1
|
Jalan M, Brambati A, Shah H, McDermott N, Patel J, Zhu Y, Doymaz A, Wu J, Anderson KS, Gazzo A, Pareja F, Yamaguchi TN, Vougiouklakis T, Ahmed-Seghir S, Steinberg P, Neiman-Golden A, Azeroglu B, Gomez-Aguilar J, da Silva EM, Hussain S, Higginson D, Boutros PC, Riaz N, Reis-Filho JS, Powell SN, Sfeir A. RNA transcripts serve as a template for double-strand break repair in human cells. Nat Commun 2025; 16:4349. [PMID: 40348775 PMCID: PMC12065846 DOI: 10.1038/s41467-025-59510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Double-strand breaks (DSBs) are toxic lesions that lead to genome instability. While canonical DSB repair pathways typically operate independently of RNA, growing evidence suggests that RNA:DNA hybrids and nearby transcripts can influence repair outcomes. However, whether transcript RNA can directly serve as a template for DSB repair in human cells remains unclear. In this study, we develop fluorescence and sequencing-based assays to show that RNA-containing oligonucleotides and messenger RNA can serve as templates during DSB repair. We conduct a CRISPR/Cas9-based genetic screen to identify factors that promote RNA-templated DSB repair (RT-DSBR). Of the candidate polymerases, we identify DNA polymerase zeta (Polζ) as a potential reverse transcriptase that facilitates RT-DSBR. Furthermore, analysis of cancer genome sequencing data reveals whole intron deletions - a distinct genomic signature of RT-DSBR that occurs when spliced mRNA guides repair. Altogether, our findings highlight RT-DSBR as an alternative pathway for repairing DSBs in transcribed genes, with potential mutagenic consequences.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alessandra Brambati
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hina Shah
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Niamh McDermott
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juber Patel
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Doymaz
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Julius Wu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Kyrie S Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - Theodore Vougiouklakis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sana Ahmed-Seghir
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philippa Steinberg
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Anna Neiman-Golden
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joan Gomez-Aguilar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suleman Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- AstraZeneca, Gaithersburg, MD, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Nummi P, Cajuso T, Norri T, Taira A, Kuisma H, Välimäki N, Lepistö A, Renkonen-Sinisalo L, Koskensalo S, Seppälä TT, Ristimäki A, Tahkola K, Mattila A, Böhm J, Mecklin JP, Siili E, Pasanen A, Heikinheimo O, Bützow R, Karhu A, Burns KH, Palin K, Aaltonen LA. Structural features of somatic and germline retrotransposition events in humans. Mob DNA 2025; 16:20. [PMID: 40264183 PMCID: PMC12016303 DOI: 10.1186/s13100-025-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Transposons are DNA sequences able to move or copy themselves to other genomic locations leading to insertional mutagenesis. Although transposon-derived sequences account for half of the human genome, most elements are no longer transposition competent. Moreover, transposons are normally repressed through epigenetic silencing in healthy adult tissues but become derepressed in several human cancers, with high activity detected in colorectal cancer. Their impact on non-malignant and malignant tissue as well as the differences between somatic and germline retrotransposition remain poorly understood. With new sequencing technologies, including long read sequencing, we can access intricacies of retrotransposition, such as insertion sequence details and nested repeats, that have been previously challenging to characterize. RESULTS In this study, we investigate somatic and germline retrotransposition by analyzing long read sequencing from 56 colorectal cancers and 112 uterine leiomyomas. We identified 1495 somatic insertions in colorectal samples, while striking lack of insertions was detected in uterine leiomyomas. Our findings highlight differences between somatic and germline events, such as transposon type distribution, insertion length, and target site preference. Leveraging long-read sequencing, we provide an in-depth analysis of the twin-priming phenomenon, detecting it across transposable element types that remain active in humans, including Alus. Additionally, we detect an abundance of germline transposons in repetitive DNA, along with a relationship between replication timing and insertion target site. CONCLUSIONS Our study reveals a stark contrast in somatic transposon activity between colorectal cancers and uterine leiomyomas, and highlights differences between somatic and germline transposition. This suggests potentially different conditions in malignant and non-malignant tissues, as well as in germline and somatic tissues, which could be involved in the transposition process. Long-read sequencing provided important insights into transposon behavior, allowing detailed examination of structural features such as twin priming and nested elements.
Collapse
Affiliation(s)
- Päivi Nummi
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Tatiana Cajuso
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tuukka Norri
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
- Department of Computer Science, University of Helsinki, Helsinki, 00014, Finland
| | - Aurora Taira
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Heli Kuisma
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Selja Koskensalo
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Faculty of Medicine and Health Technology, University of Tampere and TAYS Cancer Centre, Tampere, 33100, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, 33520, Finland
- Abdominal Center, Helsinki University Hospital, Helsinki University, Helsinki, 00290, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Kyösti Tahkola
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Anne Mattila
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Jan Böhm
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Jukka-Pekka Mecklin
- Department of Science, Well Being Services County of Central Finland, Jyväskylä, 40620, Finland
- Department of Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Emma Siili
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Annukka Pasanen
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Ralf Bützow
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Auli Karhu
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, 02115, USA
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland.
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland.
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland
| |
Collapse
|
3
|
Le E, Moadab F, Wang X, Najjar R, Van den Bogaerde SJ, Bays A, LaCava J, Mustelin T. Interferons and Cytokines Induce Transcriptional Activation of the Long-Interspersed Element-1 in Myeloid Cells from Autoimmune Patients. Eur J Immunol 2025; 55:e2451351. [PMID: 40071709 PMCID: PMC11951091 DOI: 10.1002/eji.202451351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/30/2025]
Abstract
Approximately 17% of our genome consists of copies of the retrotransposon "long interspersed element-1" (LINE-1 or L1). Patients with systemic lupus erythematosus (SLE) frequently have autoantibodies against the L1-encoded ORF1 protein (ORF1p), which correlate with disease activity and interferon gene signature. ORF1p is present in neutrophils from patients with active disease in perinuclear ribonucleoprotein particles that also contain Ro60 and nucleic acid sensors. Here, we report that treatment of neutrophils or monocytes with the demethylating agent 5-aza-deoxycytidine, interferon-α, tumor necrosis factor-α, and other cytokines or toll-like receptor agonists, induce a rapid increase in L1 transcripts. This increase was greater in cells from patients with SLE or rheumatoid arthritis (RA) than in cells from healthy donors, except that cells from SLE did not respond to interferon-α, presumably because most SLE patients have elevated type I interferons in vivo. Interferon-α also induced ORF1p in RA neutrophils with a subcellular distribution like that of ORF1p in freshly isolated SLE neutrophils. A luciferase reporter gene driven by the 5' untranslated region of L1, which controls its transcription, was also stimulated by interferon-α. These new insights into L1 transcriptional regulation indicate that it may play a more active role in antiviral immune responses.
Collapse
Affiliation(s)
- Ethan Le
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Law CT, Burns KH. Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.635956. [PMID: 39975348 PMCID: PMC11838501 DOI: 10.1101/2025.02.02.635956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Long interspersed element-1 (LINE-1, L1) retrotransposons are the most abundant protein-coding transposable elements (TE) in mammalian genomes, and have shaped genome content over 170 million years of evolution. LINE-1 is self-propagating and mobilizes other sequences, including Alu elements. Occasionally, LINE-1 forms chimeric insertions with non-coding RNAs and mRNAs. U6 spliceosomal small nuclear RNA/LINE-1 chimeras are best known, though there are no comprehensive catalogs of LINE-1 chimeras. To address this, we developed TiMEstamp, a computational pipeline that leverages multiple sequence alignments (MSA) to estimate the age of LINE-1 insertions and identify candidate chimeric insertions where an adjacent sequence arrives contemporaneously. Candidates were refined by detecting hallmark features of L1 retrotransposition, such as target site duplication (TSD). Applying this pipeline to the human genome, we recovered all known species of LINE-1 chimeras and discovered new chimeric insertions involving small RNAs, Alu elements, and mRNA fragments. Some insertions are compatible with known mechanisms, such as RNA ligation. Other structures nominate novel mechanisms, such as trans-splicing. We also see evidence that LINE-1 loci with defunct promoters can acquire regulatory elements from nearby genes to restore retrotransposition activity. These discoveries highlight the recombinatory potential of LINE-1 RNA with implications for genome evolution and TE domestication.
Collapse
Affiliation(s)
- Cheuk-Ting Law
- Corresponding authors: Cheuk-Ting Law (), Kathleen H. Burns ()
| | | |
Collapse
|
5
|
Podvalnyi A, Kopernik A, Sayganova M, Woroncow M, Zobkova G, Smirnova A, Esibov A, Deviatkin A, Volchkov P, Albert E. Quantitative Analysis of Pseudogene-Associated Errors During Germline Variant Calling. Int J Mol Sci 2025; 26:363. [PMID: 39796219 PMCID: PMC11719938 DOI: 10.3390/ijms26010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
A pseudogene is a non-functional copy of a protein-coding gene. Processed pseudogenes, which are created by the reverse transcription of mRNA and subsequent integration of the resulting cDNA into the genome, being a major pseudogene class, represent a significant challenge in genome analysis due to their high sequence similarity to the parent genes and their frequent absence in the reference genome. This homology can lead to errors in variant identification, as sequences derived from processed pseudogenes can be incorrectly assigned to parental genes, complicating correct variant calling. In this study, we quantified the occurrence of variant calling errors associated with pseudogenes, generated by the most popular germline variant callers, namely GATK-HC, DRAGEN, and DeepVariant, when analysing 30x human whole-genome sequencing data (n = 13,307). The results show that the presence of pseudogenes can interfere with variant calling, leading to false positive identifications of potentially clinically relevant variants. Compared to other approaches, DeepVariant was the most effective in correcting these errors.
Collapse
Affiliation(s)
- Artem Podvalnyi
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (A.D.)
- Faculty of Computer Science, HSE University, 101000 Moscow, Russia
| | - Arina Kopernik
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (A.D.)
| | - Mariia Sayganova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (A.D.)
| | - Mary Woroncow
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | - Anton Esibov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (A.D.)
| | - Andrey Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (A.D.)
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (A.D.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene Albert
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (A.D.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Balzanelli MG, Rastmanesh R, Distratis P, Lazzaro R, Inchingolo F, Del Prete R, Pham VH, Aityan SK, Cong TT, Nguyen KCD, Isacco CG. The Role of SARS-CoV-2 Spike Protein in Long-term Damage of Tissues and Organs, the Underestimated Role of Retrotransposons and Stem Cells, a Working Hypothesis. Endocr Metab Immune Disord Drug Targets 2025; 25:85-98. [PMID: 38468535 DOI: 10.2174/0118715303283480240227113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
Coronavirus disease-2019 (COVID-19) is a respiratory disease in which Spike protein from SARS-CoV-2 plays a key role in transferring virus genomic code into target cells. Spike protein, which is found on the surface of the SARS-CoV-2 virus, latches onto angiotensin-converting enzyme 2 receptors (ACE2r) on target cells. The RNA genome of coronaviruses, with an average length of 29 kb, is the longest among all RNA viruses and comprises six to ten open reading frames (ORFs) responsible for encoding replicase and structural proteins for the virus. Each component of the viral genome is inserted into a helical nucleocapsid surrounded by a lipid bilayer. The Spike protein is responsible for damage to several organs and tissues, even leading to severe impairments and long-term disabilities. Spike protein could also be the cause of the long-term post-infectious conditions known as Long COVID-19, characterized by a group of unresponsive idiopathic severe neuro- and cardiovascular disorders, including strokes, cardiopathies, neuralgias, fibromyalgia, and Guillaume- Barret's like-disease. In this paper, we suggest a pervasive mechanism whereby the Spike proteins either from SARS-CoV-2 mRNA or mRNA vaccines, tend to enter the mature cells, and progenitor, multipotent, and pluripotent stem cells (SCs), altering the genome integrity. This will eventually lead to the production of newly affected clones and mature cells. The hypothesis presented in this paper proposes that the mRNA integration into DNA occurs through several components of the evolutionarily genetic mechanism such as retrotransposons and retrotransposition, LINE-1 or L1 (long interspersed element-1), and ORF-1 and 2 responsible for the generation of retrogenes. Once the integration phase is concluded, somatic cells, progenitor cells, and SCs employ different silencing mechanisms. DNA methylation, followed by histone modification, begins to generate unlimited lines of affected cells and clones that form affected tissues characterized by abnormal patterns that become targets of systemic immune cells, generating uncontrolled inflammatory conditions, as observed in both Long COVID-19 syndrome and the mRNA vaccine.
Collapse
Affiliation(s)
- Mario G Balzanelli
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Italy
| | - Reza Rastmanesh
- Department of Nutrition and Metabolism, The Nutrition Society, Boyd Orr House, 10 Cambridge Court, 210 Shepherds Bush Road, London, UK
| | - Pietro Distratis
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Ital
| | - Rita Lazzaro
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Ital
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Raffaele Del Prete
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Van H Pham
- Phan Chau Trinh University of Medicine, Quang Nam 70000, Vietnam
| | - Sergey K Aityan
- Northwestern University, Multidisciplinary Research Center, Oakland, CA 94612, USA
| | - Toai Tran Cong
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Kieu C D Nguyen
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Italy
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
7
|
Mendez-Dorantes C, Zeng X, Karlow JA, Schofield P, Turner S, Kalinowski J, Denisko D, Lee EA, Burns KH, Zhang CZ. Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628481. [PMID: 39764018 PMCID: PMC11702581 DOI: 10.1101/2024.12.14.628481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1. We provide definitive evidence that L1 expression frequently and directly causes both local and long-range chromosomal rearrangements, small and large segmental copy-number alterations, and subclonal copy-number heterogeneity due to ongoing chromosomal instability. Mechanistically, all these alterations arise from DNA double-strand breaks (DSBs) generated by L1-encoded ORF2p. The processing of ORF2p-generated DSB ends prior to their ligation can produce diverse rearrangements of the target sequences. Ligation between DSB ends generated at distal loci can generate either stable chromosomes or unstable dicentric, acentric, or ring chromosomes that undergo subsequent evolution through breakage-fusion bridge cycles or DNA fragmentation. Together, these findings suggest L1 is a potent mutagenic force capable of driving genome evolution beyond simple insertions.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Xi Zeng
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PRC
| | - Jennifer A Karlow
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Phillip Schofield
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Serafina Turner
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Jupiter Kalinowski
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Danielle Denisko
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
8
|
Moldovan JB, Yin J, Moran JV. Identification of a minimal Alu domain required for retrotransposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628748. [PMID: 39868163 PMCID: PMC11760393 DOI: 10.1101/2024.12.16.628748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alu elements are primate-specific retrotransposon sequences that comprise ~11% of human genomic DNA. Alu sequences contain an internal RNA polymerase III promoter and the resultant Alu RNA transcripts mobilize by a replicative process termed retrotransposition. Alu retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p). Current models propose that Alu RNA binds to signal recognition particle proteins 9 and 14 (SRP9/14) and localizes to ribosomes, which allows Alu to 'hijack' L1 ORF2p. Here, we used HeLa cell-based retrotransposition assays to define a minimal Alu domain necessary for retrotransposition. We demonstrate that Alu transcripts expressed from a cytomegalovirus (CMV) RNA polymerase II promoter can efficiently undergo retrotransposition. The use of an external CMV promoter to express Alu RNA allowed us to construct separation-of-function mutations to examine the effects of large deletions within the Alu sequence on retrotransposition. Deletion mutagenesis demonstrated that a 46 nucleotide (nt) domain located at the 5' end of the Alu RNA transcript is necessary for Alu retrotransposition. Consistent with current models, the 46 nt 5' Alu domain associates with SRP9/14 in HeLa-HA cell extracts and can promote a single round of retrotransposition in HeLa-HA cells. We propose that the 46 nt 5' Alu domain forms a discrete structure that allows for SRP 9/14 binding and ribosomal association, thereby allowing the Alu poly(A) tract to compete with the L1 poly(A) tail for ORF2p RNA binding to mediate its retrotransposition.
Collapse
Affiliation(s)
- John B. Moldovan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Yin
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John V. Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Cashen BA, Naufer MN, Morse M, McCauley MJ, Rouzina I, Jones CE, Furano AV, Williams MC. L1-ORF1p nucleoprotein can rapidly assume distinct conformations and simultaneously bind more than one nucleic acid. Nucleic Acids Res 2024; 52:14013-14029. [PMID: 39565204 DOI: 10.1093/nar/gkae1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
LINE-1 (L1) is a parasitic retrotransposable DNA element, active in primates for the last 80-120 Myr. L1 has generated nearly one-third of the human genome by copying its transcripts, and those of other genetic elements (e.g. Alu and SVA), into genomic DNA by target site-primed reverse transcription (TPRT) and remains active in modern humans. L1 encodes two proteins that bind their encoding transcript (cis preference) to form an L1 ribonucleoprotein (RNP) that mediates retrotransposition. ORF2p provides reverse transcriptase and endonuclease activity. ORF1p, its major component, is a homo-trimeric phospho-protein that binds single-stranded nucleic acid (ssNA) with high affinity and exhibits nucleic acid (NA) chaperone activity. We used optical tweezers to examine ORF1p binding to individual single-stranded DNA (ssDNA) molecules and found that the arrangement of ORF1p on the ssDNA depends on their molar ratio. When the concentration of ORF1p is just sufficient to saturate the entire NA molecule, the nucleoprotein (NP) is compact and stable. However, additional ORF1p binds and destabilizes the compacted NP, allowing it to engage a second ssDNA. Our results suggest that ORF1p displaced from its RNA template during TPRT could bind and destabilize remaining downstream L1 RNP, making them susceptible to hijacking by non-L1 templates, and thereby enable retrotransposition of non-L1 transcripts.
Collapse
Affiliation(s)
- Ben A Cashen
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - M Nabuan Naufer
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Michael Morse
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Micah J McCauley
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Ohio State University, Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, 281 W Lane Avenue, Columbus, OH 43210, USA
| | - Charles E Jones
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, 8 Center Drive, Bethesda, MD 20892, USA
| | - Anthony V Furano
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, 8 Center Drive, Bethesda, MD 20892, USA
| | - Mark C Williams
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Kozłowska-Masłoń J, Ciomborowska-Basheer J, Kubiak MR, Makałowska I. Evolution of retrocopies in the context of HUSH silencing. Biol Direct 2024; 19:60. [PMID: 39095906 PMCID: PMC11295320 DOI: 10.1186/s13062-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Retrotransposition is one of the main factors responsible for gene duplication and thus genome evolution. However, the sequences that undergo this process are not only an excellent source of biological diversity, but in certain cases also pose a threat to the integrity of the DNA. One of the mechanisms that protects against the incorporation of mobile elements is the HUSH complex, which is responsible for silencing long, intronless, transcriptionally active transposed sequences that are rich in adenine on the sense strand. In this study, broad sets of human and porcine retrocopies were analysed with respect to the above factors, taking into account evolution of these molecules. Analysis of expression pattern, genomic structure, transcript length, and nucleotide substitution frequency showed the strong relationship between the expression level and exon length as well as the protective nature of introns. The results of the studies also showed that there is no direct correlation between the expression level and adenine content. However, protein-coding retrocopies, which have a lower adenine content, have a significantly higher expression level than the adenine-rich non-coding but expressed retrocopies. Therefore, although the mechanism of HUSH silencing may be an important part of the regulation of retrocopy expression, it is one component of a more complex molecular network that remains to be elucidated.
Collapse
Affiliation(s)
- Joanna Kozłowska-Masłoń
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, Poznań, Poland
| | - Joanna Ciomborowska-Basheer
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
- Laboratory of Nature Education and Conservation, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | - Magdalena Regina Kubiak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | - Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland.
| |
Collapse
|
11
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone P, Sanchez L, Kitzman J, Kidd J, Garcia-Perez J, Moran J. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. Nucleic Acids Res 2024; 52:7761-7779. [PMID: 38850156 PMCID: PMC11260458 DOI: 10.1093/nar/gkae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.
Collapse
Affiliation(s)
- John B Moldovan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C Kopera
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Liu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marta Garcia-Canadas
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | | | - Paola E Leone
- Genetics and Genomics Laboratory, SOLCA Hospital, Quito, Ecuador
| | - Laura Sanchez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Nguyen AK, Blacksmith MS, Kidd JM. Duplications and Retrogenes Are Numerous and Widespread in Modern Canine Genomic Assemblies. Genome Biol Evol 2024; 16:evae142. [PMID: 38946312 PMCID: PMC11259980 DOI: 10.1093/gbe/evae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Recent years have seen a dramatic increase in the number of canine genome assemblies available. Duplications are an important source of evolutionary novelty and are also prone to misassembly. We explored the duplication content of nine canine genome assemblies using both genome self-alignment and read-depth approaches. We find that 8.58% of the genome is duplicated in the canFam4 assembly, derived from the German Shepherd Dog Mischka, including 90.15% of unplaced contigs. Highlighting the continued difficulty in properly assembling duplications, less than half of read-depth and assembly alignment duplications overlap, but the mCanLor1.2 Greenland wolf assembly shows greater concordance. Further study shows the presence of multiple segments that have alignments to four or more duplicate copies. These high-recurrence duplications correspond to gene retrocopies. We identified 3,892 candidate retrocopies from 1,316 parental genes in the canFam4 assembly and find that ∼8.82% of duplicated base pairs involve a retrocopy, confirming this mechanism as a major driver of gene duplication in canines. Similar patterns are found across eight other recent canine genome assemblies, with metrics supporting a greater quality of the PacBio HiFi mCanLor1.2 assembly. Comparison between the wolf and other canine assemblies found that 92% of retrocopy insertions are shared between assemblies. By calculating the number of generations since genome divergence, we estimate that new retrocopy insertions appear, on average, in 1 out of 3,514 births. Our analyses illustrate the impact of retrogene formation on canine genomes and highlight the variable representation of duplicated sequences among recently completed canine assemblies.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Blacksmith
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Moadab F, Sohrabi S, Wang X, Najjar R, Wolters JC, Jiang H, Miao W, Romero D, Zaller DM, Tran M, Bays A, Taylor MS, Kapeller R, LaCava J, Mustelin T. Subcellular location of L1 retrotransposon-encoded ORF1p, reverse transcription products, and DNA sensors in lupus granulocytes. Mob DNA 2024; 15:14. [PMID: 38937837 PMCID: PMC11212426 DOI: 10.1186/s13100-024-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p. RESULTS Here we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis. CONCLUSIONS These results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.
Collapse
Affiliation(s)
- Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sepideh Sohrabi
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | | | | | | | - Megan Tran
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA.
- University of Washington, 750 Republican Street, Room E507, Seattle, WA, 98109, USA.
| |
Collapse
|
14
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone PE, Sanchez L, Kitzman JO, Kidd JM, Garcia-Perez JL, Moran JV. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592410. [PMID: 38746229 PMCID: PMC11092746 DOI: 10.1101/2024.05.03.592410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) ORF2 -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 ( Alu -permissive) strains, but not in HeLa-JVM or HeLa-H1 ( Alu -nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA -derived SINEs and tRNA -derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR - Alu ( SVA ) element, and an L1 ORF1 -containing messenger RNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu -permissive and Alu -nonpermissive HeLa strains, suggesting that 7SL - and tRNA -derived SINE RNAs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1 -containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu -permissive and Alu -nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu -nonpermissive HeLa strains.
Collapse
|
15
|
Ransom LS, Liu CS, Dunsmore E, Palmer CR, Nicodemus J, Ziomek D, Williams N, Chun J. Human brain small extracellular vesicles contain selectively packaged, full-length mRNA. Cell Rep 2024; 43:114061. [PMID: 38578831 DOI: 10.1016/j.celrep.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.
Collapse
Affiliation(s)
- Linnea S Ransom
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emily Dunsmore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carter R Palmer
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliet Nicodemus
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Derya Ziomek
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa Williams
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Chu C, Ljungström V, Tran A, Jin H, Park PJ. Contribution of de novo retroelements to birth defects and childhood cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305733. [PMID: 38699361 PMCID: PMC11065029 DOI: 10.1101/2024.04.15.24305733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Insertion of active retroelements-L1s, Alus, and SVAs-can disrupt proper genome function and lead to various disorders including cancer. However, the role of de novo retroelements (DNRTs) in birth defects and childhood cancers has not been well characterized due to the lack of adequate data and efficient computational tools. Here, we examine whole-genome sequencing data of 3,244 trios from 12 birth defect and childhood cancer cohorts in the Gabriella Miller Kids First Pediatric Research Program. Using an improved version of our tool xTea (x-Transposable element analyzer) that incorporates a deep-learning module, we identified 162 DNRTs, as well as 2 pseudogene insertions. Several variants are likely to be causal, such as a de novo Alu insertion that led to the ablation of a whole exon in the NF1 gene in a proband with brain tumor. We observe a high de novo SVA insertion burden in both high-intolerance loss-of-function genes and exons as well as more frequent de novo Alu insertions of paternal origin. We also identify potential mosaic DNRTs from embryonic stages. Our study reveals the important roles of DNRTs in causing birth defects and predisposition to childhood cancers.
Collapse
Affiliation(s)
- Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Viktor Ljungström
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Antuan Tran
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Hu Jin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Jin SW, Seong Y, Yoon D, Kwon YS, Song H. Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res 2024; 52:3310-3326. [PMID: 38165001 PMCID: PMC11014241 DOI: 10.1093/nar/gkad1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
L1TD1 is a cytoplasmic RNA-binding protein specifically expressed in pluripotent stem cells and, unlike its mouse ortholog, is essential for the maintenance of stemness in human cells. Although L1TD1 is the only known protein-coding gene domesticated from a LINE-1 (L1) retroelement, the functional legacy of its ancestral protein, ORF1p of L1, and how it is manifested in L1TD1 are still unknown. Here, we determined RNAs associated with L1TD1 and found that, like ORF1p, L1TD1 binds L1 RNAs and localizes to high-density ribonucleoprotein (RNP) condensates. Unexpectedly, L1TD1 enhanced the translation of a subset of mRNAs enriched in the condensates. L1TD1 depletion promoted the formation of stress granules in embryonic stem cells. In HeLa cells, ectopically expressed L1TD1 facilitated the dissolution of stress granules and granules formed by pathological mutations of TDP-43 and FUS. The glutamate-rich domain and the ORF1-homology domain of L1TD1 facilitated dispersal of the RNPs and induced autophagy, respectively. These results provide insights into how L1TD1 regulates gene expression in pluripotent stem cells. We propose that the ability of L1TD1 to dissolve stress granules may provide novel opportunities for treatment of neurodegenerative diseases caused by disturbed stress granule dynamics.
Collapse
Affiliation(s)
- Sang Woo Jin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Youngmo Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dayoung Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Hoseok Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Thawani A, Florez Ariza AJ, Nogales E, Collins K. Template and target-site recognition by human LINE-1 in retrotransposition. Nature 2024; 626:186-193. [PMID: 38096901 PMCID: PMC10830416 DOI: 10.1038/s41586-023-06933-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
The long interspersed element-1 (LINE-1, hereafter L1) retrotransposon has generated nearly one-third of the human genome and serves as an active source of genetic diversity and human disease1. L1 spreads through a mechanism termed target-primed reverse transcription, in which the encoded enzyme (ORF2p) nicks the target DNA to prime reverse transcription of its own or non-self RNAs2. Here we purified full-length L1 ORF2p and biochemically reconstituted robust target-primed reverse transcription with template RNA and target-site DNA. We report cryo-electron microscopy structures of the complete human L1 ORF2p bound to structured template RNAs and initiating cDNA synthesis. The template polyadenosine tract is recognized in a sequence-specific manner by five distinct domains. Among them, an RNA-binding domain bends the template backbone to allow engagement of an RNA hairpin stem with the L1 ORF2p C-terminal segment. Moreover, structure and biochemical reconstitutions demonstrate an unexpected target-site requirement: L1 ORF2p relies on upstream single-stranded DNA to position the adjacent duplex in the endonuclease active site for nicking of the longer DNA strand, with a single nick generating a staggered DNA break. Our research provides insights into the mechanism of ongoing transposition in the human genome and informs the engineering of retrotransposon proteins for gene therapy.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Kathleen Collins
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
21
|
Yan Y, Tian Y, Wu Z, Zhang K, Yang R. Interchromosomal Colocalization with Parental Genes Is Linked to the Function and Evolution of Mammalian Retrocopies. Mol Biol Evol 2023; 40:msad265. [PMID: 38060983 PMCID: PMC10733166 DOI: 10.1093/molbev/msad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Retrocopies are gene duplicates arising from reverse transcription of mature mRNA transcripts and their insertion back into the genome. While long being regarded as processed pseudogenes, more and more functional retrocopies have been discovered. How the stripped-down retrocopies recover expression capability and become functional paralogs continually intrigues evolutionary biologists. Here, we investigated the function and evolution of retrocopies in the context of 3D genome organization. By mapping retrocopy-parent pairs onto sequencing-based and imaging-based chromatin contact maps in human and mouse cell lines and onto Hi-C interaction maps in 5 other mammals, we found that retrocopies and their parental genes show a higher-than-expected interchromosomal colocalization frequency. The spatial interactions between retrocopies and parental genes occur frequently at loci in active subcompartments and near nuclear speckles. Accordingly, colocalized retrocopies are more actively transcribed and translated and are more evolutionarily conserved than noncolocalized ones. The active transcription of colocalized retrocopies may result from their permissive epigenetic environment and shared regulatory elements with parental genes. Population genetic analysis of retroposed gene copy number variants in human populations revealed that retrocopy insertions are not entirely random in regard to interchromosomal interactions and that colocalized retroposed gene copy number variants are more likely to reach high frequencies, suggesting that both insertion bias and natural selection contribute to the colocalization of retrocopy-parent pairs. Further dissection implies that reduced selection efficacy, rather than positive selection, contributes to the elevated allele frequency of colocalized retroposed gene copy number variants. Overall, our results hint a role of interchromosomal colocalization in the "resurrection" of initially neutral retrocopies.
Collapse
Affiliation(s)
- Yubin Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuhan Tian
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Kunling Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Mizgier NA, Jones CE, Furano AV. Co-expression of distinct L1 retrotransposon coiled coils can lead to their entanglement. Mob DNA 2023; 14:16. [PMID: 37864180 PMCID: PMC10588031 DOI: 10.1186/s13100-023-00303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
L1 (LINE1) non-LTR retrotransposons are ubiquitous genomic parasites and the dominant transposable element in humans having generated about 40% of their genomic DNA during their ~ 100 million years (Myr) of activity in primates. L1 replicates in germ line cells and early embryos, causing genetic diversity and defects, but can be active in some somatic stem cells, tumors and during aging. L1 encodes two proteins essential for retrotransposition: ORF2p, a reverse transcriptase that contains an endonuclease domain, and ORF1p, a coiled coil mediated homo trimer, which functions as a nucleic acid chaperone. Both proteins contain highly conserved domains and preferentially bind their encoding transcript to form an L1 ribonucleoprotein (RNP), which mediates retrotransposition. However, the coiled coil has periodically undergone episodes of substantial amino acid replacement to the extent that a given L1 family can concurrently express multiple ORF1s that differ in the sequence of their coiled coils. Here we show that such distinct ORF1p sequences can become entangled forming heterotrimers when co-expressed from separate vectors and speculate on how coiled coil entanglement could affect coiled coil evolution.
Collapse
Affiliation(s)
- Nikola A. Mizgier
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892 USA
| | - Charlie E. Jones
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anthony V. Furano
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
23
|
Ding J, Wang S, Liu Q, Duan Y, Cheng T, Ye Z, Cui Z, Zhang A, Liu Q, Zhang Z, Zhang N, Liu Q, An N, Zhao J, Yi D, Li Q, Wang J, Zhang Y, Ma L, Guo S, Wang J, Liang C, Zhou J, Cen S, Li X. Schlafen-5 inhibits LINE-1 retrotransposition. iScience 2023; 26:107968. [PMID: 37810251 PMCID: PMC10551903 DOI: 10.1016/j.isci.2023.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Long interspersed element 1 (LINE-1) is the only currently known active autonomous transposon in humans, and its retrotransposition may cause deleterious effects on the structure and function of host cell genomes and result in sporadic genetic diseases. Host cells therefore developed defense strategies to restrict LINE-1 mobilization. In this study, we demonstrated that IFN-inducible Schlafen5 (SLFN5) inhibits LINE-1 retrotransposition. Mechanistic studies revealed that SLFN5 interrupts LINE-1 ribonucleoprotein particle (RNP) formation, thus diminishing nuclear entry of the LINE-1 RNA template and subsequent LINE-1 cDNA production. The ability of SLFN5 to bind to LINE-1 RNA and the involvement of the helicase domain of SLFN5 in its inhibitory activity suggest a mechanism that SLFN5 binds to LINE-1 RNA followed by dissociation of ORF1p through its helicase activity, resulting in impaired RNP formation. These data highlight a new mechanism of host cells to restrict LINE-1 mobilization.
Collapse
Affiliation(s)
- Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shujie Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qipeng Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuqing Duan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tingting Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhongjie Ye
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhanding Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiuyu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixiong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ni An
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinhui Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Liang
- The Lady Davis Institute-Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Huang Z, Jiang C, Gu J, Uvizl M, Power S, Douglas D, Kacprzyk J. Duplications of Human Longevity-Associated Genes Across Placental Mammals. Genome Biol Evol 2023; 15:evad186. [PMID: 37831410 PMCID: PMC10588791 DOI: 10.1093/gbe/evad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
Natural selection has shaped a wide range of lifespans across mammals, with a few long-lived species showing negligible signs of ageing. Approaches used to elucidate the genetic mechanisms underlying mammalian longevity usually involve phylogenetic selection tests on candidate genes, detections of convergent amino acid changes in long-lived lineages, analyses of differential gene expression between age cohorts or species, and measurements of age-related epigenetic changes. However, the link between gene duplication and evolution of mammalian longevity has not been widely investigated. Here, we explored the association between gene duplication and mammalian lifespan by analyzing 287 human longevity-associated genes across 37 placental mammals. We estimated that the expansion rate of these genes is eight times higher than their contraction rate across these 37 species. Using phylogenetic approaches, we identified 43 genes whose duplication levels are significantly correlated with longevity quotients (False Discovery Rate (FDR) < 0.05). In particular, the strong correlation observed for four genes (CREBBP, PIK3R1, HELLS, FOXM1) appears to be driven mainly by their high duplication levels in two ageing extremists, the naked mole rat (Heterocephalus glaber) and the greater mouse-eared bat (Myotis myotis). Further sequence and expression analyses suggest that the gene PIK3R1 may have undergone a convergent duplication event, whereby the similar region of its coding sequence was independently duplicated multiple times in both of these long-lived species. Collectively, this study identified several candidate genes whose duplications may underlie the extreme longevity in mammals, and highlighted the potential role of gene duplication in the evolution of mammalian long lifespans.
Collapse
Affiliation(s)
- Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Chongyi Jiang
- Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Jiayun Gu
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Marek Uvizl
- Department of Zoology, National Museum, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Declan Douglas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
26
|
Liu Q, Yi D, Ding J, Mao Y, Wang S, Ma L, Li Q, Wang J, Zhang Y, Zhao J, Guo S, Liu Z, Guo F, Zhao D, Liang C, Li X, Peng X, Cen S. MOV10 recruits DCP2 to decap human LINE-1 RNA by forming large cytoplasmic granules with phase separation properties. EMBO Rep 2023; 24:e56512. [PMID: 37437058 PMCID: PMC10481665 DOI: 10.15252/embr.202256512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Long interspersed element 1 (LINE-1) is the only active autonomous mobile element in the human genome. Its transposition can exert deleterious effects on the structure and function of the host genome and cause sporadic genetic diseases. Tight control of LINE-1 mobilization by the host is crucial for genetic stability. In this study, we report that MOV10 recruits the main decapping enzyme DCP2 to LINE-1 RNA and forms a complex of MOV10, DCP2, and LINE-1 RNP, exhibiting liquid-liquid phase separation (LLPS) properties. DCP2 cooperates with MOV10 to decap LINE-1 RNA, which causes degradation of LINE-1 RNA and thus reduces LINE-1 retrotransposition. We here identify DCP2 as one of the key effector proteins determining LINE-1 replication, and elucidate an LLPS mechanism that facilitates the anti-LINE-1 action of MOV10 and DCP2.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Dongrong Yi
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jiwei Ding
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Yang Mao
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Shujie Wang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Ling Ma
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Quanjie Li
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jing Wang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Yongxin Zhang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jianyuan Zhao
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Saisai Guo
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealQCCanada
| | - Fei Guo
- Institute of Pathogen BiologyChinese Academy of Medical ScienceBeijingChina
| | - Dongbing Zhao
- National Cancer CenterChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Chen Liang
- Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealQCCanada
| | - Xiaoyu Li
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Shan Cen
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| |
Collapse
|
27
|
Meadows JRS, Kidd JM, Wang GD, Parker HG, Schall PZ, Bianchi M, Christmas MJ, Bougiouri K, Buckley RM, Hitte C, Nguyen AK, Wang C, Jagannathan V, Niskanen JE, Frantz LAF, Arumilli M, Hundi S, Lindblad-Toh K, Ginja C, Agustina KK, André C, Boyko AR, Davis BW, Drögemüller M, Feng XY, Gkagkavouzis K, Iliopoulos G, Harris AC, Hytönen MK, Kalthoff DC, Liu YH, Lymberakis P, Poulakakis N, Pires AE, Racimo F, Ramos-Almodovar F, Savolainen P, Venetsani S, Tammen I, Triantafyllidis A, vonHoldt B, Wayne RK, Larson G, Nicholas FW, Lohi H, Leeb T, Zhang YP, Ostrander EA. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol 2023; 24:187. [PMID: 37582787 PMCID: PMC10426128 DOI: 10.1186/s13059-023-03023-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
Collapse
Affiliation(s)
- Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden.
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Matthew J Christmas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Christophe Hitte
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E14NS, UK and Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, D-80539, Munich, Germany
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catarina Ginja
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | | | - Catherine André
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Xin-Yao Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Konstantinos Gkagkavouzis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Giorgos Iliopoulos
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Alexander C Harris
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Daniela C Kalthoff
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Petros Lymberakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Nikolaos Poulakakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Ana Elisabete Pires
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | | | - Peter Savolainen
- Department of Gene Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, 17121, Solna, Sweden
| | - Semina Venetsani
- Department of Genetics, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Imke Tammen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Alexandros Triantafyllidis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-7246, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK
| | - Frank W Nicholas
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Schelle L, Abrantes J, Baldauf HM, Esteves PJ. Evolution of primate interferon-induced transmembrane proteins (IFITMs): a story of gain and loss with a differentiation into a canonical cluster and IFITM retrogenes. Front Microbiol 2023; 14:1213685. [PMID: 37577422 PMCID: PMC10415907 DOI: 10.3389/fmicb.2023.1213685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Interferon-inducible transmembrane proteins (IFITMs) are a family of transmembrane proteins. The subgroup of immunity-related (IR-)IFITMs is involved in adaptive and innate immune responses, being especially active against viruses. Here, we suggest that IFITMs should be classified as (1) a canonical IFITM gene cluster, which is located on the same chromosome, and (2) IFITM retrogenes, with a random and unique location at different positions within the genome. Phylogenetic analyses of the canonical cluster revealed the existence of three novel groups of primate IFITMs (pIFITM) in the IR-IFITM clade: the prosimian pIFITMs(pro), the new world monkey pIFITMs(nwm) and the old world monkey pIFITMs(owm). Therefore, we propose a new nomenclature: IR-pIFITM1, IR-pIFITM2, IR-pIFITM3, IR-pIFITMnwm, IR-pIFITMowm, and IR-pIFITMpro. We observed divergent evolution for pIFITM5 and pIFITM10, and evidence for concerted evolution and a mechanism of birth-and-death evolution model for the IR-pIFITMs. In contrast, the IFITMs scattered throughout the genomes possessed features of retrogenes retrotransposed by class 1 transposable elements. The origin of the IFITM retrogenes correspond to more recent events. We hypothesize that the transcript of a canonical IFITM3 has been constantly retrotransposed using class 1 transposable elements resulting in the IFITM retro(pseudo)genes. The unique pattern of each species has most likely been caused by constant pseudogenization and loss of the retro(pseudo)genes. This suggests a third mechanism of evolution for the IR-IFITMs in primates, similar to the birth-and-death model of evolution, but via a transposable element mechanism, which resulted in retro(pseudo)genes.
Collapse
Affiliation(s)
- Luca Schelle
- Faculty of Medicine, Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Joana Abrantes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hanna-Mari Baldauf
- Faculty of Medicine, Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Pedro José Esteves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Center of Investigation in Health Technologies, CESPU, Gandra, Portugal
| |
Collapse
|
29
|
De Luca C, Gupta A, Bortvin A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 2023; 19:e1010797. [PMID: 37307272 DOI: 10.1371/journal.pgen.1010797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
Affiliation(s)
- Chiara De Luca
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| |
Collapse
|
30
|
Batcher K, Varney S, Raudsepp T, Jevit M, Dickinson P, Jagannathan V, Leeb T, Bannasch D. Ancient segmentally duplicated LCORL retrocopies in equids. PLoS One 2023; 18:e0286861. [PMID: 37289743 PMCID: PMC10249811 DOI: 10.1371/journal.pone.0286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
LINE-1 is an active transposable element encoding proteins capable of inserting host gene retrocopies, resulting in retro-copy number variants (retroCNVs) between individuals. Here, we performed retroCNV discovery using 86 equids and identified 437 retrocopy insertions. Only 5 retroCNVs were shared between horses and other equids, indicating that the majority of retroCNVs inserted after the species diverged. A large number (17-35 copies) of segmentally duplicated Ligand Dependent Nuclear Receptor Corepressor Like (LCORL) retrocopies were present in all equids but absent from other extant perissodactyls. The majority of LCORL transcripts in horses and donkeys originate from the retrocopies. The initial LCORL retrotransposition occurred 18 million years ago (17-19 95% CI), which is coincident with the increase in body size, reduction in digit number, and changes in dentition that characterized equid evolution. Evolutionary conservation of the LCORL retrocopy segmental amplification in the Equidae family, high expression levels and the ancient timeline for LCORL retrotransposition support a functional role for this structural variant.
Collapse
Affiliation(s)
- Kevin Batcher
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Scarlett Varney
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Matthew Jevit
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California Davis, Davis, CA, United States of America
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
31
|
Ten Berk de Boer E, Bilgrav Saether K, Eisfeldt J. Discovery of non-reference processed pseudogenes in the Swedish population. Front Genet 2023; 14:1176626. [PMID: 37323659 PMCID: PMC10267823 DOI: 10.3389/fgene.2023.1176626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
The vast majority of the human genome is non-coding. There is a diversity of non-coding features, some of which have functional importance. Although the non-coding regions constitute the majority of the genome, they remain understudied, and for a long time, these regions have been referred to as junk DNA. Pseudogenes are one of these features. A pseudogene is a non-functional copy of a protein-coding gene. Pseudogenes may arise through a variety of genetic mechanisms. Processed pseudogenes are formed through reverse transcription of mRNA by LINE elements, after which the cDNA is integrated into the genome. Processed pseudogenes are known to be variable across populations; however, the variability and distribution remains unknown. Herein, we apply a custom-designed processed pseudogene pipeline on the whole genome sequencing data of 3,500 individuals; 2,500 individuals from the thousand genomes dataset, as well as 1,000 Swedish individuals. Through these analyses, we discover over 3,000 pseudogenes missing from the GRCh38 reference. Utilising our pipeline, we position 74% of the detected processed pseudogenes-allowing for analyses of formation. Notably, we find that common structural variant callers, such as Delly, classify the processed pseudogenes as deletion events, which are later predicted to be truncating variants. By compiling lists of non-reference processed pseudogenes and their frequencies, we find a great variability of pseudogenes; indicating that non-reference processed pseudogenes may be useful for DNA testing and as population-specific markers. In summary, our findings highlight a great diversity of processed pseudogenes, that processed pseudogenes are actively formed in the human genome; and that our pipeline may be used to reduce false positive structural variation caused by the misalignment and subsequent misclassification of non-reference processed pseudogenes.
Collapse
Affiliation(s)
- Esmee Ten Berk de Boer
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Ukadike KC, Najjar R, Ni K, Laine A, Wang X, Bays A, Taylor MS, LaCava J, Mustelin T. Expression of L1 retrotransposons in granulocytes from patients with active systemic lupus erythematosus. Mob DNA 2023; 14:5. [PMID: 37165451 PMCID: PMC10170740 DOI: 10.1186/s13100-023-00293-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) have autoantibodies against the L1-encoded open-reading frame 1 protein (ORF1p). Here, we report (i) which immune cells ORF1p emanates from, (ii) which L1 loci are transcriptionally active, (iii) whether the cells express L1-dependent interferon and interferon-stimulated genes, and (iv) the effect of inhibition of L1 ORF2p by reverse transcriptase inhibitors. RESULTS L1 ORF1p was detected by flow cytometry primarily in SLE CD66b+CD15+ regular and low-density granulocytes, but much less in other immune cell lineages. The amount of ORF1p was higher in neutrophils from patients with SLE disease activity index (SLEDAI) > 6 (p = 0.011) compared to patients with inactive disease, SLEDAI < 4. Patient neutrophils transcribed seven to twelve human-specific L1 loci (L1Hs), but only 3 that are full-length and with an intact ORF1. Besides serving as a source of detectable ORF1p, the most abundant transcript encoded a truncated ORF2p reverse transcriptase predicted to remain cytosolic, while the two other encoded an intact full-length ORF2p. A number of genes encoding proteins that influence L1 transcription positively or negatively were altered in patients, particularly those with active disease, compared to healthy controls. Components of nucleic acid sensing and interferon induction were also altered. SLE neutrophils also expressed type I interferon-inducible genes and interferon β, which were substantially reduced after treatment of the cells with drugs known to inhibit ORF2p reverse transcriptase activity. CONCLUSIONS We identified L1Hs loci that are transcriptionally active in SLE neutrophils, and a reduction in the epigenetic silencing mechanisms that normally counteract L1 transcription. SLE neutrophils contained L1-encoded ORF1p protein, as well as activation of the type I interferon system, which was inhibited by treatment with reverse transcriptase inhibitors. Our findings will enable a deeper analysis of L1 dysregulation and its potential role in SLE pathogenesis.
Collapse
Affiliation(s)
- Kennedy C Ukadike
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
- Department of Internal Medicine, Renown Rheumatology, Renown Health - University of Nevada, Reno School of Medicine, 75 Pringle Way, Suite 701, Reno, NV, 89502, USA
| | - Rayan Najjar
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Kathryn Ni
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Amanda Laine
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Xiaoxing Wang
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Alison Bays
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA.
| |
Collapse
|
33
|
Osmanski AB, Paulat NS, Korstian J, Grimshaw JR, Halsey M, Sullivan KAM, Moreno-Santillán DD, Crookshanks C, Roberts J, Garcia C, Johnson MG, Densmore LD, Stevens RD, Rosen J, Storer JM, Hubley R, Smit AFA, Dávalos LM, Karlsson EK, Lindblad-Toh K, Ray DA. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science 2023; 380:eabn1430. [PMID: 37104570 PMCID: PMC11103246 DOI: 10.1126/science.abn1430] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/28/2022] [Indexed: 04/29/2023]
Abstract
We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.
Collapse
Affiliation(s)
- Austin B. Osmanski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jenny Korstian
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jenna R. Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michaela Halsey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | | | | | - Jacquelyn Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Carlos Garcia
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Richard D. Stevens
- Department of Natural Resources Management and Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, USA
| | | | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Liliana M. Dávalos
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | - Elinor K. Karlsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
34
|
Seczynska M, Lehner PJ. The sound of silence: mechanisms and implications of HUSH complex function. Trends Genet 2023; 39:251-267. [PMID: 36754727 DOI: 10.1016/j.tig.2022.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023]
Abstract
The vertebrate genome is under constant threat of invasion by genetic parasites. Whether the host can immediately recognize and respond to invading elements has been unclear. The discovery of the human silencing hub (HUSH) complex, and the finding that it provides immediate protection from genome invasion by silencing products of reverse transcription, have important implications for mammalian genome evolution. In this review, we summarize recent insights into HUSH function and describe how cellular introns provide a novel means of self-nonself discrimination, allowing HUSH to recognize and transcriptionally repress a broad range of intronless genetic elements. We discuss how HUSH contributes to genome evolution, and highlight studies reporting the critical role of HUSH in development and implicating HUSH in the control of immune signaling and cancer progression.
Collapse
Affiliation(s)
- Marta Seczynska
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Paul J Lehner
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
35
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Friesen M, Richards A, Hughes SH, Jaenisch R. LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Viruses 2023; 15:629. [PMID: 36992338 PMCID: PMC10057545 DOI: 10.3390/v15030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole-genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences, but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10-20-fold more sensitive per tested cell, TagMap can interrogate 1000-2000-fold more cells and, therefore, can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected cells, in contrast to transfected cells, may be facilitated because virus infection, in contrast to viral RNA transfection, results in significantly higher viral RNA levels and stimulates LINE1 expression by causing cellular stress.
Collapse
Affiliation(s)
- Liguo Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
36
|
Chen Y, Ma T, Zhang T, Ma L. Trends in the evolution of intronless genes in Poaceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1065631. [PMID: 36875616 PMCID: PMC9978806 DOI: 10.3389/fpls.2023.1065631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Intronless genes (IGs), which are a feature of prokaryotes, are a fascinating group of genes that are also present in eukaryotes. In the current study, a comparison of Poaceae genomes revealed that the origin of IGs may have involved ancient intronic splicing, reverse transcription, and retrotranspositions. Additionally, IGs exhibit the typical features of rapid evolution, including recent duplications, variable copy numbers, low divergence between paralogs, and high non-synonymous to synonymous substitution ratios. By tracing IG families along the phylogenetic tree, we determined that the evolutionary dynamics of IGs differed among Poaceae subfamilies. IG families developed rapidly before the divergence of Pooideae and Oryzoideae and expanded slowly after the divergence. In contrast, they emerged gradually and consistently in the Chloridoideae and Panicoideae clades during evolution. Furthermore, IGs are expressed at low levels. Under relaxed selection pressure, retrotranspositions, intron loss, and gene duplications and conversions may promote the evolution of IGs. The comprehensive characterization of IGs is critical for in-depth studies on intron functions and evolution as well as for assessing the importance of introns in eukaryotes.
Collapse
Affiliation(s)
- Yong Chen
- *Correspondence: Tingting Zhang, ; Lei Ma,
| | | | | | - Lei Ma
- *Correspondence: Tingting Zhang, ; Lei Ma,
| |
Collapse
|
37
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Richards A, Hughes SH, Jaenisch R. LINE1-mediated reverse transcription and genomic integration of SARS-CoV-2 mRNA detected in virus-infected but not in viral mRNA-transfected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527906. [PMID: 37293025 PMCID: PMC10245962 DOI: 10.1101/2023.02.10.527906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1,000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches for the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10 - 20-fold more sensitive per tested cell, TagMap can interrogate 1,000 - 2,000-fold more cells and therefore can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected in contrast to transfected cells may be facilitated because virus infection in contrast to viral RNA transfection results in significantly higher viral RNA levels and stimulates LINE1-expression which causes cellular stress.
Collapse
|
38
|
Muotri AR. Interchromosomal translocation in neural progenitor cells exposed to L1 retrotransposition. Genet Mol Biol 2023; 46:e20220268. [PMID: 36734369 PMCID: PMC9936793 DOI: 10.1590/1678-4685-gmb-2022-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
LINE-1 (L1) elements are a class of transposons, comprising approximately 19% and 21% of the mouse and human genomes, respectively. L1 retrotransposons can reverse transcribe their own RNA sequence into a de novo DNA copy integrated into a new genomic location. This activity, known as retrotransposition, may induce genomic alterations, such as insertions and deletions. Interestingly, L1s can retrotranspose and generate more de novo L1 copies in brains than in other somatic tissues. Here, we describe for the first time interchromosomal translocation triggered by ectopic L1 retrotransposition in neural progenitor cells. Such an observation adds to the studies in neurological and psychiatric diseases that exhibited variation in L1 activity between diseased brains compared with controls, suggesting that L1 activity could be detrimental when de-regulated.
Collapse
Affiliation(s)
- Alysson R. Muotri
- University of California San Diego, Department of Pediatrics, La Jolla, CA, USA.,University of California San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA , USA.,University of California San Diego, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center, La Jolla, CA , USA.
| |
Collapse
|
39
|
Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses 2023; 171:111015. [PMID: 36718314 PMCID: PMC9876036 DOI: 10.1016/j.mehy.2023.111015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/08/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Therapeutic applications of synthetic mRNA were proposed more than 30 years ago, and are currently the basis of one of the vaccine platforms used at a massive scale as part of the public health strategy to get COVID-19 under control. To date, there are no published studies on the biodistribution, cellular uptake, endosomal escape, translation rates, functional half-life and inactivation kinetics of synthetic mRNA, rates and duration of vaccine-induced antigen expression in different cell types. Furthermore, despite the assumption that there is no possibility of genomic integration of therapeutic synthetic mRNA, only one recent study has examined interactions between vaccine mRNA and the genome of transfected cells, and reported that an endogenous retrotransposon, LINE-1 is unsilenced following mRNA entry to the cell, leading to reverse transcription of full length vaccine mRNA sequences, and nuclear entry. This finding should be a major safety concern, given the possibility of synthetic mRNA-driven epigenetic and genomic modifications arising. We propose that in susceptible individuals, cytosolic clearance of nucleotide modified synthetic (nms-mRNAs) is impeded. Sustained presence of nms-mRNA in the cytoplasm deregulates and activates endogenous transposable elements (TEs), causing some of the mRNA copies to be reverse transcribed. The cytosolic accumulation of the nms-mRNA and the reverse transcribed cDNA molecules activates RNA and DNA sensory pathways. Their concurrent activation initiates a synchronized innate response against non-self nucleic acids, prompting type-I interferon and pro-inflammatory cytokine production which, if unregulated, leads to autoinflammatory and autoimmune conditions, while activated TEs increase the risk of insertional mutagenesis of the reverse transcribed molecules, which can disrupt coding regions, enhance the risk of mutations in tumour suppressor genes, and lead to sustained DNA damage. Susceptible individuals would then expectedly have an increased risk of DNA damage, chronic autoinflammation, autoimmunity and cancer. In light of the current mass administration of nms-mRNA vaccines, it is essential and urgent to fully understand the intracellular cascades initiated by cellular uptake of synthetic mRNA and the consequences of these molecular events.
Collapse
|
40
|
Warkocki Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett 2023; 597:380-406. [PMID: 36460901 DOI: 10.1002/1873-3468.14551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
41
|
Luqman-Fatah A, Watanabe Y, Uno K, Ishikawa F, Moran JV, Miyoshi T. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat Commun 2023; 14:203. [PMID: 36639706 PMCID: PMC9839780 DOI: 10.1038/s41467-022-35757-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2'-5'-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5'UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from "triggering" IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuko Uno
- Division of Basic Research, Louis Pasteur Center for Medical Research, Kyoto, 606-8225, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
42
|
Luca CD, Gupta A, Bortvin A. Ribonucleoprotein condensation driven by retrotransposon LINE-1 sustains RNA integrity and translation in mouse spermatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523313. [PMID: 36712121 PMCID: PMC9882024 DOI: 10.1101/2023.01.09.523313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
|
43
|
Amici DR, Cingoz H, Alasady MJ, Alhayek S, Phoumyvong CM, Sahni N, Yi SS, Mendillo ML. The HAPSTR2 retrogene buffers stress signaling and resilience in mammals. Nat Commun 2023; 14:152. [PMID: 36631436 PMCID: PMC9834230 DOI: 10.1038/s41467-022-35697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.
Collapse
Affiliation(s)
- David R Amici
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Harun Cingoz
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Milad J Alasady
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Sammy Alhayek
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Claire M Phoumyvong
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marc L Mendillo
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
| |
Collapse
|
44
|
Garcia-Cañadas M, Sanchez-Luque FJ, Sanchez L, Rojas J, Garcia Perez JL. LINE-1 Retrotransposition Assays in Embryonic Stem Cells. Methods Mol Biol 2023; 2607:257-309. [PMID: 36449167 DOI: 10.1007/978-1-0716-2883-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ongoing mobilization of active non-long terminal repeat (LTR) retrotransposons continues to impact the genomes of most mammals, including humans and rodents. Non-LTR retrotransposons mobilize using an intermediary RNA and a copy-and-paste mechanism termed retrotransposition. Non-LTR retrotransposons are subdivided into long and short interspersed elements (LINEs and SINEs, respectively), depending on their size and autonomy; while active class 1 LINEs (LINE-1s or L1s) encode the enzymatic machinery required to mobilize in cis, active SINEs use the enzymatic machinery of active LINE-1s to mobilize in trans. The mobilization mechanism used by LINE-1s/SINEs was exploited to develop ingenious plasmid-based retrotransposition assays in cultured cells, which typically exploit a reporter gene that can only be activated after a round of retrotransposition. Retrotransposition assays, in cis or in trans, are instrumental tools to study the biology of mammalian LINE-1s and SINEs. In fact, these and other biochemical/genetic assays were used to uncover that endogenous mammalian LINE-1s/SINEs naturally retrotranspose during early embryonic development. However, embryonic stem cells (ESCs) are typically used as a cellular model in these and other studies interrogating LINE-1/SINE expression/regulation during early embryogenesis. Thus, human and mouse ESCs represent an excellent model to understand how active retrotransposons are regulated and how their activity impacts the germline. Here, we describe robust and quantitative protocols to study human/mouse LINE-1 (in cis) and SINE (in trans) retrotransposition using (human and mice) ESCs. These protocols are designed to study the mobilization of active non-LTR retrotransposons in a cellular physiologically relevant context.
Collapse
Affiliation(s)
- Marta Garcia-Cañadas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine "Lopez-Neyra" (IPBLN), Spanish National Research Council (CSIC), PTS Granada, Granada, Spain
| | - Laura Sanchez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Johana Rojas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Jose L Garcia Perez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC)/University of Edinburgh, Western General Hospital Campus, Edinburgh, UK.
| |
Collapse
|
45
|
Remnants of SIRE1 retrotransposons in human genome? J Genet 2022. [DOI: 10.1007/s12041-022-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Das S, Jones AE, Abrams JM. Generalized nuclear localization of retroelement transcripts. Mob DNA 2022; 13:30. [PMID: 36461093 PMCID: PMC9717504 DOI: 10.1186/s13100-022-00287-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND LINE-1s, Alus and SVAs are the only retrotransposition competent elements in humans. Their mobilization followed by insertional mutagenesis is often linked to disease. Apart from these rare integration events, accumulation of retrotransposition intermediates in the cytoplasm is potentially pathogenic due to induction of inflammatory response pathways. Although the retrotransposition of LINE-1 and Alu retroelements has been studied in considerable detail, there are mixed observations about the localization of their RNAs. RESULTS We undertook a comprehensive and unbiased approach to analyze retroelement RNA localization using common cell lines and publicly available datasets containing RNA-sequencing data from subcellular fractions. Using our customized analytic pipeline, we compared localization patterns of RNAs transcribed from retroelements and single-copy protein coding genes. Our results demonstrate a generalized characteristic pattern of retroelement RNA nuclear localization that is conserved across retroelement classes as well as evolutionarily young and ancient elements. Preferential nuclear enrichment of retroelement transcripts was consistently observed in cell lines, in vivo and across species. Moreover, retroelement RNA localization patterns were dynamic and subject to change during development, as seen in zebrafish embryos. CONCLUSION The pronounced nuclear localization of transcripts arising from ancient as well as de novo transcribed retroelements suggests that these transcripts are retained in the nucleus as opposed to being re-imported to the nucleus or degraded in the cytoplasm. This raises the possibility that there is adaptive value associated with this localization pattern to the host, the retroelements or possibly both.
Collapse
Affiliation(s)
- Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
47
|
Han W, Liu L, Wang J, Wei H, Li Y, Zhang L, Guo Z, Li Y, Liu T, Zeng Q, Xing Q, Shu Y, Wang T, Yang Y, Zhang M, Li R, Yu J, Pu Z, Lv J, Lian S, Hu J, Hu X, Bao Z, Bao L, Zhang L, Wang S. Ancient homomorphy of molluscan sex chromosomes sustained by reversible sex-biased genes and sex determiner translocation. Nat Ecol Evol 2022; 6:1891-1906. [PMID: 36280781 DOI: 10.1038/s41559-022-01898-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Contrary to classic theory prediction, sex-chromosome homomorphy is prevalent in the animal kingdom but it is unclear how ancient homomorphic sex chromosomes avoid chromosome-scale degeneration. Molluscs constitute the second largest, Precambrian-originated animal phylum and have ancient, uncharacterized homomorphic sex chromosomes. Here, we profile eight genomes of the bivalve mollusc family of Pectinidae in a phylogenetic context and show 350 million years sex-chromosome homomorphy, which is the oldest known sex-chromosome homomorphy in the animal kingdom, far exceeding the ages of well-known heteromorphic sex chromosomes such as 130-200 million years in mammals, birds and flies. The long-term undifferentiation of molluscan sex chromosomes is potentially sustained by the unexpected intertwined regulation of reversible sex-biased genes, together with the lack of sexual dimorphism and occasional sex chromosome turnover. The pleiotropic constraint of regulation of reversible sex-biased genes is widely present in ancient homomorphic sex chromosomes and might be resolved in heteromorphic sex chromosomes through gene duplication followed by subfunctionalization. The evolutionary dynamics of sex chromosomes suggest a mechanism for 'inheritance' turnover of sex-determining genes that is mediated by translocation of a sex-determining enhancer. On the basis of these findings, we propose an evolutionary model for the long-term preservation of homomorphic sex chromosomes.
Collapse
Affiliation(s)
- Wentao Han
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liangjie Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huilan Wei
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijing Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenyi Guo
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yajuan Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ya Shu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tong Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaxin Yang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiachen Yu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jia Lv
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoli Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Lingling Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shi Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
48
|
Murphy MD, Heller EA. Convergent actions of stress and stimulants via epigenetic regulation of neural circuitry. Trends Neurosci 2022; 45:955-967. [PMID: 36280459 PMCID: PMC9671852 DOI: 10.1016/j.tins.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
The dorsal striatum integrates prior and current information to guide appropriate decision-making. Chronic stress and stimulant exposure interferes with decision-making, and can confer similar cognitive and behavioral inflexibilities. This review examines the literature on acute and chronic regulation of the epigenome by stress and stimulants. Recent evidence suggests that exposures to stress and stimulants share similarities in the manners in which they regulate the dorsal striatum epigenome through DNA methylation, transposable element activity, and histone post-translational modifications. These findings suggest that chronic stress and stimulant exposure leads to the accumulation of epigenetic modifications that impair immediate and future neuron function and activity. Such epigenetic mechanisms represent potential therapeutic targets for ameliorating convergent symptoms of stress and addiction.
Collapse
Affiliation(s)
- Michael D Murphy
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Lavia P, Sciamanna I, Spadafora C. An Epigenetic LINE-1-Based Mechanism in Cancer. Int J Mol Sci 2022; 23:14610. [PMID: 36498938 PMCID: PMC9738484 DOI: 10.3390/ijms232314610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
In the last fifty years, large efforts have been deployed in basic research, clinical oncology, and clinical trials, yielding an enormous amount of information regarding the molecular mechanisms of cancer and the design of effective therapies. The knowledge that has accumulated underpins the complexity, multifactoriality, and heterogeneity of cancer, disclosing novel landscapes in cancer biology with a key role of genome plasticity. Here, we propose that cancer onset and progression are determined by a stress-responsive epigenetic mechanism, resulting from the convergence of upregulation of LINE-1 (long interspersed nuclear element 1), the largest family of human retrotransposons, genome damage, nuclear lamina fragmentation, chromatin remodeling, genome reprogramming, and autophagy activation. The upregulated expression of LINE-1 retrotransposons and their protein products plays a key role in these processes, yielding an increased plasticity of the nuclear architecture with the ensuing reprogramming of global gene expression, including the reactivation of embryonic transcription profiles. Cancer phenotypes would thus emerge as a consequence of the unscheduled reactivation of embryonic gene expression patterns in an inappropriate context, triggering de-differentiation and aberrant proliferation in differentiated cells. Depending on the intensity of the stressing stimuli and the level of LINE-1 response, diverse degrees of malignity would be generated.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Sciamanna
- Center for Animal Research and Welfare (BENA), ISS Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
| |
Collapse
|
50
|
Guerriaud M, Kohli E. RNA-based drugs and regulation: Toward a necessary evolution of the definitions issued from the European union legislation. Front Med (Lausanne) 2022; 9:1012497. [PMID: 36325384 PMCID: PMC9618588 DOI: 10.3389/fmed.2022.1012497] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
Many RNA-based drugs, both vaccines and non-vaccines, are under development or even approved. They include coding mRNAs and non-coding (nc) RNAs among them antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), micro-RNAs (miRNAs), small activating RNAs (saRNAs), RNA aptamers and RNA guides. According to the European Union (EU) legislation, these products can be currently categorized into different regulatory statuses, depending, for vaccines, on their target (infectious disease or not) and, for other drugs, on how they are obtained (chemically or biologically). This classification is fundamental to the type of marketing authorization (MA), and therefore to the controls to be performed, from preclinical stages through clinical trials to pharmacovigilance, to meet the safety requirements for patients. However, the current rules raise several problems, in particular the risk, because technology is evolving, to have similar RNA drugs being covered by very different legal statuses and the lack of international harmonization. The objectives of this study are (i) to review how RNA medicinal products are currently legally categorized in the EU and especially whether they fall under the status of gene therapy medicinal products (GTMP), a regulatory status belonging to advanced therapy medicinal products (ATMP), (ii) to discuss the issues generated by this classification, with a focus on the heterogeneity of statuses of these products, the differences with the American and ICH definitions and the potential impact on the safety requirements.
Collapse
Affiliation(s)
- Mathieu Guerriaud
- CREDIMI Laboratory EA 7532 and Laboratory of Excellence LipSTIC ANR-11-LABX-0021, Faculty of Health Sciences (Pharmacy), University of Burgundy, Dijon, France
- *Correspondence: Mathieu Guerriaud,
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labelled Ligue Nationale Contre le Cancer and Laboratory of Excellence LipSTIC ANR-11-LABX-0021, Faculty of Health Sciences (Pharmacy), University of Burgundy, Dijon, France
| |
Collapse
|