1
|
Hatipoglu E, Furness AJS, Jones RL. Letetresgene Autoleucel: A Milestone in Treatment of Myxoid/Round Cell Liposarcoma. J Clin Oncol 2025; 43:1755-1757. [PMID: 40245358 DOI: 10.1200/jco-25-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Affiliation(s)
| | - Andrew J S Furness
- Royal Marsden Hospital, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
| | - Robin L Jones
- Royal Marsden Hospital, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
2
|
Qin R, Zhang Y, Shi J, Wu P, An C, Li Z, Liu N, Wan Z, Hua T, Li X, Lou J, Yin W, Chen W. TCR catch bonds nonlinearly control CD8 cooperation to shape T cell specificity. Cell Res 2025; 35:265-283. [PMID: 40011760 PMCID: PMC11958657 DOI: 10.1038/s41422-025-01077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2025] [Indexed: 02/28/2025] Open
Abstract
Naturally evolved T-cell receptors (TCRs) exhibit remarkably high specificity in discriminating non-self antigens from self-antigens under dynamic biomechanical modulation. In contrast, engineered high-affinity TCRs often lose this specificity, leading to cross-reactivity with self-antigens and off-target toxicity. The underlying mechanism for this difference remains unclear. Our study reveals that natural TCRs exploit mechanical force to form optimal catch bonds with their cognate antigens. This process relies on a mechanically flexible TCR-pMHC binding interface, which enables force-enhanced CD8 coreceptor binding to MHC-α1α2 domains through sequential conformational changes induced by force in both the MHC and CD8. Conversely, engineered high-affinity TCRs create rigid, tightly bound interfaces with cognate pMHCs of their parental TCRs. This rigidity prevents the force-induced conformational changes necessary for optimal catch-bond formation. Paradoxically, these high-affinity TCRs can form moderate catch bonds with non-stimulatory pMHCs of their parental TCRs, leading to off-target cross-reactivity and reduced specificity. We have also developed comprehensive force-dependent TCR-pMHC kinetics-function maps capable of distinguishing functional and non-functional TCR-pMHC pairs and identifying toxic, cross-reactive TCRs. These findings elucidate the mechano-chemical basis of the specificity of natural TCRs and highlight the critical role of CD8 in targeting cognate antigens. This work provides valuable insights for engineering TCRs with enhanced specificity and potency against non-self antigens, particularly for applications in cancer immunotherapy and infectious disease treatment, while minimizing the risk of self-antigen cross-reactivity.
Collapse
Affiliation(s)
- Rui Qin
- Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Zhang
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of Education, and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, and College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Wu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenyi An
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenhai Li
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
| | - Nuo Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy & MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ziyan Wan
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy & MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ting Hua
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy & MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolong Li
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy & MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jizhong Lou
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, and College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wei Chen
- Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Luo S, Notaro A, Lin L. ATLAS-seq: a microfluidic single-cell TCR screen for antigen-reactive TCRs. Nat Commun 2025; 16:216. [PMID: 39746936 PMCID: PMC11696065 DOI: 10.1038/s41467-024-54675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Discovering antigen-reactive T cell receptors (TCRs) is central to developing effective engineered T cell immunotherapies. However, the conventional technologies for isolating antigen-reactive TCRs (i.e., major histocompatibility complex (MHC) multimer staining) focus on high-affinity interactions between the TCR and MHC-antigen complex, and may fail to identify TCRs with high efficacy for activating T cells. Here, we develop a microfluidic single-cell screening method for antigen-reactive T cells named ATLAS-seq (Aptamer-based T Lymphocyte Activity Screening and SEQuencing). This technology isolates and characterizes activated T cells via an aptamer-based fluorescent molecular sensor, which monitors the cytotoxic cytokine IFNγ secretion from single T cells upon antigen stimulation, followed by single-cell RNA and single-cell TCR sequencing. We use ATLAS-seq to screen TCRs reactive to cytomegalovirus (CMV) or prostate specific antigen (PSA) from peripheral blood mononuclear cells (PBMCs). ATLAS-seq identifies distinct TCR clonotype populations with higher T cell activation levels compared to TCRs recovered by MHC multimer staining. Select TCR clonotypes from ATLAS-seq are more efficient in target cell killing than those from MHC multimer staining. Collectively, ATLAS-seq provides an efficient and broadly applicable technology to screen antigen-reactive TCRs for engineered T cell immunotherapy.
Collapse
Affiliation(s)
- Siwei Luo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber Notaro
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lan Lin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Ghoreyshi ZS, Teimouri H, Kolomeisky AB, George JT. Integration of kinetic data into affinity-based models for improved T cell specificity prediction. Biophys J 2024; 123:4115-4122. [PMID: 39520055 PMCID: PMC11628827 DOI: 10.1016/j.bpj.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions that result in T cell activation are complex and have been distinguished by their equilibrium affinity and kinetic profiles. While prior affinity-based models can successfully predict meaningful TCR-pMHC interactions in many cases, they occasionally fail at identifying TCR-pMHC interactions with low binding affinity. This study analyzes TCR-pMHC systems for which empirical kinetic and affinity data exist and prior affinity-based predictions have failed. We identify criteria for TCR-pMHC systems with available kinetic information where the introduction of a correction factor improves energy-based model predictions. This kinetic correction factor offers a means to refine existing models with additional data and offers molecular insights to help reconcile previously conflicting reports concerning the influence of TCR-pMHC binding kinetics and affinity on T cell activation.
Collapse
Affiliation(s)
- Zahra S Ghoreyshi
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Hamid Teimouri
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.
| | - Jason T George
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
5
|
Wilhelm KB, Vissa A, Groves JT. Differential roles of kinetic on- and off-rates in T-cell receptor signal integration revealed with a modified Fab'-DNA ligand. Proc Natl Acad Sci U S A 2024; 121:e2406680121. [PMID: 39298491 PMCID: PMC11441509 DOI: 10.1073/pnas.2406680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Antibody-derived T-cell receptor (TCR) agonists are commonly used to activate T cells. While antibodies can trigger TCRs regardless of clonotype, they bypass native T cell signal integration mechanisms that rely on monovalent, membrane-associated, and relatively weakly binding ligand in the context of cellular adhesion. Commonly used antibodies and their derivatives bind much more strongly than native peptide major histocompatibility complex (pMHC) ligands bind their cognate TCRs. Because ligand dwell time is a critical parameter that tightly correlates with physiological function of the TCR signaling system, there is a general need, both in research and therapeutics, for universal TCR ligands with controlled kinetic binding parameters. To this end, we have introduced point mutations into recombinantly expressed α-TCRβ H57 Fab to modulate the dwell time of monovalent Fab binding to TCR. When tethered to a supported lipid bilayer via DNA complementation, these monovalent Fab'-DNA ligands activate T cells with potencies well-correlated with their TCR binding dwell time. Single-molecule tracking studies in live T cells reveal that individual binding events between Fab'-DNA ligands and TCRs elicit local signaling responses closely resembling native pMHC. The unique combination of high on- and off-rates of the H57 R97L mutant enables direct observations of cooperative interplay between ligand binding and TCR-proximal condensation of the linker for activation of T cells, which is not readily visualized with pMHC. This work provides insights into how T cells integrate kinetic information from TCR ligands and introduces a method to develop affinity panels for polyclonal T cells, such as cells from a human patient.
Collapse
MESH Headings
- Humans
- Kinetics
- Ligands
- Signal Transduction
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- DNA/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Lymphocyte Activation
- Point Mutation
Collapse
Affiliation(s)
- Kiera B. Wilhelm
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
| | - Anand Vissa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
| | - Jay T. Groves
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
6
|
Wang Y, Chen Y, Ji DK, Huang Y, Huang W, Dong X, Yao D, Wang D. Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer. J Nanobiotechnology 2024; 22:461. [PMID: 39090622 PMCID: PMC11293135 DOI: 10.1186/s12951-024-02727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The combination of programmed cell death ligand-1 (PD-L1) immune checkpoint blockade (ICB) and immunogenic cell death (ICD)-inducing chemotherapy has shown promise in cancer immunotherapy. However, triple-negative breast cancer (TNBC) patients undergoing this treatment often face obstacles such as systemic toxicity and low response rates, primarily attributed to the immunosuppressive tumor microenvironment (TME). METHODS AND RESULTS In this study, PD-L1-targeted theranostic systems were developed utilizing anti-PD-L1 peptide (APP) conjugated with a bio-orthogonal click chemistry group. Initially, TNBC was treated with azide-modified sugar to introduce azide groups onto tumor cell surfaces through metabolic glycoengineering. A PD-L1-targeted probe was developed to evaluate the PD-L1 status of TNBC using magnetic resonance/near-infrared fluorescence imaging. Subsequently, an acidic pH-responsive prodrug was employed to enhance tumor accumulation via bio-orthogonal click chemistry, which enhances PD-L1-targeted ICB, the pH-responsive DOX release and induction of pyroptosis-mediated ICD of TNBC. Combined PD-L1-targeted chemo-immunotherapy effectively reversed the immune-tolerant TME and elicited robust tumor-specific immune responses, resulting in significant inhibition of tumor progression. CONCLUSIONS Our study has successfully engineered a bio-orthogonal multifunctional theranostic system, which employs bio-orthogonal click chemistry in conjunction with a PD-L1 targeting strategy. This innovative approach has been demonstrated to exhibit significant promise for both the targeted imaging and therapeutic intervention of TNBC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanhong Chen
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yuelin Huang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weixi Huang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xue Dong
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Shi J, Yin W, Chen W. Mathematical models of TCR initial triggering. Front Immunol 2024; 15:1411614. [PMID: 39091495 PMCID: PMC11291225 DOI: 10.3389/fimmu.2024.1411614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
T cell receptors (TCRs) play crucial roles in regulating T cell response by rapidly and accurately recognizing foreign and non-self antigens. The process involves multiple molecules and regulatory mechanisms, forming a complex network to achieve effective antigen recognition. Mathematical modeling techniques can help unravel the intricate network of TCR signaling and identify key regulators that govern it. In this review, we introduce and briefly discuss relevant mathematical models of TCR initial triggering, with a focus on kinetic proofreading (KPR) models with different modified structures. We compare the topology structures, biological hypotheses, parameter choices, and simulation performance of each model, and summarize the advantages and limitations of them. Further studies on TCR modeling design, aiming for an optimized balance of specificity and sensitivity, are expected to contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Shi
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiwei Yin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Zhao X, Shao S, Hu L. The recent advancement of TCR-T cell therapies for cancer treatment. Acta Biochim Biophys Sin (Shanghai) 2024; 56:663-674. [PMID: 38557898 PMCID: PMC11187488 DOI: 10.3724/abbs.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Adoptive cell therapies involve infusing engineered immune cells into cancer patients to recognize and eliminate tumor cells. Adoptive cell therapy, as a form of living drug, has undergone explosive growth over the past decade. The recognition of tumor antigens by the T-cell receptor (TCR) is one of the natural mechanisms that the immune system used to eliminate tumor cells. TCR-T cell therapy, which involves introducing exogenous TCRs into patients' T cells, is a novel cell therapy strategy. TCR-T cell therapy can target the entire proteome of cancer cells. Engineering T cells with exogenous TCRs to help patients combat cancer has achieved success in clinical trials, particularly in treating solid tumors. In this review, we examine the progress of TCR-T cell therapy over the past five years. This includes the discovery of new tumor antigens, protein engineering techniques for TCR, reprogramming strategies for TCR-T cell therapy, clinical studies on TCR-T cell therapy, and the advancement of TCR-T cell therapy in China. We also propose several potential directions for the future development of TCR-T cell therapy.
Collapse
Affiliation(s)
- Xiang Zhao
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Shuai Shao
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Lanxin Hu
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| |
Collapse
|
9
|
Wilhelm KB, Vissa A, Groves JT. Differential Roles of Kinetic On- and Off-Rates in T-Cell Receptor Signal Integration Revealed with a Modified Fab'-DNA Ligand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587588. [PMID: 38617215 PMCID: PMC11014569 DOI: 10.1101/2024.04.01.587588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antibody-derived T-cell receptor (TCR) agonists are commonly used to activate T cells. While antibodies can trigger TCRs regardless of clonotype, they bypass native T cell signal integration mechanisms that rely on monovalent, membrane-associated, and relatively weakly-binding ligand in the context of cellular adhesion. Commonly used antibodies and their derivatives bind much more strongly than native peptide-MHC (pMHC) ligands bind their cognate TCRs. Because ligand dwell time is a critical parameter that tightly correlates with physiological function of the TCR signaling system, there is a general need, both in research and therapeutics, for universal TCR ligands with controlled kinetic binding parameters. To this end, we have introduced point mutations into recombinantly expressed α-TCRβ H57 Fab to modulate the dwell time of monovalent Fab binding to TCR. When tethered to a supported lipid bilayer via DNA complementation, these monovalent Fab'-DNA ligands activate T cells with potencies well-correlated with their TCR binding dwell time. Single-molecule tracking studies in live T cells reveal that individual binding events between Fab'-DNA ligands and TCRs elicit local signaling responses closely resembling native pMHC. The unique combination of high on- and off-rate of the H57 R97L mutant enables direct observations of cooperative interplay between ligand binding and TCR-proximal condensation of the linker for activation of T cells (LAT), which is not readily visualized with pMHC. This work provides insights into how T cells integrate kinetic information from synthetic ligands and introduces a method to develop affinity panels for polyclonal T cells, such as cells from a human patient.
Collapse
Affiliation(s)
- Kiera B Wilhelm
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| | - Anand Vissa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| | - Jay T Groves
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| |
Collapse
|
10
|
Rogers J, Ma R, Foote A, Hu Y, Salaita K. Force-Induced Site-Specific Enzymatic Cleavage Probes Reveal That Serial Mechanical Engagement Boosts T Cell Activation. J Am Chem Soc 2024; 146:7233-7242. [PMID: 38451498 PMCID: PMC10958510 DOI: 10.1021/jacs.3c08137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
The T cell membrane is studded with >104 T cell receptors (TCRs) that are used to scan target cells to identify short peptide fragments associated with viral infection or cancerous mutation. These peptides are presented as peptide-major-histocompatibility complexes (pMHCs) on the surface of virtually all nucleated cells. The TCR-pMHC complex forms at cell-cell junctions, is highly transient, and experiences mechanical forces. An important question in this area pertains to the role of the force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune the tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how the accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F > 7.1 piconewtons (pN) between TCRs and pMHCs. This rate of disruption, or force lifetime (τF), is tunable from tens of minutes down to 1.9 min. T cells challenged with FUSE probes with F > 7.1 pN presenting cognate antigens showed up to a 23% decrease in markers of early activation. FUSE probes with F > 17.0 pN showed weaker influence on T cell triggering further showing that TCR-pMHC with F > 17.0 pN are less frequent compared to F > 7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement boosting TCR activation.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rong Ma
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Alexander Foote
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yuesong Hu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Robertson IB, Mulvaney R, Dieckmann N, Vantellini A, Canestraro M, Amicarella F, O'Dwyer R, Cole DK, Harper S, Dushek O, Kirk P. Tuning the potency and selectivity of ImmTAC molecules by affinity modulation. Clin Exp Immunol 2024; 215:105-119. [PMID: 37930865 PMCID: PMC10847821 DOI: 10.1093/cei/uxad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
T-cell-engaging bispecifics have great clinical potential for the treatment of cancer and infectious diseases. The binding affinity and kinetics of a bispecific molecule for both target and T-cell CD3 have substantial effects on potency and specificity, but the rules governing these relationships are not fully understood. Using immune mobilizing monoclonal TCRs against cancer (ImmTAC) molecules as a model, we explored the impact of altering affinity for target and CD3 on the potency and specificity of the redirected T-cell response. This class of bispecifics binds specific target peptides presented by human leukocyte antigen on the cell surface via an affinity-enhanced T-cell receptor and can redirect T-cell activation with an anti-CD3 effector moiety. The data reveal that combining a strong affinity TCR with an intermediate affinity anti-CD3 results in optimal T-cell activation, while strong affinity of both targeting and effector domains significantly reduces maximum cytokine release. Moreover, by optimizing the affinity of both parts of the molecule, it is possible to improve the selectivity. These results could be effectively modelled based on kinetic proofreading with limited signalling. This model explained the experimental observation that strong binding at both ends of the molecules leads to reduced activity, through very stable target-bispecific-effector complexes leading to CD3 entering a non-signalling dark state. These findings have important implications for the design of anti-CD3-based bispecifics with optimal biophysical parameters for both activity and specificity.
Collapse
Affiliation(s)
- Ian B Robertson
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Rachel Mulvaney
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Nele Dieckmann
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Alessio Vantellini
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Martina Canestraro
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | | | - Ronan O'Dwyer
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - David K Cole
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Stephen Harper
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Peter Kirk
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| |
Collapse
|
12
|
Meng Y, Chen S, Wang C, Ni X. Advances in Composite Biofilm Biomimetic Nanodrug Delivery Systems for Cancer Treatment. Technol Cancer Res Treat 2024; 23:15330338241250244. [PMID: 38693842 PMCID: PMC11067686 DOI: 10.1177/15330338241250244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Single biofilm biomimetic nanodrug delivery systems based on single cell membranes, such as erythrocytes and cancer cells, have immune evasion ability, good biocompatibility, prolonged blood circulation, and high tumor targeting. Because of the different characteristics and functions of each single cell membrane, more researchers are using various hybrid cell membranes according to their specific needs. This review focuses on several different types of biomimetic nanodrug-delivery systems based on composite biofilms and looks forward to the challenges and possible development directions of biomimetic nanodrug-delivery systems based on composite biofilms to provide reference and ideas for future research.
Collapse
Affiliation(s)
- Yanyan Meng
- School of Pharmacy, Changzhou University, Changzhou, China
- Department of Radiotherapy Oncology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Changzhou Key Laboratory of Medical Physics, Changzhou, China
| | - Shaoqing Chen
- Department of Radiotherapy Oncology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Changzhou Key Laboratory of Medical Physics, Changzhou, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Xinye Ni
- Department of Radiotherapy Oncology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Changzhou Key Laboratory of Medical Physics, Changzhou, China
| |
Collapse
|
13
|
Mody H, Ogasawara K, Zhu X, Miles D, Shastri PN, Gokemeijer J, Liao MZ, Kasichayanula S, Yang TY, Chemuturi N, Gupta S, Jawa V, Upreti VV. Best Practices and Considerations for Clinical Pharmacology and Pharmacometric Aspects for Optimal Development of CAR-T and TCR-T Cell Therapies: An Industry Perspective. Clin Pharmacol Ther 2023; 114:530-557. [PMID: 37393588 DOI: 10.1002/cpt.2986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
With the promise of a potentially "single dose curative" paradigm, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies. Both CAR-T and TCR-T cell therapies have also made great progress toward the successful treatment of solid tumor indications. The field is rapidly evolving with recent advancements including the clinical development of "off-the-shelf" allogeneic CAR-T therapies that can overcome the long and difficult "vein-to-vein" wait time seen with autologous CAR-T therapies. There are unique clinical pharmacology, pharmacometric, bioanalytical, and immunogenicity considerations and challenges in the development of these CAR-T and TCR-T cell therapies. Hence, to help accelerate the development of these life-saving therapies for the patients with cancer, experts in this field came together under the umbrella of International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) to form a joint working group between the Clinical Pharmacology Leadership Group (CPLG) and the Translational and ADME Sciences Leadership Group (TALG). In this white paper, we present the IQ consortium perspective on the best practices and considerations for clinical pharmacology and pharmacometric aspects toward the optimal development of CAR-T and TCR-T cell therapies.
Collapse
Affiliation(s)
- Hardik Mody
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | - Ken Ogasawara
- Clinical Pharmacology, Pharmacometrics, Disposition and Bioanalysis, Bristol Myers Squibb, Lawrence Township, New Jersey, USA
| | - Xu Zhu
- Quantitative Clinical Pharmacology, AstraZeneca, Boston, Massachusetts, USA
| | - Dale Miles
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol Myers Squibb, Cambridge, Massachusetts, USA
| | - Michael Z Liao
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Bioanalytical Discovery and Development Sciences, Janssen R&D, LLC, Spring House, Pennsylvania, USA
| | - Nagendra Chemuturi
- Clinical Pharmacology, DMPK, Pharmacometrics, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Swati Gupta
- Development Biological Sciences, Immunology, AbbVie, Irvine, California, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics, Disposition and Bioanalysis, Bristol Myers Squibb, Lawrence Township, New Jersey, USA
| | - Vijay V Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen, South San Francisco, California, USA
| |
Collapse
|
14
|
Rogers J, Ma R, Hu Y, Salaita K. Force-induced site-specific enzymatic cleavage probes reveal that serial mechanical engagement boosts T cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552310. [PMID: 37609308 PMCID: PMC10441320 DOI: 10.1101/2023.08.07.552310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The surface of T cells is studded with T cell receptors (TCRs) that are used to scan target cells to identify peptide-major histocompatibility complexes (pMHCs) signatures of viral infection or cancerous mutation. It is now established that the TCR-pMHC complex is highly transient and experiences mechanical forces that augment the fidelity of T cell activation. An important question in this area pertains to the role of force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F >7.1 piconewtons (pN) between TCRs and pMHCs. Force lifetimes (τF) are tunable from tens of min down to 1.9 min. T cells challenged with FUSE probes presenting cognate antigens with τF of 1.9 min demonstrated dampened markers of early activation, thus demonstrating that repeated mechanical sampling boosts TCR activation. Repeated mechanical sampling F >7.1 pN was found to be particularly critical at lower pMHC antigen densities, wherein the T cell activation declined by 23% with τF of 1.9 min. FUSE probes with F >17.0 pN response showed weaker influence on T cell triggering further showing that TCR-pMHC with F >17.0 pN are less frequent compared to F >7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement in antigen recognition.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Rong Ma
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| |
Collapse
|
15
|
Ayres CM, Corcelli SA, Baker BM. The Energetic Landscape of Catch Bonds in TCR Interfaces. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:325-332. [PMID: 37459192 PMCID: PMC10361606 DOI: 10.4049/jimmunol.2300121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 07/20/2023]
Abstract
Recognition of peptide/MHC complexes by αβ TCRs has traditionally been viewed through the lens of conventional receptor-ligand theory. Recent work, however, has shown that TCR recognition and T cell signaling can be profoundly influenced and tuned by mechanical forces. One outcome of applied force is the catch bond, where TCR dissociation rates decrease (half-lives increase) when limited force is applied. Although catch bond behavior is believed to be widespread in biology, its counterintuitive nature coupled with the difficulties of describing mechanisms at the structural level have resulted in considerable mystique. In this review, we demonstrate that viewing catch bonds through the lens of energy landscapes, barriers, and the ensuing reaction rates can help demystify catch bonding and provide a foundation on which atomic-level TCR catch bond mechanisms can be built.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Steve A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
16
|
Pircher H, Pinschewer DD, Boehm T. MHC I tetramer staining tends to overestimate the number of functionally relevant self-reactive CD8 T cells in the preimmune repertoire. Eur J Immunol 2023; 53:e2350402. [PMID: 37179469 DOI: 10.1002/eji.202350402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Previous studies that used peptide-MHC (pMHC) tetramers (tet) to identify self-specific T cells have questioned the effectiveness of thymic-negative selection. Here, we used pMHCI tet to enumerate CD8 T cells specific for the immunodominant gp33 epitope of lymphocytic choriomeningitis virus glycoprotein (GP) in mice transgenically engineered to express high levels of GP as a self-antigen in the thymus. In GP-transgenic mice (GP+ ), monoclonal P14 TCR+ CD8 T cells that express a GP-specific TCR could not be detected by gp33/Db -tet staining, indicative of their complete intrathymic deletion. By contrast, in the same GP+ mice, substantial numbers of polyclonal CD8 T cells identifiable by gp33/Db -tet were present. The gp33-tet staining profiles of polyclonal T cells from GP+ and GP-negative (GP- ) mice were overlapping, but mean fluorescence intensities were ∼15% lower in cells from GP+ mice. Remarkably, the gp33-tet+ T cells in GP+ mice failed to clonally expand after lymphocytic choriomeningitis virus infection, whereas those of GP- mice did so. In Nur77GFP -reporter mice, dose-dependent responses to gp33 peptide-induced TCR stimulation revealed that gp33-tet+ T cells with high ligand sensitivity are lacking in GP+ mice. Hence, pMHCI tet staining identifies self-specific CD8 T cells but tends to overestimate the number of truly self-reactive cells.
Collapse
Affiliation(s)
- Hanspeter Pircher
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
17
|
Zhao Z, Wang D, Li Y. Versatile biomimetic nanomedicine for treating cancer and inflammation disease. MEDICAL REVIEW (2021) 2023; 3:123-151. [PMID: 37724085 PMCID: PMC10471090 DOI: 10.1515/mr-2022-0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/11/2023] [Indexed: 09/20/2023]
Abstract
Nanosized drug delivery systems (NDDSs) have emerged as a powerful tool to optimize drug delivery in complex diseases, including cancer and inflammation. However, the therapeutic effect of NDDSs is still far from satisfactory due to their poor circulation time, low delivery efficiency, and innate toxicity. Fortunately, biomimetic approaches offer new opportunities to develop nanomedicine, which is derived from a variety of native biomolecules including cells, exosomes, bacteria, and so on. Since inheriting the superior biocompatibility and versatile functions of natural materials, biomimetic nanomedicine can mimic biological processes, prolong blood circulation, and lower immunogenicity, serving as a desired platform for precise drug delivery for treating cancer and inflammatory disease. In this review, we outline recent advances in biomimetic NDDSs, which consist of two concepts: biomimetic exterior camouflage and bioidentical molecule construction. We summarize engineering strategies that further functionalized current biomimetic NDDSs. A series of functional biomimetic NDDSs created by our group are introduced. We conclude with an outlook on remaining challenges and possible directions for biomimetic NDDSs. We hope that better technologies can be inspired and invented to advance drug delivery systems for cancer and inflammation therapy.
Collapse
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
18
|
Beppler C, Eichorst J, Marchuk K, Cai E, Castellanos CA, Sriram V, Roybal KT, Krummel MF. Hyperstabilization of T cell microvilli contacts by chimeric antigen receptors. J Cell Biol 2023; 222:e202205118. [PMID: 36520493 PMCID: PMC9757849 DOI: 10.1083/jcb.202205118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
T cells typically recognize their ligands using a defined cell biology-the scanning of their membrane microvilli (MV) to palpate their environment-while that same membrane scaffolds T cell receptors (TCRs) that can signal upon ligand binding. Chimeric antigen receptors (CARs) present both a therapeutic promise and a tractable means to study the interplay between receptor affinity, MV dynamics and T cell function. CARs are often built using single-chain variable fragments (scFvs) with far greater affinity than that of natural TCRs. We used high-resolution lattice lightsheet (LLS) and total internal reflection fluorescence (TIRF) imaging to visualize MV scanning in the context of variations in CAR design. This demonstrated that conventional CARs hyper-stabilized microvillar contacts relative to TCRs. Reducing receptor affinity, antigen density, and/or multiplicity of receptor binding sites normalized microvillar dynamics and synapse resolution, and effector functions improved with reduced affinity and/or antigen density, highlighting the importance of understanding the underlying cell biology when designing receptors for optimal antigen engagement.
Collapse
Affiliation(s)
- Casey Beppler
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| | - John Eichorst
- Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle Marchuk
- Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA, USA
| | - En Cai
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos A. Castellanos
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Gong S, Liang X, Zhang M, Li L, He T, Yuan Y, Li X, Liu F, Yang X, Shen M, Wu Q, Gong C. Tumor Microenvironment-Activated Hydrogel Platform with Programmed Release Property Evokes a Cascade-Amplified Immune Response against Tumor Growth, Metastasis and Recurrence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107061. [PMID: 36323618 DOI: 10.1002/smll.202107061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/16/2023]
Abstract
In situ tumor vaccines (ITV) have been recognized as a promising antitumor strategy since they contain the entire tumor-specific antigens, avoiding tumor cells from evading immune surveillance due to antigen loss. However, the therapeutic benefits of ITV are limited by obstacles such as insufficient antigen loading, inadequate immune system activation, and immunosuppressive tumor microenvironments (TME). Herein, a tumor microenvironment-activated hydrogel platform (TED-Gel) with programmed drug release property is constructed for cascaded amplification of the anti-tumor immune response elicited by ITV. Both doxorubicin (Dox) and cytosine-phosphate-guanosine oligodeoxynucleotides (CpG) are released first, in which Dox induces immunogenic tumor cell death causing additional tumor antigen release and leading the dying primary tumor cells into autologous tumor vaccine, and the released CpG promotes antigen presenting cell activation. Subsequently, the decomposed scaffold materials in conjunction with CpG, turn the anti-inflammatory M2-like macrophages into the M1 type, reversing the immunosuppressive TME. With decomposition of the TED-Gel, large amounts of macromolecule anti-PD-L1 antibodies are liberated, reinvigorating the exhausted effector T cells. In vivo studies demonstrate that TED-Gel significantly inhibits the primary, distant and rechallenged tumor growth. Overall, the simple and powerful TED-Gel provides an alternative strategy for the future development of tumor vaccines with broad application.
Collapse
Affiliation(s)
- Songlin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiuqi Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Miaomiao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuan Yuan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xinchao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Furong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
20
|
Sun M, Shi W, Wu Y, He Z, Sun J, Cai S, Luo Q. Immunogenic Nanovesicle-Tandem-Augmented Chemoimmunotherapy via Efficient Cancer-Homing Delivery and Optimized Ordinal-Interval Regime. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205247. [PMID: 36453573 PMCID: PMC9811449 DOI: 10.1002/advs.202205247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The strategy of combining immune checkpoint inhibitors (ICIs) with anthracycline is recommended by clinical guidelines for the standard-of-care treatment of triple-negative breast cancer (TNBC). Nevertheless, several fundamental clinical principles are yet to be elucidated to achieve a great therapeutic effect, including cancer-homing delivery efficiency and ordinal-interval regime. Tumor-derived extracellular vesicles (TDEVs), as vectors for intratumoral intercellular communication, can encapsulate therapeutic agents and home tumors. However, PD-L1 overexpression in TDEVs leads to systemic immunosuppression during in vivo circulation, ultimately inhibiting intratumoral T activity. In this study, CRISPR/Cas9-edited Pd-l1KO TDEV-fusogenic anthracycline doxorubicin (DOX) liposomes with high drug encapsulation (97%) are fabricated, which homologously deliver DOX to breast cancer cells to intensify the immunogenic response and induce PD-L1 overexpression in the tumor. By setting the stage for sensitizing tumors to ICIs, sequential treatment with disulfide-linked PD1-cross-anchored TDEVs nanogels at one-day interval could sustainably release PD1 in the tumor, triggering a high proportion of effector T cell-mediated destruction of orthotopic and metastatic tumors without off-target side effects in the 4T1-bearing TNBC mouse model. Such a TDEV-tandem-augmented chemoimmunotherapeutic strategy with efficient cancer-homing delivery capacity and optimized ordinal-interval regime provides a solid foundation for developing chemoimmunotherapeutic formulations for TNBC therapy at the clinical level.
Collapse
Affiliation(s)
- Mengchi Sun
- School of PharmacyShenyang Pharmaceutical UniversityShenyangLiaoning110016P. R. China
| | - Wen Shi
- Department of PharmacyThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Yuxia Wu
- Department of PharmacyThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Zhonggui He
- Wuya College of InnovationShenyang Pharmaceutical UniversityShenyangLiaoning110016P. R. China
| | - Jin Sun
- Wuya College of InnovationShenyang Pharmaceutical UniversityShenyangLiaoning110016P. R. China
| | - Shuang Cai
- Department of PharmacyThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Qiuhua Luo
- Department of PharmacyThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| |
Collapse
|
21
|
Shevyrev DV, Tereshchenko VP, Sennikov SV. The Enigmatic Nature of the TCR-pMHC Interaction: Implications for CAR-T and TCR-T Engineering. Int J Mol Sci 2022; 23:ijms232314728. [PMID: 36499057 PMCID: PMC9740949 DOI: 10.3390/ijms232314728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The interaction of the T-cell receptor (TCR) with a peptide in the major histocompatibility complex (pMHC) plays a central role in the adaptive immunity of higher chordates. Due to the high specificity and sensitivity of this process, the immune system quickly recognizes and efficiently responds to the appearance of foreign and altered self-antigens. This is important for ensuring anti-infectious and antitumor immunity, in addition to maintaining self-tolerance. The most common parameter used for assessing the specificity of TCR-pMHC interaction is affinity. This thermodynamic characteristic is widely used not only in various theoretical aspects, but also in practice, for example, in the engineering of various T-cell products with a chimeric (CAR-T) or artificial (TCR-engineered T-cell) antigen receptor. However, increasing data reveal the fact that, in addition to the thermodynamic component, the specificity of antigen recognition is based on the kinetics and mechanics of the process, having even greater influence on the selectivity of the process and T lymphocyte activation than affinity. Therefore, the kinetic and mechanical aspects of antigen recognition should be taken into account when designing artificial antigen receptors, especially those that recognize antigens in the MHC complex. This review describes the current understanding of the nature of the TCR-pMHC interaction, in addition to the thermodynamic, kinetic, and mechanical principles underlying the specificity and high sensitivity of this interaction.
Collapse
Affiliation(s)
- D. V. Shevyrev
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence: ; Tel.: +7-9231345505
| | - V. P. Tereshchenko
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - S. V. Sennikov
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| |
Collapse
|
22
|
Wu Y, Biswas D, Swanton C. Impact of cancer evolution on immune surveillance and checkpoint inhibitor response. Semin Cancer Biol 2022; 84:89-102. [PMID: 33631295 PMCID: PMC9253787 DOI: 10.1016/j.semcancer.2021.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Intratumour heterogeneity (ITH) is pervasive across all cancers studied and may provide the evolving tumour multiple routes to escape immune surveillance. Immune checkpoint inhibitors (CPIs) are rapidly becoming standard of care for many cancers. Here, we discuss recent work investigating the influence of ITH on patient response to immune checkpoint inhibitor (CPI) therapy. At its simplest, ITH may confound the diagnostic accuracy of predictive biomarkers used to stratify patients for CPI therapy. Furthermore, ITH is fuelled by mechanisms of genetic instability that can both engage immune surveillance and drive immune evasion. A greater appreciation of the interplay between ITH and the immune system may hold the key to increasing the proportion of patients experiencing durable responses from CPI therapy.
Collapse
Affiliation(s)
- Yin Wu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK; Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK.
| |
Collapse
|
23
|
Zhao X, Kolawole EM, Chan W, Feng Y, Yang X, Gee MH, Jude KM, Sibener LV, Fordyce PM, Germain RN, Evavold BD, Garcia KC. Tuning T cell receptor sensitivity through catch bond engineering. Science 2022; 376:eabl5282. [PMID: 35389803 PMCID: PMC9513562 DOI: 10.1126/science.abl5282] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adoptive cell therapy using engineered T cell receptors (TCRs) is a promising approach for targeting cancer antigens, but tumor-reactive TCRs are often weakly responsive to their target ligands, peptide-major histocompatibility complexes (pMHCs). Affinity-matured TCRs can enhance the efficacy of TCR-T cell therapy but can also cross-react with off-target antigens, resulting in organ immunopathology. We developed an alternative strategy to isolate TCR mutants that exhibited high activation signals coupled with low-affinity pMHC binding through the acquisition of catch bonds. Engineered analogs of a tumor antigen MAGE-A3-specific TCR maintained physiological affinities while exhibiting enhanced target killing potency and undetectable cross-reactivity, compared with a high-affinity clinically tested TCR that exhibited lethal cross-reactivity with a cardiac antigen. Catch bond engineering is a biophysically based strategy to tune high-sensitivity TCRs for T cell therapy with reduced potential for adverse cross-reactivity.
Collapse
Affiliation(s)
- Xiang Zhao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth M Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Waipan Chan
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yinnian Feng
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Xinbo Yang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marvin H Gee
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leah V Sibener
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Gangopadhyay K, Roy S, Sen Gupta S, Chandradasan A, Chowdhury S, Das R. Regulating the discriminatory response to antigen by T-cell receptor. Biosci Rep 2022; 42:BSR20212012. [PMID: 35260878 PMCID: PMC8965820 DOI: 10.1042/bsr20212012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cell-mediated immune response constitutes a robust host defense mechanism to eliminate pathogens and oncogenic cells. T cells play a central role in such a defense mechanism and creating memories to prevent any potential infection. T cell recognizes foreign antigen by its surface receptors when presented through antigen-presenting cells (APCs) and calibrates its cellular response by a network of intracellular signaling events. Activation of T-cell receptor (TCR) leads to changes in gene expression and metabolic networks regulating cell development, proliferation, and migration. TCR does not possess any catalytic activity, and the signaling initiates with the colocalization of several enzymes and scaffold proteins. Deregulation of T cell signaling is often linked to autoimmune disorders like severe combined immunodeficiency (SCID), rheumatoid arthritis, and multiple sclerosis. The TCR remarkably distinguishes the minor difference between self and non-self antigen through a kinetic proofreading mechanism. The output of TCR signaling is determined by the half-life of the receptor antigen complex and the time taken to recruit and activate the downstream enzymes. A longer half-life of a non-self antigen receptor complex could initiate downstream signaling by activating associated enzymes. Whereas, the short-lived, self-peptide receptor complex disassembles before the downstream enzymes are activated. Activation of TCR rewires the cellular metabolic response to aerobic glycolysis from oxidative phosphorylation. How does the early event in the TCR signaling cross-talk with the cellular metabolism is an open question. In this review, we have discussed the recent developments in understanding the regulation of TCR signaling, and then we reviewed the emerging role of metabolism in regulating T cell function.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Soumee Sen Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Athira C. Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| |
Collapse
|
25
|
Egan JR, Abu-Shah E, Dushek O, Elliott T, MacArthur BD. Fluctuations in T cell receptor and pMHC interactions regulate T cell activation. J R Soc Interface 2022; 19:20210589. [PMID: 35135295 PMCID: PMC8833104 DOI: 10.1098/rsif.2021.0589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptive immune responses depend on interactions between T cell receptors (TCRs) and peptide major histocompatibility complex (pMHC) ligands located on the surface of T cells and antigen presenting cells (APCs), respectively. As TCRs and pMHCs are often only present at low copy numbers their interactions are inherently stochastic, yet the role of stochastic fluctuations on T cell function is unclear. Here, we introduce a minimal stochastic model of T cell activation that accounts for serial TCR-pMHC engagement, reversible TCR conformational change and TCR aggregation. Analysis of this model indicates that it is not the strength of binding between the T cell and the APC cell per se that elicits an immune response, but rather the information imparted to the T cell from the encounter, as assessed by the entropy rate of the TCR-pMHC binding dynamics. This view provides an information-theoretic interpretation of T cell activation that explains a range of experimental observations. Based on this analysis, we propose that effective T cell therapeutics may be enhanced by optimizing the inherent stochasticity of TCR-pMHC binding dynamics.
Collapse
Affiliation(s)
- Joseph R Egan
- Mathematical Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Institute for Life Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology, University Hospital Southampton, Southampton SO16 6YD, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Enas Abu-Shah
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Tim Elliott
- Institute for Life Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology, University Hospital Southampton, Southampton SO16 6YD, UK.,Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Ben D MacArthur
- Mathematical Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Institute for Life Sciences, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO17 1BJ, UK.,Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
26
|
Lückemeier P, Molter KL, Jarosch S, Huppertz P, Purcarea A, Effenberger MJP, Nauerth M, D'Ippolito E, Schober K, Busch DH. Global k off -rates of polyclonal T cell populations merge subclonal avidities and predict functionality. Eur J Immunol 2022; 52:582-596. [PMID: 35099805 DOI: 10.1002/eji.202149597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/07/2022]
Abstract
The avidity of T cell receptors (TCRs) for peptide-major histocompatibility complexes (pMHCs) is a governing factor in how T cells respond to antigen. TCR avidity is generally linked to T cell functionality and there is growing evidence for distinct roles of low and high avidity T cells in different phases of immune responses. While physiological immune responses and many therapeutic T cell products targeting infections or cancers consist of polyclonal T cell populations with a wide range of individual avidities, the role of T cell avidity is usually investigated only in monoclonal experimental settings. In this report, we induced polyclonal T cell responses with a wide range of avidities towards a model epitope by altered peptide ligands (APL), and benchmarked global avidity of physiological polyclonal populations by investigation of TCR-pMHC koff -rates. We then investigated how varying sizes and avidities of monoclonal subpopulations translate into global koff -rates. Global koff -rates integrate subclonal avidities in a predictably weighted manner and robustly correlate with the functionality of murine polyclonal T cell populations in vitro and in vivo. Surveying the full avidity spectrum is essential to accurately assess polyclonal immune responses and inform the design of polyclonal T cell therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Philipp Lückemeier
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Katherine L Molter
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Patrick Huppertz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Anna Purcarea
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Manuel J P Effenberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Magdalena Nauerth
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054, Erlangen, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| |
Collapse
|
27
|
Viana Invenção MDC, Melo ARDS, de Macêdo LS, da Costa Neves TSP, de Melo CML, Cordeiro MN, de Aragão Batista MV, de Freitas AC. Development of synthetic antigen vaccines for COVID-19. Hum Vaccin Immunother 2021; 17:3855-3870. [PMID: 34613880 PMCID: PMC8506811 DOI: 10.1080/21645515.2021.1974288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/04/2022] Open
Abstract
The current pandemic called COVID-19 caused by the SARS-CoV-2 virus brought the need for the search for fast alternatives to both control and fight the SARS-CoV-2 infection. Therefore, a race for a vaccine against COVID-19 took place, and some vaccines have been approved for emergency use in several countries in a record time. Ongoing prophylactic research has sought faster, safer, and precise alternatives by redirecting knowledge of other vaccines, and/or the development of new strategies using available tools, mainly in the areas of genomics and bioinformatics. The current review highlights the development of synthetic antigen vaccines, focusing on the usage of bioinformatics tools for the selection and construction of antigens on the different vaccine constructions under development, as well as strategies to optimize vaccines for COVID-19.
Collapse
Affiliation(s)
- Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Alanne Rayssa da Silva Melo
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Thaís Souto Paula da Costa Neves
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Nazário Cordeiro
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
28
|
CD8 coreceptor-mediated focusing can reorder the agonist hierarchy of peptide ligands recognized via the T cell receptor. Proc Natl Acad Sci U S A 2021; 118:2019639118. [PMID: 34272276 PMCID: PMC8307375 DOI: 10.1073/pnas.2019639118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD8+ T cells are inherently cross-reactive and recognize numerous peptide antigens in the context of a given major histocompatibility complex class I (MHCI) molecule via the clonotypically expressed T cell receptor (TCR). The lineally expressed coreceptor CD8 interacts coordinately with MHCI at a distinct and largely invariant site to slow the TCR/peptide-MHCI (pMHCI) dissociation rate and enhance antigen sensitivity. However, this biological effect is not necessarily uniform, and theoretical models suggest that antigen sensitivity can be modulated in a differential manner by CD8. We used two intrinsically controlled systems to determine how the relationship between the TCR/pMHCI interaction and the pMHCI/CD8 interaction affects the functional sensitivity of antigen recognition. Our data show that modulation of the pMHCI/CD8 interaction can reorder the agonist hierarchy of peptide ligands across a spectrum of affinities for the TCR.
Collapse
|
29
|
Pettmann J, Huhn A, Abu Shah E, Kutuzov MA, Wilson DB, Dustin ML, Davis SJ, van der Merwe PA, Dushek O. The discriminatory power of the T cell receptor. eLife 2021; 10:e67092. [PMID: 34030769 PMCID: PMC8219380 DOI: 10.7554/elife.67092] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
T cells use their T cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self peptides presented on major histocompatibility complex (pMHC) antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities and use it to measure the discriminatory power of the TCR and the factors affecting it. We find that TCR discrimination, although enhanced compared with conventional cell-surface receptors, is imperfect: primary human T cells can respond to pMHC with affinities as low as KD ∼ 1 mM. The kinetic proofreading mechanism fit our data, providing the first estimates of both the time delay (2.8 s) and number of biochemical steps (2.67) that are consistent with the extraordinary sensitivity of antigen recognition. Our findings explain why self pMHC frequently induce autoimmune diseases and anti-tumour responses, and suggest ways to modify TCR discrimination.
Collapse
Affiliation(s)
- Johannes Pettmann
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | - Anna Huhn
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Boston University, Department of Mathematics and StatisticsBostonUnited States
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
30
|
Alonso JA, Smith AR, Baker BM. Tumor rejection properties of gp100 209-specific T cells correlate with T cell receptor binding affinity towards the wild type rather than anchor-modified antigen. Mol Immunol 2021; 135:365-372. [PMID: 33990005 DOI: 10.1016/j.molimm.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Although there are exceptions and outliers, T cell functional responses generally correlate with the affinity of a TCR for a peptide/MHC complex. In one recently described outlier case, the most promising clinical candidate in a series of TCRs specific for the gp100209 melanoma antigen bound with the weakest solution affinity and produced the least amount of cytokine in vitro. Hypotheses for this outlier behavior included unusual cytokine expression patterns arising from an atypical TCR binding geometry. Studying this instance in more detail, we found here that outlier behavior is attributable not to unusual cytokine patterns or TCR binding, but the use of a position 2 anchor-modified peptide variant in in vitro experiments instead of the wild type antigen that is present in vivo. Although the anchor-modified variant has been widely used in basic and clinical immunology as a surrogate for the wild type peptide, prior work has shown that TCRs can clearly distinguish between the two. We show that when this differential recognition is accounted for, the functional properties of gp100209-specific TCRs track with their affinity towards the peptide/MHC complex. Beyond demonstrating the correlates with T cell function for a clinically relevant TCR, our results provide important considerations for selection of TCRs for immunotherapy and the use of modified peptides in immunology.
Collapse
Affiliation(s)
- Jesus A Alonso
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Angela R Smith
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
31
|
Hu M, Zhang J, Kong L, Yu Y, Hu Q, Yang T, Wang Y, Tu K, Qiao Q, Qin X, Zhang Z. Immunogenic Hybrid Nanovesicles of Liposomes and Tumor-Derived Nanovesicles for Cancer Immunochemotherapy. ACS NANO 2021; 15:3123-3138. [PMID: 33470095 DOI: 10.1021/acsnano.0c09681] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exploring a rational delivery system of integrating chemotherapy with immunotherapy to broaden benefits of cancer immunochemotherapy is still under challenge. Herein, we developed doxorubicin (DOX)-loaded biomimetic hybrid nanovesicles (DOX@LINV) via fusing artificial liposomes (LIPs) with tumor-derived nanovesicles (TNVs) for combinational immunochemotherapy. DOX@LINV with a homologous targeting ability could deliver DOX to tumor tissue and elicit an effective immunogenic cell death response to improve the immunogenicity of a tumor. Meanwhile, the preserved tumor antigens and endogenous danger signals in DOX@LINV activated dendritic cells and induced a subsequent antigen-specific T cell immune response. DOX@LINV displayed a specific antitumor effect on murine melanoma, Lewis lung cancer, and 4T1 breast cancer based on the infiltration of effector immune cells and improvement of the immunosuppressive tumor microenvironment. Furthermore, the combination of DOX@LINV with immune checkpoint inhibitor amplified antitumor efficacy with 33.3% of the mice being tumor-free. Therefore, the hybrid LINV is a promising drug delivery platform with a boosted antitumor immune response for effective immunochemotherapy.
Collapse
Affiliation(s)
- Mei Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
32
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
33
|
Johnson DK, Magoffin W, Myers SJ, Finnell JG, Hancock JC, Orton TS, Persaud SP, Christensen KA, Weber KS. CD4 Inhibits Helper T Cell Activation at Lower Affinity Threshold for Full-Length T Cell Receptors Than Single Chain Signaling Constructs. Front Immunol 2021; 11:561889. [PMID: 33542711 PMCID: PMC7851051 DOI: 10.3389/fimmu.2020.561889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells are crucial for effective repression and elimination of cancer cells. Despite a paucity of CD4+ T cell receptor (TCR) clinical studies, CD4+ T cells are primed to become important therapeutics as they help circumvent tumor antigen escape and guide multifactorial immune responses. However, because CD8+ T cells directly kill tumor cells, most research has focused on the attributes of CD8+ TCRs. Less is known about how TCR affinity and CD4 expression affect CD4+ T cell activation in full length TCR (flTCR) and TCR single chain signaling (TCR-SCS) formats. Here, we generated an affinity panel of TCRs from CD4+ T cells and expressed them in flTCR and three TCR-SCS formats modeled after chimeric antigen receptors (CARs) to understand the contributions of TCR-pMHCII affinity, TCR format, and coreceptor CD4 interactions on CD4+ T cell activation. Strikingly, the coreceptor CD4 inhibited intermediate and high affinity TCR-construct activation by Lck-dependent and -independent mechanisms. These inhibition mechanisms had unique affinity thresholds dependent on the TCR format. Intracellular construct formats affected the tetramer staining for each TCR as well as IL-2 production. IL-2 production was promoted by increased TCR-pMHCII affinity and the flTCR format. Thus, CD4+ T cell therapy development should consider TCR affinity, CD4 expression, and construct format.
Collapse
Affiliation(s)
- Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Wyatt Magoffin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Sheldon J Myers
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Jordan G Finnell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - John C Hancock
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Taylor S Orton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Stephen P Persaud
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
| | - Kenneth A Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
34
|
Zhang Z, Xiong D, Wang X, Liu H, Wang T. Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics. Nat Methods 2021; 18:92-99. [PMID: 33408405 PMCID: PMC7799492 DOI: 10.1038/s41592-020-01020-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022]
Abstract
Many experimental and bioinformatics approaches have been developed to characterize the human T cell receptor (TCR) repertoire. However, the unknown functional relevance of TCR profiling hinders unbiased interpretation of the biology of T cells. To address this inadequacy, we developed tessa, a tool to integrate TCRs with gene expression of T cells to estimate the effect that TCRs confer on the phenotypes of T cells. Tessa leveraged techniques combining single-cell RNA-sequencing with TCR sequencing. We validated tessa and showed its superiority over existing approaches that investigate only the TCR sequences. With tessa, we demonstrated that TCR similarity constrains the phenotypes of T cells to be similar and dictates a gradient in antigen targeting efficiency of T cell clonotypes with convergent TCRs. We showed this constraint could predict a functional dichotomization of T cells postimmunotherapy treatment and is weakened in tumor contexts.
Collapse
Affiliation(s)
- Ze Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Danyi Xiong
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Hongyu Liu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Kolawole EM, Lamb TJ, Evavold BD. Relationship of 2D Affinity to T Cell Functional Outcomes. Int J Mol Sci 2020; 21:E7969. [PMID: 33120989 PMCID: PMC7662510 DOI: 10.3390/ijms21217969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are critical for a functioning adaptive immune response and a strong correlation exists between T cell responses and T cell receptor (TCR): peptide-loaded MHC (pMHC) binding. Studies that utilize pMHC tetramer, multimers, and assays of three-dimensional (3D) affinity have provided advancements in our understanding of T cell responses across different diseases. However, these technologies focus on higher affinity and avidity T cells while missing the lower affinity responders. Lower affinity TCRs in expanded polyclonal populations almost always constitute a significant proportion of the response with cells mediating different effector functions associated with variation in the proportion of high and low affinity T cells. Since lower affinity T cells expand and are functional, a fully inclusive view of T cell responses is required to accurately interpret the role of affinity for adaptive T cell immunity. For example, low affinity T cells are capable of inducing autoimmune disease and T cells with an intermediate affinity have been shown to exhibit an optimal anti-tumor response. Here, we focus on how affinity of the TCR may relate to T cell phenotype and provide examples where 2D affinity influences functional outcomes.
Collapse
Affiliation(s)
| | | | - Brian D. Evavold
- Department of Pathology, University of Utah, 15 N Medical Drive, Salt Lake City, UT 84112, USA; (E.M.K.); (T.J.L.)
| |
Collapse
|
37
|
Céspedes PF, Beckers D, Dustin ML, Sezgin E. Model membrane systems to reconstitute immune cell signaling. FEBS J 2020; 288:1070-1090. [DOI: 10.1111/febs.15488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Pablo F. Céspedes
- Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences University of Oxford UK
| | - Daniel Beckers
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine University of Oxford UK
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences University of Oxford UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine University of Oxford UK
- Science for Life Laboratory Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| |
Collapse
|
38
|
Meryk A, Pangrazzi L, Hagen M, Hatzmann F, Jenewein B, Jakic B, Hermann-Kleiter N, Baier G, Jylhävä J, Hurme M, Trieb K, Grubeck-Loebenstein B. Fcμ receptor as a Costimulatory Molecule for T Cells. Cell Rep 2020; 26:2681-2691.e5. [PMID: 30840890 DOI: 10.1016/j.celrep.2019.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022] Open
Abstract
Fc receptor for IgM (FcμR)-deficient mice display dysregulated function of neutrophils, dendritic cells, and B cells. The relevance of FcμR to human T cells is still unknown. We show that FcμR is mostly stored inside the cell and that surface expression is tightly regulated. Decreased surface expression on T cells from elderly individuals is associated with alterations in the methylation pattern of the FCMR gene. Binding and internalization of IgM stimulate transport of FcμR to the cell surface to ensure sustained IgM uptake. Concurrently, IgM accumulates within the cell, and the surface expression of other receptors increases, among them the T cell receptor (TCR) and costimulatory molecules. This leads to enhanced TCR signaling, proliferation, and cytokine release, in response to low, but not high, doses of antigen. Our findings indicate that FcμR is an important regulator of T cell function and reveal an additional mode of interaction between B and T cells.
Collapse
Affiliation(s)
- Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria.
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Magdalena Hagen
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Florian Hatzmann
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bojana Jakic
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Mikko Hurme
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, 4600 Wels, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
39
|
Affiliation(s)
- Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Carine Farenc
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nicole L. La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
40
|
Akatsuka Y. TCR-Like CAR-T Cells Targeting MHC-Bound Minor Histocompatibility Antigens. Front Immunol 2020; 11:257. [PMID: 32184779 PMCID: PMC7058980 DOI: 10.3389/fimmu.2020.00257] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
Abstract
Minor histocompatibility antigens (mHAgs) in allogeneic hematopoietic stem cell transplantation are highly immunogenic as they are foreign antigens and cause polymorphism between donors and recipients. Adoptive cell therapy with mHAg-specific T cells may be an effective option for therapy against recurring hematological malignancies following transplantation. Genetically modified T cells with T cell receptors (TCRs) specific to mHAgs have been developed, but formation of mispaired chimeric TCRs between endogenous and exogenous TCR chains may compromise their function. An alternative approach is the development of chimeric antigen receptor (CAR)-T cells with TCR-like specificity whose CAR transmembrane and intracellular domains do not compete with endogenous TCR for CD3 complexes and transmit their own activation signals. However, it has been shown that the recognition of low-density antigens by high-affinity CAR-T cells has poor sensitivity and specificity. This mini review focuses on the potential for and limitations of TCR-like CAR-T cells in targeting human leukocyte antigen-bound peptide antigens, based on their recognition mechanisms and their application in targeting mHAgs.
Collapse
Affiliation(s)
- Yoshiki Akatsuka
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
41
|
Carretero-Iglesia L, Couturaud B, Baumgaertner P, Schmidt J, Maby-El Hajjami H, Speiser DE, Hebeisen M, Rufer N. High Peptide Dose Vaccination Promotes the Early Selection of Tumor Antigen-Specific CD8 T-Cells of Enhanced Functional Competence. Front Immunol 2020; 10:3016. [PMID: 31969886 PMCID: PMC6960191 DOI: 10.3389/fimmu.2019.03016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
CD8 T-cell response efficiency critically depends on the TCR binding strength to peptide-MHC, i.e., the TCR binding avidity. A current challenge in onco-immunology lies in the evaluation of vaccine protocols selecting for tumor-specific T-cells of highest avidity, offering maximal immune protection against tumor cells and clinical benefit. Here, we investigated the impact of peptide and CpG/adjuvant doses on the quality of vaccine-induced CD8 T-cells in relation to binding avidity and functional responses in treated melanoma patients. Using TCR-pMHC binding avidity measurements combined to phenotype and functional assays, we performed a comprehensive study on representative tumor antigen-specific CD8 T-cell clones (n = 454) from seven patients vaccinated with different doses of Melan-A/ELA peptide (0.1 mg vs. 0.5 mg) and CpG-B adjuvant (1–1.3 mg vs. 2.6 mg). Vaccination with high peptide dose favored the early and strong in vivo expansion and differentiation of Melan-A-specific CD8 T-cells. Consistently, T-cell clones generated from those patients showed increased TCR binding avidity (i.e., slow off-rates and CD8 binding independency) readily after 4 monthly vaccine injections (4v). In contrast, the use of low peptide or high CpG-B doses required 8 monthly vaccine injections (8v) for the enrichment of anti-tumor T-cells with high TCR binding avidity and low CD8 binding dependency. Importantly, the CD8 binding-independent vaccine-induced CD8 T-cells displayed enhanced functional avidity, reaching a plateau of maximal function. Thus, T-cell functional potency following peptide/CpG/IFA vaccination may not be further improved beyond a certain TCR binding avidity limit. Our results also indicate that while high peptide dose vaccination induced the early selection of Melan-A-specific CD8 T-cells of increased functional competence, continued serial vaccinations also promoted such high-avidity T-cells. Overall, the systematic assessment of T-cell binding avidity may contribute to optimize vaccine design for improving clinical efficacy.
Collapse
Affiliation(s)
- Laura Carretero-Iglesia
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Barbara Couturaud
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Petra Baumgaertner
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Hélène Maby-El Hajjami
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rufer
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Duong MN, Erdes E, Hebeisen M, Rufer N. Chronic TCR-MHC (self)-interactions limit the functional potential of TCR affinity-increased CD8 T lymphocytes. J Immunother Cancer 2019; 7:284. [PMID: 31690351 PMCID: PMC6833194 DOI: 10.1186/s40425-019-0773-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Affinity-optimized T cell receptor (TCR)-engineered lymphocytes targeting tumor antigens can mediate potent antitumor responses in cancer patients, but also bear substantial risks for off-target toxicities. Most preclinical studies have focused on T cell responses to antigen-specific stimulation. In contrast, little is known on the regulation of T cell responsiveness through continuous TCR triggering and consequent tonic signaling. Here, we addressed the question whether increasing the TCR affinity can lead to chronic interactions occurring directly between TCRs and MHC-(self) molecules, which may modulate the overall functional potency of tumor-redirected CD8 T cells. For this purpose, we developed two complementary human CD8 T cell models (i.e. HLA-A2 knock-in and knock-out) engineered with incremental-affinity TCRs to the HLA-A2/NY-ESO-1 tumor antigen. Methods The impact of HLA-A2 recognition, depending on TCR affinity, was assessed at the levels of the TCR/CD3 complex, regulatory receptors, and signaling, under steady-state conditions and in kinetic studies. The quality of CD8 T cell responses was further evaluated by gene expression and multiplex cytokine profiling, as well as real-time quantitative cell killing, combined with co-culture assays. Results We found that HLA-A2 per se (in absence of cognate peptide) can trigger chronic activation followed by a tolerance-like state of tumor-redirected CD8 T cells with increased-affinity TCRs. HLA-A2pos but not HLA-A2neg T cells displayed an activation phenotype, associated with enhanced upregulation of c-CBL and multiple inhibitory receptors. T cell activation preceded TCR/CD3 downmodulation, impaired TCR signaling and functional hyporesponsiveness. This stepwise activation-to-hyporesponsive state was dependent on TCR affinity and already detectable at the upper end of the physiological affinity range (KD ≤ 1 μM). Similar findings were made when affinity-increased HLA-A2neg CD8 T cells were chronically exposed to HLA-A2pos-expressing target cells. Conclusions Our observations indicate that sustained interactions between affinity-increased TCR and self-MHC can directly adjust the functional potential of T cells, even in the absence of antigen-specific stimulation. The observed tolerance-like state depends on TCR affinity and has therefore potential implications for the design of affinity-improved TCRs for adoptive T cell therapy, as several engineered TCRs currently used in clinical trials share similar affinity properties.
Collapse
Affiliation(s)
- Minh Ngoc Duong
- Department of oncology UNIL CHUV, Lausanne University Hospital and University of Lausanne, CH-1066, Epalinges, Switzerland
| | - Efe Erdes
- Department of oncology UNIL CHUV, Lausanne University Hospital and University of Lausanne, CH-1066, Epalinges, Switzerland
| | - Michael Hebeisen
- Department of oncology UNIL CHUV, Lausanne University Hospital and University of Lausanne, CH-1066, Epalinges, Switzerland.
| | - Nathalie Rufer
- Department of oncology UNIL CHUV, Lausanne University Hospital and University of Lausanne, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
43
|
T cell engineering for adoptive T cell therapy: safety and receptor avidity. Cancer Immunol Immunother 2019; 68:1701-1712. [PMID: 31542797 DOI: 10.1007/s00262-019-02395-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Since the first bone marrow transplantation, adoptive T cell therapy (ACT) has developed over the last 80 years to a highly efficient and specific therapy for infections and cancer. Genetic engineering of T cells with antigen-specific receptors now provides the possibility of generating highly defined and efficacious T cell products. The high sensitivity of engineered T cells towards their targets, however, also bears the risk of severe off-target toxicities. Therefore, different safety strategies for engineered T cells have been developed that enable removal of the transferred cells in case of adverse events, control of T cell activity or improvement of target selectivity. Receptor avidity is a crucial component in the balance between safety and efficacy of T cell products. In clinical trials, T cells equipped with high avidity T cell receptor (TCR)/chimeric antigen receptor (CAR) have been mostly used so far because of their faster and better response to antigen recognition. However, over-activation can trigger T cell exhaustion/death as well as side effects due to excessive cytokine production. Low avidity T cells, on the other hand, are less susceptible to over-activation and could possess better selectivity in case of tumor antigens shared with healthy tissues, but complete tumor eradication may not be guaranteed. In this review we describe how 'optimal' TCR/CAR affinity can increase the safety/efficacy balance of engineered T cells, and discuss simultaneous or sequential infusion of high and low avidity receptors as further options for efficacious but safe T cell therapy.
Collapse
|
44
|
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Song W, Feng J, Zhang XZ. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nat Commun 2019; 10:3199. [PMID: 31324770 PMCID: PMC6642123 DOI: 10.1038/s41467-019-11157-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023] Open
Abstract
Most cancer vaccines are unsuccessful in eliciting clinically relevant effects. Without using exogenous antigens and adoptive cells, we show a concept of utilizing biologically reprogrammed cytomembranes of the fused cells (FCs) derived from dendritic cells (DCs) and cancer cells as tumor vaccines. The fusion of immunologically interrelated two types of cells results in strong expression of the whole tumor antigen complexes and the immunological co-stimulatory molecules on cytomembranes (FMs), allowing the nanoparticle-supported FM (NP@FM) to function like antigen presenting cells (APCs) for T cell immunoactivation. Moreover, tumor-antigen bearing NP@FM can be bio-recognized by DCs to induce DC-mediated T cell immunoactivation. The combination of these two immunoactivation pathways offers powerful antitumor immunoresponse. Through mimicking both APCs and cancer cells, this cytomembrane vaccine strategy can develop various vaccines toward multiple tumor types and provide chances for accommodating diverse functions originating from the supporters.
Collapse
Affiliation(s)
- Wen-Long Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Mei-Zhen Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P.R. China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Wu-Yang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jing-Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Wen Song
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China. .,The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|
45
|
Audehm S, Glaser M, Pecoraro M, Bräunlein E, Mall S, Klar R, Effenberger M, Albers J, Bianchi HDO, Peper J, Yusufi N, Busch DH, Stevanović S, Mann M, Antes I, Krackhardt AM. Key Features Relevant to Select Antigens and TCR From the MHC-Mismatched Repertoire to Treat Cancer. Front Immunol 2019; 10:1485. [PMID: 31316521 PMCID: PMC6611213 DOI: 10.3389/fimmu.2019.01485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/13/2019] [Indexed: 11/13/2022] Open
Abstract
Adoptive transfer of T cells transgenic for tumor-reactive T-cell receptors (TCR) is an attractive immunotherapeutic approach. However, clinical translation is so far limited due to challenges in the identification of suitable target antigens as well as TCRs that are concurrent safe and efficient. Definition of key characteristics relevant for effective and specific tumor rejection is essential to improve current TCR-based adoptive T-cell immunotherapies. We here characterized in-depth two TCRs derived from the human leukocyte antigen (HLA)-mismatched allogeneic repertoire targeting two different myeloperoxidase (MPO)-derived peptides presented by the same HLA-restriction element side by side comprising state of the art biochemical and cellular in vitro, in vivo, and in silico experiments. In vitro experiments reveal comparable functional avidities, off-rates, and cytotoxic activities for both TCRs. However, we observed differences especially with respect to cytokine secretion and cross-reactivity as well as in vivo activity. Biochemical and in silico analyses demonstrate different binding qualities of MPO-peptides to the HLA-complex determining TCR qualities. We conclude from our biochemical and in silico analyses of peptide-HLA-binding that rigid and high-affinity binding of peptides is one of the most important factors for isolation of TCRs with high specificity and tumor rejection capacity from the MHC-mismatched repertoire. Based on our results, we developed a workflow for selection of such TCRs with high potency and safety profile suitable for clinical translation.
Collapse
Affiliation(s)
- Stefan Audehm
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Manuel Glaser
- Center for Integrated Protein Science at the Department for Biosciences, Technische Universität München, Freising, Germany
| | - Matteo Pecoraro
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eva Bräunlein
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sabine Mall
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Richard Klar
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Manuel Effenberger
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Julian Albers
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrique de Oliveira Bianchi
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Janet Peper
- Eberhard Karls University Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany
| | - Nahid Yusufi
- Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dirk H Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Stefan Stevanović
- Eberhard Karls University Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany.,Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Iris Antes
- Center for Integrated Protein Science at the Department for Biosciences, Technische Universität München, Freising, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Partner Site Munich, German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Abstract
T cells initiate and regulate adaptive immune responses that can clear infections. To do this, they use their T cell receptors (TCRs) to continually scan the surfaces of other cells for cognate peptide antigens presented on major histocompatibility complexes (pMHCs). Experimental work has established that as few 1-10 pMHCs are sufficient to activate T cells. This sensitivity is remarkable in light of a number of factors, including the observation that the TCR and pMHC are short molecules relative to highly abundant long surface molecules, such as CD45, that can hinder initial binding, and moreover, the TCR/pMHC interaction is of weak affinity with solution lifetimes of approximately 1 second. Here, we review experimental and mathematical work that has contributed to uncovering molecular mechanisms of T cell sensitivity. We organize the mechanisms by where they act in the pathway to activate T cells, namely mechanisms that (a) promote TCR/pMHC binding, (b) induce rapid TCR signaling, and (c) amplify TCR signaling. We discuss work showing that high sensitivity reduces antigen specificity unless molecular feedbacks are invoked. We conclude by summarizing a number of open questions.
Collapse
Affiliation(s)
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Zabel M, Tauber PA, Pickl WF. The making and function of CAR cells. Immunol Lett 2019; 212:53-69. [PMID: 31181279 PMCID: PMC7058416 DOI: 10.1016/j.imlet.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Abstract
Genetically engineered T cells expressing chimeric antigen receptors (CAR) present a new treatment option for patients with cancer. Recent clinical trials of B cell leukemia have demonstrated a response rate of up to 90%. However, CAR cell therapy is frequently accompanied by severe side effects such as cytokine release syndrome and the development of target cell resistance. Consequently, further optimization of CARs to obtain greater long-term efficacy and increased safety is urgently needed. Here we high-light the various efforts of adjusting the intracellular signaling domains of CARs to these major requirements to eventually obtain high-level target cell cytotoxicity paralleled by the establishment of longevity of the CAR expressing cell types to guarantee for extended tumor surveillance over prolonged periods of time. We are convinced that it will be crucial to identify the molecular pathways and signaling requirements utilized by such ‘efficient CARs’ in order to provide a rational basis for their further hypothesis-based improvement. Furthermore, we here discuss timely attempts of how to: i) control ‘on-tumor off-target’ effects; ii) introduce Signal 3 (cytokine responsiveness of CAR cells) as an important building-block into the CAR concept; iii) most efficiently eliminate CAR cells once full remission has been obtained. We also argue that universal systems for the variable and pharmacokinetically-controlled attachment of extracellular ligand recognition domains of choice along with the establishment of ‘off-the-shelf’ cell preparations with suitability for all patients in need of a highly-potent cellular therapy may become future mainstays of CAR cell therapy. Such therapies would have the attraction to work independent of the patients’ histo-compatibility make-up and the availability of functionally intact patient’s cells. Finally, we summarize the evidence that CAR cells may obtain a prominent place in the treatment of non-malignant and auto-reactive T and B lymphocyte expansions in the near future, e.g., for the alleviation of autoimmune diseases and allergies. After the introduction of red blood cell transfusions, which were made possible by the landmark discoveries of the ABO blood groups by Karl Landsteiner, and the establishment of bone marrow transplantation by E. Donnall Thomas to exchange the entire hematopoietic system of a patient suffering from leukemia, the introduction of patient-tailored cytotoxic cellular populations to eradicate malignant cell populations in vivo pioneered by Carl H. June, represents the third major and broadly applicable milestone in the development of human cellular therapies within the rapidly developing field of applied biomedical research of the last one hundred years.
Collapse
Affiliation(s)
- Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter A Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
48
|
Yousefi OS, Günther M, Hörner M, Chalupsky J, Wess M, Brandl SM, Smith RW, Fleck C, Kunkel T, Zurbriggen MD, Höfer T, Weber W, Schamel WW. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. eLife 2019; 8:42475. [PMID: 30947807 PMCID: PMC6488296 DOI: 10.7554/elife.42475] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
The immune system distinguishes between self and foreign antigens. The kinetic proofreading (KPR) model proposes that T cells discriminate self from foreign ligands by the different ligand binding half-lives to the T cell receptor (TCR). It is challenging to test KPR as the available experimental systems fall short of only altering the binding half-lives and keeping other parameters of the interaction unchanged. We engineered an optogenetic system using the plant photoreceptor phytochrome B (PhyB) as a ligand to selectively control the dynamics of ligand binding to the TCR by light. This opto-ligand-TCR system was combined with the unique property of PhyB to continuously cycle between the binding and non-binding states under red light, with the light intensity determining the cycling rate and thus the binding duration. Mathematical modeling of our experimental datasets showed that indeed the ligand-TCR interaction half-life is the decisive factor for activating downstream TCR signaling, substantiating KPR.
Collapse
Affiliation(s)
- O Sascha Yousefi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Chalupsky
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Wess
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simon M Brandl
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert W Smith
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Christian Fleck
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tim Kunkel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matias D Zurbriggen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences, University of Düsseldorf, Düsseldorf, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang Wa Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
49
|
Pageon SV, Govendir MA, Kempe D, Biro M. Mechanoimmunology: molecular-scale forces govern immune cell functions. Mol Biol Cell 2019; 29:1919-1926. [PMID: 30088799 PMCID: PMC6232972 DOI: 10.1091/mbc.e18-02-0120] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune cell recognition of antigens is a pivotal process in initiating immune responses against injury, pathogens, and cancers. Breakthroughs over the past decade support a major role for mechanical forces in immune responses, laying the foundation for the emerging field of mechanoimmunology. In this Perspective, we discuss the mechanical forces acting at the level of ligand–receptor interactions and how they underpin receptor triggering, signal initiation, and immune cell activation. We also highlight the novel biophysical tools and advanced imaging techniques that have afforded us the recent progress in our understanding of the role of forces in immune cell functions.
Collapse
Affiliation(s)
- Sophie V Pageon
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, and
| | - Matt A Govendir
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, and
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, and
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, and.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
50
|
Gálvez J, Gálvez JJ, García-Peñarrubia P. Is TCR/pMHC Affinity a Good Estimate of the T-cell Response? An Answer Based on Predictions From 12 Phenotypic Models. Front Immunol 2019; 10:349. [PMID: 30886616 PMCID: PMC6410681 DOI: 10.3389/fimmu.2019.00349] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
On the T-cell surface the TCR is the only molecule that senses antigen, and the engagement of TCR with its specific antigenic peptide (agonist)/MHC complex (pMHC) is determined by the biochemical parameters of the TCR-pMHC interaction. This interaction is the keystone of the adaptive immune response by triggering intracellular signaling pathways that induce the expression of genes required for T cell-mediated effector functions, such as T cell proliferation, cytokine secretion and cytotoxicity. To study the TCR-pMHC interaction one of its properties most extensively analyzed has been TCR-pMHC affinity. However, and despite of intensive experimental research, the results obtained are far from conclusive. Here, to determine if TCR-pMHC affinity is a reliable parameter to characterize T-cell responses, a systematic study has been performed based on the predictions of 12 phenotypic models. This approach has the advantage that allow us to study the response of a given system as a function of only those parameters in which we are interested while other system parameters remain constant. A little surprising, only the simple occupancy model predicts a direct relationship between affinity and response so that an increase in affinity always leads to larger responses. Conversely, in the others more elaborate models this clear situation does not occur, i.e., that a general positive correlation between affinity and immune response does not exist. This is mainly because affinity values are given by the quotient k on/k off where k on and k off are the rate constants of the binding process (i.e., affinity is in fact the quotient of two parameters), so that different sets of these rate constants can give the same value of affinity. However, except in the occupancy model, the predicted T-cell responses depend on the individual values of k on and k off rather than on their quotient k on/k off. This allows: a) that systems with the same affinity can show quite different responses; and b) that systems with low affinity may exhibit larger responses than systems with higher affinities. This would make affinity a poor estimate of T-cell responses and, as a result, data correlations between affinity and immune response should be interpreted and used with caution.
Collapse
Affiliation(s)
- Jesús Gálvez
- Department of Physical Chemistry, Faculty of Chemistry, University of Murcia, Murcia, Spain
| | - Juan J Gálvez
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pilar García-Peñarrubia
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|