway, P.O. Box: 19857-17411, Tehran, Iran
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman Street, Chamran Expressway, P.O. Box: 19857-17411, Tehran, Iran.
| |
Collapse
|
4
|
Bazarek SF, Thaqi M, King P, Mehta AR, Patel R, Briggs CA, Reisenbigler E, Yousey JE, Miller EA, Stutzmann GE, Marr RA, Peterson DA. Engineered neurogenesis in naïve adult rat cortex by Ngn2-mediated neuronal reprogramming of resident oligodendrocyte progenitor cells. Front Neurosci 2023; 17:1237176. [PMID: 37662111 PMCID: PMC10471311 DOI: 10.3389/fnins.2023.1237176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both in vitro and in vivo. Expressing the developmental transcription factor Neurogenin2 (Ngn2) in OPCs isolated from adult rat cortex resulted in their expression of early neuronal lineage markers and genes while downregulating expression of OPC markers and genes. Ngn2 induced progression through a neuronal lineage to express mature neuronal markers and functional activity as glutamatergic neurons. In vivo retroviral gene delivery of Ngn2 to naive adult rat cortex ensured restricted targeting to proliferating OPCs. Ngn2 expression in OPCs resulted in their lineage re-specification and transition through an immature neuronal morphology into mature pyramidal cortical neurons with spiny dendrites, axons, synaptic contacts, and subtype specification matching local cytoarchitecture. Lineage re-specification of rat cortical OPCs occurred without prior injury, demonstrating these glial progenitor cells need not be put into a reactive state to achieve lineage reprogramming. These results show it may be feasible to precisely engineer additional neurons directly in adult cerebral cortex for experimental study or potentially for therapeutic use to modify dysfunctional or damaged circuitry.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mentor Thaqi
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Patrick King
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Amol R. Mehta
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Ronil Patel
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Emily Reisenbigler
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jonathon E. Yousey
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Elis A. Miller
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Grace E. Stutzmann
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Robert A. Marr
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Daniel A. Peterson
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
5
|
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R, Hendel A. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:105-121. [PMID: 36618262 PMCID: PMC9813580 DOI: 10.1016/j.omtn.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.
Collapse
Affiliation(s)
- Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orli Knop
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yonathan Zehavi
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adaya Arbiv
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Atar Lev
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
7
|
Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023; 354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Cell spheroids offer cell-to-cell interactions and show advantages in survival rate and paracrine effect to solve clinical and biomedical inquiries ranging from tissue engineering and regenerative medicine to disease pathophysiology. Therefore, cell spheroids are ideal vehicles for gene delivery. Genetically modified spheroids can enhance specific gene expression to promote tissue regeneration. Gene deliveries to cell spheroids are via viral vectors or non-viral vectors. Some new technologies like CRISPR/Cas9 also have been used in genetically modified methods to deliver exogenous gene to the host chromosome. It has been shown that genetically modified cell spheroids had the potential to differentiate into bone, cartilage, vascular, nerve, cardiomyocytes, skin, and skeletal muscle as well as organs like the liver to replace the diseased organ in the animal and pre-clinical trials. This article reviews the recent articles about genetically modified spheroid cells and explains the fabrication, applications, development timeline, limitations, and future directions of genetically modified cell spheroid.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
8
|
Rawas-Qalaji M, Cagliani R, Al-Hashimi N, Al-Dabbagh R, Al-Dabbagh A, Hussain Z. Microfluidics in drug delivery: review of methods and applications. Pharm Dev Technol 2023; 28:61-77. [PMID: 36592376 DOI: 10.1080/10837450.2022.2162543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microfluidics technology has emerged as a promising methodology for the fabrication of a wide variety of advanced drug delivery systems. Owing to its ability for accurate handling and processing of small quantities of fluidics as well as immense control over physicochemical properties of fabricated micro and nanoparticles (NPs), microfluidic technology has significantly improved the pharmacokinetics and pharmacodynamics of drugs. This emerging technology has offered numerous advantages over the conventional drug delivery methods for fabricating of a variety of micro and nanocarriers for poorly soluble drugs. In addition, a microfluidic system can be designed for targeted drug delivery aiming to increase the local bioavailability of drugs. This review spots the light on the recent advances made in the area of microfluidics including various methods of fabrication of drug carriers, their characterization, and unique features. Furthermore, applications of microfluidic technology for the robust fabrication and development of drug delivery systems, the existing challenges associated with conventional fabrication methodologies as well as the proposed solutions offered by microfluidic technology have been discussed in details.HighlightsMicrofluidic technology has revolutionized fabrication of tunable micro and nanocarriers.Microfluidic platforms offer several advantages over the conventional fabrication methods.Microfluidic devices hold great promise in controlling the physicochemical features of fabricated drug carriers.Micro and nanocarriers with controllable release kinetics and site-targeting efficiency can be fabricated.Drug carriers fabricated by microfluidic technology exhibited improved pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Roberta Cagliani
- Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Noor Al-Hashimi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rahma Al-Dabbagh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Amena Al-Dabbagh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Zahid Hussain
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Pellaers E, Bhat A, Christ F, Debyser Z. Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV-Based Vectors and for a Cure for HIV-1 Infection. Viruses 2022; 15:32. [PMID: 36680071 PMCID: PMC9861059 DOI: 10.3390/v15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection.
Collapse
Affiliation(s)
| | | | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Gene Therapy of Chronic Limb-Threatening Ischemia: Vascular Medical Perspectives. J Clin Med 2022; 11:jcm11051282. [PMID: 35268373 PMCID: PMC8910863 DOI: 10.3390/jcm11051282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
A decade ago, gene therapy seemed to be a promising approach for the treatment of chronic limb-threatening ischemia, providing new perspectives for patients without conventional, open or endovascular therapeutic options by potentially enabling neo-angiogenesis. Yet, until now, the results have been far from a safe and routine clinical application. In general, there are two approaches for inserting exogenous genes in a host genome: transduction and transfection. In case of transduction, viral vectors are used to introduce genes into cells, and depending on the selected strain of the virus, a transient or stable duration of protein production can be achieved. In contrast, the transfection of DNA is transmitted by chemical or physical processes such as lipofection, electro- or sonoporation. Relevant risks of gene therapy may be an increasing neo-vascularization in undesired tissue. The risks of malignant transformation and inflammation are the potential drawbacks. Additionally, atherosclerotic plaques can be destabilized by the increased angiogenesis, leading to arterial thrombosis. Clinical trials from pilot studies to Phase II and III studies on angiogenic gene therapy show mainly a mixed picture of positive and negative final results; thus, the role of gene therapy in vascular occlusive disease remains unclear.
Collapse
|
11
|
Wu Y, Li J, Shin HJ. Self-assembled Viral Nanoparticles as Targeted Anticancer Vehicles. BIOTECHNOL BIOPROC E 2021; 26:25-38. [PMID: 33584104 PMCID: PMC7872722 DOI: 10.1007/s12257-020-0383-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
Viral nanoparticles (VNPs) comprise a variety of mammalian viruses, plant viruses, and bacteriophages, that have been adopted as building blocks and supra-molecular templates in nanotechnology. VNPs demonstrate the dynamic, monodisperse, polyvalent, and symmetrical architectures which represent examples of such biological templates. These programmable scaffolds have been exploited for genetic and chemical manipulation for displaying of targeted moieties together with encapsulation of various payloads for diagnosis or therapeutic intervention. The drug delivery system based on VNPs offer diverse advantages over synthetic nanoparticles, including biocompatibility, biodegradability, water solubility, and high uptake capability. Here we summarize the recent progress of VNPs especially as targeted anticancer vehicles from the encapsulation and surface modification mechanisms, involved viruses and VNPs, to their application potentials.
Collapse
Affiliation(s)
- Yuanzheng Wu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan, 250103 China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan, 250103 China
| | - Hyun-Jae Shin
- Department of Biochemical and Polymer Engineering, Chosun University, Gwangju, 61452 Korea
| |
Collapse
|
12
|
Abstract
The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells.
Collapse
Affiliation(s)
- Segi Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Cedric Hupperetz
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seongjoon Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chan Hyuk Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
13
|
Klaver-Flores S, Zittersteijn HA, Canté-Barrett K, Lankester A, Hoeben RC, Gonçalves MAFV, Pike-Overzet K, Staal FJT. Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope? Front Genome Ed 2021; 2:615619. [PMID: 34713237 PMCID: PMC8525357 DOI: 10.3389/fgeed.2020.615619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Many gene editing techniques are developed and tested, yet, most of these are optimized for transformed cell lines, which differ from their primary cell counterparts in terms of transfectability, cell death propensity, differentiation capability, and chromatin accessibility to gene editing tools. Researchers are working to overcome the challenges associated with gene editing of primary cells, namely, at the level of improving the gene editing tool components, e.g., the use of modified single guide RNAs, more efficient delivery of Cas9 and RNA in the ribonucleoprotein of these cells. Despite these efforts, the low efficiency of proper gene editing in true primary cells is an obstacle that needs to be overcome in order to generate sufficiently high numbers of corrected cells for therapeutic use. In addition, many of the therapeutic candidate genes for gene editing are expressed in more mature blood cell lineages but not in the hematopoietic stem cells (HSCs), where they are tightly packed in heterochromatin, making them less accessible to gene editing enzymes. Bringing HSCs in proliferation is sometimes seen as a solution to overcome lack of chromatin access, but the induction of proliferation in HSCs often is associated with loss of stemness. The documented occurrences of off-target effects and, importantly, on-target side effects also raise important safety issues. In conclusion, many obstacles still remain to be overcome before gene editing in HSCs for gene correction purposes can be applied clinically. In this review, in a perspective way, we will discuss the challenges of researching and developing a novel genetic engineering therapy for monogenic blood and immune system disorders.
Collapse
Affiliation(s)
| | - Hidde A. Zittersteijn
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arjan Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Kim S, Hupperetz C, Lim S, Kim CH. Genome editing of immune cells using CRISPR/Cas9. BMB Rep 2021; 54:59-69. [PMID: 33298251 PMCID: PMC7851445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 03/31/2024] Open
Abstract
The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/ Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells. [BMB Reports 2021; 54(1): 59-69].
Collapse
Affiliation(s)
- Segi Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Cedric Hupperetz
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seongjoon Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chan Hyuk Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
15
|
Blanco E, Izotova N, Booth C, Thrasher AJ. Immune Reconstitution After Gene Therapy Approaches in Patients With X-Linked Severe Combined Immunodeficiency Disease. Front Immunol 2020; 11:608653. [PMID: 33329605 PMCID: PMC7729079 DOI: 10.3389/fimmu.2020.608653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
X-linked severe immunodeficiency disease (SCID-X1) is an inherited, rare, and life-threating disease. The genetic origin is a defect in the interleukin 2 receptor γ chain (IL2RG) gene and patients are classically characterized by absence of T and NK cells, as well as presence of partially-functional B cells. Without any treatment the disease is usually lethal during the first year of life. The treatment of choice for these patients is hematopoietic stem cell transplantation, with an excellent survival rate (>90%) if an HLA-matched sibling donor is available. However, when alternative donors are used, the success and survival rates are often lower. Gene therapy has been developed as an alternative treatment initially using γ-retroviral vectors to correct the defective γ chain in the absence of pre-conditioning treatment. The results were highly promising in SCID-X1 infants, showing long-term T-cell recovery and clinical benefit, although NK and B cell recovery was less robust. However, some infants developed T-cell acute lymphoblastic leukemia after the gene therapy, due to vector-mediated insertional mutagenesis. Consequently, considerable efforts have been made to develop safer vectors. The most recent clinical trials using lentiviral vectors together with a low-dose pre-conditioning regimen have demonstrated excellent sustained T cell recovery, but also B and NK cells, in both children and adults. This review provides an overview about the different gene therapy approaches used over the last 20 years to treat SCID-X1 patients, particularly focusing on lymphoid immune reconstitution, as well as the developments that have improved the process and outcomes.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalia Izotova
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adrian James Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
16
|
Paulisch TO, Bornemann S, Herzog M, Kudruk S, Roling L, Linard Matos AL, Galla HJ, Gerke V, Winter R, Glorius F. An Imidazolium-Based Lipid Analogue as a Gene Transfer Agent. Chemistry 2020; 26:17176-17182. [PMID: 32720444 DOI: 10.1002/chem.202003466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/13/2022]
Abstract
A dicationic imidazolium salt is described and investigated towards its application for gene transfer. The polar head group and the long alkyl chains in the backbone contribute to a lipid-like behavior, while an alkyl ammonium group provides the ability for crucial electrostatic interaction for the transfection process. Detailed biophysical studies regarding its impact on biological membrane models and the propensity of vesicle fusion are presented. Fluorescence spectroscopy, atomic force microscopy and confocal fluorescence microscopy show that the imidazolium salt leads to negligible changes in lipid packing, while displaying distinct vesicle fusion properties. Cell culture experiments reveal that mixed liposomes containing the novel imidazolium salt can serve as plasmid DNA delivery vehicles. In contrast, a structurally similar imidazolium salt without a second positive charge showed no ability to support DNA transfection into cultured cells. Thus, we introduce a novel and variable structural motif for cationic lipids, expanding the field of lipofection agents.
Collapse
Affiliation(s)
- Tiffany O Paulisch
- Institute of Organic Chemistry, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Steffen Bornemann
- Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, 44221, Dortmund, Germany
| | - Marius Herzog
- Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, 44221, Dortmund, Germany
| | - Sergej Kudruk
- Institute of Medical Biochemistry, University of Münster, 48149, Münster, Germany
| | - Lena Roling
- Institute of Organic Chemistry, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | | | - Hans-Joachim Galla
- Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, University of Münster, 48149, Münster, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, 44221, Dortmund, Germany
| | - Frank Glorius
- Institute of Organic Chemistry, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
17
|
Mehravar M, Roshandel E, Salimi M, Chegeni R, Gholizadeh M, Mohammadi MH, Hajifathali A. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunol Lett 2020; 226:71-82. [DOI: 10.1016/j.imlet.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
18
|
Hematopoietic stem cell gene therapy: The optimal use of lentivirus and gene editing approaches. Blood Rev 2019; 40:100641. [PMID: 31761379 DOI: 10.1016/j.blre.2019.100641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Due to pioneering in vitro investigations on gene modification, gene engineering platforms have incredibly improved to a safer and more powerful tool for the treatment of multiple blood and immune disorders. Likewise, several clinical trials have been initiated combining autologous hematopoietic stem cell transplantation (auto-HSCT) with gene therapy (GT) tools. As several GT modalities such as lentivirus and gene editing tools have a long developmental path ahead to diminish its negative side effects, it is hard to decide which modality is optimal for treating a specific disease. Gene transfer by lentiviruses is the platform of choice for loss-of-mutation diseases, whereas gene correction/addition or gene disruption by gene editing tools, mainly CRISPR/Cas9, is likely to be more efficient in diseases where tight regulation is needed. Therefore, in this review, we compiled pertinent information about lentiviral gene transfer and CRISPR/Cas9 gene editing, their evolution to a safer platform for HSCT, and their applications on other types of gene disorders based on the etiology of the disease and cell fitness.
Collapse
|
19
|
Lee ES, Moon S, Abu-Bonsrah KD, Kim YK, Hwang MY, Kim YJ, Kim S, Hwang NS, Kim HH, Kim BJ. Programmable Nuclease-Based Integration into Novel Extragenic Genomic Safe Harbor Identified from Korean Population-Based CNV Analysis. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:253-265. [PMID: 31463366 PMCID: PMC6708990 DOI: 10.1016/j.omto.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/11/2019] [Indexed: 11/26/2022]
Abstract
Here, we found two genomic safe harbor (GSH) candidates from chromosomes 3 and 8, based on large-scale population-based cohort data from 4,694 Koreans by CNV analysis. Furthermore, estimated genotype of these CNVRs was validated by quantitative real-time PCR, and epidemiological data examined no significant genetic association between diseases or traits and two CNVRs. After screening the GSH candidates by in silico approaches, we designed TALEN pairs to integrate EGFP expression cassette into human cell lines in order to confirm the functionality of GSH candidates in an in vitro setting. As a result, transgene insertion into one of the two loci using TALEN showed robust transgene expression comparable to that with an AAVS1 site without significantly perturbing neighboring genes. Changing the promoter or cell type did not noticeably disturb this trend. Thus, we could validate two CNVRs as a site for effective and safe transgene insertion in human cells.
Collapse
Affiliation(s)
- Eun-Seo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03372, Republic of Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | - Kwaku Dad Abu-Bonsrah
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Yun Kyoung Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | | | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax Institute of Seoul National University, Seoul 08826, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03372, Republic of Korea.,Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03372, Republic of Korea.,Center for Nanomedicine, Institute of Basic Science (IBS), Seoul 03772, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03372, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| |
Collapse
|
20
|
Korntner S, Lehner C, Gehwolf R, Wagner A, Grütz M, Kunkel N, Tempfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev 2019; 146:170-189. [PMID: 29501628 DOI: 10.1016/j.addr.2018.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new blood vessel formation from existing blood vessels, is a key aspect of virtually every repair process. During wound healing an extensive, but immature and leaky vascular plexus forms which is subsequently reduced by regression of non-functional vessels. More recent studies indicate that uncontrolled vessel growth or impaired vessel regression as a consequence of an excessive inflammatory response can impair wound healing, resulting in scarring and dysfunction. However, in order to elucidate targetable factors to promote functional tissue regeneration we need to understand the molecular and cellular underpinnings of physiological angiogenesis, ranging from induction to resolution of blood vessels. Especially for avascular tissues (e.g. cornea, tendon, ligament, cartilage, etc.), limiting rather than boosting vessel growth during wound repair potentially is beneficial to restore full tissue function and may result in favourable long-term healing outcomes.
Collapse
|
21
|
Pavel-Dinu M, Wiebking V, Dejene BT, Srifa W, Mantri S, Nicolas CE, Lee C, Bao G, Kildebeck EJ, Punjya N, Sindhu C, Inlay MA, Saxena N, DeRavin SS, Malech H, Roncarolo MG, Weinberg KI, Porteus MH. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 2019; 10:1634. [PMID: 30967552 PMCID: PMC6456568 DOI: 10.1038/s41467-019-09614-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Gene correction in human long-term hematopoietic stem cells (LT-HSCs) could be an effective therapy for monogenic diseases of the blood and immune system. Here we describe an approach for X-linked sSevere cCombined iImmunodeficiency (SCID-X1) using targeted integration of a cDNA into the endogenous start codon to functionally correct disease-causing mutations throughout the gene. Using a CRISPR-Cas9/AAV6 based strategy, we achieve up to 20% targeted integration frequencies in LT-HSCs. As measures of the lack of toxicity we observe no evidence of abnormal hematopoiesis following transplantation and no evidence of off-target mutations using a high-fidelity Cas9 as a ribonucleoprotein complex. We achieve high levels of targeting frequencies (median 45%) in CD34+ HSPCs from six SCID-X1 patients and demonstrate rescue of lymphopoietic defect in a patient derived HSPC population in vitro and in vivo. In sum, our study provides specificity, toxicity and efficacy data supportive of clinical development of genome editing to treat SCID-Xl.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Volker Wiebking
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Beruh T Dejene
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Waracharee Srifa
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sruthi Mantri
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carmencita E Nicolas
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ciaran Lee
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Eric J Kildebeck
- Center for Engineering Innovation, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Niraj Punjya
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Camille Sindhu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Matthew A Inlay
- Department of Cellular and Molecular Biosciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Nivedita Saxena
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Suk See DeRavin
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, 20892, USA
| | - Harry Malech
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, 20892, USA
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kenneth I Weinberg
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
CRISPR/Cas9-modified hematopoietic stem cells-present and future perspectives for stem cell transplantation. Bone Marrow Transplant 2019; 54:1940-1950. [PMID: 30903024 DOI: 10.1038/s41409-019-0510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a standard therapeutic intervention for hematological malignancies and several monogenic diseases. However, this approach has limitations related to lack of a suitable donor, graft-versus-host disease and infectious complications due to immune suppression. On the contrary, autologous HSCT diminishes the negative effects of allogeneic HSCT. Despite the good efficacy, earlier gene therapy trials with autologous HSCs and viral vectors have raised serious safety concerns. However, the CRISPR/Cas9-edited autologous HSCs have been proposed to be an alternative option with a high safety profile. In this review, we summarized the possibility of CRISPR/Cas9-mediated autologous HSCT as a potential treatment option for various diseases supported by preclinical gene-editing studies. Furthermore, we discussed future clinical perspectives and possible clinical grade improvements of CRISPR/cas9-mediated autologous HSCT.
Collapse
|
23
|
Ghassemi B, Shamsara M, Soleimani M, Kiani J, Rassoulzadegan M. Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing. Anal Biochem 2019; 568:31-40. [PMID: 30593779 DOI: 10.1016/j.ab.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/06/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
Abstract
Animal models possess undeniable utility for progress on biomedical research projects and developmental and disease studies. Transgenic mouse models recreating specific disease phenotypes associated with β-hemoglobinopathies have been developed previously. However, traditional methods for gene targeting in mouse using embryonic stem cells (ESCs) are laborious and time consuming. Recently, CRISPR has been developed to facilitate and improve genomic modifications in mouse or isogenic cell lines. Applying CRISPR to gene modification eliminates the time consuming steps of traditional approach including selection of targeted ESC clones and production of chimeric mouse. This study shows that microinjection of a plasmid DNA encoding Cas9 protein along with dual sgRNAs specific to Hbb-bs gene (hemoglobin, beta adult s chain) enables breaking target sequences at exons 2 and 3 positions. The injections led to a knockout allele with efficiency around 10% for deletion of exons 2 and 3 and 20% for indel mutation.
Collapse
Affiliation(s)
- Bita Ghassemi
- Department of Transgenic Animal Science, Stem Cell Technology Research Center, Tehran, Iran.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Minoo Rassoulzadegan
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France, Inserm UMR1091, CNRS UMR7277, Nice, France.
| |
Collapse
|
24
|
Abstract
The development of the reprogramming technology led to generation of induced Pluripotent Stem Cells (iPSC) from a variety of somatic cells. Ever since, fast growing knowledge of different efficient protocols enabled the differentiation of these iPSCs into different cells types utilized for disease modeling. Indeed, iPSC-derived cells have been increasingly used for investigating molecular and cellular pathophysiological mechanisms underlying inherited diseases. However, a major barrier in the field of iPSC-based disease modeling relies on discriminating between the effects of the causative mutation and the genetic background of these cells. In the past decade, researchers have made great improvement in genome editing techniques, with one of the latest being CRISPR/Cas9. Using a single non-sequence specific protein combined with a small guiding RNA molecule, this state-of-the-art approach enables modifications of genes with high efficiency and accuracy. By so doing, this technique enables the generation of isogenic controls or isogenic mutated cell lines in order to focus on the pathologies caused by a specific mutation. In this article, we review the latest studies combining iPSC and CRISPR/Cas9 technologies for the investigation of the molecular and cellular mechanisms underlying inherited diseases including immunological, metabolic, hematological, neurodegenerative and cardiac diseases.
Collapse
|
25
|
Antony JS, Latifi N, Haque AKMA, Lamsfus-Calle A, Daniel-Moreno A, Graeter S, Baskaran P, Weinmann P, Mezger M, Handgretinger R, Kormann MSD. Gene correction of HBB mutations in CD34 + hematopoietic stem cells using Cas9 mRNA and ssODN donors. Mol Cell Pediatr 2018; 5:9. [PMID: 30430274 PMCID: PMC6236008 DOI: 10.1186/s40348-018-0086-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Background β-Thalassemia is an inherited hematological disorder caused by mutations in the human hemoglobin beta (HBB) gene that reduce or abrogate β-globin expression. Although lentiviral-mediated expression of β-globin and autologous transplantation is a promising therapeutic approach, the risk of insertional mutagenesis or low transgene expression is apparent. However, targeted gene correction of HBB mutations with programmable nucleases such as CRISPR/Cas9, TALENs, and ZFNs with non-viral repair templates ensures a higher safety profile and endogenous expression control. Methods We have compared three different gene-editing tools (CRISPR/Cas9, TALENs, and ZFNs) for their targeting efficiency of the HBB gene locus. As a proof of concept, we studied the personalized gene-correction therapy for a common β-thalassemia splicing variant HBBIVS1–110 using Cas9 mRNA and several optimally designed single-stranded oligonucleotide (ssODN) donors in K562 and CD34+ hematopoietic stem cells (HSCs). Results Our results exhibited that indel frequency of CRISPR/Cas9 was superior to TALENs and ZFNs (P < 0.0001). Our designed sgRNA targeting the site of HBBIVS1–110 mutation showed indels in both K562 cells (up to 77%) and CD34+ hematopoietic stem cells—HSCs (up to 87%). The absolute quantification by next-generation sequencing showed that up to 8% site-specific insertion of the NheI tag was achieved using Cas9 mRNA and a chemically modified ssODN in CD34+ HSCs. Conclusion Our approach provides guidance on non-viral gene correction in CD34+ HSCs using Cas9 mRNA and chemically modified ssODN. However, further optimization is needed to increase the homology directed repair (HDR) to attain a real clinical benefit for β-thalassemia. Electronic supplementary material The online version of this article (10.1186/s40348-018-0086-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin S Antony
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany.,University Children's Hospital, Department of Pediatrics I, University of Tuebingen, Tuebingen, Germany.,Department of Hematology, Oncology, Clinical Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ngadhnjim Latifi
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | - A K M Ashiqul Haque
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | - Andrés Lamsfus-Calle
- University Children's Hospital, Department of Pediatrics I, University of Tuebingen, Tuebingen, Germany
| | - Alberto Daniel-Moreno
- University Children's Hospital, Department of Pediatrics I, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Graeter
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | - Praveen Baskaran
- Center for Quantitative Biology, University of Tuebingen, Tuebingen, Germany
| | - Petra Weinmann
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, University of Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- University Children's Hospital, Department of Pediatrics I, University of Tuebingen, Tuebingen, Germany
| | - Michael S D Kormann
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
26
|
Raun A, Saklayen N, Zgrabik C, Shen W, Madrid M, Huber M, Hu E, Mazur E. A comparison of inverted and upright laser-activated titanium nitride micropyramids for intracellular delivery. Sci Rep 2018; 8:15595. [PMID: 30349063 PMCID: PMC6197185 DOI: 10.1038/s41598-018-33885-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior molecules to enter the cell via diffusion. Various established delivery methods, including electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity, respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 °C and 307 °C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine.
Collapse
Affiliation(s)
- Alexander Raun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Nabiha Saklayen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Christine Zgrabik
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Weilu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Marinna Madrid
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Evelyn Hu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
27
|
Ginn SL, McCormack MP, Alexander IE. Thymocyte self-renewal and oncogenic risk in immunodeficient mouse models: relevance for human gene therapy clinical trials targeting haematopoietic stem cell populations? Mamm Genome 2018; 29:771-776. [PMID: 30182300 DOI: 10.1007/s00335-018-9780-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/29/2018] [Indexed: 11/28/2022]
Abstract
Emerging evidence indicates that thymocyte self-renewal induced by progenitor deprivation carries an oncogenic risk that is modulated by intra-thymic competition from differentiation-committed cells. Here we discuss formative studies demonstrating that, in mice, early thymocytes acquire self-renewing potential when thymic progenitor supply is sub-physiological and the importance of cellular competition with this at-risk cell population to prevent lymphoid malignancy. We also consider the possibility that increased thymic residency time, established under conditions of limited cellular competition, may have contributed to oncogenesis observed in early SCID-X1 trials when combined with insertional activation of proto-oncogenes such as LMO2.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Locked Bag 2023, Wentworthville, NSW, 2145, Australia.
| | - Matthew P McCormack
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Locked Bag 2023, Wentworthville, NSW, 2145, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
28
|
Hiramoto T, Li LB, Funk SE, Hirata RK, Russell DW. Nuclease-free Adeno-Associated Virus-Mediated Il2rg Gene Editing in X-SCID Mice. Mol Ther 2018; 26:1255-1265. [PMID: 29606506 DOI: 10.1016/j.ymthe.2018.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) has been successfully treated by hematopoietic stem cell (HSC) transduction with retroviral vectors expressing the interleukin-2 receptor subunit gamma gene (IL2RG), but several patients developed malignancies due to vector integration near cellular oncogenes. This adverse side effect could in principle be avoided by accurate IL2RG gene editing with a vector that does not contain a functional promoter or IL2RG gene. Here, we show that adeno-associated virus (AAV) gene editing vectors can insert a partial Il2rg cDNA at the endogenous Il2rg locus in X-SCID murine bone marrow cells and that these ex vivo-edited cells repopulate transplant recipients and produce CD4+ and CD8+ T cells. Circulating, edited lymphocytes increased over time and appeared in secondary transplant recipients, demonstrating successful editing in long-term repopulating cells. Random vector integration events were nearly undetectable, and malignant transformation of the transplanted cells was not observed. Similar editing frequencies were observed in human hematopoietic cells. Our results demonstrate that therapeutically relevant HSC gene editing can be achieved by AAV vectors in the absence of site-specific nucleases and suggest that this may be a safe and effective therapy for hematopoietic diseases where in vivo selection can increase edited cell numbers.
Collapse
Affiliation(s)
- Takafumi Hiramoto
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Li B Li
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah E Funk
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Roli K Hirata
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David W Russell
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Liu S, Romano V, Steger B, Kaye SB, Hamill KJ, Willoughby CE. Gene-based antiangiogenic applications for corneal neovascularization. Surv Ophthalmol 2018; 63:193-213. [DOI: 10.1016/j.survophthal.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
|
30
|
The changing landscape of gene editing in hematopoietic stem cells: a step towards Cas9 clinical translation. Curr Opin Hematol 2018; 24:481-488. [PMID: 28806273 DOI: 10.1097/moh.0000000000000385] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Since the discovery two decades ago that programmable endonucleases can be engineered to modify human cells at single nucleotide resolution, the concept of genome editing was born. Now these technologies are being applied to therapeutically relevant cell types, including hematopoietic stem cells (HSC), which possess the power to repopulate an entire blood and immune system. The purpose of this review is to discuss the changing landscape of genome editing in hematopoietic stem cells (GE-HSC) from the discovery stage to the preclinical stage, with the imminent goal of clinical translation for the treatment of serious genetic diseases of the blood and immune system. RECENT FINDINGS With the discovery that the RNA-programmable (sgRNA) clustered regularly interspace short palindromic repeats (CRISPR)-Cas9 nuclease (Cas9/sgRNA) systems can be easily used to precisely modify the human genome in 2012, a genome-editing revolution of hematopoietic stem cells (HSC) has bloomed. We have observed that over the last 2 years, academic institutions and small biotech companies are developing HSC-based Cas9/sgRNA genome-editing curative strategies to treat monogenic disorders, including β-hemoglobinopathies and primary immunodeficiencies. We will focus on recent publications (within the past 2 years) that employ different genome-editing strategies to 'hijack' the cell's endogenous double-strand repair pathways to confer a disease-specific therapeutic advantage. SUMMARY The number of genome-editing strategies in HSCs that could offer therapeutic potential for diseases of the blood and immune system have dramatically risen over the past 2 years. The HSC-based genome-editing field is primed to enter clinical trials in the subsequent years. We will summarize the major advancements for the development of novel autologous GE-HSC cell and gene therapy strategies for hematopoietic diseases that are candidates for curative allogeneic bone marrow transplantation.
Collapse
|
31
|
Williams DA. Principles of Cell-Based Genetic Therapies. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
32
|
Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, Porteus MH. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. eLife 2017; 6:e27873. [PMID: 28956530 PMCID: PMC5656432 DOI: 10.7554/elife.27873] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Precise and efficient manipulation of genes is crucial for understanding the molecular mechanisms that govern human hematopoiesis and for developing novel therapies for diseases of the blood and immune system. Current methods do not enable precise engineering of complex genotypes that can be easily tracked in a mixed population of cells. We describe a method to multiplex homologous recombination (HR) in human hematopoietic stem and progenitor cells and primary human T cells by combining rAAV6 donor delivery and the CRISPR/Cas9 system delivered as ribonucleoproteins (RNPs). In addition, the use of reporter genes allows FACS-purification and tracking of cells that have had multiple alleles or loci modified by HR. We believe this method will enable broad applications not only to the study of human hematopoietic gene function and networks, but also to perform sophisticated synthetic biology to develop innovative engineered stem cell-based therapeutics.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of PediatricsStanford UniversityStanfordUnited States
| | - Daniel P Dever
- Department of PediatricsStanford UniversityStanfordUnited States
| | - Andreas Reinisch
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | - David Cruz Hernandez
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | - Ravindra Majeti
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | | |
Collapse
|
33
|
Ginn SL, Hallwirth CV, Liao SHY, Teber ET, Arthur JW, Wu J, Lee HC, Tay SS, Hu M, Reddel RR, McCormack MP, Thrasher AJ, Cavazzana M, Alexander SI, Alexander IE. Limiting Thymic Precursor Supply Increases the Risk of Lymphoid Malignancy in Murine X-Linked Severe Combined Immunodeficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:1-14. [PMID: 28325276 PMCID: PMC5363493 DOI: 10.1016/j.omtn.2016.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022]
Abstract
In early gene therapy trials for SCID-X1, using γ-retroviral vectors, T cell leukemias developed in a subset of patients secondary to insertional proto-oncogene activation. In contrast, we have reported development of T cell leukemias in SCID-X1 mice following lentivirus-mediated gene therapy independent of insertional mutagenesis. A distinguishing feature in our study was that only a proportion of transplanted γc-deficient progenitors were transduced and therefore competent for reconstitution. We hypothesized that reconstitution of SCID-X1 mice with limiting numbers of hematopoietic progenitors might be a risk factor for lymphoid malignancy. To test this hypothesis, in the absence of transduction, SCID-X1 mice were reconstituted with serially fewer wild-type hematopoietic progenitors. A robust inverse correlation between hematopoietic progenitor cell dose and T-lymphoid malignancy was observed, with earlier disease onset at lower cell doses. Malignancies were of donor origin and carried activating Notch1 mutations. These findings align with emerging evidence that thymocyte self-renewal induced by progenitor deprivation carries an oncogenic risk that is modulated by intra-thymic competition from differentiation-committed cells. Although insertional proto-oncogene activation is required for the development of malignancy in humans, failure of γc-deficient thymocytes to effectively compete with this at-risk cell population may have also contributed to oncogenesis observed in early SCID-X1 trials.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Sophia H Y Liao
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Erdahl T Teber
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jonathan W Arthur
- Bioinformatics Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jianmin Wu
- Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Hong Ching Lee
- Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Szun S Tay
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Min Hu
- Centre for Kidney Research of The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthew P McCormack
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3800, Australia
| | - Adrian J Thrasher
- Infection, Immunity, Inflammation, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Marina Cavazzana
- Department of Biotherapy, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Stephen I Alexander
- Centre for Kidney Research of The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
34
|
Liu Y, Yang Y, Kang X, Lin B, Yu Q, Song B, Gao G, Chen Y, Sun X, Li X, Bu L, Fan Y. One-Step Biallelic and Scarless Correction of a β-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:57-67. [PMID: 28325300 PMCID: PMC5363452 DOI: 10.1016/j.omtn.2016.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/20/2016] [Accepted: 11/20/2016] [Indexed: 11/25/2022]
Abstract
Monogenic disorders (MGDs), which are caused by single gene mutations, have a serious effect on human health. Among these, β-thalassemia (β-thal) represents one of the most common hereditary hematological diseases caused by mutations in the human hemoglobin β (HBB) gene. The technologies of induced pluripotent stem cells (iPSCs) and genetic correction provide insights into the treatments for MGDs, including β-thal. However, traditional approaches for correcting mutations have a low efficiency and leave a residual footprint, which leads to some safety concerns in clinical applications. As a proof of concept, we utilized single-strand oligodeoxynucleotides (ssODNs), high-fidelity CRISPR/Cas9 nuclease, and small molecules to achieve a seamless correction of the β-41/42 (TCTT) deletion mutation in β thalassemia patient-specific iPSCs with remarkable efficiency. Additionally, off-target analysis and whole-exome sequencing results revealed that corrected cells exhibited a minimal mutational load and no off-target mutagenesis. When differentiated into hematopoietic progenitor cells (HPCs) and then further to erythroblasts, the genetically corrected cells expressed normal β-globin transcripts. Our studies provide the most efficient and safe approach for the genetic correction of the β-41/42 (TCTT) deletion in iPSCs for further potential cell therapy of β-thal, which represents a potential therapeutic avenue for the gene correction of MGD-associated mutants in patient-specific iPSCs.
Collapse
Affiliation(s)
- Yali Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yi Yang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiangjin Kang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Bin Lin
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Qian Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Bing Song
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ge Gao
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yaoyong Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiaoping Li
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
35
|
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 2016; 539:384-389. [PMID: 27820943 PMCID: PMC5898607 DOI: 10.1038/nature20134] [Citation(s) in RCA: 658] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The β-haemoglobinopathies, such as sickle cell disease and β-thalassaemia, are caused by mutations in the β-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure β-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult β-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for β-haemoglobinopathies.
Collapse
Affiliation(s)
- Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Gabriel Washington
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Nivi Saxena
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Alec B Wilkens
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Sruthi Mantri
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Nobuko Uchida
- Stem Cells, Inc. 7707 Gateway Blvd., Suite 140, Newark, California 94560, USA
| | - Ayal Hendel
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Anupama Narla
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
| | - Kenneth I Weinberg
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
36
|
Condreay JP, Kost TA, Mickelson CA. Emerging Considerations in Virus-Based Gene Transfer Systems. BIOLOGICAL SAFETY 2016:221-246. [DOI: 10.1128/9781555819637.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Isik M, Agirre M, Zarate J, Puras G, Mecerreyes D, Sardon H, Pedraz JL. Amine containing cationic methacrylate copolymers as efficient gene delivery vehicles to retinal epithelial cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mehmet Isik
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center; Avda. Tolosa 72 Donostia-San Sebastian 20018 Spain
| | - Mireia Agirre
- NanoBioCel Group, University of the Basque Country UPV/EHU; Vitoria-Gasteiz Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Vitoria-Gasteiz Spain
| | - Jon Zarate
- NanoBioCel Group, University of the Basque Country UPV/EHU; Vitoria-Gasteiz Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Vitoria-Gasteiz Spain
| | - Gustavo Puras
- NanoBioCel Group, University of the Basque Country UPV/EHU; Vitoria-Gasteiz Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Vitoria-Gasteiz Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center; Avda. Tolosa 72 Donostia-San Sebastian 20018 Spain
- Basque Foundation for Science; Ikerbasque; Bilbao E-48011 Spain
| | - Haritz Sardon
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center; Avda. Tolosa 72 Donostia-San Sebastian 20018 Spain
| | - J. L. Pedraz
- NanoBioCel Group, University of the Basque Country UPV/EHU; Vitoria-Gasteiz Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Vitoria-Gasteiz Spain
| |
Collapse
|
38
|
Kotterman MA, Chalberg TW, Schaffer DV. Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu Rev Biomed Eng 2016; 17:63-89. [PMID: 26643018 DOI: 10.1146/annurev-bioeng-071813-104938] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a range of human trials, viral vectors have emerged as safe and effective delivery vehicles for clinical gene therapy, particularly for monogenic recessive disorders, but there has also been early work on some idiopathic diseases. These successes have been enabled by research and development efforts focusing on vectors that combine low genotoxicity and immunogenicity with highly efficient delivery, including vehicles based on adeno-associated virus and lentivirus, which are increasingly enabling clinical success. However, numerous delivery challenges must be overcome to extend this success to many diseases; these challenges include developing techniques to evade preexisting immunity, to ensure more efficient transduction of therapeutically relevant cell types, to target delivery, and to ensure genomic maintenance. Fortunately, vector-engineering efforts are demonstrating promise in the development of next-generation gene therapy vectors that can overcome these barriers. This review highlights key historical trends in clinical gene therapy, the recent clinical successes of viral-based gene therapy, and current research that may enable future clinical application.
Collapse
Affiliation(s)
| | | | - David V Schaffer
- 4D Molecular Therapeutics, San Francisco, California 94107; .,University of California, Berkeley, California 94720-3220;
| |
Collapse
|
39
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
40
|
Ha KM. Facilitating Redundancy-Oriented Management with Gene-Therapy-Oriented Management Against Disaster. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2016; 36:1262-1276. [PMID: 26720173 DOI: 10.1111/risa.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This article tests the hypothesis that "if redundancy-oriented management has negative aspects, then it could be facilitated by gene-therapy-oriented management." Negative aspects include disadvantages, misjudgments, or miscalculations. The article provides a newly revised principle of disaster management by studying gene-therapy-oriented management. Based on qualitative analysis, redundancy-oriented and gene-therapy-oriented management are analyzed via five variables: governments, business, volunteers, households, and the international community. The article is valuable because an analytical frame on gene-therapy-oriented management is systematically reconceptualized for the field of disaster management via three elements: unhealthy proteins (problems or failed measures), a vector (new or modified solutions), and target cells (positive outcomes). In accepting the hypothesis, the key tenet is that stakeholders have to assist the progress of redundancy-oriented management with gene-therapy-oriented management by paying attention to the genes of each disaster.
Collapse
|
41
|
Ruggero K, Al-Assar O, Chambers JS, Codrington R, Brend T, Rabbitts TH. LMO2 and IL2RG synergize in thymocytes to mimic the evolution of SCID-X1 gene therapy-associated T-cell leukaemia. Leukemia 2016; 30:1959-62. [PMID: 27256700 PMCID: PMC5227057 DOI: 10.1038/leu.2016.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- K Ruggero
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - O Al-Assar
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J S Chambers
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - R Codrington
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK.,ABeterno Technologies Ltd, Cambridge, UK
| | - T Brend
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - T H Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
42
|
Yoo SY, Jin HE, Choi DS, Kobayashi M, Farouz Y, Wang S, Lee SW. M13 Bacteriophage and Adeno-Associated Virus Hybrid for Novel Tissue Engineering Material with Gene Delivery Functions. Adv Healthc Mater 2016; 5:88-93. [PMID: 26010471 DOI: 10.1002/adhm.201500179] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 01/25/2023]
Affiliation(s)
- So Young Yoo
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
- BIO-IT Foundry Technology Institute; Pusan National University; Busan 609-735, and Research Institute for Convergence of Biomedical Science and Technology; Yangsan 626-770 Republic of Korea
| | - Hyo-Eon Jin
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| | - Dong Shin Choi
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| | - Masae Kobayashi
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| | - Yohan Farouz
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
- Biology Department; Ecole Polytechnique Route de Saclay; 91128 Palaiseau Cedex France
| | - Sky Wang
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| | - Seung-Wuk Lee
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| |
Collapse
|
43
|
A novel intranuclear RNA vector system for long-term stem cell modification. Gene Ther 2015; 23:256-62. [PMID: 26632671 PMCID: PMC4777691 DOI: 10.1038/gt.2015.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/05/2015] [Indexed: 11/29/2022]
Abstract
Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction.
Collapse
|
44
|
Pellagatti A, Dolatshad H, Yip BH, Valletta S, Boultwood J. Application of genome editing technologies to the study and treatment of hematological disease. Adv Biol Regul 2015; 60:122-134. [PMID: 26433620 DOI: 10.1016/j.jbior.2015.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
Genome editing technologies have advanced significantly over the past few years, providing a fast and effective tool to precisely manipulate the genome at specific locations. The three commonly used genome editing technologies are Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas9 (CRISPR/Cas9) system. ZFNs and TALENs consist of endonucleases fused to a DNA-binding domain, while the CRISPR/Cas9 system uses guide RNAs to target the bacterial Cas9 endonuclease to the desired genomic location. The double-strand breaks made by these endonucleases are repaired in the cells either by non-homologous end joining, resulting in the introduction of insertions/deletions, or, if a repair template is provided, by homology directed repair. The ZFNs, TALENs and CRISPR/Cas9 systems take advantage of these repair mechanisms for targeted genome modification and have been successfully used to manipulate the genome in human cells. These genome editing tools can be used to investigate gene function, to discover new therapeutic targets, and to develop disease models. Moreover, these genome editing technologies have great potential in gene therapy. Here, we review the latest advances in the application of genome editing technology to the study and treatment of hematological disorders.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Bon Ham Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Simona Valletta
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
45
|
Tolmachov OE. Transgenic DNA modules with pre-programmed self-destruction: Universal molecular devices to escape 'genetic litter' in gene and cell therapy. Med Hypotheses 2015; 85:686-9. [PMID: 26319641 DOI: 10.1016/j.mehy.2015.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/03/2015] [Accepted: 08/15/2015] [Indexed: 02/06/2023]
Abstract
Gene delivery to human somatic cells is a well-established therapeutic strategy to treat a variety of diseases. In addition, gene transfer to human cells is required to generate human induced pluripotent cells and also to eliminate tumorigenic undifferentiated cells in many types of stem-cell derived transplantation material. The expression of transgenes in these medical technologies is often required only in some of the recipient cells and only in specific limited time-windows, with inappropriately located or untimely expressed transgenes presenting a risk of undesired collateral effects. Unfortunately, current gene transfer procedures commonly result in a number of cells in the patient's body containing fragments of transferred genetic material which are either not therapeutically necessary at all, are no longer necessary or are necessary but in some other cells. Such transgenic material in the patient, created as a by-product of the chosen therapeutic procedure, constitutes, in fact, 'genetic litter', that is, persisting potentially-hazardous foreign genetic material which is neither required therapeutically nor explicitly chosen by an informed and free-willing person as an artificial body element. Wider use and more frequent administration of gene and cell therapy in the future are likely to give greater prominence to the issue of misdelivered genetic medicines and of their unwanted remainders accumulating in human bodies. Thus, novel DNA templates, which, on the one hand, are capable of providing transgene expression over broad time-windows, and, on the other hand, do not leave unwanted permanent 'genetic traces', are required. I propose that the problem of 'genetic litter' in patients' bodies can be addressed through the employment of a new type of gene vectors delivering DNA-based transgenic modules with pre-programmed self-destruction. Such vectors could deliver therapeutic DNA cargo and then execute self-liquidation through pre-scheduled activation of co-delivered genome editing tools, such as CRISPR/Cas9 nucleases, specific for the DNA to be eliminated. In this model, all unnecessary transgenic DNA is edited away precisely at a desired time point. Activity of the gene correction apparatus for the specific and effective destruction of transgenic DNA could be turned on by well-timed external signals or could be triggered through intracellular sensors of particular epigenetic signatures. It is expected that the employment of the proposed DNA-based gene vectors equipped with a transgene self-destruct mechanism can extend the safe and ethical application of gene and cell therapy to a broader range of curative and lifestyle-choice medical treatments, e.g., full body prophylactic gene therapy of cancer.
Collapse
Affiliation(s)
- Oleg E Tolmachov
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
46
|
Safari F, Tamaddon AM, Zarghami N, Abolmali S, Akbarzadeh A. Polyelectrolyte complexes of hTERT siRNA and polyethyleneimine: Effect of degree of PEG grafting on biological and cellular activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1561-8. [DOI: 10.3109/21691401.2015.1064936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fatemeh Safari
- Medical Biotechnology Department, Tabriz Advanced Medical Science Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali M. Tamaddon
- Center for Pharmaceutical Nanotechnology and Biomaterials, Shiraz Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nosratollah Zarghami
- Medical Biotechnology Department, Tabriz Advanced Medical Science Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - S. Abolmali
- Center for Pharmaceutical Nanotechnology and Biomaterials, Shiraz Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Akbarzadeh
- Medical Biotechnology Department, Tabriz Advanced Medical Science Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Hou S, Choi JS, Chen KJ, Zhang Y, Peng J, Garcia MA, Yu JH, Thakore-Shah K, Ro T, Chen JF, Peyda P, Fan G, Pyle AD, Wang H, Tseng HR. Supramolecular nanosubstrate-mediated delivery for reprogramming and transdifferentiation of mammalian cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2499-504. [PMID: 25613059 PMCID: PMC4961214 DOI: 10.1002/smll.201402602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/03/2014] [Indexed: 05/17/2023]
Abstract
Supramolecular nanosubstrate-mediated delivery (SNSMD) leverages the power of molecular self-assembly and a nanostructured substrate platform for the low toxicity, highly efficient co-delivery of biological factors encapsulated in a nanovector. Human fibroblasts are successfully reprogrammed into induced pluripotent stems and transdifferentiated into induced neuronal-like cells.
Collapse
Affiliation(s)
- Shuang Hou
- National Center for Nanoscience and Technology, Beijing, China. Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| | - Jin-sil Choi
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| | - Kuan-Ju Chen
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| | - Yang Zhang
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| | - Jinliang Peng
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA. School of Biomedical Engineering, MED-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mitch A. Garcia
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| | - Jue-hua Yu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095-7088
| | - Kaushali Thakore-Shah
- Molecular Biology Institute, Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - Tracy Ro
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| | - Jie-Fu Chen
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| | - Parham Peyda
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095-7088
| | - April D. Pyle
- Molecular Biology Institute, Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - Hao Wang
- National Center for Nanoscience and Technology, Beijing, China
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1770, USA
| |
Collapse
|
48
|
Hagedorn C, Lipps HJ, Rupprecht S. The epigenetic regulation of autonomous replicons. Biomol Concepts 2015; 1:17-30. [PMID: 25961982 DOI: 10.1515/bmc.2010.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in 1979 was considered a milestone in unraveling the regulation of replication in eukaryotic cells. However, shortly afterwards it became obvious that in Saccharomyces pombe and all other higher organisms ARSs were not sufficient to initiate independent replication. Understanding the mechanisms of replication is a major challenge in modern cell biology and is also a prerequisite to developing application-oriented autonomous replicons for gene therapeutic treatments. This review will focus on the development of non-viral episomal vectors, their use in gene therapeutic applications and our current knowledge about their epigenetic regulation.
Collapse
|
49
|
Cui Y, Onozawa M, Garber HR, Samsel L, Wang Z, McCoy JP, Burkett S, Wu X, Aplan PD, Mackall CL. Thymic expression of a T-cell receptor targeting a tumor-associated antigen coexpressed in the thymus induces T-ALL. Blood 2015; 125:2958-67. [PMID: 25814528 PMCID: PMC4424417 DOI: 10.1182/blood-2014-10-609271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
T-cell receptors (TCRs) and chimeric antigen receptors recognizing tumor-associated antigens (TAAs) can now be engineered to be expressed on a wide array of immune effectors. Engineered receptors targeting TAAs have most commonly been expressed on mature T cells, however, some have postulated that receptor expression on immune progenitors could yield T cells with enhanced potency. We generated mice (survivin-TCR-transgenic [Sur-TCR-Tg]) expressing a TCR recognizing the immunodominant epitope (Sur20-28) of murine survivin during early stages of thymopoiesis. Spontaneous T-cell acute lymphoblastic leukemia (T-ALL) occurred in 100% of Sur-TCR-Tg mice derived from 3 separate founders. The leukemias expressed the Sur-TCR and signaled in response to the Sur20-28 peptide. In preleukemic mice, we observed increased cycling of double-negative thymocytes expressing the Sur-TCR and increased nuclear translocation of nuclear factor of activated T cells, consistent with TCR signaling induced by survivin expression in the murine thymus. β2M(-/-) Sur-TCR-Tg mice, which cannot effectively present survivin peptides on class I major histocompatibility complex, had significantly diminished rates of leukemia. We conclude that TCR signaling during the early stages of thymopoiesis mediates an oncogenic signal, and therefore expression of signaling receptors on developing thymocytes with specificity for TAAs expressed in the thymus could pose a risk for neoplasia, independent of insertional mutagenesis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Blotting, Western
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Transformation, Neoplastic
- Flow Cytometry
- Fluorescent Antibody Technique
- Homeodomain Proteins/physiology
- Inhibitor of Apoptosis Proteins/physiology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Peptide Fragments/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Antigen, T-Cell/physiology
- Repressor Proteins/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Survivin
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
| | - Masahiro Onozawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | | - Leigh Samsel
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sandra Burkett
- Molecular Cytogenetics Core, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD; and
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
50
|
Calero-Garcia M, Gaspar HB. Gene Therapy for SCID. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-014-0069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|