1
|
Aminifard T, Mehri S, Khajavirad A, Moosavi Z, Hosseinian S, Hosseinzadeh H. Trans-sodium crocetinate attenuates acute kidney injury induced by rhabdomyolysis in rats: focusing on PI3K/AKT, apoptosis, and autophagy pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03910-9. [PMID: 40080154 DOI: 10.1007/s00210-025-03910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
Rhabdomyolysis (RM) is a clinical disorder characterized by the release of potentially toxic muscle cell components into the bloodstream, with acute kidney injury (AKI). Trans-sodium crocetinate (TSC) is derived from the carotenoid crocetin known for its renoprotective, anti-inflammatory, and antioxidant properties. This study aimed to assess the protective effects of TSC on RM-induced AKI in rats. Six groups of rats (n = 6) were used: control, AKI (50% glycerol 10 mL/kg, intramuscularly), AKI treated with TSC (10, 20, and 40 mg/kg, intraperitoneally), and TSC (40 mg/kg) alone groups. Two days after the initial injection, urine and blood samples were collected over 24 h to investigate creatine phosphokinase (CPK), kidney function markers, and electrolyte levels. Additionally, kidney tissue was collected to assess renal oxidative markers, histological alterations, and the expression of protein markers related to autophagy, apoptosis, renal injury, inflammation, and the PI3K/AKT signaling pathway. After glycerol administration, there was an increase in oxidative stress, autophagy, apoptosis, renal injury, and inflammatory marker levels, accompanied by a decrease in the proteins of the PI3K/AKT signaling pathway in the kidney. The co-administration of TSC with glycerol resulted in the improvement of renal dysfunction and structural abnormalities, achieved through a reduction in oxidative stress. TSC also down-regulated autophagy, apoptotic, renal injury, and inflammatory markers. Furthermore, TSC treatment led to a decrease in the renal expression of PI3K/AKT signaling pathway proteins. In conclusion, TSC exhibited a protective effect against RM-induced AKI by modulating oxidative stress, autophagy, apoptosis, and the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Tahereh Aminifard
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abolfazl Khajavirad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Saxena S, Anand SK, Sharma A, Kakkar P. Involvement of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitochondrial turnover in according protection to hyperglycemic NRK-52E cells by Berberine. Toxicol In Vitro 2024; 100:105916. [PMID: 39127087 DOI: 10.1016/j.tiv.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Aberrant accumulation of dysfunctional mitochondria in renal cells during hyperglycemia signifies perturbed autophagy and mitochondrial turnover. This study aims to focus on the underlying mechanism involved in autophagy and mitophagy inducing efficacy of Berberine (isoquinoline alkaloid) in hyperglycemic NRK-52E cells. Berberine mediated protection to hyperglycemic cells prevented alteration in mitochondrial structure and function. Treatment with SRT-1720 (Sirt1 activator) enhanced autophagy, decreased apoptosis, upregulated expression of downstream moieties (FoxO3a and Bnip3) and ameliorated mitochondria related anomalies while nicotinamide (Sirt1 inhibitor) treatment exhibited reversal of the same. GFP reporter assay ascertained enhanced transcriptional activity of FoxO in Berberine-treated hyperglycemic cells, which was found to be correlated to increased expression of downstream protein Bnip3. Knocking down FoxO3a disrupted autophagy and stimulated apoptosis. N-acetyl-L-cysteine pre-treatment confirmed that generation of ROS intervened high glucose induced toxicity in NRK-52E cells. Berberine co-treatment resulted in differential expressions of key proteins involved in autophagy and mitophagy like LC3B, ATGs, Beclin1, Sirt1, Bnip3, FoxO3a and Parkin. Further, enhanced mitophagy in Berberine-treated cells was confirmed by transmission electron microscopy. Thus, our findings give evidence that the protection accorded by Berberine against hyperglycemia in renal proximal tubular cells (NRK-52E) involves instigation of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitophagy induction.
Collapse
Affiliation(s)
- Sugandh Saxena
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sumit Kumar Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Zhu KX, Wu M, Bian ZL, Han SL, Fang LM, Ge FF, Wang XZ, Xie SF. Growing attention on the toxicity of Chinese herbal medicine: a bibliometric analysis from 2013 to 2022. Front Pharmacol 2024; 15:1293468. [PMID: 38362153 PMCID: PMC10867220 DOI: 10.3389/fphar.2024.1293468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Despite the clinical value of Chinese herbal medicine (CHM), restricted comprehension of its toxicity limits the secure and efficacious application. Previous studies primarily focused on exploring specific toxicities within CHM, without providing an overview of CHM's toxicity. The absence of a quantitative assessment of focal points renders the future research trajectory ambiguous. Therefore, this study aimed to reveal research trends and areas of concern for the past decade. Methods: A cross-sectional study was conducted on publications related to CHM and toxicity over the past decade from Web of Science Core Collection database. The characteristics of the publication included publication year, journal, institution, funding, keywords, and citation counts were recorded. Co-occurrence analysis and trend topic analysis based on bibliometric analysis were conducted on keywords and citations. Results: A total of 3,225 publications were analyzed. Number of annal publications increased over the years, with the highest number observed in 2022 (n = 475). The Journal of Ethnopharmacology published the most publications (n = 425). The most frequently used toxicity classifications in keywords were hepatotoxicity (n = 119) or drug-induced liver injury (n = 48), and nephrotoxicity (n = 40). Co-occurrence analysis revealed relatively loose connections between CHM and toxicity, and their derivatives. Keywords emerging from trend topic analysis for the past 3 years (2019-2022) included ferroptosis, NLRP3 inflammasome, machine learning, network pharmacology, traditional uses, and pharmacology. Conclusion: Concerns about the toxicity of CHM have increased in the past decade. However, there remains insufficient studies that directly explore the intersection of CHM and toxicity. Hepatotoxicity and nephrotoxicity, as the most concerned toxicity classifications associated with CHM, warrant more in-depth investigations. Apoptosis was the most concerned toxicological mechanism. As a recent increase in attention, exploring the mechanisms of ferroptosis in nephrotoxicity and NLRP3 inflammasome in hepatotoxicity could provide valuable insights. Machine learning and network pharmacology are potential methods for future studies.
Collapse
Affiliation(s)
- Ke-Xin Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Min Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhi-Lin Bian
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shi-Liang Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Li-Ming Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Feng-Feng Ge
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xue-Zhou Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng-Fang Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Fathy N, Farouk S, Sayed RH, Fahim AT. Ezetimibe ameliorates cisplatin-induced nephrotoxicity: A novel therapeutic approach via modulating AMPK/Nrf2/TXNIP signaling. FASEB J 2024; 38:e23382. [PMID: 38145344 DOI: 10.1096/fj.202302019r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Cisplatin (Cis) is among the most powerful antineoplastic medications, nevertheless, its serious side effects; particularly nephrotoxicity designates a major concern. Previous studies reported that ezetimibe (Eze), a well-known antihyperlipidemic drug, exerts additional trivial pharmacological effects. In this work, we displayed Eze as an intriguing protective candidate in a cisplatin-induced nephrotoxicity rat model through AMPK activation. Eze (10 mg/kg, p.o.) was administered for two weeks and Cis (10 mg/kg, i.p.) was administered on the 10th day to induce nephrotoxicity in male Wistar rats. Treatment with Eze greatly augmented the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and the antioxidant regulator; nuclear factor erythroid 2-related factor 2 (Nrf2), thus, mitigating oxidative injury through induction of the antioxidant enzymes, such as heme oxygenase-1 (HO-1) and glutathione reductase (GR). As well, Eze relieved inflammation by reducing protein expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding domain-like receptor protein 3 (NLRP3), which led to a decrease in the release of caspase-1, in addition to, the inflammatory markers IL-18 and IL-1 β. Besides, Eze ameliorated apoptosis in the renal cells through inhibiting the phosphorylated Apoptosis signal-regulating kinase-1(p-ASK1), caspase-3 and reducing Bax/Bcl2ratio. Correspondingly, histopathological examination corroborated the previous biochemical findings. Collectively, Eze exerts significant renal protection against Cis-induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways that are probably mediated, at least partly, via activating AMPK/Nrf2/HO-1 pathway and conquering both TXNIP/NLRP3 inflammasome and TXNIP/ASK1 signaling pathways. To confirm the protective effect of Eze via AMPK-activation, an AMPK-inhibitor, dorsomorphin (Dors), when co-administered with Eze abolished its protective effect.
Collapse
Affiliation(s)
- Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shaimaa Farouk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Atef Tadros Fahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Liu H, Chen W, Wan S, Chen Y, Fu M, Wang Z, Xiong F, Zhang Y. Canagliflozin ameliorates high glucose-induced apoptosis in NRK-52E cells via inhibiting oxidative stress and activating AMPK/mTOR-mediated autophagy. Mol Biol Rep 2023; 50:10325-10337. [PMID: 37976004 DOI: 10.1007/s11033-023-08855-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 (SGLT-2) inhibitors, as a new type of hypoglycemic drug, can prevent proximal renal tubule injury related to glucose toxicity and play a renoprotective role. Canagliflozin, a recognized SGLT-2 inhibitor, has been proved to have potential protection in diabetic nephropathy (DN), but its mechanism has not been fully elucidated. In this study, the protective effect of canagliflozin against high glucose (HG)-induced renal tubular epithelial cell (NRK-52E) injury in vitro was assessed. METHODS The viability and apoptosis of NRK-52E cells were detected using cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, oxidative stress-related proteins (NOX4 and Nrf2), autophagy marker light chain 3 (LC3) I/II, and adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway-related proteins were evaluated by Western blot. Reactive oxygen species (ROS) level was evaluated by dihydroethidium (DHE) reactive oxygen species assay, the activities of SOD, CAT, GSH-Px and MDA were analyzed using kits. The changes of morphology and red fluorescent protein (RFP)-LC3 fluorescence were observed under microscopy. RESULTS Canagliflozin significantly ameliorated HG-induced NRK-52E cell apoptosis and caspase-3 cleavage. Furthermore, canagliflozin markedly ameliorated HG-induced NRK-52E cell oxidative stress. Moreover, canagliflozin significantly increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Finally, canagliflozin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C abolished canagliflozin-induced autophagy activation, as well as the anti-apoptotic effect of canagliflozin. CONCLUSION Canagliflozin effectively ameliorate HG-induced apoptosis of NRK-52E cells in vitro that involved its antioxidant effect and induction of autophagy through the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Hong Liu
- Department of Nephrology, Wuhan No. 1 Hospital, No.215 Zhongshan Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Weidong Chen
- Department of Nephrology, Wuhan No. 1 Hospital, No.215 Zhongshan Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Sheng Wan
- Department of Nephrology, Wuhan No. 1 Hospital, No.215 Zhongshan Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Ye Chen
- Department of Nephrology, Wuhan No. 1 Hospital, No.215 Zhongshan Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Mengjing Fu
- Department of Nephrology, Wuhan No. 1 Hospital, No.215 Zhongshan Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zengsi Wang
- Department of Nephrology, Wuhan No. 1 Hospital, No.215 Zhongshan Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Fei Xiong
- Department of Nephrology, Wuhan No. 1 Hospital, No.215 Zhongshan Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| | - Yanmin Zhang
- Department of Nephrology, Wuhan No. 1 Hospital, No.215 Zhongshan Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Yao D, Li M, Wang K, Jin S, Zeng W, Liao Z, Chen E, Liang Y, Xing T, Wen G, Liang C, Su K, Lu S, Che Z, Li Y, Huang L. Emodin ameliorates matrix degradation and apoptosis in nucleus pulposus cells and attenuates intervertebral disc degeneration through LRP1 in vitro and in vivo. Exp Cell Res 2023; 432:113794. [PMID: 37741491 DOI: 10.1016/j.yexcr.2023.113794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Low back pain (LBP) is the leading cause of disability worldwide, with a strong correlation to intervertebral disc degeneration (IDD). Inflammation-induced extracellular matrix (ECM) degradation plays a major role in IDD's progression. Emodin, known for its anti-inflammatory effects and ability to inhibit ECM degradation in osteoarthritis, but its role in IDD is unclear. Our study aimed to explore emodin's role and mechanisms on IDD both in vivo and in vitro. We discovered that emodin positively regulated anabolic markers (COL2A1, aggrecan) and negatively impacted catabolic markers (MMP3, MMP13) in nucleus pulposus cells, while also inhibiting cell apoptosis under inflammation environment. We revealed that emodin inhibits inflammation-induced NF-ĸB activation by suppressing the degradation of LRP1 via the proteasome pathway. Additionally, LRP1 was validated as essential to emodin's regulation of ECM metabolism and apoptosis, both in vitro and in vivo. Ultimately, we demonstrated that emodin effectively alleviates IDD in a rat model. Our findings uncover the novel pathway of emodin inhibiting ECM degradation and apoptosis through the inhibition of NF-κB via LRP1, thus alleviating IDD. This study not only broadens our understanding of emodin's role and mechanism in IDD treatment but also guides future therapeutic interventions.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Song Jin
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuwei Liang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tong Xing
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Guoming Wen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Changchun Liang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Kaihui Su
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shixin Lu
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhen Che
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Zhang D, Luo G, Jin K, Bao X, Huang L, Ke J. The underlying mechanisms of cisplatin-induced nephrotoxicity and its therapeutic intervention using natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2925-2941. [PMID: 37289283 DOI: 10.1007/s00210-023-02559-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug widely used for the treatment of various solid tumors; however, its clinical use and efficacy are limited by its inherent nephrotoxicity. The pathogenesis of cisplatin-induced nephrotoxicity is complex and has not been fully elucidated. Cellular uptake and transport, DNA damage, apoptosis, oxidative stress, inflammatory response, and autophagy are involved in the development of cisplatin-induced nephrotoxicity. Currently, despite some deficiencies, hydration regimens remain the major protective measures against cisplatin-induced nephrotoxicity. Therefore, effective drugs must be explored and developed to prevent and treat cisplatin-induced kidney injury. In recent years, many natural compounds with high efficiency and low toxicity have been identified for the treatment of cisplatin-induced nephrotoxicity, including quercetin, saikosaponin D, berberine, resveratrol, and curcumin. These natural agents have multiple targets, multiple effects, and low drug resistance; therefore, they can be safely used as a supplementary regimen or combination therapy for cisplatin-induced nephrotoxicity. This review aimed to comprehensively describe the molecular mechanisms underlying cisplatin-induced nephrotoxicity and summarize natural kidney-protecting compounds to provide new ideas for the development of better therapeutic agents.
Collapse
Affiliation(s)
- Doudou Zhang
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Guangwen Luo
- Jinhua Municipal Central Hospital, Jinhua, 321000, China.
| | - Kaixiang Jin
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Xiaodong Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Jianghuan Ke
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| |
Collapse
|
8
|
Hu Y, Yang L, Lai Y. Recent findings regarding the synergistic effects of emodin and its analogs with other bioactive compounds: Insights into new mechanisms. Biomed Pharmacother 2023; 162:114585. [PMID: 36989724 DOI: 10.1016/j.biopha.2023.114585] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
CONTEXT Emodin is a natural bioactive ingredient mainly extracted from traditional Chinese herbs. Increasing lines of evidence suggest that emodin and its analogs exert notable synergistic pharmacological effects with other bioactive compounds. OBJECTIVE This review provides an overview of the pharmacological activity of emodin and its analogs in combination with other physiologically active substances, describes the related molecular mechanisms, and discusses future prospects in this field. METHODS Information from multiple scientific databases, such as PubMed, the China Knowledge Resource Integrated Database from the China National Knowledge Infrastructure (CNKI), the Web of Science, Google Scholar, and Baidu Scholar, was collected between January 2006 and August 2022. The subject terms used in the literature search were emodin, pharmaceutical activities, analogs, aloe emodin, rhein, and synergistic effects. RESULTS The comprehensive literature analysis suggested that combinations of emodin or its analogs with other bioactive compounds exert notable synergistic anticancer, anti-inflammatory, and antimicrobial effects and that such combinations improve glucose and lipid metabolism and central nervous system diseases. DISCUSSION AND CONCLUSIONS Further assessments of the dose-effect relationship and the differences in the efficacy of emodin or its analogs with other bioactive compounds among various modes of administration are needed, and a drug safety evaluation of these combinations needs to be carefully performed. Future studies should also focus on determining the optimal drug combinations for specific diseases.
Collapse
|
9
|
Lu H, Xie D, Qu B, Li M, He Y, Liu W. Emodin prevents renal ischemia-reperfusion injury via suppression of p53-mediated cell apoptosis based on network pharmacology. Heliyon 2023; 9:e15682. [PMID: 37215853 PMCID: PMC10195913 DOI: 10.1016/j.heliyon.2023.e15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background Previous evidence indicated that emodin has significant advantages for preventing acute kidney injury (AKI). However, the mechanisms responsible for these effects of emodin have yet to be elucidated. Methods We first used network pharmacology and molecular docking to identify the core targets of emodin for AKI and performed a range of experiments to validate this result. Pretreatment with emodin for 7 days, the rats were treated with bilateral renal artery clipping for 45 min to identify the prevention effect. Hypoxia/reoxygenation (H/R), and vancomycin - induced renal tubular epithelial cells (HK-2 cells) were treated with emodin to explore the related molecular mechanism. Results Network pharmacology and molecular docking showed that anti-apoptosis might be the core mechanism responsible for the action of emodin on AKI; this anti-apoptotic effect appears to because by regulation p53-related signaling pathway. Our data showed that pretreatment with emodin significantly improved renal function and renal tubular injury in renal I/R model rats (P < 0.05. The prevention effect of emodin was proved to be related to anti - apoptosis of HK-2 cells, possibly by downregulating the levels of p53, cleaved-caspase-3, pro-caspase-9, and upregulated the levels of Bcl-2. The efficacy and mechanism of emodin on anti - apoptosis was also confirmed in vancomycin - induced HK-2 cells. Meanwhile, the data also showed that emodin promoted angiogenesis in I/R damaged kidneys and H/R-induced HK-2 cells, which was associated with decreasing HIF-1α levels and increasing VEGF levels. Conclusions Our findings indicated that the preventive effect of emodin on AKI is probably attributable to anti-apoptosis response and promoting angiogenesis effect.
Collapse
Affiliation(s)
- Hongmei Lu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Dengpiao Xie
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Bo Qu
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Mingquan Li
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yuhua He
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Weijing Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| |
Collapse
|
10
|
Jin X, He R, Liu J, Wang Y, Li Z, Jiang B, Lu J, Yang S. An herbal formulation "Shenshuaifu Granule" alleviates cisplatin-induced nephrotoxicity by suppressing inflammation and apoptosis through inhibition of the TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116168. [PMID: 36646160 DOI: 10.1016/j.jep.2023.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenshuaifu Granule (SSF) is an in-hospital preparation approved by the Guangdong Food and Drug Administration of China. It has been clinically used against kidney diseases for more than 20 years with a definite curative effect. AIM OF THE STUDY Cisplatin (CDDP) is a first-line chemotherapeutic drug in clinical practice, primarily excreted by the kidney with nephrotoxicity as a common side effect. Approximately 5-20% of cancer patients develop acute kidney injury (AKI) after chemotherapy; however, prevention and control strategies are currently unavailable. Therefore, it is important to identify safe and effective drugs that can prevent the nephrotoxicity of CDDP. SSF is an herbal formulation with 8 herbs, and has been used to protect the kidney in China. Nonetheless, its mechanism in relieving CDDP nephrotoxicity remains unclear. Therefore, this work attempt to prove that SSF can alleviate CDDP nephrotoxicity. We also explore its mechanism. MATERIALS AND METHODS First, Thin Layer Chromatography (TLC) of a few herbs in SSF were performed for quality control. Several open-access databases were used to identify the active ingredients of SSF, their corresponding targets, and CDDP-induced nephrotoxicity targets. We performed Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Next, the results of network pharmacology were validated using CDDP-induced nephrotoxicity mouse models. Renal function in the mice was assessed by analyzing the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). On the other hand, renal damage was assessed by determining the level of tubular injury and apoptotic cells using Periodic acid-Schiff (PAS) staining and Terminal Dutp Nick End-Labeling (TUNEL) staining, respectively. The expression of inflammatory and apoptotic-related targets including IL-1β, IL-6, TNF-α, Cox-2, Bax, Bcl-2, Cleaved-caspase 3, and Cleaved-caspase 9 was determined using Western Blot (WB) and Immunohistochemistry (IHC). Furthermore, WB was used to analyze the expression of proteins associated with the TLR4/MyD88/NF-κB pathway in the kidneys of mice with CDDP-induced nephrotoxicity. Finally, molecular docking simulations were performed to evaluate the binding abilities between major active ingredients of SSF and core targets. RESULT Through network pharmacology, we identified 127 active ingredients of SSF and their corresponding 134 targets. Additional screening identified 14 active ingredients and 17 targets for further analysis. In biological process (BP), the targets were enriched in inflammation and apoptosis, among others. In KEGG terms, they were enriched in apoptosis and NF-κB pathways. Animal experiments revealed that SSF significantly reduced the levels of Scr and BUN and prevented renal tubular damage in mice treated with CDDP. In addition, SSF inhibited inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Molecular docking revealed good binding capacities of active ingredients and core targets. CONCLUSION In summary, the experimental findings were consistent with the network pharmacological predictions. SSF can inhibit inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Taken together, our data suggest that SSF is an alternative agent for the treatment of CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Jiahui Liu
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Beibei Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Shenzhen, 518033, China.
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China.
| |
Collapse
|
11
|
Wang L, Wang X, Li G, Zhou S, Wang R, Long Q, Wang M, Li L, Huang H, Ba Y. Emodin ameliorates renal injury and fibrosis via regulating the miR-490-3p/HMGA2 axis. Front Pharmacol 2023; 14:1042093. [PMID: 36937888 PMCID: PMC10020706 DOI: 10.3389/fphar.2023.1042093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Renal fibrosis is a major pathological feature of chronic kidney disease (CKD). While emodin is reported to elicit anti-fibrotic effects on renal injury, little is known about its effects on microRNA (miRNA)-modulated mechanisms in renal fibrosis. In this study, we established a unilateral ureteral obstruction (UUO) model and a transforming growth factor (TGF)-β1-induced normal rat renal tubular epithelial cell line (NRK-52E) model to investigate the protective effects of emodin on renal fibrosis and its miRNA/target gene mechanisms. Dual-luciferase assay was performed to confirm the direct binding of miRNA and target genes in HEK293 cells. Results showed that oral administration of emodin significantly ameliorated the loss of body weight and the increase in physicochemical parameters, including serum uric acid, creatinine, and urea nitrogen in UUO mice. Inflammatory cytokines, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin (IL)-1β, but not IL-6, were down-regulated by emodin administration. Emodin decreased the expression levels of TGF-β1 and fibrotic-related proteins, including alpha-smooth muscle actin, Collagen IV, and Fibronectin, and increased the expression of E-cadherin. Furthermore, miR-490-3p was decreased in UUO mice and negatively correlated with increased expression of high migration protein A2 (HMGA2). We further confirmed HMGA2 was the target of miR-490-3p. Transfection of miR-490-3p mimics decreased, while transfection of miR-490-3p inhibitors increased fibrotic-related proteins and HMGA2 expression levels in TGF-β1-induced NRK-52E cells. Furthermore, transfection of miR-490-3p mimics enhanced the anti-fibrotic effects of emodin, while transfection of miR-490-3p inhibitors abolished the protective effects of emodin. Thus, as a novel target of emodin that prevents renal fibrosis in the HMGA2-dependent signaling pathway, miR-490-3p has potential implications in CKD pathology.
Collapse
Affiliation(s)
- Liulin Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Gang Li
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Shanshan Zhou
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Rui Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Qi Long
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Min Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Liang Li
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hai Huang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Yuanming Ba
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
12
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Chen C, Lin Z, Liu W, Hu Q, Wang J, Zhuang X, Guan S, Wu X, Hu T, Quan S, Jin X, Shen J. Emodin accelerates diabetic wound healing by promoting anti-inflammatory macrophage polarization. Eur J Pharmacol 2022; 936:175329. [DOI: 10.1016/j.ejphar.2022.175329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
14
|
Iskander A, Yan LJ. Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD +-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022; 12:1078. [PMID: 36008971 PMCID: PMC9405866 DOI: 10.3390/biom12081078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is an FDA approved anti-cancer drug that is widely used for the treatment of a variety of solid tumors. However, the severe adverse effects of cisplatin, particularly kidney toxicity, restrict its clinical and medication applications. The major mechanisms of cisplatin-induced renal toxicity involve oxidative stress, inflammation, and renal fibrosis, which are covered in this short review. In particular, we review the underlying mechanisms of cisplatin kidney injury in the context of NAD+-dependent redox enzymes including mitochondrial complex I, NAD kinase, CD38, sirtuins, poly-ADP ribosylase polymerase, and nicotinamide nucleotide transhydrogenase (NNT) and their potential contributing roles in the amelioration of cisplatin-induced kidney injury conferred by natural products derived from plants. We also cover general procedures used to create animal models of cisplatin-induced kidney injury involving mice and rats. We highlight the fact that more studies will be needed to dissect the role of each NAD+-dependent redox enzyme and its involvement in modulating cisplatin-induced kidney injury, in conjunction with intensive research in NAD+ redox biology and the protective effects of natural products against cisplatin-induced kidney injury.
Collapse
Affiliation(s)
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
15
|
Sun X, Chen J, Huang Y, Zhu S, Wang S, Xu Z, Zhang J, Sun W. Yishen Qingli Heluo Granule Ameliorates Renal Dysfunction in 5/6 Nephrectomized Rats by Targeting Gut Microbiota and Intestinal Barrier Integrity. Front Pharmacol 2022; 13:858881. [PMID: 35814258 PMCID: PMC9258868 DOI: 10.3389/fphar.2022.858881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic kidney disease (CKD) is often accompanied with imbalanced gut microbiota and impaired intestinal barrier. Hence, efforts to ameliorate renal dysfunction by manipulating gut microbial ecosystem are underway. Yishen Qingli Heluo granule (YQHG) is a representative traditional Chinese medicine (TCM) prescription for clinical treatment of CKD. However, its underlying mechanism has not been well elucidated. This study aimed to explore effects of YQHG on renal dysfunction in 5/6 nephrectomized rats by targeting gut microbiota and intestinal barrier. Here, we found that YQHG provided significant renal protection in 5/6 nephrectomized rats by reducing renal fibrosis and inflammation, reestablishing bacterial communities, and improving intestinal barrier. Our analysis showed that YQHG altered the bacterial community of 5/6 nephrectomized rats. In particular, the prescription significantly increased the relative abundance of SCFA-producing bacteria (i.e., Lactobacillaceae, Lactobacillus and Lactobacillus_gasseri), which was contributed to the improved SCFA concentration (i.e., total SCFA, acetic acid, butyric acid) and intestinal barrier (i.e., the improved permeability and microbial translocation). More critically, microbiota-transfer study showed that the protective effect of YQHG was partly attributed to the mediation of the gut microbiota, especially the SCFA-producing bacteria. Our current findings propose a microbiota-targeted intervention and indicate that YQHG may become a novel promising treatment for CKD.
Collapse
Affiliation(s)
- Xian Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Chen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Hanlin College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiting Huang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sha Zhu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuaishuai Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Junfeng Zhang, ; Wei Sun,
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Junfeng Zhang, ; Wei Sun,
| |
Collapse
|
16
|
Sun X, Huang Y, Zhu S, Yan J, Gan K, Xu Z, Wang S, Kang X, Zhang J, Sun W. Yishen Qingli Heluo Granule in the Treatment of Chronic Kidney Disease: Network Pharmacology Analysis and Experimental Validation. Drug Des Devel Ther 2022; 16:769-787. [PMID: 35355655 PMCID: PMC8959874 DOI: 10.2147/dddt.s348335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
Background Chronic kidney disease (CKD) is considered a global public health problem with high morbidity and mortality. Yishen Qingli Heluo granule (YQHG) is representative traditional Chinese medicine (TCM) remedy for clinical treatment of CKD. This study aims to explore the mechanism of YQHG on CKD through network pharmacology and experimental validation. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and wide-scale literature mining were applied to screen active compounds of YQHG. Multiple bioinformatic tools and online databases were applied by us to obtain relevant targets of YQHG and CKD. The intersection targets between YQHG and CKD were considered as candidate targets. The compound-target, herb-candidate target and protein–protein interaction networks were constructed and visualized for topological analyses. GO and KEGG enrichment analyses were conducted to determine the biological processes and signaling pathways. Molecular docking was used to verify the reliability of network pharmacology. Finally, pharmacological evaluation was performed to explore the mechanism of YQHG against CKD on a 5/6 nephrectomy model. Results Seventy-nine candidate targets, ten core biological processes and one key signaling pathway (p53) were screened. PTGS2 was identified as a key target based on H-CT network. The molecular docking showed that Quercetin, Kaempferol, Luteolin were three key compounds with the best binding activity. In addition, IL6 and Quercetin could form a stable complex with high binding affinity (−7.29 kcal/mol). In vivo experiment revealed that YQHG improved kidney function and fibrosis in 5/6 nephrectomized rats. Moreover, the decreased expression of PTGS2, IL6, and the increased expression of p53 were observed in kidney tissue. Notably, the gut microbiota of rats treated with YQHG was reshaped, which was characterized by a reduced ratio of Firmicutes/Bacteroidota. Conclusion Our results predicted and verified the potential targets of YQHG on CKD from a holistic perspective, and provided valuable direction for the further research of YQHG. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/02pumepfbPI
Collapse
Affiliation(s)
- Xian Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yiting Huang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Sha Zhu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jin Yan
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Ke Gan
- Department of Rheumatology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Zijing Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiaoyu Kang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| |
Collapse
|
17
|
Kong L, Sun Y, Sun H, Zhang AH, Zhang B, Ge N, Wang XJ. Chinmedomics Strategy for Elucidating the Pharmacological Effects and Discovering Bioactive Compounds From Keluoxin Against Diabetic Retinopathy. Front Pharmacol 2022; 13:728256. [PMID: 35431942 PMCID: PMC9008273 DOI: 10.3389/fphar.2022.728256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Keluoxin (KLX) is an active agent in the treatment of diabetic retinopathy (DR). However, its mechanism, targets, and effective constituents against DR are still unclear, which seriously restricts its clinical application. Chinmedomics has the promise of explaining the pharmacological effects of herbal medicines and investigating the effective mechanisms. The research results from electroretinography and electron microscope showed that KLX could reduce retinal dysfunction and pathological changes by the DR mouse model. Based on effectiveness, we discovered 64 blood biomarkers of DR by nontargeted metabolomics analysis, 51 of which returned to average levels after KLX treatment including leukotriene D4 and A4, l-tryptophan, 6-hydroxymelatonin, l-phenylalanine, l-tyrosine, and gamma-linolenic acid (GLA). The metabolic pathways involved were phenylalanine metabolism, steroid hormone biosynthesis, sphingolipid metabolism, etc. Adenosine monophosphate-activated protein kinase (AMPK), extracellular signal-regulated protein kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase (PI3K), and protein 70 S6 kinase (p70 S6K) might be potential targets of KLX against DR. This was related to the mammalian target of rapamycin (mTOR) signaling and AMPK signaling pathways. We applied the chinmedomics strategy, integrating serum pharm-chemistry of traditional Chinese medicine (TCM) with metabolomics, to discover astragaloside IV (AS-IV), emodin, rhein, chrysophanol, and other compounds, which were the core effective constituents of KLX when against DR. Our study was the first to apply the chinmedomics strategy to discover the effective constituents of KLX in the treatment of DR, which fills the gap of unclear effective constituents of KLX. In the next step, the research of effective constituents can be used to optimize prescription preparation, improve the quality standard, and develop an innovative drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Wang Y, Liu Q, Cai J, Wu P, Wang D, Shi Y, Huyan T, Su J, Li X, Wang Q, Wang H, Zhang F, Bae ON, Tie L. Emodin prevents renal ischemia-reperfusion injury via suppression of CAMKII/DRP1-mediated mitochondrial fission. Eur J Pharmacol 2022; 916:174603. [PMID: 34793771 DOI: 10.1016/j.ejphar.2021.174603] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Acute kidney injury (AKI) is a serious threat to human health. Clinically, ischemia-reperfusion (I/R) injury is considered one of the most common contributors to AKI. Emodin has been reported to alleviate I/R injury in the heart, brain, and small intestine in rats and mice through its anti-inflammatory effects. The present study investigated whether emodin improved AKI induced by I/R and elucidated the molecular mechanisms. We used a mouse model of renal I/R injury and human renal tubular epithelial cell model of hypoxia/reoxygenation (H/R) injury. Ischemia/reperfusion resulted in renal dysfunction. Pretreatment with emodin ameliorated renal injury in mice following I/R injury. Emodin reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial reactive oxygen species and accelerated the recovery of adenosine triphosphate both in vivo and in vitro. Emodin prevented mitochondrial fission and restored the balance of mitochondrial dynamics. The phosphorylation of dynamin-related protein 1 (DRP1) at Ser616, a master regulator of mitochondrial fission, was upregulated in both models of I/R and H/R injury, and this upregulation was blocked by emodin. Using computational cognate protein kinase prediction and specific kinase inhibitors, we found that emodin inhibited the phosphorylation of calcium/calmodulin-dependent protein kinase II (https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1554), thereby inhibiting its kinase activity and reducing the phosphorylation of DRP1 at Ser616. The results demonstrated that emodin pretreatment could protect renal function by improving mitochondrial dysfunction induced by I/R.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China; Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jiaying Cai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Di Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yundi Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Tianru Huyan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hong Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fengxue Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
19
|
Wu L, Li H, Xu W, Dong B, Geng H, Jin J, Han D, Liu H, Zhu X, Yang Y, Xie S. Emodin alleviates acute hypoxia-induced apoptosis in gibel carp (Carassius gibelio) by upregulating autophagy through modulation of the AMPK/mTOR pathway. AQUACULTURE 2022; 548:737689. [DOI: 10.1016/j.aquaculture.2021.737689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Gao LL, Wang ZH, Mu YH, Liu ZL, Pang L. Emodin Promotes Autophagy and Prevents Apoptosis in Sepsis-Associated Encephalopathy through Activating BDNF/TrkB Signaling. Pathobiology 2021; 89:135-145. [PMID: 34872094 DOI: 10.1159/000520281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/22/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Sepsis-associated encephalopathy (SAE) is a severe and common complication of sepsis and can induce cognitive dysfunction and apoptosis of neurons and neuroinflammation. Emodin has been confirmed to have anti-inflammatory effects. Thus, we sought to investigate the role of Emodin in SAE. METHODS The cecal ligation and puncture (CLP) method was used for the establishment of SAE in mice model. For treatment of Emodin, intraperitoneal injection of 20 mg/kg Emodin was performed before the surgery. The Morris water maze and open field tests were carried for measurement of cognitive dysfunction. Hematoxylin and eosin staining was for histological analysis of hippocampus. Cell apoptosis of hippocampus neurons was measured by TUNEL staining. Pro-inflammatory and anti-inflammatory cytokines in hippocampus tissue homogenate were evaluated by ELISA. BDNF/TrkB signaling-related proteins (TrkB, p-TrkB, and BDNF), autophagy-related proteins (LC3 II/I and Beclin-1), and apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) were detected by Western blotting. RESULTS Emodin significantly inhibited apoptosis and induced autophagy in hippocampal neurons of CLP-treated mice. In addition, Emodin significantly ameliorated CLP-induced cognitive dysfunction and pathological injury in mice. Meanwhile, Emodin notably inhibited CLP-induced inflammatory responses in mice via upregulation of BDNF/TrkB signaling, while the effect of Emodin was partially reversed in the presence of K252a (BDNF/TrkB signaling inhibitor). CONCLUSION Emodin significantly inhibited the progression of SAE via mediation of BDNF/TrkB signaling. Thus, Emodin might serve as a new agent for SAE treatment.
Collapse
Affiliation(s)
- Li-Li Gao
- Department of Emergency ICU, The First Hospital of Jilin University, Changchun, China
| | - Zhi-Hao Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Yu-Hang Mu
- Department of Emergency ICU, The First Hospital of Jilin University, Changchun, China
| | - Zuo-Long Liu
- Department of Emergency ICU, The First Hospital of Jilin University, Changchun, China
| | - Li Pang
- Department of Emergency ICU, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. [PMID: 33750909 PMCID: PMC8633358 DOI: 10.1038/s41401-021-00620-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Cisplatin is a clinically advanced and highly effective anticancer drug used in the treatment of a wide variety of malignancies, such as head and neck, lung, testis, ovary, breast cancer, etc. However, it has only a limited use in clinical practice due to its severe adverse effects, particularly nephrotoxicity; 20%–35% of patients develop acute kidney injury (AKI) after cisplatin administration. The nephrotoxic effect of cisplatin is cumulative and dose dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI result in impaired renal tubular function and acute renal failure, chronic kidney disease, uremia, and hypertensive nephropathy. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, apoptosis, oxidative stress, inflammation, and vascular injury in the kidneys. At present, there are no effective drugs or methods for cisplatin-induced kidney injury. Recent in vitro and in vivo studies show that numerous natural products (flavonoids, saponins, alkaloids, polysaccharide, phenylpropanoids, etc.) have specific antioxidant, anti-inflammatory, and anti-apoptotic properties that regulate the pathways associated with cisplatin-induced kidney damage. In this review we describe the molecular mechanisms of cisplatin-induced nephrotoxicity and summarize recent findings in the field of natural products that undermine these mechanisms to protect against cisplatin-induced kidney damage and provide potential strategies for AKI treatment.
Collapse
|
22
|
Hu X, Ma Z, Wen L, Li S, Dong Z. Autophagy in Cisplatin Nephrotoxicity during Cancer Therapy. Cancers (Basel) 2021; 13:5618. [PMID: 34830772 PMCID: PMC8616020 DOI: 10.3390/cancers13225618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent but its clinical use is often limited by nephrotoxicity. Autophagy is a lysosomal degradation pathway that removes protein aggregates and damaged or dysfunctional cellular organelles for maintaining cell homeostasis. Upon cisplatin exposure, autophagy is rapidly activated in renal tubule cells to protect against acute cisplatin nephrotoxicity. Mechanistically, the protective effect is mainly related to the clearance of damaged mitochondria via mitophagy. The role and regulation of autophagy in chronic kidney problems after cisplatin treatment are currently unclear, despite the significance of research in this area. In cancers, autophagy may prevent tumorigenesis, but autophagy may reduce the efficacy of chemotherapy by protecting cancer cells. Future research should focus on developing drugs that enhance the anti-tumor effects of cisplatin while protecting kidneys during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
23
|
Elsayed A, Elkomy A, Elkammar R, Youssef G, Abdelhiee EY, Abdo W, Fadl SE, Soliman A, Aboubakr M. Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci Rep 2021; 11:13979. [PMID: 34234176 PMCID: PMC8263713 DOI: 10.1038/s41598-021-93196-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Cisplatin (CP) is one of the most frequently used chemotherapy agents. The objective of this design was to determine the ameliorative effect of lycopene (LP) and/or N-acetylcysteine (NAC) in rats with hepatic and renal toxicity induced by CP. Rats were divided randomly into 7 groups (7 rats/group): control vehicle group (saline only), the LP group (10 mg/kg, orally), the NAC group (150 mg/kg, orally), the CP group (7.5 mg/kg, IP on day 27), the LP-CP group, the NAC-CP group, and the LP-NAC-CP group. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (APK), and levels of urea, creatinine, and lipids (cholesterol, triglycerides, and low-density lipoprotein-cholesterol) increased after CP injection in the serum. Moreover, CP decreased levels of protein, albumin, and HDL cholesterol. Meanwhile, malondialdehyde significantly increased with a decrease in reduced glutathione, superoxide dismutase, and catalase in the liver and kidney tissues. CP also induced some pathological lesions and increased the expression of caspase-3 in the liver and kidney tissues. Administration of LP and NAC alone or in combinations ameliorated hepatorenal toxicity and apoptosis induced by CP.
Collapse
Affiliation(s)
- Asmaa Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Reda Elkammar
- Department of Histology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Gehan Youssef
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Ehab Yahya Abdelhiee
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Sabreen Ezzat Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Ahmed Soliman
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt.
| |
Collapse
|
24
|
Qiu Y, Qiu Y, Yao GM, Luo C, Zhang C. Natural product therapies in chronic kidney diseases: An update. Nephrol Ther 2021; 18:75-79. [PMID: 34187761 DOI: 10.1016/j.nephro.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/15/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Chronic kidney disease is one of the major worldwide public health problems. Traditional Chinese medications have been widely used for chronic kidney disease treatment. As the development of modern phytochemistry technology, natural products have been isolated from traditional Chinese medications, which provide a more precise method for the investigation of traditional Chinese medications. In this article, we selected eight natural products from traditional Chinese medications for chronic kidney disease therapy to summarize the recent advances for the development of new medications.
Collapse
Affiliation(s)
- Yue Qiu
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guang-Min Yao
- Hubei Key laboratory of natural medicinal chemistry and resource evaluation, School of pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changqing Luo
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Chun Zhang
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
The Anti-Leukemic Activity of Natural Compounds. Molecules 2021; 26:molecules26092709. [PMID: 34063044 PMCID: PMC8124534 DOI: 10.3390/molecules26092709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biologically active compounds has become a realistic option for the treatment of malignant tumors due to their cost-effectiveness and safety. In this review, we aimed to highlight the main natural biocompounds that target leukemic cells, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their therapeutic potential in the treatment of leukemia: acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL). It provides a basis for researchers and hematologists in improving basic and clinical research on the development of new alternative therapies in the fight against leukemia, a harmful hematological cancer and the leading cause of death among patients.
Collapse
|
27
|
Liu W, Gu R, Lou Y, He C, Zhang Q, Li D. Emodin-induced autophagic cell death hinders epithelial-mesenchymal transition via regulation of BMP-7/TGF-β1 in renal fibrosis. J Pharmacol Sci 2021; 146:216-225. [PMID: 34116735 DOI: 10.1016/j.jphs.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
We aim to explore the effects of emodin and its mechanisms on renal fibrosis (RF). We firstly modeled adriamycin-induced rat RF with unilateral nephrectomy. In vivo and in vitro pharmacological experiments were performed in this study. The presence of collagen deposition was detected by Masson staining. To verify whether emodin attenuates RF by monitoring autophagy, the immunohistochemistry staining for autophagy protein LC3B was performed. We conducted western blot to detect the expression of the autophagy-related proteins in EMT in vitro model after treating with emotin and BMP-7. In vivo, we demonstrated that emodin could improve renal dysfunction and decrease pathological damage of the kidney by activation of autophagy and inhibition of EMT. Upregulation of BMP-7 was recorded in the RF rats subjected to emodin treatment. In vitro studies, emodin has the capacity of reversing EMT and activating autophagy, and emodin could regulate the expression of BMP-7. The results revealed that the attenuation of EMT by emodin could be blocked after the inhibition of BMP-7 and suppression of autophagy. Our findings demonstrated that emodin alleviates EMT during RF by actuating autophagy through BMP-7, suggesting a role of BMP-7 in RF treatment and prevention.
Collapse
Affiliation(s)
- Wei Liu
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Renze Gu
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Yujiao Lou
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Chunfeng He
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Qingchuan Zhang
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China.
| | - Dongmei Li
- Department of Pediatrics, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|
28
|
Zheng G, Zheng J, Xiao L, Shang T, Cai Y, Li Y, Xu Y, Chen X, Liu Y, Yang B. Construction of a Phenylboronic Acid-Functionalized Nano-Prodrug for pH-Responsive Emodin Delivery and Antibacterial Activity. ACS OMEGA 2021; 6:8672-8679. [PMID: 33817529 PMCID: PMC8015135 DOI: 10.1021/acsomega.1c00606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, a pH-responsive nano-prodrug was fabricated by conjugating emodin to the PEGylated polyethyleneimine (mPEG-PEI) with acid-sensitive boronate ester bonds. 1H NMR spectra results showed that emodin was effectively bonded to mPEG-PEI, and acid-sensitive assay further confirmed the formation of boronate ester bonds. The size and morphology of the nano-prodrug were ascertained through transmission electron microscopy (TEM) and dynamic light scattering (DLS), which showed that the prodrug has a sphere-like shape with hydrodynamic size around 102 nm at pH 7.4. Subsequently, a drug-release behavior assay was carried out to carefully investigate the acid-sensitive drug-delivery property of the prodrug. Moreover, in vitro cell viability assay confirmed the superior cytotoxic effect of the nano-prodrug against HeLa cells compared to free emodin. Furthermore, the antibacterial study showed that the nano-prodrug could inhibit the bacterial (both Gram-positive and Gram-negative) growth more effectively than free emodin. Overall, this study provides a promising paradigm of the multifunctional nano-prodrug for pH-responsive tumor therapy and antibacterial activity.
Collapse
Affiliation(s)
- Guodong Zheng
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiahui Zheng
- School
of Pharmaceutical Sciences, Guangzhou Medical
University, Guangzhou 511436, P. R. China
| | - Le Xiao
- Guangdong
Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Tongyi Shang
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yanjun Cai
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yuwei Li
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yiming Xu
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xiaoming Chen
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yun Liu
- Guangdong
Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Bin Yang
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
29
|
Xu L, Gao J, Huang D, Lin P, Yao D, Yang F, Zhang Y, Yang X, Wu M, Ye C. Emodin ameliorates tubulointerstitial fibrosis in obstructed kidneys by inhibiting EZH2. Biochem Biophys Res Commun 2021; 534:279-285. [PMID: 33288199 DOI: 10.1016/j.bbrc.2020.11.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Emodin, a major component of Chinese herbal rhubarb, delays the progression of chronic renal failure. However, the effect and working mechanisms of Emodin on renal tubulointerstitial fibrosis remains elusive. We hypothesized that emodin inhibits renal tubulointerstitial fibrosis through EZH2, a histone methyltransferase. Our in vivo and in vitro studies demonstrate that emodin reduced extracellular collagen deposition and inhibited Smad3 and CTGF pro-fibrotic signaling pathways, which were correlated with the down-regulation of EZH2 and reduced trimethylation of histone H3 on lysine 27 (H3k27me3) in NRK-49F fibrotic cells and UUO kidneys. Inhibition of EZH2 by 3-DZNeP blocked or attenuated the anti-fibrotic effect of emodin in UUO kidneys and NRK-49F cells. These data indicate that emodin inhibits renal tubulointerstitial fibrosis in obstructed kidneys and this effect is mediated through EZH2.
Collapse
Affiliation(s)
- Lin Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China
| | - Di Huang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China
| | - Pinglan Lin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China
| | - Dongsheng Yao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China
| | - Feng Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China
| | - Yaheng Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China
| | - Xuejun Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China.
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), Shanghai, China.
| |
Collapse
|
30
|
Liu H, Wang Q, Shi G, Yang W, Zhang Y, Chen W, Wan S, Xiong F, Wang Z. Emodin Ameliorates Renal Damage and Podocyte Injury in a Rat Model of Diabetic Nephropathy via Regulating AMPK/mTOR-Mediated Autophagy Signaling Pathway. Diabetes Metab Syndr Obes 2021; 14:1253-1266. [PMID: 33776462 PMCID: PMC7987270 DOI: 10.2147/dmso.s299375] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The activation of autophagy has potential protective effect on diabetic nephropathy (DN) podocyte injury, and the AMPK/mTOR signaling pathway is an important regulatory pathway of autophagy. Emodin has been reported to effectively delay DN progression; however, the therapeutic mechanisms involved in vivo remain ambiguous. The present study aimed to elucidate the mechanism of emodin in improving renal tissue and podocyte injury in DN by regulating the AMPK/mTOR-autophagy signaling pathway. METHODS All rats were divided into 4 groups: a Sham group, a Vehicle group, a low-dose emodin (LD-Emo) group (20 mg/kg/day) and a high-dose emodin (HD-Emo) group (40 mg/kg/day). The different doses of Emo and distilled water were daily administrated for 8 weeks after the induction of DN by the unilateral nephrectomy combined with intraperitoneal injections of streptozotocin (STZ). The rats' general status, blood glucose, biochemical parameters, urinary protein excretion, renal histological changes and cell apoptosis in renal tissue, as well as the key protein expressions in the AMPK/mTOR signaling pathway and apoptosis-related proteins were examined, respectively. RESULTS Emodin ameliorated the general condition, kidney weight and urinary protein excretion of the rats, but has little influence on serum biochemical parameters and did not lower blood glucose; emodin attenuated renal fibrosis including the cell numbers, extracellular matrix rate and collagen area in glomerulus, simultaneously relieved podocyte foot process fusion, up-regulated the expression of nephrin protein and suppressed glomerular and tubular epithelial cell apoptosis. In addition, emodin can induce and enhance autophagy in podocytes including increased expression of LC3-II/I, Beclin-1, p-AMPK protein and decreased expression of p62, p-mTOR protein, as well as increased autophagosomes in podocytes. CONCLUSION We have demonstrated that emodin, as a natural regulator in vivo, reduced proteinuria and alleviated renal fibrosis without affecting hyperglycemia in DN rats. The potential mechanisms by which emodin exerts its renoprotective effects in vivo are through suppressing cell apoptosis and enhancing autophagy of podocytes via the AMPK/mTOR signaling pathway in the kidney.
Collapse
Affiliation(s)
- Hong Liu
- Department of Nephrology, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
| | - Quan Wang
- Department of Nephrology, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
| | - Ge Shi
- Department of Nephrology, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
| | - Wenqiang Yang
- Department of Central Laboratory, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
| | - Yanmin Zhang
- Department of Nephrology, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
| | - Weidong Chen
- Department of Nephrology, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
| | - Sheng Wan
- Department of Nephrology, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
| | - Fei Xiong
- Department of Nephrology, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
- Correspondence: Fei Xiong; Zengsi Wang Department of Nephrology, Wuhan No. 1 Hospital, No. 215 Zhongshan Avenue, Wuhan, Hubei, 430022, People’s Republic of ChinaTel +86-27-85332356; +86-27-85332346 Email ;
| | - Zengsi Wang
- Department of Nephrology, Wuhan No. 1 Hospital, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
31
|
Wang Y, Liu Z, Shu S, Cai J, Tang C, Dong Z. AMPK/mTOR Signaling in Autophagy Regulation During Cisplatin-Induced Acute Kidney Injury. Front Physiol 2020; 11:619730. [PMID: 33391038 PMCID: PMC7773913 DOI: 10.3389/fphys.2020.619730] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a conserved, multistep pathway that degrades and recycles dysfunctional organelles and macromolecules to maintain cellular homeostasis. Mammalian target of rapamycin (mTOR) and adenosine-monophosphate activated-protein kinase (AMPK) are major negative and positive regulators of autophagy, respectively. In cisplatin-induced acute kidney injury (AKI) or nephrotoxicity, autophagy is rapidly induced in renal tubular epithelial cells and acts as a cytoprotective mechanism for cell survival. Both mTOR and AMPK have been implicated in the regulation of autophagy in cisplatin-induced AKI. Targeting mTOR and/or AMPK may offer effective strategies for kidney protection during cisplatin-mediated chemotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Shaoqun Shu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Charlie Norwood Veterans Affair Medical Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
32
|
Alshahrani S, Tripathi P, Ashafaq M, Sultan MH, Moni SS, Tripathi R, Siddiqui AH, Rashid H, Malhan AM. Role of renin blocker (Aliskiren) on Cisplatin induced-nephrotoxicity in rats. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1857772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Tripathi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Rina Tripathi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdul Hakeem Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ali M. Malhan
- Department of Oncology, Prince Mohammed Bin Nasser Hospital, Jazan, Saudi Arabia
| |
Collapse
|
33
|
Nutma E, Marzin MC, Cillessen SA, Amor S. Autophagy in white matter disorders of the CNS: mechanisms and therapeutic opportunities. J Pathol 2020; 253:133-147. [PMID: 33135781 PMCID: PMC7839724 DOI: 10.1002/path.5576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a constitutive process that degrades, recycles and clears damaged proteins or organelles, yet, despite activation of this pathway, abnormal proteins accumulate in neurons in neurodegenerative diseases and in oligodendrocytes in white matter disorders. Here, we discuss the role of autophagy in white matter disorders, including neurotropic infections, inflammatory diseases such as multiple sclerosis, and in hereditary metabolic disorders and acquired toxic‐metabolic disorders. Once triggered due to cell stress, autophagy can enhance cell survival or cell death that may contribute to oligodendrocyte damage and myelin loss in white matter diseases. For some disorders, the mechanisms leading to myelin loss are clear, whereas the aetiological agent and pathological mechanisms are unknown for other myelin disorders, although emerging studies indicate that a common mechanism underlying these disorders is dysregulation of autophagic pathways. In this review we discuss the alterations in the autophagic process in white matter disorders and the potential use of autophagy‐modulating agents as therapeutic approaches in these pathological conditions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Saskia Agm Cillessen
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
34
|
Cui Y, Chen LJ, Huang T, Ying JQ, Li J. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin J Nat Med 2020; 18:425-435. [PMID: 32503734 DOI: 10.1016/s1875-5364(20)30050-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a derived anthraquinone compound extracted from roots and barks of pharmaceutical plants, including Rheum palmatum, Aloe vera, Giant knotweed, Polygonum multiflorum and Polygonum cuspidatum. The review aims to provide a scientific summary of emodin in pharmacological activities and toxicity in order to identify the therapeutic potential for its use in human specific organs as a new medicine. Based on the fundamental properties, such as anticancer, anti-inflammatory, antioxidant, antibacterial, antivirs, anti-diabetes, immunosuppressive and osteogenesis promotion, emodin is expected to become an effective preventive and therapeutic drug of cancer, myocardial infarction, atherosclerosis, diabetes, acute pancreatitis, asthma, periodontitis, fatty livers and neurodegenerative diseases. This article intends to provide a novel insight for further development of emodin, hoping to reveal the potential of emodin and necessity of further studies in this field.
Collapse
Affiliation(s)
- Ya Cui
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Liu-Jing Chen
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Tu Huang
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Jian-Qiong Ying
- West China Hospital of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | - Juan Li
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China.
| |
Collapse
|
35
|
Chen Y, Zheng J, Gan D, Chen Y, Zhang N, Chen Y, Lin Z, Wang W, Chen H, Lin D, Hu J. E35 ablates acute leukemia stem and progenitor cells in vitro and in vivo. J Cell Physiol 2020; 235:8023-8034. [PMID: 31960417 PMCID: PMC7540425 DOI: 10.1002/jcp.29457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Leukemia stem cells (LSCs) have critical functions in acute leukemia (AL) pathogenesis, participating in its initiation and relapse. Thus, identifying new molecules to eradicate LSCs represents a high priority for AL management. This work identified E35, a novel Emodin derivative, which strongly inhibited growth and enhanced apoptosis of AL stem cell lines, and primary stem and progenitor cells from AL cases, while sparing normal hematopoietic cells. Furthermore, functional assays in cultured cells and animals suggested that E35 preferentially ablated primitive leukemia cell populations without impairing their normal counterparts. Moreover, molecular studies showed that E35 remarkably downregulated drug-resistant gene and dramatically inhibited the Akt/mammalian target of rapamycin signaling pathway. Notably, the in vivo anti-LSC activity of E35 was further confirmed in murine xenotransplantation models. Collectively, these findings indicate E35 constitutes a novel therapeutic candidate for AL, potentially targeting leukemia stem and progenitor cells.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Jing Zheng
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Donghui Gan
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
- Department of HematologyThe Affiliated Hospital of Putian UniversityPutianFujianChina
| | - Yanxin Chen
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Na Zhang
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Yuwen Chen
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Zhenxing Lin
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Wenfeng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou UniversityFuzhouFujianChina
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou UniversityFuzhouFujianChina
| | - Donghong Lin
- Department of Clinical LaboratorySchool of Medical Technology and EngineeringFujian Medical UniversityFujianChina
| | - Jianda Hu
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| |
Collapse
|
36
|
Zeng X, Cai G, Liang T, Li Q, Yang Y, Zhong X, Zou X, Qin M, Mi Z. Rhubarb and Astragalus Capsule Attenuates Renal Interstitial Fibrosis in Rats with Unilateral Ureteral Obstruction by Alleviating Apoptosis through Regulating Transforming Growth Factor beta1 (TGF-β1)/p38 Mitogen-Activated Protein Kinases (p38 MAPK) Pathway. Med Sci Monit 2020; 26:e920720. [PMID: 32205836 PMCID: PMC7111584 DOI: 10.12659/msm.920720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rhubarb and astragalus capsule (RAC) has been used in the clinical treatment of chronic kidney disease for decades. However, the mechanism of RAC has not been fully elucidated. This study aimed to investigate the protective effect and mechanisms of RAC on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MATERIAL AND METHODS The main components of RAC are detected by high-performance liquid phase (HPLC). A rat model of UUO was established, and a subset of rats underwent treatment with RAC. Renal function and renal pathology were examined at 14 days and 21 days after the UUO operation. Renal cell apoptosis was detected by TUNEL staining. The levels of Bcl-2 and Bax in the kidney were examined by western blotting, and the levels of collagen I, alpha-SMA, transforming growth factor (TGF)-ß1, and p38 MAPK in the kidneys were detected by immunohistochemistry. RESULTS High-performance liquid phase chromatography showed that RAC contained 1.12 mg/g aloe-emodin, 2.25 mg/g rhein, 1.75 mg/g emodin, and 4.50 mg/g chrysophanol. Administration of RAC significantly decreased the levels of urinary N-acetyl-ß-D-glucosaminidase (NAG), serum blood urea nitrogen (BUN), and creatinine (Scr) and also reduced renal tissue damages and interstitial fibrosis induced by UUO in rats. Moreover, the increased levels of collagen I, alpha-SMA, TGF-ß1, p38 MAPK, and the Bax/Bcl-2 ratio, as well as cell apoptosis in the kidney, were induced by UUO, and were all found deceased by RAC treatment. CONCLUSIONS RAC can improve the renal interstitial fibrosis induced by UUO, and the mechanism may be related to inhibition of renal tubular cell apoptosis via TGF-ß1/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guozhen Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Taolin Liang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qingqing Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaobin Zhong
- Regenerative Medicine Research Center, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mengyuan Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhengcheng Mi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
37
|
Minocha E, Sinha RA, Jain M, Chaturvedi CP, Nityanand S. Amniotic fluid stem cells ameliorate cisplatin-induced acute renal failure through induction of autophagy and inhibition of apoptosis. Stem Cell Res Ther 2019; 10:370. [PMID: 31801607 PMCID: PMC6894207 DOI: 10.1186/s13287-019-1476-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We have recently demonstrated that amniotic fluid stem cells (AFSC) express renal progenitor markers and can be differentiated in vitro into renal lineage cell types, viz, juxtaglomerular and renal proximal tubular epithelial-like cells. Here, we have evaluated the therapeutic efficacy of AFSC in a cisplatin-induced rat model of acute renal failure (ARF) and investigated the underlying mechanisms responsible for their renoprotective effects. METHODS ARF was induced in Wistar rats by intra-peritoneal injection of cisplatin (7 mg/kg). Five days after cisplatin injection, rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On days 8 and 12 after cisplatin injection, the blood biochemical parameters, histopathological changes, apoptosis and expression of pro-apoptotic, anti-apoptotic, and autophagy-related proteins in renal tissues were studied in both groups of rats. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor, was administered by the intra-peritoneal route. RESULTS Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins, viz, PUMA, Bax, cleaved caspase-3, and cleaved caspase-9, as compared to the saline-treated group. Furthermore, in the AFSC-treated group as compared to the saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1, and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. CONCLUSION AFSC led to amelioration of cisplatin-induced ARF which was mediated by inhibition of apoptosis and activation of autophagy. The protective effects of AFSC were blunted by chloroquine, an inhibitor of autophagy, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.
Collapse
Affiliation(s)
- Ekta Minocha
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, UP, 226014, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manali Jain
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, UP, 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, UP, 226014, India
| | - Soniya Nityanand
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, UP, 226014, India.
| |
Collapse
|
38
|
Zheng XY, Yang SM, Zhang R, Wang SM, Li GB, Zhou SW. Emodin-induced autophagy against cell apoptosis through the PI3K/AKT/mTOR pathway in human hepatocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3171-3180. [PMID: 31564833 PMCID: PMC6734549 DOI: 10.2147/dddt.s204958] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/05/2019] [Indexed: 11/23/2022]
Abstract
Background Emodin, a major component of Polygonum multiflorum (PM), has been reported to exert both protective and toxic effects in several cell types. However, the effects and underlying mechanisms of action of emodin in hepatic cells are still obscure. Methods The present study used the normal human liver cell line L02 to investigate the effects and mechanisms of emodin in hepatic cells. After treatment with emodin, L02 cells were examined for viability, apoptosis and autophagy with the Cell Counting Kit-8 (CCK-8), annexin V/PerCP staining and GFP-LC3 plasmid transfection. The expression of proteins including cleaved caspase-3, LC3B-I/II, p-PI3K, PI3K, p-AKT, AKT, p-mTOR, mTOR and actin was examined by using Western blot. Results Emodin significantly inhibited the viability of and induced apoptosis in L02 cells in a dose- and time-dependent manner. In addition, emodin increased the number of GFP-LC3 puncta in L02 cells and upregulated the expression of LC3B-II compared to those in control cells. Furthermore, emodin significantly decreased the expression of p-PI3K, p-AKT and p-mTOR in a dose-dependent manner compared to that in control cells without altering the expression of PI3K, AKT and mTOR. Notably, cotreatment with emodin and 3-methyladenine (3-MA) or rapamycin significantly increased and decreased the apoptosis rate of L02 cells, respectively, compared to that of cells treated with emodin alone. Conclusion In conclusion, emodin exhibited cytotoxicity in the L02 human hepatic cell line by promoting apoptosis, and it also induced autophagy through the suppression of the PI3K/AKT/mTOR signalling pathway. The autophagy could play a protective role following emodin treatment.
Collapse
Affiliation(s)
- Xiao-Yuan Zheng
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Rong Zhang
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Su-Min Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Guo-Bing Li
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shi-Wen Zhou
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
39
|
Deitersen J, El-Kashef DH, Proksch P, Stork B. Anthraquinones and autophagy - Three rings to rule them all? Bioorg Med Chem 2019; 27:115042. [PMID: 31420258 DOI: 10.1016/j.bmc.2019.115042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
In order to overcome therapy resistance in cancer, scientists search in nature for novel lead structures for the development of improved chemotherapeutics. Anthraquinones belong to a class of tricyclic organic natural compounds with promising anti-cancer effects. Anthraquinone derivatives are rich in structural diversity, and exhibit pleiotropic properties, among which the modulation of autophagy seems promising in the context of overcoming cancer-therapy resistance. Among the most promising derivatives in this regard are emodin, aloe emodin, rhein, physcion, chrysophanol and altersolanol A. On the molecular level, these compounds target autophagy via different upstream pathways including the AKT/mTOR-axis and transcription of autophagy-related proteins. The role of autophagy is pro-survival as well as cell death-promoting, depending on derivatives and their cell type specificity. This review summarizes observed effects of anthraquinone derivatives on autophagy and discusses targeted pathways and crosstalks. A cumulative knowledge about this topic paves the way for further research on modes of action, and aids to find a therapeutic window of anthraquinones in cancer-therapy.
Collapse
Affiliation(s)
- Jana Deitersen
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Dina H El-Kashef
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Björn Stork
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
40
|
Dong Y, Zhang L, Jiang Y, Dai J, Tang L, Liu G. Emodin reactivated autophagy and alleviated inflammatory lung injury in mice with lethal endotoxemia. Exp Anim 2019; 68:559-568. [PMID: 31292306 PMCID: PMC6842802 DOI: 10.1538/expanim.19-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An uncontrolled inflammation induced critical health problems with serious morbidity and
death, which namely acute lung injury (ALI). Recently researchs have found the
anti-inflammatory effects of emodin. Here, we investigated the potential effects of emodin
on a mouse model with a lethal dose of the potential mechanisms and lipopolysaccharide
(LPS)-induced inflammatory lung injury in mice. The pulmonary histological abnormalities,
the Evans blue’s leakage, the myeloperoxidase (MPO) activity, the grades of TNF-α, IL-6,
nitric oxide (NO), lactic acid (LA) in lung tissues were determined 18 h post exposure of
LPS. Based on the expression of LC3-II with BECN1 was determined using Western blotting.
Besides, the LPS-exposed mice for survival rate was monitored. The results indicated that
intervention with emodin was important for mitigating LPS-induced pulmonary histological
change and LPS-induced leakage of Evans blue, which were associated with suppressed
elevation of MPO activity and inhibited up-regulation of TNF-α, IL-6, NO with LA in lung
tissues. Moreover, intervention with emodin enhanced the survival rate of LPS-exposed
mice. Finally, therapy with emodin increased the LC3 and BECN1 in lungs of LPS-exposed
mice. Treatment with 3-MA (the autophagy inhibitor) reversed the beneficial effects of
emodin. In conclusion, emodin might provide pharmacological benefits in LPS-induced
inflammatory lung injury, and the mechanisms might be related to the restoration of
autophagy.
Collapse
Affiliation(s)
- Yan Dong
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, China
| | - Yu Jiang
- Department of Respiratory, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan District, Chongqing 402160, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| |
Collapse
|
41
|
Combining use of Phillyrin and autophagy blocker alleviates laryngeal squamous cell carcinoma via AMPK/mTOR/p70S6K signaling. Biosci Rep 2019; 39:BSR20190459. [PMID: 31147451 PMCID: PMC6616054 DOI: 10.1042/bsr20190459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
Phillyrin (PHN), one of the major active constituents of Forsythia suspensa and F. koreana, has been reported to produce antioxidant, antibacterial, anti-obesity and anti-inflammatory effects. However, no study has demonstrated the role of PHN in laryngeal squamous cell carcinoma (LSCC). We aimed to investigate the effects of PHN on the proliferation and apoptosis of HEp-2 cells. In the present study, PHN alone showed little effect on HEp-2 cell proliferation and apoptosis. Subsequent tests showed that PHN could largely enhance the level of autophagy on HEp-2 cells. Combining use of PHN and autophagy blockers including 3-methyladenine (3-MA) and chloroquine (CQ) significantly inhibited HEp-2 cell proliferation in a dose- and time-dependent manner and induced apoptosis after 24 h in a dose-dependent manner. Additionally, we found that the possible underlying molecular mechanism of PHN-induced autophagy might be through the AMPK/mTOR/p70S6K signaling pathway. Taken together, our study indicates that combining use of PHN and autophagy blockers may serve as a novel strategy in LSCC treatment.
Collapse
|
42
|
Xing JJ, Hou JG, Ma ZN, Wang Z, Ren S, Wang YP, Liu WC, Chen C, Li W. Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo. Cell Prolif 2019; 52:e12627. [PMID: 31094028 PMCID: PMC6668974 DOI: 10.1111/cpr.12627] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Objectives Based on previous reports that ginsenosides have been shown to exert better preventive effects on cisplatin‐induced kidney injury, the present work aims to evaluate the protective effects of ginsenoside Rb3 (G‐Rb3) on cisplatin‐induced renal damage and underlying mechanisms in vivo and in vitro. Materials and methods The protective effect of G‐Rb3 on cisplatin‐induced acute renal failure in ICR mouse model and HEK293 cell model was investigated, and the underlying possible mechanisms were also explored. For animal experiment, renal function, kidney histology, inflammation, oxidative stress, relative protein molecules involved in apoptosis and autophagy signalling pathways were assessed. In addition, rapamycin (a specific inhibitor of mTOR), compound C (a specific inhibitor of AMPK) and acetylcysteine (NAC, a specific ROS scavenger) were employed to testify the effects of AMPK/mTOR signal pathway on the protective effects of G‐Rb3 in HEK293 cells. Results Pre‐treatment with G‐Rb3 at doses of 10 and 20 mg/kg for ten days significantly reversed the increases in serum creatinine (CRE), blood urea nitrogen (BUN) and malondialdehyde (MDA), and decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Histopathological examination further revealed that G‐Rb3 inhibited cisplatin‐induced nephrotoxicity. G‐Rb3 diminished cisplatin‐induced increase in protein expression levels of p62, Atg3, Atg5 and Atg7, and decrease in protein expression level of p‐mTOR and the ratio of LC3‐I/LC3‐II, indicating that G‐Rb3 suppressed cisplatin‐induced activation of autophagy. Inhibition of autophagy induced inactivation of apoptosis, which suggested that autophagy played an adverse effect on cisplatin‐evoked renal damage. Further, we found that G‐Rb3 might potentially modulate the expressions of AMPK‐related signal pathways. Conclusions These findings clearly suggested that G‐Rb3‐mediated alleviation of cisplatin‐induced nephrotoxicity was in part due to regulation of AMPK‐/mTOR‐mediated autophagy and inhibition of apoptosis in vitro and in vivo.
Collapse
Affiliation(s)
- Jing-Jing Xing
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Intelligent Synthetic Biology Center, Daejeon, Korea
| | - Zhi-Na Ma
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
43
|
AMPK: A promising molecular target for combating cisplatin toxicities. Biochem Pharmacol 2019; 163:94-100. [DOI: 10.1016/j.bcp.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
|
44
|
He L, Zhang Y, Kang N, Wang Y, Zhang Z, Zha Z, Yang S, Xu Q, Liu Y. Anemoside B4 attenuates nephrotoxicity of cisplatin without reducing anti-tumor activity of cisplatin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:136-146. [PMID: 30668334 DOI: 10.1016/j.phymed.2018.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cisplatin is a highly effective chemotherapeutic agent commonly used in the treatment of a wide variety of malignancies. However, its clinical usage is severely limited by its serious side effects, especially nephrotoxicity. Anemoside B4, is a major saponins, rich in root of Pulsatilla chinensis (Bunge), has anti-inflammation in vitro. However, the antioxidant or anti-inflammatory effects of anemoside B4 in cisplatin-induced nephrotoxicity have not been clearly demonstrated. PURPOSE In this study, we investigated whether anemoside B4 exhibits protective effects against cisplatin-induced nephrotoxicity involving antioxidant or anti-apoptosis effects. METHOD To clarify it, the effects of anemoside B4 on HEK 293 cell viability was measured by CCK8 kits, intracellular antioxidant capacity including glutathione reduced (GSH), catalase (CAT) were estimated using chemical kits, apoptosis rate and intracellular reactive oxygen species (ROS) was analyzed by flow cytometry, apoptosis protein was measured by western blotting. In vivo model of cisplatin-induced mice acute renal failure was performed to evaluate the properties of anemoside B4. Besides, to evaluate the effect of anemoside B4 on the anti-tumor activity of cisplatin, S180 xenograft models were used. RESULTS Anemoside B4 potently increased cisplatin-treated HEK 293T cells viability on the concentration and time manners and inhibited cells apoptosis, as demonstrated by the decreased cleaved PARP protein expressions. Anemoside B4 decreased reactive oxygen species (ROS) content and improved superoxide dismutase (SOD) activity. In vivo experiment showed that pretreatment with anemoside B4 effectively adjusted body weight and kidney index, and reduced cisplatin-elevated blood urea nitrogen (BUN) and creatinine (CREA) levels, as well as ameliorated the histopathological damage. Further studies showed that anemoside B4 did not reduce antitumor activity of cisplatin in murine S180 cancer xenograft tumor models. In addition, anemoside B4 per set showed low toxicity in mice. CONCLUSION The strong antioxidant and anti-apoptosis effects of anemoside B4 may provide therapeutic potential for cisplatin-induced nephrotoxicity without compromising its therapeutic efficiency.
Collapse
Affiliation(s)
- Luan He
- Department of Pharmacognosy, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu province 215123, China
| | - Yong Zhang
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Naixin Kang
- Department of Pharmacognosy, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu province 215123, China
| | - Yaner Wang
- Department of Pharmacognosy, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu province 215123, China; Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Ziyu Zhang
- Department of Pharmacognosy, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu province 215123, China
| | - Zhengxia Zha
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Shilin Yang
- Department of Pharmacognosy, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu province 215123, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu province 215123, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China.
| | - Yanli Liu
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
45
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
46
|
Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed Pharmacother 2018; 110:518-527. [PMID: 30530287 DOI: 10.1016/j.biopha.2018.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/11/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-based chemotherapeutic regimens are the most frequently used adjuvant treatments for many types of cancer. However, the development of chemoresistance to cisplatin results in treatment failure. Despite the significant developments in understanding the mechanisms of cisplatin resistance, effective strategies to enhance the chemosensitivity of cisplatin are lacking. Phytochemicals are naturally occurring plant-based compounds that can augment the anti-cancer activity of cisplatin, with minimal side effects. Notably, some novel phytochemicals, such as curcumin, not only increase the efficacy of cisplatin but also decrease toxicity induced by cisplatin. However, the exact mechanisms underlying this process remain unclear. In this review, we discussed the progress made in utilizing phytochemicals to enhance the anti-cancer efficacy of cisplatin. We also presented some ideal phytochemicals as novel agents for counteracting cisplatin-induced organ damage.
Collapse
|
47
|
Song YD, Li XZ, Wu YX, Shen Y, Liu FF, Gao PP, Sun L, Qian F. Emodin alleviates alternatively activated macrophage and asthmatic airway inflammation in a murine asthma model. Acta Pharmacol Sin 2018; 39:1317-1325. [PMID: 29417945 DOI: 10.1038/aps.2017.147] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Alternatively activated macrophages (AAMs) are not only associated with asthma but also lead to asthmatic airway inflammation and remodeling. Inhibition of AAMs is an alternative therapeutic strategy for treating asthma. In this study we investigated whether emodin (1,3,8-trihydroxy-6-methylanthraquinone), isolated from the rhizome of Rheum palmatum, alleviated asthmatic airway inflammation and reduced AAM polarization in a murine asthma model. Mice were sensitized with a triple allergen mix containing dust mite, ragweed and aspergillus (DRA). In mice with DRA-induced asthma, asthmatic inflammation was significantly enhanced. Intraperitoneal injection of emodin (20 mg·kg-1·d-1, ip) 1 h prior to DRA challenge on days 12-14 significantly decreased pulmonary eosinophil and lymphocyte infiltration, mucus secretion and serum IgE production, as well as IL-4 and IL-5 production in bronchoalveolar lavage fluid. In response to emodin treatment, activated markers of AAM Ym-1, Fizz-1 and arginase-1 in the lung tissues were remarkably decreased. In mouse bone marrow-derived macrophages (BMDMs) in vitro, emodin (2-50 μmol/L) dose-dependently inhibited IL-4-induced AAM polarization and STAT6 phosphorylation. Collectively, our results suggest that emodin effectively ameliorates asthmatic airway inflammation and AAM polarization, and it may therefore become a potential agent for the treatment of asthma.
Collapse
|
48
|
Abstract
OBJECTIVES The aim of this study was to investigate the effects of emodin on attenuating autophagy response in acute pancreatitis (AP) models. METHODS Acute pancreatitis was induced in Wistar rats by injecting 3% sodium taurocholate into the biliopancreatic duct. Emodin (40 mg/kg per day) was then given intragastrically, administrated 2 hours after AP induction. Rats were killed 24 hours after AP induction. The pancreatic injury was assessed using biochemical and histological approaches. Autophagosomes in pancreatic acinar cells were observed by electron microscopy. The expression levels of microtubule-associated protein 1 light chain 3 (LC3) B/A, beclin-1, and p62/SQSTM1 (p62) were detected by Western blotting, quantitative real-time polymerase chain reaction, and immunohistochemistry in pancreatic tissues. RESULTS Compared with non-emodin-treated rats, the pathological injuries of the pancreas of emodin-treated rats were significantly alleviated, and autophagy vacuole formation was reduced within pancreatic acinar cells. Administration of emodin led to a reduction in the autophagy-associated protein level of LC3 (B/A) and p62 but not beclin-1. The transcript levels of LC3B, beclin-1, and p62 were decreased in the emodin-treated rats compared with non-emodin-treated rats. CONCLUSIONS Our data demonstrate that emodin plays a critical role in ameliorating AP, possibly by down-regulating autophagic protein levels.
Collapse
|
49
|
Tian N, Gao Y, Wang X, Wu X, Zou D, Zhu Z, Han Z, Wang T, Shi Y. Emodin mitigates podocytes apoptosis induced by endoplasmic reticulum stress through the inhibition of the PERK pathway in diabetic nephropathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2195-2211. [PMID: 30034224 PMCID: PMC6047613 DOI: 10.2147/dddt.s167405] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Endoplasmic reticulum stress is associated with podocyte apoptosis in the pathogenesis of diabetic nephropathy (DN). A previous study has demonstrated that emodin has a protective effect in the kidney by suppressing proliferation of mesangial cells and inhibiting the renal tubular epithelial-to-mesenchymal transition. However, the effects of emodin on the podocyte apoptosis in DN and its mechanisms are unknown. Aim This study aimed to explore the effect of emodin on DN model KK-Ay mice and high glucose induced podocytes apoptosis via the PERK–eIF2α pathway. Methods KK-Ay mice model of DN were treated with emodin at dose of 40 and 80 mg/kg/day for 8 weeks. Urine albumin, serum creatinine, blood urea nitrogen levels and the renal histopathology in mice were performed. In vitro, conditionally immortalized mouse podocytes exposed to HG (30mM) were incubated with emodin. Cell viability was measured by CCK-8 assay. Additionally, we performed RNA interference and measured the apoptosis in cultured podocytes treated with emodin. Immunohistochemistry, immunofluorescence, western blot, and real-time PCR were used to detect gene and protein expression both in vivo and in vitro. Results The results showed that emodin treatment ameliorated urine albumin, serum creatinine, and blood urea nitrogen of DN mice. The pathological damage of kidney tissue was also improved after treatment with emodin. Moreover, emodin increased nephrin expression. Podocytes apoptosis and endoplasmic reticulum stress markers (GRP78) were significantly reduced upon emodin treatment. Furthermore, emodin treatment decreased the expression of phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (P-PERK), phosphorylated P-eIF2α, ATF4, and CHOP. In vitro, emodin treatment was further found to decrease the GRP78 level induced by high glucose or tunicamycin (TM). Besides, emodin and PERK knockdown inhibited the apoptosis of podocytes cultured in high glucose by counteracting the upregulation of phosphorylated PERK, phosphorylated eIF2α, ATF4, and CHOP. Conclusion Overall, the findings indicate that emodin mitigates podocytes apoptosis by inhibiting the PERK-eIF2α signaling pathway in vivo and in vitro, and, therefore, exerts a protective action on podocytes in DN.
Collapse
Affiliation(s)
- Nianxiu Tian
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Xiaolei Wang
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Xiaoming Wu
- Department of Paediatrics, Beijing Children's Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Dawei Zou
- Department of Endocrinology, Beijing Key Lab of TCM Collateral Disease theory Research, Fengtai District, Beijing, China
| | - Zhiyao Zhu
- Department of Endocrinology, Beijing Key Lab of TCM Collateral Disease theory Research, Fengtai District, Beijing, China
| | - ZheJi Han
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Tao Wang
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| | - Yimin Shi
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China,
| |
Collapse
|
50
|
Chu BX, Fan RF, Lin SQ, Yang DB, Wang ZY, Wang L. Interplay between autophagy and apoptosis in lead(II)-induced cytotoxicity of primary rat proximal tubular cells. J Inorg Biochem 2018; 182:184-193. [DOI: 10.1016/j.jinorgbio.2018.02.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
|