1
|
Cifaldi C, Sgrulletti M, Cesare SD, Rivalta B, Emanuele A, Colucci L, Moscato GMF, Matraxia M, Perrone C, Di Matteo G, Cancrini C, Moschese V. Partial Loss of NEMO Function in a Female Carrier with No Incontinentia Pigmenti. J Clin Med 2025; 14:363. [PMID: 39860371 PMCID: PMC11765721 DOI: 10.3390/jcm14020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The nuclear factor (NF)-kB essential modulator (NEMO) has a crucial role in the NFκB pathway. Hypomorphic IKBKG pathogenic variants cause ectodermal dysplasia with immunodeficiency (EDA-ID) in affected males. However, heterozygous amorphic IKBKG variants could be responsible for Incontinentia Pigmenti (IP) in female carriers. Typically, IP patients do not exhibit immunodeficiency, although hypomorphic variants might lead to immunodeficiency in female IP patients. Here, we report the case of an IKBKG female carrier, with no IP but an unexpected picture of immunodeficiency. She had a positive family history for the same genetic condition. Methods: We performed immunological, molecular, and functional analysis to evaluate NEMO contribution. Results: The patient was healthy until the age of 25 when severe asthma and Hashimoto thyroiditis occurred. She had HLAB27-positive ankylosing spondylitis, non-tubercular mycobacteriosis, and pulmonary aspergillosis infections. We found CD19+ B cell lymphopenia and T cell subset alterations. Sanger sequencing revealed a heterozygous IKBKG variant at position +1 of the 5' UTR of the gene which disrupted the normal pre-mRNA splicing. We observed a decreased NEMO protein expression, a reduced level of mRNA, and a defective NF-κB pathway. Conclusions: These findings suggest a possible correlation between the partial loss of NEMO function and the immunodeficiency observed in this patient. This case could expand our understanding of NEMO deficiency in female carriers.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (G.M.F.M.); (G.D.M.); (C.C.)
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy;
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Di Cesare
- Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Beatrice Rivalta
- Research Unit of Primary Immunodeficiency, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (B.R.); (L.C.)
| | - Agolini Emanuele
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, 00165 Rome, Italy; (A.E.); (M.M.); (C.P.)
| | - Lucia Colucci
- Research Unit of Primary Immunodeficiency, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (B.R.); (L.C.)
| | - Giusella Maria Francesca Moscato
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (G.M.F.M.); (G.D.M.); (C.C.)
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Marta Matraxia
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, 00165 Rome, Italy; (A.E.); (M.M.); (C.P.)
| | - Chiara Perrone
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, 00165 Rome, Italy; (A.E.); (M.M.); (C.P.)
| | - Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (G.M.F.M.); (G.D.M.); (C.C.)
- Research Unit of Primary Immunodeficiency, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (B.R.); (L.C.)
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (G.M.F.M.); (G.D.M.); (C.C.)
- Research Unit of Primary Immunodeficiency, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (B.R.); (L.C.)
| | - Viviana Moschese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (G.M.F.M.); (G.D.M.); (C.C.)
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
2
|
Fasshauer M, Dinges S, Staudacher O, Völler M, Stittrich A, von Bernuth H, Wahn V, Krüger R. Monogenic Inborn Errors of Immunity with impaired IgG response to polysaccharide antigens but normal IgG levels and normal IgG response to protein antigens. Front Pediatr 2024; 12:1386959. [PMID: 38933494 PMCID: PMC11203071 DOI: 10.3389/fped.2024.1386959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
In patients with severe and recurrent infections, minimal diagnostic workup to test for Inborn Errors of Immunity (IEI) includes a full blood count, IgG, IgA and IgM. Vaccine antibodies against tetanus toxoid are also frequently measured, whereas testing for anti-polysaccharide IgG antibodies and IgG subclasses is not routinely performed by primary care physicians. This basic approach may cause a significant delay in diagnosing monogenic IEI that can present with an impaired IgG response to polysaccharide antigens with or without IgG subclass deficiency at an early stage. Our article reviews genetically defined IEI, that may initially present with an impaired IgG response to polysaccharide antigens, but normal or only slightly decreased IgG levels and normal responses to protein or conjugate vaccine antigens. We summarize clinical, genetic, and immunological findings characteristic for these IEI. This review may help clinicians to identify patients that require extended immunologic and genetic evaluations despite unremarkable basic immunologic findings. We recommend the inclusion of anti-polysaccharide IgG antibodies as part of the initial routine work-up for possible IEI.
Collapse
Affiliation(s)
- Maria Fasshauer
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig, Germany
| | - Sarah Dinges
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Department of Immunology, Labor Berlin - Charité VivantesGmbH, Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
3
|
Liu Y, Sun J, Zhang C, Wu Y, Ma S, Li X, Wu X, Gao Q. Compound heterozygous WNT10A missense variations exacerbated the tooth agenesis caused by hypohidrotic ectodermal dysplasia. BMC Oral Health 2024; 24:136. [PMID: 38280992 PMCID: PMC10822191 DOI: 10.1186/s12903-024-03888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND The aim of this study was to analyse the differences in the phenotypes of missing teeth between a pair of brothers with hypohidrotic ectodermal dysplasia (HED) and to investigate the underlying mechanism by comparing the mutated gene loci between the brothers with whole-exome sequencing. METHODS The clinical data of the patients and their mother were collected, and genomic DNA was extracted from peripheral blood samples. By Whole-exome sequencing filtered for a minor allele frequency (MAF) ≤0.05 non-synonymous single-nucleotide variations and insertions/deletions variations in genes previously associated with tooth agenesis, and variations considered as potentially pathogenic were assessed by SIFT, Polyphen-2, CADD and ACMG. Sanger sequencing was performed to detect gene variations. The secondary and tertiary structures of the mutated proteins were predicted by PsiPred 4.0 and AlphaFold 2. RESULTS Both brothers were clinically diagnosed with HED, but the younger brother had more teeth than the elder brother. An EDA variation (c.878 T > G) was identified in both brothers. Additionally, compound heterozygous variations of WNT10A (c.511C > T and c.637G > A) were identified in the elder brother. Digenic variations in EDA (c.878 T > G) and WNT10A (c.511C > T and c.637G > A) in the same patient have not been reported previously. The secondary structure of the variant WNT10A protein showed changes in the number and position of α-helices and β-folds compared to the wild-type protein. The tertiary structure of the WNT10A variant and molecular simulation docking showed that the site and direction where WNT10A binds to FZD5 was changed. CONCLUSIONS Compound heterozygous WNT10A missense variations may exacerbate the number of missing teeth in HED caused by EDA variation.
Collapse
Affiliation(s)
- Yiting Liu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jing Sun
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Caiqi Zhang
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yi Wu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Siyuan Ma
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xuechun Li
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoshan Wu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
| | - Qingping Gao
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Boutboul D, Picard C, Latour S. Inborn errors of immunity underlying defective T-cell memory. Curr Opin Allergy Clin Immunol 2023; 23:491-499. [PMID: 37797193 DOI: 10.1097/aci.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW T-cell memory is a complex process not well understood involving specific steps, pathways and different T-cell subpopulations. Inborn errors of immunity (IEIs) represent unique models to decipher some of these requirements in humans. More than 500 different IEIs have been reported to date, and recently a subgroup of monogenic disorders characterized by memory T-cell defects has emerged, providing novel insights into the pathways of T-cell memory generation and maintenance, although this new knowledge is mostly restricted to peripheral blood T-cell memory populations. RECENT FINDINGS This review draws up an inventory of the main and recent IEIs associated with T-cell memory defects and their mice models, with a particular focus on the nuclear factor kappa B (NF-κB) signalling pathway, including the scaffold protein capping protein regulator and myosin 1 linker 2 (CARMIL2) and the T-cell co-stimulatory molecules CD28 and OX-40. Besides NF-κB, IKZF1 (IKAROS), a key transcription factor of haematopoiesis and STAT3-dependent interleukin-6 signals involving the transcription factor ZNF341 also appear to be important for the generation of T cell memory. Somatic reversion mosaicism in memory T cells is documented for several gene defects supporting the critical role of these factors in the development of memory T cells with a potential clinical benefit. SUMMARY Systematic examination of T-cell memory subsets could be helpful in the diagnosis of IEIs.
Collapse
Affiliation(s)
- David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Haematology department, Hospital Cochin, Assistance Publique-Hôpitaux de Paris (APHP)
- Université de Paris Cité
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital
- Université de Paris Cité
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Université de Paris Cité
| |
Collapse
|
5
|
Moriya K, Nakano T, Honda Y, Tsumura M, Ogishi M, Sonoda M, Nishitani-Isa M, Uchida T, Hbibi M, Mizoguchi Y, Ishimura M, Izawa K, Asano T, Kakuta F, Abukawa D, Rinchai D, Zhang P, Kambe N, Bousfiha A, Yasumi T, Boisson B, Puel A, Casanova JL, Nishikomori R, Ohga S, Okada S, Sasahara Y, Kure S. Human RELA dominant-negative mutations underlie type I interferonopathy with autoinflammation and autoimmunity. J Exp Med 2023; 220:e20212276. [PMID: 37273177 PMCID: PMC10242411 DOI: 10.1084/jem.20212276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/28/2022] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Inborn errors of the NF-κB pathways underlie various clinical phenotypes in humans. Heterozygous germline loss-of-expression and loss-of-function mutations in RELA underlie RELA haploinsufficiency, which results in TNF-dependent chronic mucocutaneous ulceration and autoimmune hematological disorders. We here report six patients from five families with additional autoinflammatory and autoimmune manifestations. These patients are heterozygous for RELA mutations, all of which are in the 3' segment of the gene and create a premature stop codon. Truncated and loss-of-function RelA proteins are expressed in the patients' cells and exert a dominant-negative effect. Enhanced expression of TLR7 and MYD88 mRNA in plasmacytoid dendritic cells (pDCs) and non-pDC myeloid cells results in enhanced TLR7-driven secretion of type I/III interferons (IFNs) and interferon-stimulated gene expression in patient-derived leukocytes. Dominant-negative mutations in RELA thus underlie a novel form of type I interferonopathy with systemic autoinflammatory and autoimmune manifestations due to excessive IFN production, probably triggered by otherwise non-pathogenic TLR ligands.
Collapse
Affiliation(s)
- Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takashi Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mohamed Hbibi
- Pediatric Service University Hospital Center Hassan II Fès, Faculty of Medicine and Pharmacy Sidi Mohamed Ben Abdellah University, Fès, Morocco
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Fumihiko Kakuta
- Division of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Miyagi, Japan
| | - Daiki Abukawa
- Division of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Miyagi, Japan
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aziz Bousfiha
- Faculty of Medicine and Pharmacy. Hassan II University, Casablanca, Morocco
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Sadeghalvad M, Rezaei N. Immunodeficiencies. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Xia L, Liu XH, Yuan Y, Lowrie DB, Fan XY, Li T, Hu ZD, Lu SH. An Updated Review on MSMD Research Globally and A Literature Review on the Molecular Findings, Clinical Manifestations, and Treatment Approaches in China. Front Immunol 2022; 13:926781. [PMID: 36569938 PMCID: PMC9774035 DOI: 10.3389/fimmu.2022.926781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) arises from a group of rare inherited errors of immunity that result in selective susceptibility of otherwise healthy people to clinical disease caused by low virulence strains of mycobacteria, such as Mycobacterium bovis Bacille Calmette-Guérin (BCG) and environmental mycobacteria. Patients have normal resistance to other pathogens and no overt abnormalities in routine immunological and hematological evaluations for primary immunodeficiencies. At least 19 genes and 34 clinical phenotypes have been identified in MSMD. However, there have been no systematic reports on the clinical characteristics and genetic backgrounds of MSMD in China. In this review, on the one hand, we summarize an update findings on molecular defects and immunological mechanisms in the field of MSMD research globally. On the other hand, we undertook a systematic review of PubMed (MEDLINE), the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, EMBASE, CNKI, and Wanfang to identify articles published before Jan 23, 2022, to summarize the clinical characteristics, diagnosis, treatment, and prognosis of MSMD in China. All the English and Chinese publications were searched without any restriction on article types.
Collapse
Affiliation(s)
- Lu Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xu-Hui Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Douglas B. Lowrie
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tao Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhi-Dong Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Zhi-Dong Hu, ; Shui-Hua Lu,
| | - Shui-Hua Lu
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen, China,Department of tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, China,*Correspondence: Zhi-Dong Hu, ; Shui-Hua Lu,
| |
Collapse
|
8
|
Lin B, Goldbach-Mansky R. Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and interferonopathies. J Allergy Clin Immunol 2022; 149:819-832. [PMID: 34893352 PMCID: PMC8901451 DOI: 10.1016/j.jaci.2021.10.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
A number of systemic autoinflammatory diseases arise from gain-of-function mutations in genes encoding IL-1-activating inflammasomes or cytoplasmic nucleic acid sensors including the receptor and sensor STING and result in increased IL-1 and type I interferon production, respectively. Blocking these pathways in human diseases has provided proof-of-concept, confirming the prominent roles of these cytokines in disease pathogenesis. Recent insights into the multilayered regulation of these sensor pathways and insights into their role in amplifying the disease pathogenesis of monogenic and complex genetic diseases spurred new drug development targeting the sensors. This review provides insights into the pathogenesis and genetic causes of these "prototypic" diseases caused by gain-of function mutations in IL-1-activating inflammasomes (inflammasomopathies) and in interferon-activating pathways (interferonopathies) including STING-associated vasculopathy with onset in infancy, Aicardi-Goutieres syndrome, and proteasome-associated autoinflammatory syndromes that link activation of the viral sensors STING, "self" nucleic acid metabolism, and the ubiquitin-proteasome system to "type I interferon production" and human diseases. Clinical responses and biomarker changes to Janus kinase inhibitors confirm a role of interferons, and a growing number of diseases with "interferon signatures" unveil extensive cross-talk between major inflammatory pathways. Understanding these interactions promises new tools in tackling the significant clinical challenges in treating patients with these conditions.
Collapse
Affiliation(s)
- Bin Lin
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
9
|
Shen Y, Boulton APR, Yellon RL, Cook MC. Skin manifestations of inborn errors of NF-κB. Front Pediatr 2022; 10:1098426. [PMID: 36733767 PMCID: PMC9888762 DOI: 10.3389/fped.2022.1098426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
More than 400 single gene defects have been identified as inborn errors of immunity, including many arising from genes encoding proteins that affect NF-κB activity. We summarise the skin phenotypes in this subset of disorders and provide an overview of pathogenic mechanisms. NF-κB acts cell-intrinsically in basal epithelial cells during differentiation of skin appendages, influences keratinocyte proliferation and survival, and both responses to and amplification of inflammation, particularly TNF. Skin phenotypes include ectodermal dysplasia, reduction and hyperproliferation of keratinocytes, and aberrant recruitment of inflammatory cells, which often occur in combination. Phenotypes conferred by these rare monogenic syndromes often resemble those observed with more common defects. This includes oral and perineal ulceration and pustular skin disease as occurs with Behcet's disease, hyperkeratosis with microabscess formation similar to psoriasis, and atopic dermatitis. Thus, these genotype-phenotype relations provide diagnostic clues for this subset of IEIs, and also provide insights into mechanisms of more common forms of skin disease.
Collapse
Affiliation(s)
- Yitong Shen
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Anne P R Boulton
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Robert L Yellon
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Matthew C Cook
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom.,Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, and Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
10
|
Invasive Bacterial Infections in Subjects with Genetic and Acquired Susceptibility and Impacts on Recommendations for Vaccination: A Narrative Review. Microorganisms 2021; 9:microorganisms9030467. [PMID: 33668334 PMCID: PMC7996259 DOI: 10.3390/microorganisms9030467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
The WHO recently endorsed an ambitious plan, “Defeating Meningitis by 2030”, that aims to control/eradicate invasive bacterial infection epidemics by 2030. Vaccination is one of the pillars of this road map, with the goal to reduce the number of cases and deaths due to Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus agalactiae. The risk of developing invasive bacterial infections (IBI) due to these bacterial species includes genetic and acquired factors that favor repeated and/or severe invasive infections. We searched the PubMed database to identify host risk factors that increase the susceptibility to these bacterial species. Here, we describe a number of inherited and acquired risk factors associated with increased susceptibility to invasive bacterial infections. The burden of these factors is expected to increase due to the anticipated decrease in cases in the general population upon the implementation of vaccination strategies. Therefore, detection and exploration of these patients are important as vaccination may differ among subjects with these risk factors and specific strategies for vaccination are required. The aim of this narrative review is to provide information about these factors as well as their impact on vaccination against the four bacterial species. Awareness of risk factors for IBI may facilitate early recognition and treatment of the disease. Preventive measures including vaccination, when available, in individuals with increased risk for IBI may prevent and reduce the number of cases.
Collapse
|
11
|
Danladi J, Sabir H. Perinatal Infection: A Major Contributor to Efficacy of Cooling in Newborns Following Birth Asphyxia. Int J Mol Sci 2021; 22:ijms22020707. [PMID: 33445791 PMCID: PMC7828225 DOI: 10.3390/ijms22020707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Neonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low- and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE has led to increased neonatal mortality rates. The heat shock and cold shock protein responses are essential for survival against a wide range of stressors during which organisms raise their core body temperature and temporarily subject themselves to thermal and cold stress in the face of infection. The characteristic increase and decrease in core body temperature activates and utilizes elements of the heat shock and cold shock response pathways to modify cytokine and chemokine gene expression, cellular signaling, and immune cell mobilization to sites of inflammation, infection, and injury. Hypothermia stimulates microglia to secret cold-inducible RNA-binding protein (CIRP), which triggers NF-κB, controlling multiple inflammatory pathways, including nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and cyclooxygenase-2 (COX-2) signaling. Brain responses through changes in heat shock protein and cold shock protein transcription and gene-expression following fever range and hyperthermia may be new promising potential therapeutic targets.
Collapse
Affiliation(s)
- Jibrin Danladi
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence:
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
12
|
Host genetics and infectious disease: new tools, insights and translational opportunities. Nat Rev Genet 2020; 22:137-153. [PMID: 33277640 PMCID: PMC7716795 DOI: 10.1038/s41576-020-00297-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Understanding how human genetics influence infectious disease susceptibility offers the opportunity for new insights into pathogenesis, potential drug targets, risk stratification, response to therapy and vaccination. As new infectious diseases continue to emerge, together with growing levels of antimicrobial resistance and an increasing awareness of substantial differences between populations in genetic associations, the need for such work is expanding. In this Review, we illustrate how our understanding of the host–pathogen relationship is advancing through holistic approaches, describing current strategies to investigate the role of host genetic variation in established and emerging infections, including COVID-19, the need for wider application to diverse global populations mirroring the burden of disease, the impact of pathogen and vector genetic diversity and a broad array of immune and inflammation phenotypes that can be mapped as traits in health and disease. Insights from study of inborn errors of immunity and multi-omics profiling together with developments in analytical methods are further advancing our knowledge of this important area. Infectious diseases are an ever-present global threat. In this Review, Kwok, Mentzer and Knight discuss our latest understanding of how human genetics influence susceptibility to disease. Furthermore, they discuss emerging progress in the interplay between host and pathogen genetics, molecular responses to infection and vaccination, and opportunities to bring these aspects together for rapid responses to emerging diseases such as COVID-19.
Collapse
|
13
|
Renner ED, Krätz CE, Orange JS, Hagl B, Rylaarsdam S, Notheis G, Durandy A, Torgerson TR, Ochs HD. Class Switch Recombination Defects: impact on B cell maturation and antibody responses. Clin Immunol 2020; 222:108638. [PMID: 33276124 DOI: 10.1016/j.clim.2020.108638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
To assess how B cell phenotype analysis correlates with antigen responses in patients with class switch recombination defects (CSRD) we quantified memory B cells by flow-cytometry and immunized CSRD patients with the neoantigen bacteriophage phiX174 (phage). CSRD patients showed uniformly absent or markedly reduced switched memory B cells (IgM-IgD-CD27+). CD40L patients had reduced CD27+ memory B cells (both non-switched and switched). In NEMO patients, results varied depending on the IKKγ gene variant. Three of four AID patients had normal percentages of CD27+ memory B cells while CD27+IgM-IgD- switched memory B cells were markedly reduced in all AID patients. Antibody response to phage was remarkably decreased with lack of memory amplification and class-switching in immunized CD40L, UNG deficient, and NEMO patients. Distinct B-cell phenotype pattern correlated with abnormal antibody responses to a T-cell dependent neoantigen, representing a powerful tool to identify CSRD patients.
Collapse
Affiliation(s)
- Ellen D Renner
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Carolin E Krätz
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Jordan S Orange
- Columbia University, Department of Pediatrics, New York, United States of America
| | - Beate Hagl
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Stacey Rylaarsdam
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Gundula Notheis
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Anne Durandy
- Laboratory of Human Lymphohaematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Hans D Ochs
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
14
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1194] [Impact Index Per Article: 238.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
15
|
Heller S, Kölsch U, Magg T, Krüger R, Scheuern A, Schneider H, Eichinger A, Wahn V, Unterwalder N, Lorenz M, Schwarz K, Meisel C, Schulz A, Hauck F, von Bernuth H. T Cell Impairment Is Predictive for a Severe Clinical Course in NEMO Deficiency. J Clin Immunol 2020; 40:421-434. [PMID: 31965418 DOI: 10.1007/s10875-019-00728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE NEMO-deficient patients present with variable degrees of immunodeficiency. Accordingly, treatment ranges from antibiotic prophylaxis and/or IgG-substitution to allogenic hematopoietic stem cell transplantation (HSCT). The correct estimation of the immunodeficiency is essential to avoid over- as well as under-treatment. We compare the immunological phenotype of a NEMO-deficient patient with a newly-described splice site mutation that causes truncation of the NEMO zinc-finger (ZF) domain and a severe clinical course with the immunological phenotype of three NEMO-deficient patients with missense mutations and milder clinical courses and all previously published patients. METHODS Lymphocyte subsets, proliferation, and intracellular NEMO-expression were assessed by FACS. NF-κB signal transduction was determined by measuring IκBα-degradation and the production of cytokines upon stimulation with TNF-α, IL-1β, and TLR-agonists in immortalized fibroblasts and whole blood, respectively. RESULTS The patient with truncated ZF-domain of NEMO showed low levels of IgM and IgG, reduced class-switched memory B cells, almost complete skewing towards naïve CD45RA+ T cells, impaired T cell proliferation as well as cytokine production upon stimulation with TNF-α, IL-1β, and TLR-agonists. He suffered from severe infections (sepsis, pneumonia, osteomyelitis) during infancy. In contrast, three patients with missense mutations in IKBKG presented neither skewing of T cells towards naïvety nor impaired T cell proliferation. They are stable on prophylactic IgG-substitution or even off any prophylactic treatment. CONCLUSION The loss of the ZF-domain and the impaired T cell proliferation accompanied by almost complete persistence of naïve T cells despite severe infections are suggestive for a profound immunodeficiency. Allogenic HSCT should be considered early for these patients before chronic sequelae occur.
Collapse
Affiliation(s)
- Stephanie Heller
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin GmbH, Berlin, Germany
| | - Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, Munich, Germany
| | - Renate Krüger
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Scheuern
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Holm Schneider
- Center for Ectodermal Dysplasias and Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Anna Eichinger
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, Munich, Germany
| | - Volker Wahn
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Ulm, Germany
| | - Christian Meisel
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
- Department of Immunology, Labor Berlin GmbH, Berlin, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, Munich, Germany
| | - Horst von Bernuth
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
- Department of Immunology, Labor Berlin GmbH, Berlin, Germany.
| |
Collapse
|
16
|
Clinical, Immunological, and Functional Characterization of Six Patients with Very High IgM Levels. J Clin Med 2020; 9:jcm9030818. [PMID: 32192142 PMCID: PMC7141334 DOI: 10.3390/jcm9030818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
Very high IgM levels represent the hallmark of hyper IgM (HIGM) syndromes, a group of primary immunodeficiencies (PIDs) characterized by susceptibility to infections and malignancies. Other PIDs not fulfilling the diagnostic criteria for HIGM syndromes can also be characterized by high IgM levels and susceptibility to malignancies. The aim of this study is to characterize clinical phenotype, immune impairment, and pathogenic mechanism in six patients with very high IgM levels in whom classical HIGM syndromes were ruled out. The immunological analysis included extended B-cell immunophenotyping, evaluation of class switch recombination and somatic hypermutation, and next generation sequencing (NGS). Recurrent or severe infections and chronic lung changes at the diagnosis were reported in five out of six and two out of six patients, respectively. Five out of six patients showed signs of lymphoproliferation and four patients developed malignancies. Four patients showed impaired B-cell homeostasis. Class switch recombination was functional in vivo in all patients. NGS revealed, in one case, a pathogenic mutation in PIK3R1. In a second case, the ITPKB gene, implicated in B- and T-cell development, survival, and activity was identified as a potential candidate gene. Independent of the genetic basis, very high IgM levels represent a risk factor for the development of recurrent infections leading to chronic lung changes, lymphoproliferation, and high risk of malignancies.
Collapse
|
17
|
Regulation of B-cell function by NF-kappaB c-Rel in health and disease. Cell Mol Life Sci 2020; 77:3325-3340. [PMID: 32130429 DOI: 10.1007/s00018-020-03488-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
B cells mediate humoral immune response and contribute to the regulation of cellular immune response. Members of the Nuclear Factor kappaB (NF-κB) family of transcription factors play a major role in regulating B-cell functions. NF-κB subunit c-Rel is predominantly expressed in lymphocytes, and in B cells, it is required for survival, proliferation, and antibody production. Dysregulation of c-Rel expression and activation alters B-cell homeostasis and is associated with B-cell lymphomas and autoimmune pathologies. Based on its essential roles, c-Rel may serve as a potential prognostic and therapeutic target. This review summarizes the current understanding of the multifaceted role of c-Rel in B cells and B-cell diseases.
Collapse
|
18
|
Hsu AP, Zerbe CS, Foruraghi L, Iovine NM, Leiding JW, Mushatt DM, Wild L, Kuhns DB, Holland SM. IKBKG (NEMO) 5' Untranslated Splice Mutations Lead to Severe, Chronic Disseminated Mycobacterial Infections. Clin Infect Dis 2019. [PMID: 29534156 DOI: 10.1093/cid/ciy186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Four patients with adult-onset, disseminated mycobacterial infection had 5' UTR mutations in IKBKG without clear physical stigmata of NEMO deficiency. These mutations caused decreased levels of NEMO protein and Toll-like receptor driven cytokine production. Three patients died from disseminated disease. These mutations may be missed by whole exome sequencing.
Collapse
Affiliation(s)
- Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Ladan Foruraghi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Nicole M Iovine
- Department of Internal Medicine, Division of Infectious Diseases and Global Medicine, University of Florida Health, Gainesville
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins-All Children's Hospital, St Petersburg, Florida
| | - David M Mushatt
- Section of Infectious Diseases, Department of Medicine, New Orleans, Louisiana
| | - Laurianne Wild
- Section of Clinical Immunology and Allergy, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Maryland
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
19
|
Marsh RA, Orange JS. Antibody deficiency testing for primary immunodeficiency: A practical review for the clinician. Ann Allergy Asthma Immunol 2019; 123:444-453. [PMID: 31446132 DOI: 10.1016/j.anai.2019.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To review selected published studies related to the diagnostic evaluation of antibody deficiency. DATA SOURCES Published literature. STUDY SELECTIONS Studies related to the diagnostic evaluation of antibody deficiency and existing recommendations were selected. RESULTS Many primary immunodeficiency diseases include humoral deficiency. Practical tests used in the clinical evaluation of patients for possible antibody deficiency include immunoglobulin measurement, specific antibody titers, and B-cell enumeration and phenotyping. CONCLUSION Clinically available tests can be used to readily evaluate patients for antibody deficiencies.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jordan S Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| |
Collapse
|
20
|
Moazzami B, Yazdani R, Azizi G, Kiaei F, Tafakori M, Modaresi M, Shirzadi R, Mahdaviani SA, Sohani M, Abolhassani H, Aghamohammadi A. Respiratory Complications in Patients with Hyper IgM Syndrome. J Clin Immunol 2019; 39:557-568. [DOI: 10.1007/s10875-019-00650-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
|
21
|
Scott O, Roifman CM. NF-κB pathway and the Goldilocks principle: Lessons from human disorders of immunity and inflammation. J Allergy Clin Immunol 2019; 143:1688-1701. [PMID: 30940520 DOI: 10.1016/j.jaci.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling pathways play a key role in various cell processes related to host immunity. The last few years have seen an explosion of disorders associated with NF-κB components from core members of the canonical and noncanonical cascades to adaptor protein and ubiquitination-related enzymes. Disease phenotypes have extended beyond susceptibility to infections and include autoimmunity, lymphoproliferation, atopy, and inflammation. Concurrently, studies are unveiling a tightly regulated system marked by extensive cross-talk between the canonical and noncanonical pathways, as well as among the NF-κB and other signaling pathways. As the rate of discovery in the realm of NF-κB defects accelerates, this review presents a timely summary of major known defects causing human disease, as well as diagnostic, therapeutic, and research challenges and opportunities.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children.
| |
Collapse
|
22
|
Abstract
Class switch recombination (CSR) generates isotype-switched antibodies with distinct effector functions essential for mediating effective humoral immunity. CSR is catalyzed by activation-induced deaminase (AID) that initiates DNA lesions in the evolutionarily conserved switch (S) regions at the immunoglobulin heavy chain (Igh) locus. AID-initiated DNA lesions are subsequently converted into DNA double stranded breaks (DSBs) in the S regions of Igh locus, repaired by non-homologous end-joining to effect CSR in mammalian B lymphocytes. While molecular mechanisms of CSR are well characterized, it remains less well understood how upstream signaling pathways regulate AID expression and CSR. B lymphocytes express multiple receptors including the B cell antigen receptor (BCR) and co-receptors (e.g., CD40). These receptors may share common signaling pathways or may use distinct signaling elements to regulate CSR. Here, we discuss how signals emanating from different receptors positively or negatively regulate AID expression and CSR.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
23
|
Boisson B, Honda Y, Ajiro M, Bustamante J, Bendavid M, Gennery AR, Kawasaki Y, Ichishima J, Osawa M, Nihira H, Shiba T, Tanaka T, Chrabieh M, Bigio B, Hur H, Itan Y, Liang Y, Okada S, Izawa K, Nishikomori R, Ohara O, Heike T, Abel L, Puel A, Saito MK, Casanova JL, Hagiwara M, Yasumi T. Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency. J Clin Invest 2018; 129:583-597. [PMID: 30422821 DOI: 10.1172/jci124011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
X-linked dominant incontinentia pigmenti (IP) and X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) are caused by loss-of-function and hypomorphic IKBKG (also known as NEMO) mutations, respectively. We describe a European mother with mild IP and a Japanese mother without IP, whose 3 boys with EDA-ID died from ID. We identify the same private variant in an intron of IKBKG, IVS4+866 C>T, which was inherited from and occurred de novo in the European mother and Japanese mother, respectively. This mutation creates a new splicing donor site, giving rise to a 44-nucleotide pseudoexon (PE) generating a frameshift. Its leakiness accounts for NF-κB activation being impaired but not abolished in the boys' cells. However, aberrant splicing rates differ between cell types, with WT NEMO mRNA and protein levels ranging from barely detectable in leukocytes to residual amounts in induced pluripotent stem cell-derived (iPSC-derived) macrophages, and higher levels in fibroblasts and iPSC-derived neuronal precursor cells. Finally, SRSF6 binds to the PE, facilitating its inclusion. Moreover, SRSF6 knockdown or CLK inhibition restores WT NEMO expression and function in mutant cells. A recurrent deep intronic splicing mutation in IKBKG underlies a purely quantitative NEMO defect in males that is most severe in leukocytes and can be rescued by the inhibition of SRSF6 or CLK.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiko Ajiro
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Matthieu Bendavid
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jose Ichishima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Shiba
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Hong Hur
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, USA
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,The Charles Bronfman Institute for Personalized Medicine, and.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yupu Liang
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, USA
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Kazusa DNA Research Institute, Kisarazu, Japan
| | - Toshio Heike
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute (HHMI), New York, New York, USA
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, Aghamohammadi A. The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol 2018; 198:19-30. [PMID: 30439505 DOI: 10.1016/j.clim.2018.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on the underlying genetic defect, the affected patients present a variety of clinical manifestations including pulmonary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproliferation and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in patients with HIGM syndrome have been reviewed.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
25
|
Tuijnenburg P, Lango Allen H, Burns SO, Greene D, Jansen MH, Staples E, Stephens J, Carss KJ, Biasci D, Baxendale H, Thomas M, Chandra A, Kiani-Alikhan S, Longhurst HJ, Seneviratne SL, Oksenhendler E, Simeoni I, de Bree GJ, Tool ATJ, van Leeuwen EMM, Ebberink EHTM, Meijer AB, Tuna S, Whitehorn D, Brown M, Turro E, Thrasher AJ, Smith KGC, Thaventhiran JE, Kuijpers TW. Loss-of-function nuclear factor κB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol 2018; 142:1285-1296. [PMID: 29477724 PMCID: PMC6148345 DOI: 10.1016/j.jaci.2018.01.039] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. OBJECTIVE We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. METHODS In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. RESULTS Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. CONCLUSION We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells.
Collapse
Affiliation(s)
- Paul Tuijnenburg
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Hana Lango Allen
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Siobhan O Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Daniel Greene
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Machiel H Jansen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Emily Staples
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Stephens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Keren J Carss
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniele Biasci
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Helen Baxendale
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Moira Thomas
- Department of Immunology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Anita Chandra
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sorena Kiani-Alikhan
- Department of Immunology, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Hilary J Longhurst
- Department of Immunology, Barts Health NHS Trust, London, United Kingdom
| | - Suranjith L Seneviratne
- Department of Immunology, Royal Free London NHS Foundation Trust, University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Godelieve J de Bree
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Anton T J Tool
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Ester M M van Leeuwen
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Alexander B Meijer
- Department of Plasma Proteins, Sanquin Research, Amsterdam, The Netherlands
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Deborah Whitehorn
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matthew Brown
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust London, London, United Kingdom
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
ORAI1 mutations abolishing store-operated Ca 2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency. J Allergy Clin Immunol 2017; 142:1297-1310.e11. [PMID: 29155098 DOI: 10.1016/j.jaci.2017.10.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ channels is an essential signaling pathway in many cell types. Ca2+ release-activated Ca2+ channels are formed by ORAI1, ORAI2, and ORAI3 proteins and activated by stromal interaction molecule (STIM) 1 and STIM2. Mutations in the ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and nonimmunologic symptoms. OBJECTIVE We performed molecular and immunologic analysis of patients with CID, anhidrosis, and ectodermal dysplasia of unknown etiology. METHODS We performed DNA sequencing of the ORAI1 gene, modeling of mutations on ORAI1 crystal structure, analysis of ORAI1 mRNA and protein expression, SOCE measurements, immunologic analysis of peripheral blood lymphocyte populations by using flow cytometry, and histologic and ultrastructural analysis of patient tissues. RESULTS We identified 3 novel autosomal recessive mutations in ORAI1 in unrelated kindreds with CID, autoimmunity, ectodermal dysplasia with anhidrosis, and muscular dysplasia. The patients were homozygous for p.V181SfsX8, p.L194P, and p.G98R mutations in the ORAI1 gene that suppressed ORAI1 protein expression and SOCE in the patients' lymphocytes and fibroblasts. In addition to impaired T-cell cytokine production, ORAI1 mutations were associated with strongly reduced numbers of invariant natural killer T and regulatory T (Treg) cells and altered composition of γδ T-cell and natural killer cell subsets. CONCLUSION ORAI1 null mutations are associated with reduced numbers of invariant natural killer T and Treg cells that likely contribute to the patients' immunodeficiency and autoimmunity. ORAI1-deficient patients have dental enamel defects and anhidrosis, representing a new form of anhidrotic ectodermal dysplasia with immunodeficiency that is distinct from previously reported patients with anhidrotic ectodermal dysplasia with immunodeficiency caused by mutations in the nuclear factor κB signaling pathway (IKBKG and NFKBIA).
Collapse
|
27
|
Maubach G, Schmädicke AC, Naumann M. NEMO Links Nuclear Factor-κB to Human Diseases. Trends Mol Med 2017; 23:1138-1155. [PMID: 29128367 DOI: 10.1016/j.molmed.2017.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
The nuclear factor (NF)-κB essential modulator (NEMO) is a key regulator in NF-κB-mediated signaling. By transmitting extracellular or intracellular signals, NEMO can control NF-κB-regulated genes. NEMO dysfunction is associated with inherited diseases such as incontinentia pigmenti (IP), ectodermal dysplasia, anhidrotic, with immunodeficiency (EDA-ID), and some cancers. We focus on molecular studies, human case reports, and mouse models emphasizing the significance of NEMO molecular interactions and modifications in health and diseases. This knowledge opens new opportunities to engineer suitable drugs that may putatively target precise NEMO functions attributable to various diseases, while leaving other functions intact, and eliminating cytotoxicity. Indeed, with the advent of novel gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9, treating some inherited diseases may in the long run, become a reality.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Ann-Christin Schmädicke
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
28
|
Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 2017; 130:1456-1467. [PMID: 28679735 DOI: 10.1182/blood-2017-03-771600] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
Abstract
X-linked recessive ectodermal dysplasia with immunodeficiency is a rare primary immunodeficiency caused by hypomorphic mutations of the IKBKG gene encoding the nuclear factor κB essential modulator (NEMO) protein. This condition displays enormous allelic, immunological, and clinical heterogeneity, and therapeutic decisions are difficult because NEMO operates in both hematopoietic and nonhematopoietic cells. Hematopoietic stem cell transplantation (HSCT) is potentially life-saving, but the small number of case reports available suggests it has been reserved for only the most severe cases. Here, we report the health status before HSCT, transplantation outcome, and clinical follow-up for a series of 29 patients from unrelated kindreds from 11 countries. Between them, these patients carry 23 different hypomorphic IKBKG mutations. HSCT was performed from HLA-identical related donors (n = 7), HLA-matched unrelated donors (n = 12), HLA-mismatched unrelated donors (n = 8), and HLA-haploidentical related donors (n = 2). Engraftment was documented in 24 patients, and graft-versus-host disease in 13 patients. Up to 7 patients died 0.2 to 12 months after HSCT. The global survival rate after HSCT among NEMO-deficient children was 74% at a median follow-up after HSCT of 57 months (range, 4-108 months). Preexisting mycobacterial infection and colitis were associated with poor HSCT outcome. The underlying mutation does not appear to have any influence, as patients with the same mutation had different outcomes. Transplantation did not appear to cure colitis, possibly as a result of cell-intrinsic disorders of the epithelial barrier. Overall, HSCT can cure most clinical features of patients with a variety of IKBKG mutations.
Collapse
|
29
|
Boisson B, Puel A, Picard C, Casanova JL. Human IκBα Gain of Function: a Severe and Syndromic Immunodeficiency. J Clin Immunol 2017; 37:397-412. [PMID: 28597146 PMCID: PMC5563390 DOI: 10.1007/s10875-017-0400-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023]
Abstract
Germline heterozygous gain-of-function (GOF) mutations of NFKBIA, encoding IκBα, cause an autosomal dominant (AD) form of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). Fourteen unrelated patients have been reported since the identification of the first case in 2003. All mutations enhanced the inhibitory activity of IκBα, by preventing its phosphorylation on serine 32 or 36 and its subsequent degradation. The mutation certainly or probably occurred de novo in 13 patients, whereas it was inherited from a parent with somatic mosaicism in one patient. Eleven mutations, belonging to two groups, were identified: (i) missense mutations affecting S32, S36, or neighboring residues (8 mutations, 11 patients) and (ii) nonsense mutations upstream from S32 associated with the reinitiation of translation downstream from S36 (3 mutations, 3 patients). Thirteen patients had developmental features of EDA, the severity and nature of which differed between cases. All patient cells tested displayed impaired NF-κB-mediated responses to the stimulation of various surface receptors involved in cell-intrinsic (fibroblasts), innate (monocytes), and adaptive (B and T cells) immunity, including TLRs, IL-1Rs, TNFRs, TCR, and BCR. All patients had profound B-cell deficiency. Specific immunological features, found in some, but not all patients, included a lack of peripheral lymph nodes, lymphocytosis, dysfunctional α/β T cells, and a lack of circulating γ/δ T cells. The patients had various pyogenic, mycobacterial, fungal, and viral severe infections. Patients with a missense mutation tended to display more severe phenotypes, probably due to higher levels of GOF proteins. In the absence of hematopoietic stem cell transplantation (HSCT), this condition cause death before the age of 1 year (one child). Two survivors have been on prophylaxis (at 9 and 22 years). Six children died after HSCT. Five survived, four of whom have been on prophylaxis (3 to 21 years post HSCT), whereas one has been well with no prophylaxis. Heterozygous GOF mutations in IκBα underlie a severe and syndromic immunodeficiency, the interindividual variability of which might partly be ascribed to the dichotomy of missense and nonsense mutations, and the hematopoietic component of which can be rescued by HSCT.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, Paris Descartes University, Paris, France.
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
- Study Center for Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
30
|
Wang W, Mani AM, Wu ZH. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. JOURNAL OF CANCER METASTASIS AND TREATMENT 2017; 3:45-59. [PMID: 28626800 PMCID: PMC5472228 DOI: 10.20517/2394-4722.2017.03] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage is a vital challenge to cell homeostasis. Cellular responses to DNA damage (DDR) play essential roles in maintaining genomic stability and survival, whose failure could lead to detrimental consequences such as cancer development and aging. Nuclear factor-kappa B (NF-κB) is a family of transcription factors that plays critical roles in cellular stress response. Along with p53, NF-κB modulates transactivation of a large number of genes which participate in various cellular processes involved in DDR. Here the authors summarize the recent progress in understanding DNA damage response and NF-κB signaling pathways. This study particularly focuses on DNA damage-induced NF-κB signaling cascade and its physiological and pathological significance in B cell development and cancer therapeutic resistance. The authors also discuss promising strategies for selectively targeting this genotoxic NF-κB signaling aiming to antagonize acquired resistance and resensitize refractory cancer cells to cytotoxic treatments.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arul M. Mani
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
31
|
Bal E, Laplantine E, Hamel Y, Dubosclard V, Boisson B, Pescatore A, Picard C, Hadj-Rabia S, Royer G, Steffann J, Bonnefont JP, Ursini VM, Vabres P, Munnich A, Casanova JL, Bodemer C, Weil R, Agou F, Smahi A. Lack of interaction between NEMO and SHARPIN impairs linear ubiquitination and NF-κB activation and leads to incontinentia pigmenti. J Allergy Clin Immunol 2017; 140:1671-1682.e2. [PMID: 28249776 DOI: 10.1016/j.jaci.2016.11.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO. OBJECTIVES We sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway. METHODS We sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-β, TNF receptor-associated factor 6, TNF receptor-associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1-interacting protein, and SHANK-associated RH domain-interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1β. RESULTS We identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1β-induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1-/- cells). The truncated NEMO interaction with SHANK-associated RH domain-interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination. CONCLUSION We identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP.
Collapse
Affiliation(s)
- Elodie Bal
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Emmanuel Laplantine
- Laboratory of Signaling and Pathogenesis, CNRS UMR 3691, Pasteur Institute, Paris, France
| | - Yamina Hamel
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Virginie Dubosclard
- Departments of Cell Biology and Infection and of Structural Biology and Chemistry, URA 2185, Pasteur Institute, Paris, France
| | - Bertrand Boisson
- Rockefeller Branch, St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, UMR 1163, Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" (CNR), Naples, Italy
| | - Capucine Picard
- Rockefeller Branch, St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, UMR 1163, Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France; Immunodeficiency Study Center, Necker Children's Hospital, Paris, France
| | - Smaïl Hadj-Rabia
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France; Department of Dermatology, Referral Center for Genodermatoses (MAGEC), Imagine Institute, Necker-Enfants Malades Hospital (AP-HP), Paris, France
| | - Ghislaine Royer
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Julie Steffann
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Jean-Paul Bonnefont
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Valeria M Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" (CNR), Naples, Italy
| | - Pierre Vabres
- Department of Dermatology, Dijon CHU, Medicine Faculty and Bourgogne University, EA427 Genetic of Development Abonomalies, Bocage Hospital, Dijon, France
| | - Arnold Munnich
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France
| | - Jean-Laurent Casanova
- Rockefeller Branch, St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, UMR 1163, Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France; Pediatric Hematology, Immunology & Rheumatology Unit, Necker Children's Hospital, Paris, France
| | - Christine Bodemer
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France; Department of Dermatology, Referral Center for Genodermatoses (MAGEC), Imagine Institute, Necker-Enfants Malades Hospital (AP-HP), Paris, France
| | - Robert Weil
- Laboratory of Signaling and Pathogenesis, CNRS UMR 3691, Pasteur Institute, Paris, France
| | - Fabrice Agou
- Departments of Cell Biology and Infection and of Structural Biology and Chemistry, URA 2185, Pasteur Institute, Paris, France
| | - Asma Smahi
- INSERM U1163 Paris-Descartes University, Sorbonne Paris Cité, IMAGINE Institute, Necker Hospital Enfants-Malades, Paris, France.
| |
Collapse
|
32
|
Mortaz E, Adcock IM, Tabarsi P, Darazam IA, Movassaghi M, Garssen J, Jamaati H, Velayati A. Pattern recognitions receptors in immunodeficiency disorders. Eur J Pharmacol 2017; 808:49-56. [PMID: 28095323 DOI: 10.1016/j.ejphar.2017.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/04/2017] [Accepted: 01/13/2017] [Indexed: 01/13/2023]
Abstract
Pattern recognition receptors (PRRs) recognize common microbial or host-derived macromolecules and have important roles in early activation and response of the immune system. Initiation of the innate immune response starts with the recognition of microbial structures called pathogen associated molecular patterns (PAMPs). Recognition of PAMPs is performed by germline-encoded receptors expressed mainly on immune cells termed pattern recognition receptors (PRRs). Several classes of pattern recognition receptors (PRRs) are involved in the pathogenesis of diseases, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nod-like receptors (NLRs). Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins in the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are associated with susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Altered TLR responses to TLR2 and 4 agonists are seen in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome (HIES), and for most TLRs in adenosine deaminase deficiency. In this review we provide the reader with an update on the role of TLRs and downstream signaling pathways in PID disorders.
Collapse
Affiliation(s)
- Esameil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti, University of Medical Sciences,Tehran, Iran
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), USA
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands; Department of Immunology, Nutricia Research, Utrecht, the Netherlands
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aliakbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Concepcion AR, Feske S. Regulation of epithelial ion transport in exocrine glands by store-operated Ca 2+ entry. Cell Calcium 2016; 63:53-59. [PMID: 28027799 DOI: 10.1016/j.ceca.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a conserved mechanism of Ca2+ influx that regulates Ca2+ signaling in many cell types. SOCE is activated by depletion of endoplasmic reticulum (ER) Ca2+ stores in response to physiological agonist stimulation. After it was first postulated by J.W. Putney Jr. in 1986, SOCE has been described in a large number of non-excitable cell types including secretory cells of different exocrine glands. Here we discuss the mechanisms by which SOCE controls salt and fluid secretion in exocrine glands, with a special focus on eccrine sweat glands. In sweat glands, SOCE plays an important, non-redundant role in regulating the function of Ca2+-activated Cl- channels (CaCC), Cl- secretion and sweat production. In the absence of key regulators of SOCE such as the CRAC channel pore subunit ORAI1 and its activator STIM1, the Ca2+-activated chloride channel TMEM16A is inactive and fails to secrete Cl-, resulting in anhidrosis in mice and human patients.
Collapse
Affiliation(s)
- Axel R Concepcion
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
34
|
Concepcion AR, Vaeth M, Wagner LE, Eckstein M, Hecht L, Yang J, Crottes D, Seidl M, Shin HP, Weidinger C, Cameron S, Turvey SE, Issekutz T, Meyts I, Lacruz RS, Cuk M, Yule DI, Feske S. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function. J Clin Invest 2016; 126:4303-4318. [PMID: 27721237 DOI: 10.1172/jci89056] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release-activated Ca2+ (CRAC) channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE), and patients with these CRAC channel mutations suffer from anhidrosis and hyperthermia at high ambient temperatures. Here we have shown that CRAC channel-deficient patients and mice with ectodermal tissue-specific deletion of Orai1 (Orai1K14Cre) or Stim1 and Stim2 (Stim1/2K14Cre) failed to sweat despite normal sweat gland development. SOCE was absent in agonist-stimulated sweat glands from Orai1K14Cre and Stim1/2K14Cre mice and human sweat gland cells lacking ORAI1 or STIM1 expression. In Orai1K14Cre mice, abolishment of SOCE was associated with impaired chloride secretion by primary murine sweat glands. In human sweat gland cells, SOCE mediated by ORAI1 was necessary for agonist-induced chloride secretion and activation of the Ca2+-activated chloride channel (CaCC) anoctamin 1 (ANO1, also known as TMEM16A). By contrast, expression of TMEM16A, the water channel aquaporin 5 (AQP5), and other regulators of sweat gland function was normal in the absence of SOCE. Our findings demonstrate that Ca2+ influx via store-operated CRAC channels is essential for CaCC activation, chloride secretion, and sweat production in humans and mice.
Collapse
|
35
|
Puel A, Kun Yang, Ku CL, von Bernuth H, Bustamante J, Santos OF, Lawrence T, Chang HH, Al-Mousa H, Picard C, Casanova JL. Heritable defects of the human TLR signalling pathways. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110040601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, three human primary immunodeficiencies associated with impaired TLR signalling were described. Anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), either X-linked recessive or autosomal dominant, is caused by hypomorphic mutations in NEMO or hypermorphic mutation in IKBA, respectively, both involved in nuclear factor-κB (NF-κB) activation. These patients present with abnormal development of ectoderm-derived structures and suffer from a broad spectrum of infectious diseases. In vitro studies of the patients' cells showed an impaired, but not abolished, NF-κB activation in response to a large set of stimuli, including TLR agonists. More recently, patients with autosomal recessive amorphic mutations in IRAK4 have been reported, presenting no developmental defect and a more restricted spectrum of infectious diseases, mostly caused by pyogenic encapsulated bacteria, principally, but not exclusively Gram-positive. In vitro studies carried out with these patients' cells showed a specific impairment of the Toll—interleukin-1 receptor (TIR)—interleukin-1 receptor associated kinase (IRAK) signalling pathway. NF-κB- and mitogen activated protein kinase (MAPK) pathways are impaired in response to all TIR agonists tested. These data, therefore, suggest that TLRs play a critical role in host defence against pyogenic bacteria, but may be dispensable or redundant for immunity to most other infectious agents in humans.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France,
| | - Kun Yang
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, French-Chinese Laboratory of Genetics and Life Sciences, Rui-Jin Hospital, Shanghai University, Shanghai, China
| | - Cheng-Lung Ku
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Horst von Bernuth
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Orchidée Filipe Santos
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Tatiana Lawrence
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Huey-Hsuan Chang
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France
| | - Hamoud Al-Mousa
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, University of Paris-INSERM U550, Necker Medical School, Paris, France, Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France
| |
Collapse
|
36
|
Darbinyan A, Major EO, Morgello S, Holland S, Ryschkewitsch C, Monaco MC, Naidich TP, Bederson J, Malaczynska J, Ye F, Gordon R, Cunningham-Rundles C, Fowkes M, Tsankova NM. BK virus encephalopathy and sclerosing vasculopathy in a patient with hypohidrotic ectodermal dysplasia and immunodeficiency. Acta Neuropathol Commun 2016; 4:73. [PMID: 27411570 PMCID: PMC4944483 DOI: 10.1186/s40478-016-0342-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/26/2016] [Indexed: 02/02/2023] Open
Abstract
Human BK polyomavirus (BKV) is reactivated under conditions of immunosuppression leading most commonly to nephropathy or cystitis; its tropism for the brain is rare and poorly understood. We present a unique case of BKV-associated encephalopathy in a man with hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID) due to IKK-gamma (NEMO) mutation, who developed progressive neurological symptoms. Brain biopsy demonstrated polyomavirus infection of gray and white matter, with predominant involvement of cortex and distinct neuronal tropism, in addition to limited demyelination and oligodendroglial inclusions. Immunohistochemistry demonstrated polyoma T-antigen in neurons and glia, but expression of VP1 capsid protein only in glia. PCR analysis on both brain biopsy tissue and cerebrospinal fluid detected high levels of BKV DNA. Sequencing studies further identified novel BKV variant and disclosed unique rearrangements in the noncoding control region of the viral DNA (BKVN NCCR). Neuropathological analysis also demonstrated an unusual form of obliterative fibrosing vasculopathy in the subcortical white matter with abnormal lysosomal accumulations, possibly related to the patient's underlying ectodermal dysplasia. Our report provides the first neuropathological description of HED-ID due to NEMO mutation, and expands the diversity of neurological presentations of BKV infection in brain, underscoring the importance of its consideration in immunodeficient patients with unexplained encephalopathy. We also document novel BKVN NCCR rearrangements that may be associated with the unique neuronal tropism in this patient.
Collapse
|
37
|
Ma CS, Wong N, Rao G, Nguyen A, Avery DT, Payne K, Torpy J, O'Young P, Deenick E, Bustamante J, Puel A, Okada S, Kobayashi M, Martinez-Barricarte R, Elliott M, Sebnem Kilic S, El Baghdadi J, Minegishi Y, Bousfiha A, Robertson N, Hambleton S, Arkwright PD, French M, Blincoe AK, Hsu P, Campbell DE, Stormon MO, Wong M, Adelstein S, Fulcher DA, Cook MC, Stepensky P, Boztug K, Beier R, Ikincioğullari A, Ziegler JB, Gray P, Picard C, Boisson-Dupuis S, Phan TG, Grimbacher B, Warnatz K, Holland SM, Uzel G, Casanova JL, Tangye SG. Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets. J Exp Med 2016; 213:1589-608. [PMID: 27401342 PMCID: PMC4986526 DOI: 10.1084/jem.20151467] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Tangye and collaborators use a series of mutants to elucidate the pathways required to generate distinct subsets of human effector CD4+ T cells. Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Natalie Wong
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - James Torpy
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Patrick O'Young
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Elissa Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 735-8911, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 735-8911, Japan
| | - Ruben Martinez-Barricarte
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney 2006, Australia Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology, Uludag University Medical Faculty, 16059 Görükle, Bursa, Turkey
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohamed V, Hay Riad, 10100 Rabat, Morocco
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Aziz Bousfiha
- Clinical Immunology Unit, Department of Pediatrics, CHU Ibn Rochd, Casablanca, 20100, Morocco
| | - Nic Robertson
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Peter D Arkwright
- University of Manchester, Royal Manchester Children's Hospital, Manchester M13 9WL, England, UK
| | - Martyn French
- Department of Clinical Immunology, Royal Perth Hospital, Perth 6009, Australia School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Australia
| | | | - Peter Hsu
- Children's Hospital at Westmead, Westmead 2145, Australia
| | | | | | - Melanie Wong
- Children's Hospital at Westmead, Westmead 2145, Australia
| | - Stephen Adelstein
- Sydney Medical School, University of Sydney, Sydney 2006, Australia Clinical Immunology, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - David A Fulcher
- Department of Immunology, Westmead Hospital, University of Sydney, Westmead 2145, Australia
| | - Matthew C Cook
- Australian National University Medical School, Australian National University, Canberra 0200, Australia John Curtin School of Medical Research, Australian National University, Canberra 0200, Australia Department of Immunology, The Canberra Hospital, Garran 2605, Australia Pediatric Hematology-Oncology and Bone Marrow Transplantation Hadassah, Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation Hadassah, Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, A-1090 Vienna, Austria
| | - Rita Beier
- Pediatric Haematology and Oncology, University Hospital Essen, 45147 Essen, Germany
| | - Aydan Ikincioğullari
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, 06620 Ankara, Turkey
| | - John B Ziegler
- University of New South Wales School of Women's and Children's Health, Randwick 2031, Australia
| | - Paul Gray
- University of New South Wales School of Women's and Children's Health, Randwick 2031, Australia
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163,75270 Paris, France Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065 Howard Hughes Medical Institute, New York, NY 10065 Imagine Institute, Necker Medical School, Paris Descartes University, 75270 Paris, France
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia St Vincent's Clinical School, Darlinghurst 2010, Australia
| |
Collapse
|
38
|
Schipp C, Nabhani S, Bienemann K, Simanovsky N, Kfir-Erenfeld S, Assayag-Asherie N, Oommen PT, Revel-Vilk S, Hönscheid A, Gombert M, Ginzel S, Schäfer D, Laws HJ, Yefenof E, Fleckenstein B, Borkhardt A, Stepensky P, Fischer U. Specific antibody deficiency and autoinflammatory disease extend the clinical and immunological spectrum of heterozygous NFKB1 loss-of-function mutations in humans. Haematologica 2016; 101:e392-e396. [PMID: 27365489 DOI: 10.3324/haematol.2016.145136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Cyrill Schipp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Schafiq Nabhani
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kirsten Bienemann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Natalia Simanovsky
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Shlomit Kfir-Erenfeld
- The Lautenberg Research Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Prasad T Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Shoshana Revel-Vilk
- Pediatric Hematology Oncology and Bone Marrow Transplantation Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Andrea Hönscheid
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Gombert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sebastian Ginzel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Daniel Schäfer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Jürgen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eitan Yefenof
- The Lautenberg Research Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bernhard Fleckenstein
- Department of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Polina Stepensky
- Pediatric Hematology Oncology and Bone Marrow Transplantation Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
39
|
Jørgensen SE, Bøttger P, Kofod-Olsen E, Holm M, Mørk N, Ørntoft TF, Sørensen UBS, Bernth-Jensen JM, Herlin T, Veirum J, Larsen CS, Østergaard L, Hartmann R, Christiansen M, Mogensen TH. Ectodermal dysplasia with immunodeficiency caused by a branch-point mutation in IKBKG/NEMO. J Allergy Clin Immunol 2016; 138:1706-1709.e4. [PMID: 27477329 DOI: 10.1016/j.jaci.2016.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Sofie E Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Pernille Bøttger
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Emil Kofod-Olsen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Mette Holm
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Nanna Mørk
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Torben F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | - Jens Magnus Bernth-Jensen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Clinical Immunology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Troels Herlin
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Jens Veirum
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Carsten S Larsen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Mette Christiansen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Clinical Immunology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
40
|
Human T Follicular Helper Cells in Primary Immunodeficiency: Quality Just as Important as Quantity. J Clin Immunol 2016; 36 Suppl 1:40-7. [PMID: 26961358 DOI: 10.1007/s10875-016-0257-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 12/24/2022]
Abstract
T follicular helper (Tfh) cells are a subset of effector CD4(+) T cells specialised to induce Ab production by B cells. This review highlights some of the recent advances in the field of human Tfh cells that have come from the study of primary immunodeficiencies. In particular it is increasingly evident that the quality of the Tfh cells that are generated, is just as important as the quantity.
Collapse
|
41
|
Pedersen GK, Ádori M, Stark JM, Khoenkhoen S, Arnold C, Beutler B, Karlsson Hedestam GB. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens. Front Immunol 2016; 7:65. [PMID: 26973645 PMCID: PMC4771772 DOI: 10.3389/fimmu.2016.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Carrie Arnold
- Department of Genetics, The Scripps Research Institute , La Jolla, CA , USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | | |
Collapse
|
42
|
Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease. Proc Natl Acad Sci U S A 2016; 113:1612-7. [PMID: 26802121 DOI: 10.1073/pnas.1518163113] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Receptor-induced NF-κB activation is controlled by NEMO, the NF-κB essential modulator. Hypomorphic NEMO mutations result in X-linked ectodermal dysplasia with anhidrosis and immunodeficiency, also referred to as NEMO syndrome. Here we describe a distinct group of patients with NEMO C-terminal deletion (ΔCT-NEMO) mutations. Individuals harboring these mutations develop inflammatory skin and intestinal disease in addition to ectodermal dysplasia with anhidrosis and immunodeficiency. Both primary cells from these patients, as well as reconstituted cell lines with this deletion, exhibited increased IκB kinase (IKK) activity and production of proinflammatory cytokines. Unlike previously described loss-of-function mutations, ΔCT-NEMO mutants promoted increased NF-κB activation in response to TNF and Toll-like receptor stimulation. Investigation of the underlying mechanisms revealed impaired interactions with A20, a negative regulator of NF-κB activation, leading to prolonged accumulation of K63-ubiquitinated RIP within the TNFR1 signaling complex. Recruitment of A20 to the C-terminal domain of NEMO represents a novel mechanism limiting NF-κB activation by NEMO, and its absence results in autoinflammatory disease.
Collapse
|
43
|
Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 2015; 112:E7128-37. [PMID: 26621750 PMCID: PMC4697435 DOI: 10.1073/pnas.1521651112] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper reviews the developments that have occurred in the field of human genetics of infectious diseases from the second half of the 20th century onward. In particular, it stresses and explains the importance of the recently described monogenic inborn errors of immunity underlying resistance or susceptibility to specific infections. The monogenic component of the genetic theory provides a plausible explanation for the occurrence of severe infectious diseases during primary infection. Over the last 20 y, increasing numbers of life-threatening infectious diseases striking otherwise healthy children, adolescents, and even young adults have been attributed to single-gene inborn errors of immunity. These studies were inspired by seminal but neglected findings in plant and animal infections. Infectious diseases typically manifest as sporadic traits because human genotypes often display incomplete penetrance (most genetically predisposed individuals remain healthy) and variable expressivity (different infections can be allelic at the same locus). Infectious diseases of childhood, once thought to be archetypal environmental diseases, actually may be among the most genetically determined conditions of mankind. This nascent and testable notion has interesting medical and biological implications.
Collapse
MESH Headings
- Adolescent
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Child
- Complement System Proteins/genetics
- Encephalitis, Herpes Simplex/genetics
- Encephalitis, Herpes Simplex/immunology
- Epidermodysplasia Verruciformis/genetics
- Epidermodysplasia Verruciformis/immunology
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/immunology
- Genetic Predisposition to Disease
- Humans
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Infections/genetics
- Infections/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Malaria/genetics
- Malaria/immunology
- Models, Genetic
- Models, Immunological
- Mycobacterium Infections/genetics
- Mycobacterium Infections/immunology
- Neisseria/immunology
- Neisseria/pathogenicity
- Pneumococcal Infections/genetics
- Pneumococcal Infections/immunology
- Tinea/genetics
- Tinea/immunology
- Young Adult
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; Howard Hughes Medical Institute, New York, NY 10065; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France; Imagine Institute, Paris Descartes University, 75015 Paris, France; Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France
| |
Collapse
|
44
|
Giardino G, Cirillo E, Gallo V, Esposito T, Fusco F, Conte MI, Quinti I, Ursini MV, Carsetti R, Pignata C. B cells from nuclear factor kB essential modulator deficient patients fail to differentiate to antibody secreting cells in response to TLR9 ligand. Clin Immunol 2015; 161:131-5. [DOI: 10.1016/j.clim.2015.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/05/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
|
45
|
Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N, El Azbaoui S, Agader A, Hassani A, El Hafidi N, Mrani NA, Jouhadi Z, Ailal F, Najib J, Reisli I, Zamani A, Yosunkaya S, Gulle-Girit S, Yildiran A, Cipe FE, Torun SH, Metin A, Atikan BY, Hatipoglu N, Aydogmus C, Kilic SS, Dogu F, Karaca N, Aksu G, Kutukculer N, Keser-Emiroglu M, Somer A, Tanir G, Aytekin C, Adimi P, Mahdaviani SA, Mamishi S, Bousfiha A, Sanal O, Mansouri D, Casanova JL, Abel L. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev 2015; 264:103-20. [PMID: 25703555 DOI: 10.1111/imr.12272] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb) and a few related mycobacteria, is a devastating disease, killing more than a million individuals per year worldwide. However, its pathogenesis remains largely elusive, as only a small proportion of infected individuals develop clinical disease either during primary infection or during reactivation from latency or secondary infection. Subacute, hematogenous, and extrapulmonary disease tends to be more frequent in infants, children, and teenagers than in adults. Life-threatening primary TB of childhood can result from known acquired or inherited immunodeficiencies, although the vast majority of cases remain unexplained. We review here the conditions conferring a predisposition to childhood clinical diseases caused by mycobacteria, including not only M.tb but also weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria. Infections with weakly virulent mycobacteria are much rarer than TB, but the inherited and acquired immunodeficiencies underlying these infections are much better known. Their study has also provided genetic and immunological insights into childhood TB, as illustrated by the discovery of single-gene inborn errors of IFN-γ immunity underlying severe cases of TB. Novel findings are expected from ongoing and future human genetic studies of childhood TB in countries that combine a high proportion of consanguineous marriages, a high incidence of TB, and an excellent clinical care, such as Iran, Morocco, and Turkey.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ouadani H, Ben-Mustapha I, Ben-ali M, Ben-khemis L, Larguèche B, Boussoffara R, Maalej S, Fetni I, Hassayoun S, Mahfoudh A, Mellouli F, Yalaoui S, Masmoudi H, Bejaoui M, Barbouche MR. Novel and recurrent AID mutations underlie prevalent autosomal recessive form of HIGM in consanguineous patients. Immunogenetics 2015; 68:19-28. [PMID: 26545377 DOI: 10.1007/s00251-015-0878-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Immunoglobulin class switch recombination deficiencies (Ig-CSR-D) are characterized by normal or elevated serum IgM level and absence of IgG, IgA, and IgE. Most reported cases are due to X-linked CD40L deficiency. Activation-induced cytidine deaminase deficiency is the most frequent autosomal recessive form, whereas CD40 deficiency is more rare. Herein, we present the first North African study on hyper IgM (HIGM) syndrome including 16 Tunisian patients. Phenotypic and genetic studies allowed us to determine their molecular basis. Three CD40LG mutations have been identified including two novels (c.348_351dup and c.782_*2del) and one already reported mutation (g.6182G>A). No mutation has been found in another patient despite the lack of CD40L expression. Interestingly, three AICDA mutations have been identified in 11 patients. Two mutations were novel (c.91T>C and c.389A>C found in one and five patients respectively), and one previously reported splicing mutation (c.156+1T>G) was found in five patients. Only one CD40-deficient patient, bearing a novel mutation (c.109T>G), has been identified. Thus, unlike previous reports, AID deficiency is the most frequent underlying molecular basis (68%) of Ig-CSR-D in Tunisian patients. This finding and the presence of specific recurrent mutations are probably due to the critical role played by inbreeding in North African populations.
Collapse
Affiliation(s)
- Hanen Ouadani
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben-ali
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Leila Ben-khemis
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Beya Larguèche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | | | - Sonia Maalej
- Department of Pneumology "D", Abderahman Mami Hospital, Ariana, Tunisia
| | - Ilhem Fetni
- Department of Pediatrics, Mongi Slim Hospital, Marsa, Tunisia
| | | | | | - Fethi Mellouli
- Department of Pediatrics, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Sadok Yalaoui
- Laboratory of Biology, Abderahman Mami Hospital, Ariana, Tunisia
| | - Hatem Masmoudi
- Laboratory of Immunology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Mohamed Bejaoui
- Department of Pediatrics, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
47
|
Goodwin AF, Kim R, Bush JO, Klein OD. From Bench to Bedside and Back: Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models. Curr Top Dev Biol 2015; 115:459-92. [PMID: 26589935 DOI: 10.1016/bs.ctdb.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Craniofacial anomalies are among the most common birth defects and are associated with increased mortality and, in many cases, the need for lifelong treatment. Over the past few decades, dramatic advances in the surgical and medical care of these patients have led to marked improvements in patient outcomes. However, none of the treatments currently in clinical use address the underlying molecular causes of these disorders. Fortunately, the field of craniofacial developmental biology provides a strong foundation for improved diagnosis and for therapies that target the genetic causes of birth defects. In this chapter, we discuss recent advances in our understanding of the embryology of craniofacial conditions, and we focus on the use of animal models to guide rational therapies anchored in genetics and biochemistry.
Collapse
Affiliation(s)
- Alice F Goodwin
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Rebecca Kim
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA; Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
48
|
Fliegauf M, L. Bryant V, Frede N, Slade C, Woon ST, Lehnert K, Winzer S, Bulashevska A, Scerri T, Leung E, Jordan A, Keller B, de Vries E, Cao H, Yang F, Schäffer A, Warnatz K, Browett P, Douglass J, Ameratunga R, van der Meer J, Grimbacher B. Haploinsufficiency of the NF-κB1 Subunit p50 in Common Variable Immunodeficiency. Am J Hum Genet 2015; 97:389-403. [PMID: 26279205 DOI: 10.1016/j.ajhg.2015.07.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Common variable immunodeficiency (CVID), characterized by recurrent infections, is the most prevalent symptomatic antibody deficiency. In ∼90% of CVID-affected individuals, no genetic cause of the disease has been identified. In a Dutch-Australian CVID-affected family, we identified a NFKB1 heterozygous splice-donor-site mutation (c.730+4A>G), causing in-frame skipping of exon 8. NFKB1 encodes the transcription-factor precursor p105, which is processed to p50 (canonical NF-κB pathway). The altered protein bearing an internal deletion (p.Asp191_Lys244delinsGlu; p105ΔEx8) is degraded, but is not processed to p50ΔEx8. Altered NF-κB1 proteins were also undetectable in a German CVID-affected family with a heterozygous in-frame exon 9 skipping mutation (c.835+2T>G) and in a CVID-affected family from New Zealand with a heterozygous frameshift mutation (c.465dupA) in exon 7. Given that residual p105 and p50—translated from the non-mutated alleles—were normal, and altered p50 proteins were absent, we conclude that the CVID phenotype in these families is caused by NF-κB1 p50 haploinsufficiency.
Collapse
|
49
|
Huppmann AR, Leiding JW, Hsu AP, Raffeld M, Uzel G, Pittaluga S, Holland SM. Pathologic Findings in NEMO Deficiency: A Surgical and Autopsy Survey. Pediatr Dev Pathol 2015; 18:387-400. [PMID: 26230867 DOI: 10.2350/15-05-1631-oa.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypomorphic mutations in nuclear factor κB (NF-κB) essential modulator (NEMO), encoded by IKBKG, lead to a variable combined immunodeficiency, which puts patients at risk of early death from infectious complications. The spectrum of clinical manifestations includes inflammatory disorders, especially colitis. Because of the multiple complications of NEMO deficiency, a variety of biopsy, excisional, and autopsy materials from these patients may be subject to pathologic examination. Therefore, using samples from a cohort of patients with this disorder, we aimed to survey the pathologic spectrum of NEMO deficiency and search for correlations between specific genotypes and phenotypes. Clinical and laboratory data, mutation analysis, and pathology from 13 patients were examined, including 6 autopsies. No specific genotype-pathology correlation was identified. However, we confirmed an association between ectodermal dysplasia and inflammatory conditions. We found no characteristic pathology to identify patients with NEMO deficiency; therefore, history, physical examination, and specific infections must remain the clues to suggest the diagnosis. Variability among patients and by infection makes the pathologic recognition of NEMO deficiency challenging.
Collapse
Affiliation(s)
- Alison R Huppmann
- 1 Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer W Leiding
- 2 Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,3 University of South Florida, Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, St Petersburg, FL, USA
| | - Amy P Hsu
- 2 Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Raffeld
- 1 Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulbu Uzel
- 2 Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Pittaluga
- 1 Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven M Holland
- 2 Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Fusco F, Pescatore A, Conte MI, Mirabelli P, Paciolla M, Esposito E, Lioi MB, Ursini MV. EDA-ID and IP, two faces of the same coin: how the same IKBKG/NEMO mutation affecting the NF-κB pathway can cause immunodeficiency and/or inflammation. Int Rev Immunol 2015; 34:445-59. [PMID: 26269396 DOI: 10.3109/08830185.2015.1055331] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anhidrotic Ectodermal Dysplasia with ImmunoDeficiency (EDA-ID, OMIM 300291) and Incontinentia Pigmenti (IP, OMIM 308300) are two rare diseases, caused by mutations of the IKBKG/NEMO gene. The protein NEMO/IKKγ is essential for the NF-κB activation pathway, involved in a variety of physiological and cellular processes, such as immunity, inflammation, cell proliferation, and survival. A wide spectrum of IKBKG/NEMO mutations have been identified so far, and, on the basis of their effect on NF-κB activation, they are considered hypomorphic or amorphic (loss of function) mutations. IKBKG/NEMO hypomorphic mutations, reducing but not abolishing NF-κB activation, have been identified in EDA-ID and IP patients. Instead, the amorphic mutations, abolishing NF-κB activation by complete IKBKG/NEMO gene silencing, cause only IP. Here, we present an overview of IKBKG/NEMO mutations in EDA-ID and IP patients and describe similarities and differences between the clinical/immunophenotypic and genetic aspects, highlighting any T and B lymphocyte defect, and paying particular attention to the cellular and molecular defects that underlie the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Francesca Fusco
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy
| | - Alessandra Pescatore
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy
| | | | | | - Mariateresa Paciolla
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy.,c University of Basilicata , Potenza , Italy
| | - Elio Esposito
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy
| | | | - Matilde Valeria Ursini
- a Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' , IGB-CNR, Naples , Italy.,b Fondazione SDN IRCCS , Naples , Italy
| |
Collapse
|