1
|
Shi J, Xie J, Li Z, He X, Wei P, Sander JW, Zhao G. The Role of Neuroinflammation and Network Anomalies in Drug-Resistant Epilepsy. Neurosci Bull 2025; 41:881-905. [PMID: 39992353 PMCID: PMC12014895 DOI: 10.1007/s12264-025-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/30/2024] [Indexed: 02/25/2025] Open
Abstract
Epilepsy affects over 50 million people worldwide. Drug-resistant epilepsy (DRE) accounts for up to a third of these cases, and neuro-inflammation is thought to play a role in such cases. Despite being a long-debated issue in the field of DRE, the mechanisms underlying neuroinflammation have yet to be fully elucidated. The pro-inflammatory microenvironment within the brain tissue of people with DRE has been probed using single-cell multimodal transcriptomics. Evidence suggests that inflammatory cells and pro-inflammatory cytokines in the nervous system can lead to extensive biochemical changes, such as connexin hemichannel excitability and disruption of neurotransmitter homeostasis. The presence of inflammation may give rise to neuronal network abnormalities that suppress endogenous antiepileptic systems. We focus on the role of neuroinflammation and brain network anomalies in DRE from multiple perspectives to identify critical points for clinical application. We hope to provide an insightful overview to advance the quest for better DRE treatments.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Jing Xie
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Zesheng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, 230022, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK.
- Neurology Department, West China Hospital of Sichuan University, Chengdu, 61004, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| |
Collapse
|
2
|
Fu H, Sun W, Xu Y, Zhang H. Advances in cytokine gene polymorphisms in tuberculosis. mSphere 2025; 10:e0094424. [PMID: 40162798 PMCID: PMC12039272 DOI: 10.1128/msphere.00944-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Tuberculosis (TB), especially pulmonary tuberculosis (PTB), is a prevalent infectious disease affecting the respiratory system and is characterized by high morbidity, disability, and mortality rates that significantly impact the quality of life of patients and their families. Host genetic susceptibility plays a crucial role in the infection process of Mycobacterium tuberculosis (M. tuberculosis) with single nucleotide polymorphisms (SNPs) identified as key factors in the genetic loci associated with tuberculosis occurrence and progression. Research indicates that polymorphisms in cytokine genes-including interferons, interleukins, tumor necrosis factors, and chemokines-are closely linked to the onset, progression, and treatment outcomes of pulmonary tuberculosis. Investigating cytokine gene polymorphisms in PTB patients is essential for understanding disease mechanisms and prognosis. This review summarizes the role of cytokine polymorphisms in tuberculosis morbidity, elucidates the biological genetic mechanisms involved at the molecular level, and provides insights into clinical treatment strategies for TB.
Collapse
Affiliation(s)
- Haiyang Fu
- Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Jiangsu, China
| | - Wenqiang Sun
- Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Jiangsu, China
| | - Ye Xu
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haiyun Zhang
- Department of Laboratory, Dalian Municipal Women and Children’s Medical Center, Dalian, Liaoning, China
| |
Collapse
|
3
|
Dou H, Wu R, Wang H, Wang X, Su Y. CCR5 + T cells as a potential biomarker for primary Sjögren's disease based on bioinformatics analysis. Clin Rheumatol 2025:10.1007/s10067-025-07460-6. [PMID: 40293619 DOI: 10.1007/s10067-025-07460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE To identify and verify potential biomarkers for primary Sjögren's disease (pSjD) using bioinformatics analysis and explore the molecular immune mechanisms of biomarkers.male-to-female ratio of 1:9 METHODS: The pSjD datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis, weighted gene co-expression network analysis (WGCNA) and functional analysis were conducted. PPI network analysis was performed and the hub genes were screened by Cytoscape software. The diagnostic value was assessed by receiver operating characteristic (ROC) analysis. To explore biomarker-immune cell relations, we used CIBERSORT for cell-type identification, combined with scRNA-seq data. Lastly, we validated the expression of the biomarker in human samples. RESULTS A total of 96 overlapping genes, including 1 downregulated and 95 upregulated genes, were obtained. Based on the enrichment analysis, these overlapping genes were mapped to terms related to the functions and regulation of the immune system. CCR5 was identified as a critical biomarker and demonstrated high diagnostic accuracy for pSjD. From CIBERSORT analysis, CCR5 was significantly associated with diverse immune cells. Further scRNA-seq analysis indicated that CCR5 was specifically upregulated in T cells of pSjD salivary gland tissues, which was confirmed in pSjD patients. CONCLUSION Our findings show the role of CCR5 in pSjD, mediated by immune mechanisms. CCR5 is localized in T cells of pSjD salivary glands. Elevated CCR5 expression may be a key biomarker, and increased CCR5 + T cells could aid future diagnosis, prognosis, and treatment of pSjD.
Collapse
Affiliation(s)
- Huixin Dou
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruiqing Wu
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiaoyan Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Grytten E, Laupsa-Borge J, Cetin K, Bohov P, Nordrehaug JE, Skorve J, Berge RK, Strand E, Bjørndal B, Nygård OK, Rostrup E, Mellgren G, Dankel SN. Inflammatory markers after supplementation with marine n-3 or plant n-6 PUFAs: A randomized double-blind crossover study. J Lipid Res 2025; 66:100770. [PMID: 40058591 PMCID: PMC11999210 DOI: 10.1016/j.jlr.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
Omega-3 (n-3) (e.g., EPA/DHA) and omega-6 (n-6) (e.g., linoleic acid [LA]) FAs are suggested to have opposite effects on inflammation, but results are inconsistent and direct comparisons of n-3 and n-6 are lacking. In a double-blind, randomized, and crossover study, females (n = 16) and males (n = 23) aged 30-70 years with abdominal obesity were supplemented with 3-4 g/d EPA/DHA (fish oil) or 15-20 g/d LA (safflower oil) for 7 weeks, with a 9-week washout phase. Cytokines and chemokines (multiplex assay), acute-phase proteins (MALDI-TOF mass spectrometry), endothelial function (vascular reaction index), blood pressure, FA composition (red blood cell membranes/serum/adipose tissue, GC-MS/MS), and adipose gene expression (microarrays, quantitative PCR) were measured. While significant differences between treatments in relative change scores were found for systolic blood pressure (n-3 vs. n-6: -1.81% vs. 2.61%, P = 0.003), no differences between n-3 and n-6 were found for any circulatory inflammatory markers. However, compared with baseline, n-3 was followed by reductions in circulating TNF (-24.9%, P < 0.001), regulated upon activation, normal T cell expressed and secreted (-12.1%, P < 0.001), and macrophage inflammatory protein 1-beta (-12.5%, P = 0.014), and n-6 by lowered TNF (-18.8%, P < 0.001), regulated upon activation, normal T cell expressed and secreted (-7.37%, P = 0.027), monocyte chemoattractant protein-1 (-7.81%, P = 0.020), and macrophage inflammatory protein 1-beta (-14.2%, P = 0.010). Adipose tissue showed significant treatment differences in weight percent of EPA (n-3 vs. n-6: 50.2%∗ vs. -1.38%, P < 0.001, ∗: significant within-treatment change score), DHA (16.0%∗ vs. -3.67%, P < 0.001), and LA (-0.033 vs. 4.91%∗, P < 0.001). Adipose transcriptomics revealed overall downregulation of genes related to inflammatory processes after n-3 and upregulation after n-6, partly correlating with changes in circulatory markers. These data point to tissue-specific proinflammatory effects of high n-6 intake, but a net systemic anti-inflammatory effect as for n-3.
Collapse
Affiliation(s)
- Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Bevital AS, Bergen, Norway
| | - Kaya Cetin
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon N Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Lee CY, Yang CH. The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications. Int J Mol Sci 2025; 26:378. [PMID: 39796231 PMCID: PMC11720318 DOI: 10.3390/ijms26010378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.
Collapse
Affiliation(s)
- Cheng-Yung Lee
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Hospital, No. 25, Ln. 442, Sec. 1, Jingguo Rd., North Dist., Hsinchu City 300195, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road Section 1, Taipei City 10051, Taiwan
| |
Collapse
|
6
|
Itoh T, Miyazono D, Sugata H, Mori C, Takahata M. Anti-inflammatory effects of heat-killed Lactiplantibacillus argentoratensis BBLB001 on a gut inflammation co-culture cell model and dextran sulfate sodium-induced colitis mouse model. Int Immunopharmacol 2024; 143:113408. [PMID: 39461236 DOI: 10.1016/j.intimp.2024.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Dysbiosis caused by dietary changes can alter the intestinal bacterial species and is closely associated with inflammatory bowel disease (IBD). Among the possible treatment options, postbiotics, which act to balance the constituent intestinal microflora, have gained substantial attention. Herein, we investigated the anti-inflammatory effects of heat-killed Lactiplantibacillus argentoratensis (hk-LA) BBLB001 isolated from a marine environment using both cell (Caco2/RAW264.7 cell co-culture) and animal (dextran sodium sulfate [DSS]-induced colitis in mice) models. hk-LA BBLB001 markedly reduced IL-8 secretion in Caco-2 cell culture medium after lipopolysaccharide-mediated stimulation of RAW264.7 cells by enhancing the expression of cell adhesion factors.The body weight loss, reduced inflammatory cytokine levels in the serum and colon tissues, colon shortening, and myeloperoxidase activation caused by DSS in mice were alleviated by hk-LA BBLB001. Similar to that in the intestinal cell model, the gene and protein expressions of cell adhesion molecules in the colon tissue were increased upon hk-LA BBLB001 treatment in DSS-induced colitis mice. We observed increased mucin expression and secretory IgA concentration in colon tissues, suggesting that hk-LA BBLB001 intake may benefit pathogen defense and the regulation of intestinal commensal bacteria. Thus, hk-LA BBLB001 may serve as an instrumental postbiotic material in IBD treatment.
Collapse
Affiliation(s)
- Tomohiro Itoh
- Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan.
| | - Daiki Miyazono
- Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| | - Hayato Sugata
- BIOBANK Co., Ltd., 388-1 Hirata, Kita, Okayama 700-0952, Japan
| | - Chizuru Mori
- BIOBANK Co., Ltd., 388-1 Hirata, Kita, Okayama 700-0952, Japan
| | | |
Collapse
|
7
|
Zhang BB, Harrison K, Zhong Y, Maxwell JWC, Ford DJ, Calvey LP, So SS, Peterson FC, Volkman BF, Stone MJ, Bhusal RP, Kulkarni SS, Payne RJ. Discovery of Selective Cyclic d-Sulfopeptide Ligands of the Chemokine CCL22 via Mirror-Image mRNA Display with Genetic Reprogramming. J Am Chem Soc 2024; 146:34253-34259. [PMID: 39629944 DOI: 10.1021/jacs.4c12057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Chemokines are small proteins involved in recruiting leukocytes to sites of inflammation via interactions with specific cell surface receptors. CCL22 is a chemokine known to play a critical role in inflammatory diseases such as atopic dermatitis and asthma; inhibition of this chemokine therefore represents an attractive therapeutic strategy. Herein, we describe the discovery of cyclic d-sulfopeptide inhibitors of CCL22 identified through mirror-image mRNA display with genetic reprogramming. Chemical synthesis of mirror-image d-CCL22 enabled screening of a cyclic peptide library comprised of all l-amino acids, with reprogramming of l-sulfotyrosine to mimic the presence of this post-translational modification on native chemokine receptors. Enriched macrocyclic peptides were prepared in their mirror-image d-form and assessed for binding against native l-CCL22. The most potent ligand, a plasma-stable d-cyclic peptide bearing four d-sulfotyrosine residues, exhibited nanomolar affinity for CCL22, high selectivity over other chemokines, and nanomolar inhibition of CCL22 signaling through CCR4. This work highlights the vast potential of mirror-image mRNA display technology for discovering proteolytically stable d-peptide inhibitors of protein-protein interactions relevant across a range of therapeutic indications.
Collapse
Affiliation(s)
- Belinda B Zhang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yichen Zhong
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Ford
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam P Calvey
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sean S So
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Protein Foundry, LLC, 662 94th Place, Milwaukee, Wisconsin 53214, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Protein Foundry, LLC, 662 94th Place, Milwaukee, Wisconsin 53214, United States
| | - Martin J Stone
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ram Prasad Bhusal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Shengchao M, Bo T, Huihui L, Chenchen Q, Beichen L, Zhenhua W, Ning M, Yongjin S. Long-term CXCR3 antagonist AMG487 mitigated acute graft-versus-host disease by inhibiting T cell activation in a murine model. Transpl Immunol 2024; 87:102128. [PMID: 39260677 DOI: 10.1016/j.trim.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Lymphocyte migration plays a key role in the development of acute graft-versus-host disease (aGVHD). Blocking lymphocyte migration by targeting chemokine receptors, such as CXCR3, may be a promising strategy for preventing and treating aGVHD. Our previous studies have shown that short-term CXCR3 antagonist treatment combined with cyclosporine A alleviated aGVHD. However, the effect of long-term AMG487 treatment on aGVHD survival has not been thoroughly investigated. METHODS A murine aGVHD model was used to examine the expression of CXCR3 in donor T cells. The effects of short- and long-term AMG487 treatment on aGVHD survival were assessed. The infiltration of donor T cells into the liver and spleen tissues and the activation of donor T cells in splenic tissues were also examined. RESULTS CXCR3 was consistently highly expressed in donor T cells in a murine aGVHD model. Long-term AMG487 treatment, but not short-term, improved survival and aGVHD outcomes (p < 0.05). Furthermore, long-term AMG487 administration reduced the number of donor T cells in the liver but increased the number of donor T cells in the spleen (p < 0.05). Long-term AMG487 treatment also inhibited donor T cell activation in the spleen (p < 0.05). CONCLUSION This study demonstrates that long-term AMG487 treatment has a potential therapeutic effect on aGVHD and could be used as a novel therapy.
Collapse
Affiliation(s)
- Miao Shengchao
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Tang Bo
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Liu Huihui
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qin Chenchen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Liu Beichen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Wang Zhenhua
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ma Ning
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Shi Yongjin
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
10
|
Lee J, An H, Kim CS, Lee S. The methyltransferase MLL4 promotes nonalcoholic steatohepatitis by enhancing NF-κB signaling. J Biol Chem 2024; 300:107984. [PMID: 39542242 DOI: 10.1016/j.jbc.2024.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing health problem worldwide, ranging from non-alcoholic fatty liver (NAFL) to the more severe metabolic non-alcoholic steatohepatitis (NASH). Although many studies have elucidated the pathogenesis of NAFLD, the epigenetic regulatory mechanism from NAFL to NASH remains incompletely understood. The histone H3 lysine 4 methyltransferase, MLL4 (also called KMT2D), is a critical epigenetic transcriptional coactivator that mediates overnutrition-induced steatosis in mice, but its potential role in the progression of NASH remains largely unknown. Here, we show that mice lacking the one allele of the Mll4 gene are resistant to hepatic steatosis, inflammation, and fibrosis in NASH conditions compared to wild-type controls. Transcriptome analysis of the livers of control and Mll4+/- mice identified pro-inflammatory genes regulated by the nuclear factor kappa B (NF-κB) signaling pathway as major target genes of MLL4. We show that MLL4 binds to p65 and that MLL4 is required for NF-κB transactivation. Myeloid-specific Mll4 knockout mice showed an almost complete block of NASH, while hepatocyte-specific Mll4 knockout mice showed mild inhibition of steatosis. Pro-inflammatory M1 polarization is decreased and anti-inflammatory M2 polarization is increased in liver macrophages from myeloid-specific Mll4 knockout mice. Importantly, we show that histone H3-lysine 4 methylation mediated by the MLL4-complex plays a critical role in promoting the expression of Ccl2 in hepatocytes and M1 marker genes in macrophages. Our results demonstrate that MLL4, through the NF-κB-MLL4 regulatory axis, exacerbates steatohepatitis in the context of an inflammatory response and represents a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Junekyoung Lee
- Research Institute of Pharmaceutical Sciences, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyejin An
- Research Institute of Pharmaceutical Sciences, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Chong-Su Kim
- Department of Food and Nutrition, College of Natural Information Sciences, Dongduk Women's University, Seoul, South Korea
| | - Seunghee Lee
- Research Institute of Pharmaceutical Sciences, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
11
|
Pezeshkian F, Shahriarirad R, Mahram H. An overview of the role of chemokine CX3CL1 (Fractalkine) and CX3C chemokine receptor 1 in systemic sclerosis. Immun Inflamm Dis 2024; 12:e70034. [PMID: 39392260 PMCID: PMC11467895 DOI: 10.1002/iid3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrosis, vascular damage, and immune dysregulation. Fractalkine or chemokine (C-X3-C motif) ligand 1 (CX3CL1), a chemokine and adhesion molecule, along with its receptor CX3CR1, have been implicated in the inflammatory processes of SSc. CX3CL1 functions as both a chemoattractant and an adhesion molecule, guiding immune cell trafficking. This systematic review examines the role of CX3CL1 and its receptor CX3CR1 in the pathogenesis of SSc, with a focus on pulmonary and vascular complications. METHODS A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to November 2020. The search focused on studies investigating the CX3CL1/CX3CR1 axis in the context of SSc. RESULTS The review identified elevated CX3CL1 expression in SSc patients, particularly in the skin and lungs, where CX3CR1 is expressed on infiltrating immune cells. Higher levels of CX3CL1 were correlated with the severity of interstitial lung disease in SSc patients, indicating a potential predictive marker for disease progression. CX3CR1-positive monocytes and NK cells were recruited to inflamed tissues, contributing to fibrosis and tissue damage. Animal studies showed that inhibition of the CX3CL1/CX3CR1 axis reduced fibrosis and improved vascular function. CONCLUSION The CX3CL1/CX3CR1 axis plays a key role in immune cell recruitment and fibrosis in SSc. Elevated CX3CL1 levels are associated with lung and vascular complications, making it a potential biomarker for disease progression and a promising therapeutic target.
Collapse
Affiliation(s)
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical SciencesShirazIran
| | | |
Collapse
|
12
|
Hussain K, Lim HD, Devkota SR, Kemp-Harper BK, Lane JR, Canals M, Pease JE, Stone MJ. The chemokine receptor CCR8 is not a high-affinity receptor for the human chemokine CCL18. PLoS One 2024; 19:e0305312. [PMID: 39259753 PMCID: PMC11389940 DOI: 10.1371/journal.pone.0305312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
The primate-specific chemokine CCL18 is a potent chemoattractant for T cells and is expressed at elevated levels in several inflammatory diseases. However, the cognate receptor for CCL18 remains unconfirmed. Here, we describe attempts to validate a previous report that the chemokine receptor CCR8 is the human CCL18 receptor (Islam et al. J Exp Med. 2013, 210:1889-98). Two mouse pre-B cell lines (4DE4 and L1.2) exogenously expressing CCR8 exhibited robust migration in response to the known CCR8 ligand CCL1 but not to CCL18. Similarly, CCL1 but not CCL18 induced internalization of CCR8 on 4DE4 cells. CCR8 expressed on Chinese hamster ovarian (CHO) cells mediated robust G protein activation, inhibition of cAMP synthesis and β-arrestin2 recruitment in response to CCL1 but not CCL18. Several N- and C-terminal variants of CCL18 also failed to stimulate CCR8 activation. On the other hand, and as previously reported, CCL18 inhibited CCL11-stimulated migration of 4DE4 cells expressing the receptor CCR3. These data suggest that CCR8, at least in the absence of unidentified cofactors, does not function as a high affinity receptor for CCL18.
Collapse
Affiliation(s)
- Khansa Hussain
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Herman D Lim
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Barbara K Kemp-Harper
- Monash Biomedicine Discovery Institute, and Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, United Kingdom
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, United Kingdom
| | - James E Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Martin J Stone
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Yoshimura H, Nakagawa Y, Muneta T, Koga H. A CCL2/MCP-1 antagonist attenuates fibrosis of the infrapatellar fat pad in a rat model of arthritis. BMC Musculoskelet Disord 2024; 25:674. [PMID: 39210303 PMCID: PMC11360299 DOI: 10.1186/s12891-024-07737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Fibrosis of the infrapatellar fat pad (IFP) is a feature of osteoarthritis and contributes substantially to the pain and dysfunction in patients' joints. However, the underlying mechanisms remain unclear. C-C motif chemokine ligand-2 (CCL2) plays a central role in tissue fibrosis. Thus, we aimed to investigate the role of CCL2 in the development of IFP fibrosis in a rat model of arthritis, hypothesizing that a CCL2 antagonist could mitigate fibrotic progression. METHODS We induced arthritis in male Wistar rats using intra-articular injections of carrageenan. Furthermore, to evaluate the effects of a CCL2 antagonist on protein expression and collagen deposition in the IFP of the rats, we transferred an N-terminal-truncated CCL2 gene into a rat model via electroporation-mediated intramuscular injection. Macrophage infiltration and collagen deposition in the IFP were analyzed in vivo. Groups were compared using the Mann-Whitney U test and Student's t-test. RESULTS We identified infiltrating macrophages as well as increases in CCL2 and TGF-β levels as collagen deposition progressed. Gene transfer of the CCL2-antagonist before arthritis induction attenuated collagen deposition remarkably. CONCLUSIONS We provide initial evidence that anti-CCL2 gene therapy can effectively suppress the development of IFP fibrosis in a rat model. Thus, targeting CCL2 holds promise as a therapeutic strategy for managing tissue fibrosis in osteoarthritis patients.
Collapse
Affiliation(s)
- Hideya Yoshimura
- Department of Orthopaedic Surgery, Kawaguchi Kogyo General Hospital, Saitama, 332-0031, Japan.
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
- Department of Cartilage Regeneration, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
14
|
Wang C, Wang J, Zhu Z, Hu J, Lin Y. Spotlight on pro-inflammatory chemokines: regulators of cellular communication in cognitive impairment. Front Immunol 2024; 15:1421076. [PMID: 39011039 PMCID: PMC11247373 DOI: 10.3389/fimmu.2024.1421076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Cognitive impairment is a decline in people's ability to think, learn, and remember, and so forth. Cognitive impairment is a global health challenge that affects the quality of life of thousands of people. The condition covers a wide range from mild cognitive impairment to severe dementia, which includes Alzheimer's disease (AD) and Parkinson's disease (PD), among others. While the etiology of cognitive impairment is diverse, the role of chemokines is increasingly evident, especially in the presence of chronic inflammation and neuroinflammation. Although inflammatory chemokines have been linked to cognitive impairment, cognitive impairment is usually multifactorial. Researchers are exploring the role of chemokines and other inflammatory mediators in cognitive dysfunction and trying to develop therapeutic strategies to mitigate their effects. The pathogenesis of cognitive disorders is very complex, their underlying causative mechanisms have not been clarified, and their treatment is always one of the challenges in the field of medicine. Therefore, exploring its pathogenesis and treatment has important socioeconomic value. Chemokines are a growing family of structurally and functionally related small (8-10 kDa) proteins, and there is growing evidence that pro-inflammatory chemokines are associated with many neurobiological processes that may be relevant to neurological disorders beyond their classical chemotactic function and play a crucial role in the pathogenesis and progression of cognitive disorders. In this paper, we review the roles and regulatory mechanisms of pro-inflammatory chemokines (CCL2, CCL3, CCL4, CCL5, CCL11, CCL20, and CXCL8) in cognitive impairment. We also discuss the intrinsic relationship between the two, hoping to provide some valuable references for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiayi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhichao Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesia, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| |
Collapse
|
15
|
Okabe Y. Development and organization of omental milky spots. Immunol Rev 2024; 324:68-77. [PMID: 38662554 DOI: 10.1111/imr.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
The milky spots in omentum are atypical lymphoid tissues that play a pivotal role in regulating immune responses in the peritoneal cavity. The milky spots act as central hubs for collecting antigens and particles from the peritoneal cavity, regulating lymphocyte trafficking, promoting the differentiation and self-renewal of immune cells, and supporting the local germinal centre response. In addition, the milky spots exhibit unique developmental characteristics that combine the features of secondary and tertiary lymphoid tissues. These structures are innately programmed to form during foetal development; however, they can also be formed postnatally in response to peritoneal irritation such as inflammation, infection, obesity, or tumour metastasis. In this review, I discuss emerging perspectives on homeostatic development and organization of the milky spots.
Collapse
Affiliation(s)
- Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Harding AT, Ocwieja K, Jeong M, Zhang Y, Leger V, Jhala N, Stankovic KM, Gehrke L. Human otic progenitor cell models of congenital hearing loss reveal potential pathophysiologic mechanisms of Zika virus and cytomegalovirus infections. mBio 2024; 15:e0019924. [PMID: 38440980 PMCID: PMC11005345 DOI: 10.1128/mbio.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Congenital hearing loss is a common chronic condition affecting children in both developed and developing nations. Viruses correlated with congenital hearing loss include human cytomegalovirus (HCMV) and Zika virus (ZIKV), which causes congenital Zika syndrome. The mechanisms by which HCMV and ZIKV infections cause hearing loss are poorly understood. It is challenging to study human inner ear cells because they are encased in bone and also scarce as autopsy samples. Recent advances in culturing human stem cell-derived otic progenitor cells (OPCs) have allowed us herein to describe successful in vitro infection of OPCs with HCMV and ZIKV, and also to propose potential mechanisms by which each viral infection could affect hearing. We find that ZIKV infection rapidly and significantly induces the expression of type I interferon and interferon-stimulated genes, while OPC viability declines, at least in part, from apoptosis. In contrast, HCMV infection did not appear to upregulate interferons or cause a reduction in cell viability, and instead disrupted expression of key genes and pathways associated with inner ear development and function, including Cochlin, nerve growth factor receptor, SRY-box transcription factor 11, and transforming growth factor-beta signaling. These findings suggest that ZIKV and HCMV infections cause congenital hearing loss through distinct pathways, that is, by inducing progenitor cell death in the case of ZIKV infection, and by disruption of critical developmental pathways in the case of HCMV infection. IMPORTANCE Congenital virus infections inflict substantial morbidity and devastating disease in neonates worldwide, and hearing loss is a common outcome. It has been difficult to study viral infections of the human hearing apparatus because it is embedded in the temporal bone of the skull. Recent technological advances permit the differentiation of otic progenitor cells (OPCs) from human-induced pluripotent stem cells. This paper is important for demonstrating that inner ear virus infections can be modeled in vitro using OPCs. We infected OPCs with two viruses associated with congenital hearing loss: human cytomegalovirus (HCMV), a DNA virus, or Zika virus (ZIKV), an RNA virus. An important result is that the gene expression and cytokine production profiles of HCMV/ZIKV-infected OPCs are markedly dissimilar, suggesting that mechanisms of hearing loss are also distinct. The specific molecular regulatory pathways identified in this work could suggest important targets for therapeutics.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Ocwieja
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Boston Childrens’ Hospital, Boston, Massachusetts, USA
| | - Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yichen Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Valerie Leger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nairuti Jhala
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Abstract
BACKGROUND Approximately one in four stroke patients suffer from recurrent vascular events, underlying the necessity to improve secondary stroke prevention strategies. Immune mechanisms are causally associated with coronary atherosclerosis. However, stroke is a heterogeneous disease and the relative contribution of inflammation across stroke mechanisms is not well understood. The optimal design of future randomized control trials (RCTs) of anti-inflammatory therapies to prevent recurrence after stroke must be informed by a clear understanding of the prognostic role of inflammation according to stroke subtype and individual patient factors. AIM In this narrative review, we discuss (1) inflammatory pathways in the etiology of ischemic stroke subtypes; (2) the evidence on inflammatory markers and vascular recurrence after stroke; and (3) review RCT evidence of anti-inflammatory agents for vascular prevention. SUMMARY OF REVIEW Experimental work, genetic epidemiological data, and plaque-imaging studies all implicate inflammation in atherosclerotic stroke. However, emerging evidence also suggests that inflammatory mechanisms are also important in other stroke mechanisms. Advanced neuroimaging techniques support the role of neuroinflammation in blood-brain barrier dysfunction in cerebral small vessel disease (cSVD). Systemic inflammatory processes also promote atrial cardiopathy, incident and recurrent atrial fibrillation (AF). Although several inflammatory markers have been associated with recurrence after stroke, interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) are presently the most promising markers to identify patients at increased vascular risk. Several RCTs have shown that anti-inflammatory therapies reduce vascular risk, including stroke, in coronary artery disease (CAD). Some, but not all of these trials, selected patients on the basis of elevated hsCRP. Although unproven after stroke, targeting inflammation to reduce recurrence is a compelling strategy and several RCTs are ongoing. CONCLUSION Evidence points toward the importance of inflammation across multiple stroke etiologies and potential benefit of anti-inflammatory targets in secondary stroke prevention. Taking the heterogeneous stroke etiologies into account, the use of serum biomarkers could be useful to identify patients with residual inflammatory risk and perform biomarker-led patient selection for future RCTs.
Collapse
Affiliation(s)
- Annaelle Zietz
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurology and Neurorehabilitation, University Department of Geriatric Medicine Felix Platter, University of Basel, Basel, Switzerland
| | - Sarah Gorey
- Health Research Board (HRB) Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin (UCD), Dublin, Ireland
- Department of Geriatric Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter J Kelly
- Health Research Board (HRB) Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin (UCD), Dublin, Ireland
- Department of Neurology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Mira Katan
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - John J McCabe
- Health Research Board (HRB) Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin (UCD), Dublin, Ireland
- Department of Geriatric Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
18
|
Zeng J, Liao Z, Yang H, Wang Q, Wu Z, Hua F, Zhou Z. T cell infiltration mediates neurodegeneration and cognitive decline in Alzheimer's disease. Neurobiol Dis 2024; 193:106461. [PMID: 38437992 DOI: 10.1016/j.nbd.2024.106461] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with pathological features of β-amyloid (Aβ) and hyperphosphorylated tau protein accumulation in the brain, often accompanied by cognitive decline. So far, our understanding of the extent and role of adaptive immune responses in AD has been quite limited. T cells, as essential members of the adaptive immune system, exhibit quantitative and functional abnormalities in the brains of AD patients. Dysfunction of the blood-brain barrier (BBB) in AD is considered one of the factors leading to T cell infiltration. Moreover, the degree of neuronal loss in AD is correlated with the quantity of T cells. We first describe the differentiation and subset functions of peripheral T cells in AD patients and provide an overview of the key findings related to BBB dysfunction and how T cells infiltrate the brain parenchyma through the BBB. Furthermore, we emphasize the risk factors associated with AD, including Aβ, Tau protein, microglial cells, apolipoprotein E (ApoE), and neuroinflammation. We discuss their regulation of T cell activation and proliferation, as well as the connection between T cells, neurodegeneration, and cognitive decline. Understanding the innate immune response is crucial for providing comprehensive personalized therapeutic strategies for AD.
Collapse
Affiliation(s)
- Junjian Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiqiang Liao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Hanqin Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Qiong Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiyong Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| | - Zhidong Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| |
Collapse
|
19
|
Dohi A, Noguchi T, Yamashita M, Sasaguri K, Yamamoto T, Mori Y. Acute stress transiently activates macrophages and chemokines in cervical lymph nodes. Immunol Res 2024; 72:212-224. [PMID: 38351242 PMCID: PMC11031481 DOI: 10.1007/s12026-023-09409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 04/20/2024]
Abstract
Acute restraint stress (RS) is routinely used to study the effects of psychological and/or physiological stress. We evaluated the impact of RS on cervical lymph nodes in rats at molecular and cellular levels. Male Sprague-Dawley rats were subjected to stress by immobilization for 30, 60, and 120 min (RS30, RS60, and RS120, respectively) and compared with rats of a no-stress control (C) group. The expression of genes encoding chemokines CXCL1/CXCL2 (Cxcl1 and Cxcl2) and their receptor CXCR2 (Cxcr2) was analyzed using reverse transcription-quantitative PCR (RT-qPCR) and microarray analyses. Immunohistochemistry and in situ hybridization were performed to determine the expression of these proteins and the macrophage biomarker CD68. Microarray analysis revealed that the expression of 514 and 496 genes was upregulated and downregulated, respectively, in the RS30 group. Compared with the C group, the RS30 group exhibited a 23.0-, 13.0-, and 1.6-fold increase in Cxcl1, Cxcl2, and Cxcr2 expression. Gene Ontology analysis revealed the involvement of these three upregulated genes in the cytokine network, inflammation, and leukocyte chemotaxis and migration. RT-qPCR analysis indicated that the mRNA levels of Cxcl1 and Cxcl2 were significantly increased in the RS30 group but were reverted to normal levels in the RS60 and RS120 groups. Cxcr2 mRNA level was significantly increased in the RS30 and RS120 groups compared with that in the C group. RS-induced CXCL1-immunopositive cells corresponded to B/plasma cells, whereas CXCL2-immunopositive cells corresponded to endothelial cells of the high endothelial venules. Stress-induced CXCR2-immunopositive cells corresponded to macrophages. Psychological and/or physiological stress induces an acute stress response and formation of an immunoreactive microenvironment in cervical lymph nodes, with the CXCL1/CXCL2-CXCR2 axis being pivotal in the acute stress response.
Collapse
Affiliation(s)
- Akihiro Dohi
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Tadahide Noguchi
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan.
| | - Masako Yamashita
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Kenichi Sasaguri
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Division, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| |
Collapse
|
20
|
Peng Y, Guo Y, Ge X, Gong Y, Wang Y, Ou Z, Luo G, Zhan R, Zhang Y. Construction of programmed time-released multifunctional hydrogel with antibacterial and anti-inflammatory properties for impaired wound healing. J Nanobiotechnology 2024; 22:126. [PMID: 38519957 PMCID: PMC10960406 DOI: 10.1186/s12951-024-02390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
The successful reprogramming of impaired wound healing presents ongoing challenges due to the impaired tissue microenvironment caused by severe bacterial infection, excessive oxidative stress, as well as the inappropriate dosage timing during different stages of the healing process. Herein, a dual-layer hydrogel with sodium alginate (SA)-loaded zinc oxide (ZnO) nanoparticles and poly(N-isopropylacrylamide) (PNIPAM)-loaded Cu5.4O ultrasmall nanozymes (named programmed time-released multifunctional hydrogel, PTMH) was designed to dynamically regulate the wound inflammatory microenvironment based on different phases of wound repairing. PTMH combated bacteria at the early phase of infection by generating reactive oxygen species through ZnO under visible-light irradiation with gradual degradation of the lower layer. Subsequently, when the upper layer was in direct contact with the wound tissue, Cu5.4O ultrasmall nanozymes were released to scavenge excessive reactive oxygen species. This neutralized a range of inflammatory factors and facilitated the transition from the inflammatory phase to the proliferative phase. Furthermore, the utilization of Cu5.4O ultrasmall nanozymes enhanced angiogenesis, thereby facilitating the delivery of oxygen and nutrients to the impaired tissue. Our experimental findings indicate that PTMHs promote the healing process of diabetic wounds with bacterial infection in mice, exhibiting notable antibacterial and anti-inflammatory properties over a specific period of time.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yicheng Guo
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Ge
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yali Gong
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuhan Wang
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zelin Ou
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
21
|
Zhan S, Wang L, Wang W, Li R. Analysis of genes characterizing chronic thrombosis and associated pathways in chronic thromboembolic pulmonary hypertension. PLoS One 2024; 19:e0299912. [PMID: 38451963 PMCID: PMC10919650 DOI: 10.1371/journal.pone.0299912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE In chronic thromboembolic pulmonary hypertension (CTEPH), fibrosis of thrombi in the lumen of blood vessels and obstruction of blood vessels are important factors in the progression of the disease. Therefore, it is important to explore the key genes that lead to chronic thrombosis in order to understand the development of CTEPH, and at the same time, it is beneficial to provide new directions for early identification, disease prevention, clinical diagnosis and treatment, and development of novel therapeutic agents. METHODS The GSE130391 dataset was downloaded from the Gene Expression Omnibus (GEO) public database, which includes the full gene expression profiles of patients with CTEPH and Idiopathic Pulmonary Arterial Hypertension (IPAH). Differentially Expressed Genes (DEGs) of CTEPH and IPAH were screened, and then Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analyses were performed on the DEGs; Weighted Gene Co-Expression Network Analysis (WGCNA) to screen the key gene modules and take the intersection genes of DEGs and the key module genes in WGCNA; STRING database was used to construct the protein-protein interaction (PPI) network; and cytoHubba analysis was performed to identify the hub genes. RESULTS A total of 924 DEGs were screened, and the MEturquoise module with the strongest correlation was selected to take the intersection with DEGs A total of 757 intersecting genes were screened. The top ten hub genes were analyzed by cytoHubba: IL-1B, CXCL8, CCL22, CCL5, CCL20, TNF, IL-12B, JUN, EP300, and CCL4. CONCLUSION IL-1B, CXCL8, CCL22, CCL5, CCL20, TNF, IL-12B, JUN, EP300, and CCL4 have diagnostic and therapeutic value in CTEPH disease, especially playing a role in chronic thrombosis. The discovery of NF-κB, AP-1 transcription factors, and TNF signaling pathway through pivotal genes may be involved in the disease progression process.
Collapse
Affiliation(s)
| | - Liu Wang
- Xuzhou Central Hospital, Xuzhou, China
| | | | - Ruoran Li
- Bengbu Medical College, Bengbu, China
- Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
22
|
Yadav M, Akhter Y. Validating Fractalkine receptor as a target and identifying candidates for drug discovery against type 2 diabetes. J Cell Biochem 2024; 125:127-145. [PMID: 38112285 DOI: 10.1002/jcb.30511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet β-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related β-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.
Collapse
Affiliation(s)
- Madhu Yadav
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
23
|
Yang M, Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J Pharm Anal 2024; 14:39-51. [PMID: 38352948 PMCID: PMC10859537 DOI: 10.1016/j.jpha.2023.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
24
|
Li J, Hosoyama T, Shigemizu D, Yasuoka M, Kinoshita K, Maeda K, Takemura M, Matsui Y, Arai H, Satake S. Association between Circulating Levels of CXCL9 and CXCL10 and Physical Frailty in Older Adults. Gerontology 2023; 70:279-289. [PMID: 38109864 DOI: 10.1159/000535109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
INTRODUCTION Dysregulation of pro-inflammatory chemokines is considered a potential mechanism for the development of age-related medical conditions such as frailty. However, evidence linking circulating chemokines with frailty remains lacking. MATERIALS AND METHODS We performed a case-control study including 48 cases and 48 controls aged 65-90 years, using the National Center for Geriatrics and Gerontology outpatient registry data. Cases were outpatients with physical frailty and low habitual daily activity. Controls were robust outpatients who performed habitual daily activities. The Japanese version of the Cardiovascular Health Study criteria was used to diagnose physical frailty, and the modified Baecke questionnaire was used to evaluate habitual daily activities. Serum CXCL9 and CXCL10 levels were measured using enzyme-linked immunosorbent assay. RESULTS The median age (interquartile range) in cases and controls was 78 (73-83) and 76 (72-80) years, with the proportions of men were 47.9% and 43.8%, respectively. In the logistic regression model with adjustment for age, sex, and other confounding factors, the multivariable odds ratios (95% confidence intervals) for the highest versus lowest tertile of CXCL9 and CXCL10 levels were 7.90 (1.61-49.80) and 1.61 (0.42-6.30), respectively. However, we did not observe a linear association between CXCL9 levels and physical frailty components. DISCUSSION/CONCLUSION Our preliminary data exhibit that circulating CXCL9 levels were positively associated with the odds of physical frailty. However, these findings lack evidence of a dose-response relationship between CXCL9 levels and physical frailty components. Further research with a larger sample size is required to confirm these findings.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Frailty Research, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan,
- Public health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan,
| | - Tohru Hosoyama
- Department of Musculoskeletal Disease, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mikako Yasuoka
- Department of Frailty Research, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kaori Kinoshita
- Department of Frailty Research, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keisuke Maeda
- Department of Geriatric Medicine, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
- Nutrition Therapy Support Center, Aichi Medical University, Nagakute, Japan
| | - Marie Takemura
- Center for Frailty and Locomotive Syndrome, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yasumoto Matsui
- Center for Frailty and Locomotive Syndrome, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shosuke Satake
- Department of Frailty Research, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Geriatric Medicine, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
25
|
Zhang XF, Zhang XL, Wang YJ, Fang Y, Li ML, Liu XY, Luo HY, Tian Y. The regulatory network of the chemokine CCL5 in colorectal cancer. Ann Med 2023; 55:2205168. [PMID: 37141250 PMCID: PMC10161960 DOI: 10.1080/07853890.2023.2205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The chemokine CCL5 plays a potential role in the occurrence and development of colorectal cancer (CRC). Previous studies have shown that CCL5 directly acts on tumor cells to change tumor metastatic rates. In addition, CCL5 recruits immune cells and immunosuppressive cells into the tumor microenvironment (TME) and reshapes the TME to adapt to tumor growth or increase antitumor immune efficacy, depending on the type of secretory cells releasing CCL5, the cellular function of CCL5 recruitment, and the underlying mechanisms. However, at present, research on the role played by CCL5 in the occurrence and development of CRC is still limited, and whether CCL5 promotes the occurrence and development of CRC and its role remain controversial. This paper discusses the cells recruited by CCL5 in patients with CRC and the specific mechanism of this recruitment, as well as recent clinical studies of CCL5 in patients with CRC.Key MessagesCCL5 plays dual roles in colorectal cancer progression.CCL5 remodels the tumor microenvironment to adapt to colorectal cancer tumor growth by recruiting immunosuppressive cells or by direct action.CCL5 inhibits colorectal cancer tumor growth by recruiting immune cells or by direct action.
Collapse
Affiliation(s)
- Xin-Feng Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ya-Jing Wang
- Department of General Surgery, Third Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Fang
- Organ Transplant Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng-Li Li
- Honghui Hospital affiliated to Yunnan University, Kunming, China
| | - Xing-Yu Liu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
26
|
Mohmad Saberi SE, Chua LS. Potential of rosmarinic acid from Orthosiphon aristatus extract for inflammatory induced diseases and its mechanisms of action. Life Sci 2023; 333:122170. [PMID: 37827234 DOI: 10.1016/j.lfs.2023.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Orthosiphon aristatus has been traditionally used as a medicinal herb for various illnesses in Southeast Asia and Europe. The most dominant bioactive compound of the herb is rosmarinic acid (RosA) which has been demonstrated for its remarkable anti-inflammatory properties. This review describes the recent progress of studies on multi-target molecular pathways of RosA in relation to targeted inflammatory-associated diseases. An inclusive literature search was conducted using electronic databases such as Google Scholar, Scopus, Springer Link, PubMed, Medline, Wiley and Science Direct for studies reporting on the anti-inflammatory actions of RosA from 2008 until 2023. The keywords of the search were RosA and anti-inflammatory in relation to hepatoprotective, chondroprotective, cardioprotective, neuroprotective and toxicity. Only publications that are written in English are included in this review. The inhibition and deactivation of pro-inflammatory biomolecules by RosA were explained based on the initial inflammation stimuli and their location in the body. The activation of Nrf2/HO-1 expression to inhibit NF-κB pathway is the key mechanism for hepatoprotection. Besides NF-κB inhibition, RosA activates PPARγ to alleviate ischemia/reperfusion (I/R)-induced myocardial injury for cardioprotection. The regulation of MAPK and T-cell activation is important for chondroprotection, whereas the anti-oxidant property of RosA is the main contributor of neuroprotection. Even though less studies on the anti-inflammation of RosA extracts from O. aristatus, but the effective pharmacological properties of RosA has promoted it as a natural potent lead for further investigation.
Collapse
Affiliation(s)
- Salfarina Ezrina Mohmad Saberi
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
27
|
Yang H, Qin Q, Wang M, Yin Y, Li R, Tang Y. Crosstalk between peripheral immunity and central nervous system in Alzheimer's disease. Cell Immunol 2023; 391-392:104743. [PMID: 37451918 DOI: 10.1016/j.cellimm.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The significance of peripheral immunity in the pathogenesis and progression of Alzheimer's diseases (AD) has been recognized. Brain-infiltrated peripheral immune components transporting across the blood-brain barrier (BBB) may reshape the central immune environment. However, mechanisms of how these components open the BBB for AD occurrence and development and correlations between peripheral and central immunity have not been fully explored. Herein, we formulate a hypothesis whereby peripheral immunity as a critical factor allows AD to progress. Peripheral central immune cell crosstalk is associated with early AD pathology and related risk factors. The damaged BBB permits peripheral immune cells to enter the central immune system to deprive its immune privilege promoting the progression toward developing AD. This review summarizes the influences of risk factors on peripheral immunity, alongside their functions, highlighting the concept of peripheral and central immunity as an integrated system in AD pathogenesis, which has received scant attention before.
Collapse
Affiliation(s)
- Hanchen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruiyang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
| |
Collapse
|
28
|
Kapoor S, Padwad YS. Phloretin suppresses intestinal inflammation and maintained epithelial tight junction integrity by modulating cytokines secretion in in vitro model of gut inflammation. Cell Immunol 2023; 391-392:104754. [PMID: 37506521 DOI: 10.1016/j.cellimm.2023.104754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease which in long run can lead to colorectal cancer (CRC). Chronic inflammation can be a key factor for the occurrence of CRC thus mitigating an inflammation can be a preventive strategy for the occurrence of CRC. In this study we have explored the anti-inflammatory potential of phloretin, in in vitro gut inflammation model, developed by co-culture of Caco2 (intestinal epithelial) cells and RAW264.7 macrophages (immune cells). Phloretin is a dihydrochalcone present in apple, pear and strawberries. An anti-inflammatory effect of phloretin in reducing LPS induced inflammation and maintenance of transepithelial electric resistance (TEER) in Caco2 cells was examined. Paracellular permeability assay was performed using Lucifer yellow dye to evaluate the effect of phloretin in inhibiting gut leakiness caused by inflammatory mediators secreted by activated macrophages. Phloretin attenuated LPS induced nitric oxide levels, oxidative stress, depolarization of mitochondrial membrane potential in Caco2 cells as evidenced by reduction in reactive oxygen species (ROS), and enhancement of MMP, and decrease in inflammatory cytokines IL8, TNFα, IL1β and IL6. It exhibited anti-inflammatory activity by inhibiting the expression of NFκB, iNOS and Cox2. Phloretin maintained the epithelial integrity by regulating the expression of tight junction proteins ZO1, occludin, Claudin1 and JAM. Phloretin reduced LPS induced levels of Cox2 along with the reduction in Src expression which further regulated an expression of tight junction protein occludin. Phloretin in combination to sodium pyruvate exhibited potential anti-inflammatory activity via targeting NFkB signaling. Our findings paved a way to position phloretin as nutraceutical in preventing the occurrence of colitis and culmination of disease into colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
29
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
30
|
Alsaad AMS, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Alomar HA, Ahmad SF. Histamine H4 Receptor Agonist, 4-Methylhistamine, Aggravates Disease Progression and Promotes Pro-Inflammatory Signaling in B Cells in an Experimental Autoimmune Encephalomyelitis Mouse Model. Int J Mol Sci 2023; 24:12991. [PMID: 37629172 PMCID: PMC10455358 DOI: 10.3390/ijms241612991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
We sought to assess the impact of 4-Methylhistamine (4-MeH), a specific agonist targeting the Histamine H4 Receptor (H4R), on the progression of experimental autoimmune encephalomyelitis (EAE) and gain insight into the underlying mechanism. EAE is a chronic autoimmune, inflammatory, and neurodegenerative disease of the central nervous system (CNS) characterized by demyelination, axonal damage, and neurodegeneration. Over the past decade, pharmacological research into the H4R has gained significance in immune and inflammatory disorders. For this study, Swiss Jim Lambert EAE mice were treated with 4-MeH (30 mg/kg/day) via intraperitoneal administration from days 14 to 42, and the control group was treated with a vehicle. Subsequently, we evaluated the clinical scores. In addition, flow cytometry was employed to estimate the impact of 4-Methylhistamine (4-MeH) on NF-κB p65, GM-CSF, MCP-1, IL-6, and TNF-α within CD19+ and CXCR5+ spleen B cells. Additionally, we investigated the effect of 4-MeH on the mRNA expression levels of Nf-κB p65, Gmcsf, Mcp1, Il6, and Tnfα in the brain of mice using RT-PCR. Notably, the clinical scores of EAE mice treated with 4-MeH showed a significant increase compared with those treated with the vehicle. The percentage of cells expressing CD19+NF-κB p65+, CXCR5+NF-κB p65+, CD19+GM-CSF+, CXCR5+GM-CSF+, CD19+MCP-1+, CXCR5+MCP-1+, CD19+IL-6+, CXCR5+IL-6+, CD19+TNF-α+, and CXCR5+TNF-α+ exhibited was more pronounced in 4-MeH-treated EAE mice when compared to vehicle-treated EAE mice. Moreover, the administration of 4-MeH led to increased expression of NfκB p65, Gmcsf, Mcp1, Il6, and Tnfα mRNA in the brains of EAE mice. This means that the H4R agonist promotes pro-inflammatory mediators aggravating EAE symptoms. Our results indicate the harmful role of H4R agonists in the pathogenesis of MS in an EAE mouse model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
31
|
McCabe JJ, Evans NR, Gorey S, Bhakta S, Rudd JHF, Kelly PJ. Imaging Carotid Plaque Inflammation Using Positron Emission Tomography: Emerging Role in Clinical Stroke Care, Research Applications, and Future Directions. Cells 2023; 12:2073. [PMID: 37626883 PMCID: PMC10453446 DOI: 10.3390/cells12162073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis is a chronic systemic inflammatory condition of the vasculature and a leading cause of stroke. Luminal stenosis severity is an important factor in determining vascular risk. Conventional imaging modalities, such as angiography or duplex ultrasonography, are used to quantify stenosis severity and inform clinical care but provide limited information on plaque biology. Inflammatory processes are central to atherosclerotic plaque progression and destabilization. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a validated technique for quantifying plaque inflammation. In this review, we discuss the evolution of FDG-PET as an imaging modality to quantify plaque vulnerability, challenges in standardization of image acquisition and analysis, its potential application to routine clinical care after stroke, and the possible role it will play in future drug discovery.
Collapse
Affiliation(s)
- John J. McCabe
- Health Research Board Stroke Clinical Trials Network Ireland, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland; (S.G.); (P.J.K.)
- Neurovascular Unit for Applied Translational and Therapeutics Research, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Stroke Service, Department of Medicine for the Elderly, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland
| | - Nicholas R. Evans
- Department of Clinical Neurosciences, Box 83, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; (N.R.E.); (S.B.)
| | - Sarah Gorey
- Health Research Board Stroke Clinical Trials Network Ireland, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland; (S.G.); (P.J.K.)
- Neurovascular Unit for Applied Translational and Therapeutics Research, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Stroke Service, Department of Medicine for the Elderly, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland
| | - Shiv Bhakta
- Department of Clinical Neurosciences, Box 83, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; (N.R.E.); (S.B.)
| | - James H. F. Rudd
- Division of Cardiovascular Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK;
| | - Peter J. Kelly
- Health Research Board Stroke Clinical Trials Network Ireland, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland; (S.G.); (P.J.K.)
- Neurovascular Unit for Applied Translational and Therapeutics Research, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Stroke Service, Department of Medicine for the Elderly, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland
| |
Collapse
|
32
|
Bomfim GF, Priviero F, Poole E, Tostes RC, Sinclair JH, Stamou D, Uline MJ, Wills MR, Webb RC. Cytomegalovirus and Cardiovascular Disease: A Hypothetical Role for Viral G-Protein-Coupled Receptors in Hypertension. Am J Hypertens 2023; 36:471-480. [PMID: 37148218 PMCID: PMC10403975 DOI: 10.1093/ajh/hpad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023] Open
Abstract
Cytomegalovirus (CMV) is a member of the β-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, campus Sinop (UFMT), Sinop, MT, Brazil
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Emma Poole
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Rita C Tostes
- Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, SP, Brazil
| | - John H Sinclair
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Mark J Uline
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA
| | - Mark R Wills
- Department of Pathology, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
33
|
Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Front Immunol 2023; 14:1184014. [PMID: 37575219 PMCID: PMC10420067 DOI: 10.3389/fimmu.2023.1184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Chemokine G-protein coupled receptors are validated drug targets for many diseases, including cancer, neurological, and inflammatory disorders. Despite much time and effort spent on therapeutic development, very few chemokine receptor antagonists are approved for clinical use. Among potential reasons for the slow progress in developing chemokine receptor inhibitors, antagonist tolerance, a progressive reduction in drug efficacy after repeated administration, is likely to play a key role. The mechanisms leading to antagonist tolerance remain poorly understood. In many cases, antagonist tolerance is accompanied by increased receptor concentration on the cell surface after prolonged exposure to chemokine receptor antagonists. This points to a possible role of altered receptor internalization and presentation on the cell surface, as has been shown for agonist (primarily opioid) tolerance. In addition, examples of antagonist tolerance in the context of other G-protein coupled receptors suggest the involvement of noncanonical signal transduction in opposing the effects of the antagonists. In this review, we summarize the available progress and challenges in therapeutic development of chemokine receptor antagonists, describe the available knowledge about antagonist tolerance, and propose new avenues for future investigation of this important phenomenon. Furthermore, we highlight the modern methodologies that have the potential to reveal novel mechanisms leading to antagonist tolerance and to propel the field forward by advancing the development of potent "tolerance-free" antagonists of chemokine receptors.
Collapse
Affiliation(s)
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
34
|
Pawnikar S, Akhter S, Miao Y. Structural dynamics of chemokine receptors. VITAMINS AND HORMONES 2023; 123:645-662. [PMID: 37718001 DOI: 10.1016/bs.vh.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Membrane proteins such as G protein-coupled receptors (GPCRs) are involved in awide range of physiological and pathological cellular processes. Binding of extracellular signals to GPCRs, including hormones, neurotransmitters, peptides and proteins, can activate intracellular signaling cascades via G protein interaction. Chemokine receptors are key GPCRs implicated in cancers, immune responses, cell migration and inflammation. Specifically, the CCR5 and CXCR4 chemokine receptors serve as important therapeutic targets against Human Immunodeficiency virus (HIV) entry into human cells. Maraviroc and Vicriviroc, two clinically used HIV entry inhibitors, are antagonists of the CCR5 receptor. These drugs block HIV entry, but ultimately resistance develops, due to emergence of viruses that can utilize the CXCR4 co-receptor. Unfortunately, development of chemokine receptor antagonists as selective drugs of HIV infection has been greatly hindered as their target orthosteric site is conserved among different receptor subtypes. Accordingly, it is important to understand the structural dynamics of these receptors to develop more effective therapeutics. In this chapter, we describe the latest advances in studies of these two key chemokine receptors with respect to their structures, dynamics and function.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Sana Akhter
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
35
|
Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients 2023; 15:nu15071774. [PMID: 37049611 PMCID: PMC10096543 DOI: 10.3390/nu15071774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune (mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered molecules, belonging to physiological aging. This age-related inflammatory status is characterized by increased inflammation and decreased macroautophagy/autophagy (a degradation process that removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders, as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target for anti-aging strategies. Phenolic compounds-found in extra-virgin olive oil (EVOO)-are well known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated activity might contribute to healthy aging and delay the development or progression of diseases related to aging.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
36
|
Wang X, Ma Y, Lu F, Chang Q. The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomater Sci 2023; 11:2639-2660. [PMID: 36790251 DOI: 10.1039/d2bm01486f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Repair and regeneration of tissues after injury are complex pathophysiological processes. Microbial infection, malnutrition, and an ischemic and hypoxic microenvironment in the injured area can impede the typical healing cascade. Distinguished by biomimicry of the extracellular matrix, high aqueous content, and diverse functions, hydrogels have revolutionized clinical practices in tissue regeneration owing to their outstanding hydrophilicity, biocompatibility, and biodegradability. Various hydrogels such as smart hydrogels, nanocomposite hydrogels, and acellular matrix hydrogels are widely used for applications ranging from bench-scale to an industrial scale. In this review, some emerging hydrogels in the biomedical field are briefly discussed. The protective roles of hydrogels in wound dressings and their diverse biological effects on multiple tissues such as bone, cartilage, nerve, muscle, and adipose tissue are also discussed. The vehicle functions of hydrogels for chemicals and cell payloads are detailed. Additionally, this review emphasizes the particular characteristics of hydrogel products that promote tissue repair and reconstruction such as anti-infection, inflammation regulation, and angiogenesis.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| |
Collapse
|
37
|
Kang J, Postigo-Fernandez J, Kim K, Zhu C, Yu J, Meroni M, Mayfield B, Bartolomé A, Dapito DH, Ferrante AW, Dongiovanni P, Valenti L, Creusot RJ, Pajvani UB. Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis. JCI Insight 2023; 8:e165369. [PMID: 36752206 PMCID: PMC9977430 DOI: 10.1172/jci.insight.165369] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Patients with nonalcoholic steatohepatitis (NASH) have increased expression of liver monocyte chemoattractant protein-1 (MCP-1), but its cellular source and contribution to various aspects of NASH pathophysiology remain debated. We demonstrated increased liver CCL2 (which encodes MCP-1) expression in patients with NASH, and commensurately, a 100-fold increase in hepatocyte Ccl2 expression in a mouse model of NASH, accompanied by increased liver monocyte-derived macrophage (MoMF) infiltrate and liver fibrosis. To test repercussions of increased hepatocyte-derived MCP-1, we generated hepatocyte-specific Ccl2-knockout mice, which showed reduced liver MoMF infiltrate as well as decreased liver fibrosis. Forced hepatocyte MCP-1 expression provoked the opposite phenotype in chow-fed wild-type mice. Consistent with increased hepatocyte Notch signaling in NASH, we observed a close correlation between markers of Notch activation and CCL2 expression in patients with NASH. We found that an evolutionarily conserved Notch/recombination signal binding protein for immunoglobulin kappa J region binding site in the Ccl2 promoter mediated transactivation of the Ccl2 promoter in NASH diet-fed mice. Increased liver MoMF infiltrate and liver fibrosis seen in opposite gain-of-function mice was ameliorated with concomitant hepatocyte Ccl2 knockout or CCR2 inhibitor treatment. Hepatocyte Notch activation prompts MCP-1-dependent increase in liver MoMF infiltration and fibrosis.
Collapse
Affiliation(s)
- Jinku Kang
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Jorge Postigo-Fernandez
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - KyeongJin Kim
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science & Engineering, and Research Center for Controlling Intercellular Communication (RCIC), Inha University, Incheon, South Korea
| | - Changyu Zhu
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Junjie Yu
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Brent Mayfield
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Alberto Bartolomé
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | | | | | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Remi J. Creusot
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
38
|
Dragan P, Merski M, Wiśniewski S, Sanmukh SG, Latek D. Chemokine Receptors-Structure-Based Virtual Screening Assisted by Machine Learning. Pharmaceutics 2023; 15:pharmaceutics15020516. [PMID: 36839838 PMCID: PMC9965785 DOI: 10.3390/pharmaceutics15020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Chemokines modulate the immune response by regulating the migration of immune cells. They are also known to participate in such processes as cell-cell adhesion, allograft rejection, and angiogenesis. Chemokines interact with two different subfamilies of G protein-coupled receptors: conventional chemokine receptors and atypical chemokine receptors. Here, we focused on the former one which has been linked to many inflammatory diseases, including: multiple sclerosis, asthma, nephritis, and rheumatoid arthritis. Available crystal and cryo-EM structures and homology models of six chemokine receptors (CCR1 to CCR6) were described and tested in terms of their usefulness in structure-based drug design. As a result of structure-based virtual screening for CCR2 and CCR3, several new active compounds were proposed. Known inhibitors of CCR1 to CCR6, acquired from ChEMBL, were used as training sets for two machine learning algorithms in ligand-based drug design. Performance of LightGBM was compared with a sequential Keras/TensorFlow model of neural network for these diverse datasets. A combination of structure-based virtual screening with machine learning allowed to propose several active ligands for CCR2 and CCR3 with two distinct compounds predicted as CCR3 actives by all three tested methods: Glide, Keras/TensorFlow NN, and LightGBM. In addition, the performance of these three methods in the prediction of the CCR2/CCR3 receptor subtype selectivity was assessed.
Collapse
|
39
|
Kobayashi H, Asano T, Suzuki H, Tanaka T, Yoshikawa T, Kaneko MK, Kato Y. Establishment of a Sensitive Monoclonal Antibody Against Mouse CCR9 (C 9Mab-24) for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2023; 42:15-21. [PMID: 36516144 DOI: 10.1089/mab.2022.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The CC chemokine receptor 9 (CCR9), also known as CD199, is one of chemokine receptors. The CC chemokine ligand 25 (CCL25) is known to be the only ligand for CCR9. The CCR9-CCL25 interaction plays important roles in chemotaxis of lymphocytes and tumor cell migration. Therefore, CCR9-CCL25 axis is a promising target for tumor therapy and diagnosis. In this study, we established a sensitive and specific monoclonal antibody (mAb) against mouse CCR9 (mCCR9) using N-terminal peptide immunization method. The established anti-mCCR9 mAb, C9Mab-24 (rat immunoglobulin [IgG]2a, kappa), reacted with mCCR9-overexpressed Chinese hamster ovary-K1 (CHO/mCCR9) and mCCR9-endogenously expressed cell line, RL2, through flow cytometry. Kinetic analyses using flow cytometry showed that the dissociation constants (KD) of C9Mab-24 for CHO/mCCR9 and RL2 cell lines were 6.0 × 10-9 M and 4.7 × 10-10 M, respectively. Results indicated that C9Mab-24 is useful for detecting mCCR9 through flow cytometry, thereby providing a possibility for targeting mCCR9-expressing cells in vivo experiments.
Collapse
Affiliation(s)
- Hiyori Kobayashi
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
40
|
Liu C, Xiao Z, Du L, Zhu S, Xiang H, Wang Z, Liu F, Song Y. Interferon-γ secreted by recruited Th1 cells in peritoneal cavity inhibits the formation of malignant ascites. Cell Death Discov 2023; 9:25. [PMID: 36690649 PMCID: PMC9870858 DOI: 10.1038/s41420-023-01312-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Type 1 T helper (Th1) cells generate an efficient antitumor immune response in multiple malignancies. The functions of Th1 cells in malignant ascites (MA) have not been elucidated. The distribution of helper T cells in peritoneal fluid and peripheral blood was determined in patients and animal models with malignant ascites. The effects of Th1-derived interferon-γ (IFN-γ) on the formation of malignant ascites were investigated. The mechanism underlying the recruitment of Th1 cells into peritoneal cavity was explored. In patients with malignant ascites and animal models of malignant ascites, the percentage of Th1 cells increased in peritoneal fluid compared with peripheral blood. Next, our experiment demonstrated that Th1 cells inhibited the growth of tumor cells by secreting IFN-γ in vitro. In murine models of malignant ascites, increased peritoneal fluid and shorter survival time were observed in IFN-γ-/- mice compared with wild-type (WT) mice. Then, the levels of C-X-C motif chemokine ligand (CXCL) 9/10 and the ratio of CXCR3+ Th1 cells indicated the involvement of CXCL9, 10/CXCR3 axis in the recruitment of Th1 cells into peritoneal cavity. As expected, in murine models of malignant ascites, the gradient between ascitic Th1 ratio and blood Th1 ratio decreased in CXCR3-/- mice compared with WT mice. IFN-γ secreted by recruited Th1 cells in peritoneal cavity inhibits the formation of malignant ascites. Hence, manipulation of Th1 cells or IFN-γ will provide a therapeutic candidate against malignant ascites.
Collapse
Affiliation(s)
- Chang Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhuanglong Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Du
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shenghua Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyu Xiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zehui Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
41
|
Mylod E, Lysaght J, Conroy MJ. Measuring Immune Cell Movement Toward the Soluble Microenvironment of Human Tissues Using a Boyden Chamber-Based Migration Assay. Methods Mol Biol 2023; 2645:231-240. [PMID: 37202623 DOI: 10.1007/978-1-0716-3056-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Migration assays are used to measure cell movement toward a variety of chemoattractants in a controlled environment. Here we describe a method for a Boyden chamber-based migration assay using conditioned media generated from the tumor, liver, and visceral adipose tissue of cancer patients.
Collapse
Affiliation(s)
- Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Melissa J Conroy
- Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
42
|
Roberto M, Arrivi G, Di Civita MA, Barchiesi G, Pilozzi E, Marchetti P, Santini D, Mazzuca F, Tomao S. The role of CXCL12 axis in pancreatic cancer: New biomarkers and potential targets. Front Oncol 2023; 13:1154581. [PMID: 37035150 PMCID: PMC10076769 DOI: 10.3389/fonc.2023.1154581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Chemokines are small, secreted peptides involved in the mediation of the immune cell recruitment. Chemokines have been implicated in several diseases including autoimmune diseases, viral infections and also played a critical role in the genesis and development of several malignant tumors. CXCL12 is a homeostatic CXC chemokine involved in the process of proliferation, and tumor spread. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, that is still lacking effective therapies and with a dramatically poor prognosis. Method We conducted a scientific literature search on Pubmed and Google Scholar including retrospective, prospective studies and reviews focused on the current research elucidating the emerging role of CXCL12 and its receptors CXCR4 - CXCR7 in the pathogenesis of pancreatic cancer. Results Considering the mechanism of immunomodulation of the CXCL12-CXCR4-CXCR7 axis, as well as the potential interaction with the microenvironment in the PDAC, several combined therapeutic approaches have been studied and developed, to overcome the "cold" immunological setting of PDAC, like combining CXCL12 axis inhibitors with anti PD-1/PDL1 drugs. Conclusion Understanding the role of this chemokine's axis in disease initiation and progression may provide the basis for developing new potential biomarkers as well as therapeutic targets for related pancreatic cancers.
Collapse
Affiliation(s)
- Michela Roberto
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giulia Arrivi
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Mattia Alberto Di Civita
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
- *Correspondence: Mattia Alberto Di Civita,
| | - Giacomo Barchiesi
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Anatomia Patologica Unit, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Scientific Direction, Istituto Dermopatico dell’Immacolata (IDI-IRCCS), Rome, Italy
| | - Daniele Santini
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Mazzuca
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’ Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Oncology Unit (UOC) Oncologia A, Department of Radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Soliman AM, Barreda DR. Acute Inflammation in Tissue Healing. Int J Mol Sci 2022; 24:ijms24010641. [PMID: 36614083 PMCID: PMC9820461 DOI: 10.3390/ijms24010641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
There are well-established links between acute inflammation and successful tissue repair across evolution. Innate immune reactions contribute significantly to pathogen clearance and activation of subsequent reparative events. A network of molecular and cellular regulators supports antimicrobial and tissue repair functions throughout the healing process. A delicate balance must be achieved between protection and the potential for collateral tissue damage associated with overt inflammation. In this review, we summarize the contributions of key cellular and molecular components to the acute inflammatory process and the effective and timely transition toward activation of tissue repair mechanisms. We further discuss how the disruption of inflammatory responses ultimately results in chronic non-healing injuries.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-(780)492-0375
| |
Collapse
|
44
|
Tateyama N, Asano T, Suzuki H, Li G, Yoshikawa T, Tanaka T, Kaneko MK, Kato Y. Epitope Mapping of Anti-Mouse CCR3 Monoclonal Antibodies Using Flow Cytometry. Antibodies (Basel) 2022; 11:antib11040075. [PMID: 36546900 PMCID: PMC9774254 DOI: 10.3390/antib11040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
The CC chemokine receptor 3 (CCR3) is a receptor for CC chemokines, including CCL5/RANTES, CCL7/MCP-3, and CCL11/eotaxin. CCR3 is expressed on the surface of eosinophils, basophils, a subset of Th2 lymphocytes, mast cells, and airway epithelial cells. CCR3 and its ligands are involved in airway hyperresponsiveness in allergic asthma, ocular allergies, and cancers. Therefore, CCR3 is an attractive target for those therapies. Previously, anti-mouse CCR3 (mCCR3) monoclonal antibodies (mAbs), C3Mab-3 (rat IgG2a, kappa), and C3Mab-4 (rat IgG2a, kappa) were developed using the Cell-Based Immunization and Screening (CBIS) method. In this study, the binding epitope of these mAbs was investigated using flow cytometry. A CCR3 extracellular domain-substituted mutant analysis showed that C3Mab-3, C3Mab-4, and a commercially available mAb (J073E5) recognized the N-terminal region (amino acids 1-38) of mCCR3. Next, alanine scanning was conducted in the N-terminal region. The results revealed that the Ala2, Phe3, Asn4, and Thr5 of mCCR3 are involved in C3Mab-3 binding, whereas Ala2, Phe3, and Thr5 are essential to C3Mab-4 binding, and Ala2 and Phe3 are crucial to J073E5 binding. These results reveal the involvement of the N-terminus of mCCR3 in the recognition of C3Mab-3, C3Mab-4, and J073E5.
Collapse
Affiliation(s)
- Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Correspondence: (H.S.); (Y.K.); Tel.: +81-22-717-8207 (H.S. & Y.K.)
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Correspondence: (H.S.); (Y.K.); Tel.: +81-22-717-8207 (H.S. & Y.K.)
| |
Collapse
|
45
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
46
|
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Nanozymes for Regenerative Medicine. SMALL METHODS 2022; 6:e2200997. [PMID: 36202750 DOI: 10.1002/smtd.202200997] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes refer to nanomaterials that catalyze enzyme substrates into products under relevant physiological conditions following enzyme kinetics. Compared to natural enzymes, nanozymes possess the characteristics of higher stability, easier preparation, and lower cost. Importantly, nanozymes possess the magnetic, fluorescent, and electrical properties of nanomaterials, making them promising replacements for natural enzymes in industrial, biological, and medical fields. On account of the rapid development of nanozymes recently, their application potentials in regeneration medicine are gradually being explored. To highlight the achievements in the regeneration medicine field, this review summarizes the catalytic mechanism of four types of representative nanozymes. Then, the strategies to improve the biocompatibility of nanozymes are discussed. Importantly, this review covers the recent advances in nanozymes in tissue regeneration medicine including wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment. In addition, challenges and prospects of nanozyme researches in regeneration medicine are summarized.
Collapse
Affiliation(s)
- Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zheao Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yunhang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Xiaoyi Chen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
47
|
A new obligate CXCL4-CXCL12 heterodimer for studying chemokine heterodimer activities and mechanisms. Sci Rep 2022; 12:17204. [PMID: 36229490 PMCID: PMC9561612 DOI: 10.1038/s41598-022-21651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Chemokines form a family of proteins with critical roles in many biological processes in health and disease conditions, including cardiovascular, autoimmune diseases, infections, and cancer. Many chemokines engage in heterophilic interactions to form heterodimers, leading to synergistic activity enhancement or reduction dependent on the nature of heterodimer-forming chemokines. In mixtures, different chemokine species with diverse activities coexist in dynamic equilibrium, leading to the observation of their combined response in biological assays. To overcome this problem, we produced a non-dissociating CXCL4-CXCL12 chemokine heterodimer OHD4-12 as a new tool for studying the biological activities and mechanisms of chemokine heterodimers in biological environments. Using the OHD4-12, we show that the CXCL4-CXCL12 chemokine heterodimer inhibits the CXCL12-driven migration of triple-negative MDA-MB-231 breast cancer cells. We also show that the CXCL4-CXCL12 chemokine heterodimer binds and activates the CXCR4 receptor.
Collapse
|
48
|
Kwack KH, Zhang L, Kramer ED, Thiyagarajan R, Lamb NA, Arao Y, Bard JE, Seldeen KL, Troen BR, Blackshear PJ, Abrams SI, Kirkwood KL. Tristetraprolin limits age-related expansion of myeloid-derived suppressor cells. Front Immunol 2022; 13:1002163. [PMID: 36263047 PMCID: PMC9573970 DOI: 10.3389/fimmu.2022.1002163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis. Both TTPKO and myeloid-specific TTPKO (cTTPKO) mice had significant increases in both MDSC subpopulations M-MDSCs (CD11b+Ly6ChiLy6G-) and PMN-MDSCs (CD11b+Ly6CloLy6G+), as well as macrophages (CD11b+F4/80+) in the spleen and mesenteric lymph nodes; however, no quantitative changes in MDSCs were observed in the bone marrow. In contrast, gain-of-function TTP knock-in (TTPKI) mice had no change in MDSCs compared with control mice. Within the bone marrow, total granulocyte-monocyte progenitors (GMPs) and monocyte progenitors (MPs), direct antecedents of M-MDSCs, were significantly increased in both cTTPKO and TTPKO mice, but granulocyte progenitors (GPs) were significantly increased only in TTPKO mice. Transcriptomic analysis of the bone marrow myeloid cell populations revealed that the expression of CC chemokine receptor 2 (CCR2), which plays a key role in monocyte mobilization to inflammatory sites, was dramatically increased in both cTTPKO and TTPKO mice. Concurrently, the concentration of CC chemokine ligand 2 (CCL2), a major ligand of CCR2, was high in the serum of cTTPKO and TTPKO mice, suggesting that TTP impacts the mobilization of M-MDSCs from the bone marrow to inflammatory sites during aging via regulation of the CCR2-CCL2 axis. Collectively, these studies demonstrate a previously unrecognized role for TTP in regulating age-associated myelopoiesis through the expansion of specific myeloid progenitors and M-MDSCs and their recruitment to sites of injury, inflammation, or other pathologic perturbations.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Lixia Zhang
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Elliot D. Kramer
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ramkumar Thiyagarajan
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Natalie A. Lamb
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yukitomo Arao
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Jonathan E. Bard
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kenneth L. Seldeen
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Bruce R. Troen
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
- Departments of Biochemistry & Medicine, Duke University Medical Center, Durham, NC, United States
| | - Scott I. Abrams
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Keith L. Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
- Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
49
|
Scavenging of reactive oxygen species can adjust the differentiation of tendon stem cells and progenitor cells and prevent ectopic calcification in tendinopathy. Acta Biomater 2022; 152:440-452. [PMID: 36108965 DOI: 10.1016/j.actbio.2022.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Tendinopathy is a common disorder that leads to pain and impaired quality of life. Recent studies revealed that osteogenic differentiation of tendon stem/progenitor cells (TSPCs) played an important role in the pathogenesis of tendon calcification and tendinopathy. In this study, we found that the growth hormone-releasing hormone agonist (GA) can prevent matrix degradation and osteogenic differentiation in TSPCs. As oxidative stress is a key factor in the osteogenic differentiation of TSPCs, we used bovine serum albumin/heparin nanoparticles (BHNPs), which have biocompatibility and drug loading capacity, to scavenge reactive oxygen species (ROS) and achieve sustained release of GA at the site of inflammation. The newly developed BHNPs@GA had a synergetic effect on reducing ROS production in TSPCs. In addition, BHNPs@GA effectively inhibited tendon calcification and promoted collagen formation in a rat model of tendinopathy. Focusing on the ROS underlying the differentiation and dedifferentiation of TSPCs, this work demonstrated that sustained release of GA targeting ROS and ectopic ossification is a practical therapeutic strategy for treating tendinopathy. STATEMENT OF SIGNIFICANCE: Osteogenic differentiation of tendon stem/progenitor cells (TSPCs) plays an important role in the pathogenesis of ectopic calcification in tendinopathy. In this study, we found that growth hormone-releasing hormone agonist (GA) can reduce reactive oxygen species (ROS) production and adjust TSPCs differentiation. Bovine serum albumin/heparin nanoparticles (BHNPs) were developed to encapsulate GA and achieve sustained release of GA at the site of inflammation. The developed compound, BHNPs@GA, with a synergistic effect of inhibiting ROS and thus, can effectively adjust TSPCs differentiation, inhibit tendon calcification, and promote collagen formation in tendinopathy. This study highlighted the role of ROS underlying the differentiation and dedifferentiation of TSPCs in tendinopathy, and findings may help to identify new therapeutic targets and develop novel strategy for treating tendinopathy.
Collapse
|
50
|
Yuan J, Ren H. C-C chemokine receptor 5 and acute graft-versus-host disease. Immun Inflamm Dis 2022; 10:e687. [PMID: 36039647 PMCID: PMC9382859 DOI: 10.1002/iid3.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The C-C chemokine receptor 5 (CCR5) is mainly expressed in a variety of immune cells. It interacts with multiple chemokine ligands that mediate the trafficking and recruitment of effector cells toward sites of inflammation. CCR5 not only plays a critical role in cell growth, activation, differentiation, adhesion, and migration but also participates in the development of acute graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation. METHODS This is a literature review article. The research design method is an evidence-based rapid review. The present discourse aim is first to scrutinize and assess the available literature on CCR5 and acute GVHD. Standard literature and database searches were implemented, gathered relevant material, and extracted information was then assessed. RESULTS CCR5 is a marker of GVHD effector cells, and CCR5 expression is elevated when acute GVHD occurs. CCR5 blockade with maraviroc in clinical trials results in a low incidence of acute GVHD. The immune mechanism includes that CCR5 blockade inhibits donor T cell migration and recruitment toward target organs, reduces the absolute numbers of donor T cells, is capable of slightly suppressing dendritic cell maturation, and reduces the percentage of Th1 and Th17 subsets. CCR5 blockade also inhibits internalization and activation of chemokines, inhibits proliferation and chemotaxis of T cells, and decreases the production of TNF-α and IFN-γ. In addition, there may be a form of crosstalk between CCR5 and CCR2. Inconsistently, infusion of CCR5-/- Tregs into lethally irradiated mice significantly increased the infiltration of CD4+ and CD8+ T cells into the liver, resulting in earlier and more severe GVHD. CONCLUSION This review indicates that CCR5 plays an important role in pathogenesis and development of acute GVHD. Elucidating its role in different immune cells will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Jing Yuan
- Department of HematologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Han‐yun Ren
- Department of HematologyPeking University First HospitalBeijingChina
| |
Collapse
|