1
|
Ayyappan K, Unger L, Kitchen P, Bill RM, Salman MM. Measuring glymphatic function: Assessing the toolkit. Neural Regen Res 2026; 21:534-541. [PMID: 40145955 DOI: 10.4103/nrr.nrr-d-24-01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
Glymphatic flow has been proposed to clear brain waste while we sleep. Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma, with subsequent cerebrospinal fluid drainage to dural lymphatics. Glymphatic disruption is associated with neurological conditions such as Alzheimer's disease and traumatic brain injury. Therefore, investigating its structure and function may improve understanding of pathophysiology. The recent controversy on whether glymphatic flow increases or decreases during sleep demonstrates that the glymphatic hypothesis remains contentious. However, discrepancies between different studies could be due to limitations of the specific techniques used and confounding factors. Here, we review the methods used to study glymphatic function and provide a toolkit from which researchers can choose. We conclude that tracer analysis has been useful, ex vivo techniques are unreliable, and in vivo imaging is still limited. Finally, we explore the potential for future methods and highlight the need for in vitro models, such as microfluidic devices, which may address technique limitations and enable progression of the field.
Collapse
Affiliation(s)
- Koushikk Ayyappan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham, UK
- Aston Institute for Membrane Excellence and the School of Biosciences, Aston University, Birmingham, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
- Aston Institute for Membrane Excellence and the School of Biosciences, Aston University, Birmingham, UK
| | - Roslyn M Bill
- College of Health and Life Sciences, Aston University, Birmingham, UK
- Aston Institute for Membrane Excellence and the School of Biosciences, Aston University, Birmingham, UK
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- BHF Oxford Centre of Research Excellence, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Kalitnik A, Lassota A, Polańska O, Gąsior‐Głogowska M, Szefczyk M, Barbach A, Chilimoniuk J, Jęśkowiak‐Kossakowska I, Wojciechowska AW, Wojciechowski JW, Szulc N, Kotulska M, Burdukiewicz M. Experimental methods for studying amyloid cross-interactions. Protein Sci 2025; 34:e70151. [PMID: 40384558 PMCID: PMC12086524 DOI: 10.1002/pro.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Interactions between amyloid proteins represent the cornerstone of various pathogenic pathways, including prion conversion and co-development of distinct kinds of systemic amyloidosis. Various experimental methodologies provide insights into the effects of such cross-interactions on amyloid self-assembly, which range from acceleration to complete inhibition. Here, we present a comprehensive review of experimental methods most commonly used to study amyloid cross-interactions both in vitro and in vivo, such as fluorescence-based techniques, high-resolution imaging, and spectroscopic methods. Although each method provides distinct information on amyloid interactions, we highlight that no method can fully capture the complexity of this process. In order to achieve an exhaustive portrayal, it is necessary to employ a hybrid strategy combining different experimental techniques. A core set of fluorescence methods (e.g., thioflavin T) and high-resolution imaging techniques (e.g., atomic force microscopy or Cryo-EM) are required to verify the lack of self-assembly or alterations in fibril morphology. At the same time, immuno-electron microscopy, mass spectrometry, or solid-state NMR can confirm the presence of heterotypic fibrils.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Anna Lassota
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Marlena Gąsior‐Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of ChemistryWroclaw University of Science and TechnologyWrocławPoland
| | - Agnieszka Barbach
- Department of Experimental OncologyHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | | | | | - Alicja W. Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Jakub W. Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
- Sano Centre for Computational MedicineKrakówPoland
| | - Natalia Szulc
- Department of Physics and BiophysicsWrocław University of Environmental and Life SciencesWrocławPoland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Michał Burdukiewicz
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
- Institute of BiotechnologyVilnius UniversityVilniausLithuania
| |
Collapse
|
3
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
4
|
Shahane SD, Mudliar NH, Chawda BR, Momin M, Singh PK. YOPRO-1: A Cyanine-Based Molecular Rotor Probe for Amyloid Fibril Detection. ACS APPLIED BIO MATERIALS 2025; 8:3443-3453. [PMID: 40204648 DOI: 10.1021/acsabm.5c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The widespread occurrence of amyloidosis in many neurodegenerative diseases, including Alzheimer's, highlights the urgent need for early detection methods. Traditional approaches often fall short in sensitivity, specificity, and the ability to operate within complex biological matrices. Fluorescence spectroscopy, which leverages the unique properties of extrinsic fluorescence sensors, has emerged as a promising avenue for amyloid detection. Thioflavin-T (ThT), while extensively utilized, faces several disadvantages such as poor blood-brain barrier penetration, short emission wavelength, and lack of sensitivity to oligomeric protein aggregates. These limitations necessitate the development of improved amyloid probes with enhanced properties for the better detection and understanding of neurodegenerative diseases. In this context, YOPRO-1, a cyanine-based molecular rotor probe, has been identified as a potent amyloid fibril sensor characterized by its turn-on fluorescence response and specificity for amyloid fibrils over native protein forms. Utilizing a variety of spectroscopic techniques, including steady-state emission, ground-state absorption, time-resolved fluorescence, and molecular docking, we demonstrate the superior selectivity and sensitivity of YOPRO-1 for amyloid fibrils. The probe exhibits a remarkable 245-fold increase in fluorescence intensity upon binding to insulin fibrils, which is a common amyloid model. This capability facilitates its application in complex biological matrices, such as high-percentage human serum, which has rarely been demonstrated by previous amyloid sensing probes. Furthermore, the commercial availability of YOPRO-1 avoids the challenges associated with the synthesis of specific probes, thereby marking a significant advancement in amyloid detection methodologies. Our findings highlight the potential of YOPRO-1 as a versatile and effective tool for the early diagnosis of amyloid-related diseases, offering a foundation for future therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sailee D Shahane
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Bhavya R Chawda
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Munira Momin
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra 400085, India
| |
Collapse
|
5
|
Zhuang H, Ma X. Advances in Aggrephagy: Mechanisms, Disease Implications, and Therapeutic Strategies. J Cell Physiol 2025; 240:e31512. [PMID: 39749851 DOI: 10.1002/jcp.31512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy. In this pathway, autophagosome biogenesis and lysosomal digestion provide necessary conditions for the clearance of protein aggregates, while autophagy receptors such as P62, NBR1, TAX1BP1, TOLLIP, and CCT2 facilitate the recognition of protein aggregates by the autophagy machinery, playing a pivotal role in their degradation. This review will introduce the mechanisms of aggregate formation, progression, and degradation, with particular emphasis on advances in aggrephagy, providing insights for aggregates-related diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyu Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Li K, Wang Y, Li Y, Shi W, Yan J. Development of BODIPY-based fluorescent probes for imaging Aβ aggregates and lipid droplet viscosity. Talanta 2024; 277:126362. [PMID: 38843773 DOI: 10.1016/j.talanta.2024.126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease (AD), gradually recognized as an untreatable neurodegenerative disorder, has been considered to be closely associated with Aβ plaques, which consist of β-amyloid protein (Aβ) and is one of the crucial pathological features of AD. There are no obvious symptoms in the initial phase of AD, and thus the therapeutic interventions are important for early diagnosis of AD. Moreover, recent researches have indicated that lipid droplets might serve as a potential ancillary biomarker, and its viscosity changes are closely associated to the pathological process of AD. Herein, two newly fluorescent probes 5QSZ and BQSZ have been developed and synthesized for identifying Aβ aggregates and detecting the viscosity of lipid droplet. After selectively binding to Aβ aggregates, 5QSZ and BQSZ exhibited linear and obvious fluorescence enhancements (32.58 and 36.70 folds), moderate affinity (Kd = 268.0 and 148.6 nM) and low detection limits (30.11 and 65.37 nM) in aqueous solutions. Further fluorescence staining of 5QSZ on brain tissue sections of APP/PS1 transgenic mouse exhibited the higher selectivity of 5QSZ towards Aβ aggregates locating at the core of the plaques. Furthermore, 5QSZ and BQSZ displayed strong linear fluorescence emission enhancements towards viscosity changes and would be utilized to monitor variation in cellular viscosity induced by LPS or monensin. These two probes were non-cytotoxic and showed good localization in lipid droplets. Therefore, 5QSZ and BQSZ could serve as potential bi-functional fluorescent probes to image Aβ aggregates and monitor the viscosity of lipid droplets, which have significant implications for the early diagnosis and progression of AD.
Collapse
Affiliation(s)
- Kaibo Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuxuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yanping Li
- School of Medicine, Foshan University, Foshan, 528225, PR China.
| | - Wenjing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
7
|
Tang Y, Zhang D, Zheng J. ROF-2 as an Aggregation-Induced Emission (AIE) Probe for Multi-Target Amyloid Detection and Screening of Amyloid Inhibitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400879. [PMID: 38751069 DOI: 10.1002/smll.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Indexed: 10/04/2024]
Abstract
Misfolding and aggregation of amyloid peptides into β-structure-rich fibrils represent pivotal pathological features in various neurodegenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). The development of effective amyloid detectors and inhibitors for probing and preventing amyloid aggregation is crucial for diagnosing and treating debilitating diseases, yet it poses significant challenges. Here, an aggregation-induced emission (AIE) molecule of ROF2 with multifaceted functionalities as an amyloid probe and a screening tool for amyloid inhibitors using different biophysical, cellular, and worm assays, are reported. As an amyloid probe, ROF2 outperformed ThT, demonstrating its superior sensing capability in monitoring, detecting, and distinguishing amyloid aggregates of different sequences (Amyloid-β, human islet amyloid polypeptide, or human calcitonin) and sizes (monomers, oligomers, or fibrils). More importantly, the utilization of ROF2 as a screening molecule to identify and repurpose cardiovascular drugs as amyloid inhibitors is introduced. These drugs exhibit potent amyloid inhibition properties, effectively preventing amyloid aggregation and reducing amyloid-induced cytotoxicity both in cells and nematode. The findings present a novel strategy to discovery AIE-based amyloid probes and to be used to repurpose amyloid inhibitors, expanding diagnostic and therapeutic options for neurodegenerative diseases while addressing vascular congestion and amyloid aggregation risks.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, 44325, USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, 44325, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, 44325, USA
| |
Collapse
|
8
|
Zhao X, Li Y, Li Z, Hu D, Zhang R, Li M, Liu Y, Xiu X, Jia H, Wang H, Liu Y, Yang H, Cheng M. Design and synthesis of hemicyanine-based NIRF probe for detecting Aβ aggregates in Alzheimer's disease. Bioorg Chem 2024; 150:107514. [PMID: 38870704 DOI: 10.1016/j.bioorg.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has garnered increased attention due to its substantial economic burden and the escalating global aging phenomenon. Amyloid-β deposition is a key pathogenic marker observed in the brains of Alzheimer's sufferers. Based on real-time, safe, low-cost, and commonly used, near-infrared fluorescence (NIRF) imaging technology have become an essential technique for the detection of AD in recent years. In this work, NIRF probes with hemicyanine structure were designed, synthesized and evaluated for imaging Aβ aggregates in the brain. We use the hemicyanine structure as the parent nucleus to enhance the probe's optical properties. The introduction of PEG chain is to improve the probe's brain dynamice properties, and the alkyl chain on the N atom is to enhance the fluorescence intensity of the probe after binding to the Aβ aggregates as much as possible. Among these probes, Z2, Z3, Z6, X3, X6 and T1 showed excellent optical properties and high affinity to Aβ aggregates (Kd = 24.31 ∼ 59.60 nM). In vitro brain section staining and in vivo NIRF imaging demonstrated that X6 exhibited superior discrimination between Tg mice and WT mice, and X6 has the best brain clearance rate. As a result, X6 was identified as the optimal probe. Furthermore, the docking theory calculation results aided in describing X6's binding behavior with Aβ aggregates. As a high-affinity, high-selectivity, safe and effective probe of targeting Aβ aggregates, X6 is a promising NIRF probe for in vivo detection of Aβ aggregates in the AD brain.
Collapse
Affiliation(s)
- Xueqi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Yingbo Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Zhenli Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Dexiang Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Ruiwen Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Mengzhen Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Yaoyang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Xiaomeng Xiu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Hongwei Jia
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China.
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China.
| |
Collapse
|
9
|
Molina-Aguirre G, Chakraborty S, Košmrlj J, Vuković L, Pinter B. Photophysics of Molecular Probes for Amyloid-β Detection: Computational Insights into the Roles of Probe Linker and Functional Groups. J Phys Chem A 2024; 128:7055-7067. [PMID: 39146450 DOI: 10.1021/acs.jpca.4c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In this computational study, density functional theory (DFT) and time-dependent DFT methods (TD-DFT) were employed to study the optical properties of six families of molecules with donor (D), bridge (B), and acceptor (A) fragments that have potential for use as fluorescent molecular probes for the early detection of Alzheimer's disease. After validating our computational method against experimental data, using X-ray and absorption data, the equilibrium geometries and wave functions of the ground and first singlet excited states were systematically studied. Our simulations demonstrate that the S1 states of these rod-like D-B-A fluorescent probes are twisted intramolecular charge transfer states with a predominant highest occupied molecular orbital-least unoccupied molecular orbital (HOMO-LUMO) character, the former localized primarily at the donor, whereas the latter at the acceptor site. Moreover, the influence of the bridge, donor, and acceptor fragments on molecules' absorption energies is explored, highlighting the influence of double and triple bonds and some specific modifications on the acceptor side, including the addition of electronegative atoms, pyranone derivatives, and their functionalization. By having the absorption energies of 324 probes in hand, machine learning models were trained to predict the absorption energies of molecules. The models were found to be predictive, which suggests a potential that predictive models for other crucial properties, such as emission and quantum yield, can also be trained if suitable training data sets are made available.
Collapse
Affiliation(s)
- Gabriela Molina-Aguirre
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sayantani Chakraborty
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Lela Vuković
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
10
|
Zhou H, Zhai J, Gong H, Fang R, Zhao Y, Luo W. Novel pyrrolidine-alkylamino-substituted dicyanoisophorone derivatives as near-infrared fluorescence probe for imaging β-amyloid in vitro and in vivo. Anal Chim Acta 2024; 1317:342894. [PMID: 39030021 DOI: 10.1016/j.aca.2024.342894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The formation of amyloid-β (Aβ) plaques is one of the key neuropathological hallmarks of Alzheimer's disease (AD). Near-infrared (NIR) probes show great potential for imaging of Aβ plaques in vivo and in vitro. Dicyanoisophorone (DCIP) based Aβ probes have attracted considerable attention due to their exceptional properties. However, DCIP probes still has some drawbacks, such as short emission wavelength (<650 nm) and low fluorescence intensity after binding to Aβ. It is clear that further modification is needed to improve their luminescence efficiency and sensitivity. RESULTS We designed and synthesize four novel pyrrolidine-alkylamino-substituted DCIP derivatives (6a-d) as imaging agents for β-amyloid (Aβ) aggregates. Compound 6c responds better to Aβ aggregates than the other three compounds (6a, 6b and 6d) and its precursor DCIP. The calculated detection limit is to be as low as 0.23 μM. Compound 6c shows no cytotoxicity in the tested concentration for SH-SY5Y and HL-7702 cells. Additionally, compound 6c is successfully applied to monitor Aβ aggregates in live SH-SY5Y cells and APP/PS1 transgenic mice. The retention time in the transgenic mice brain is much longer than that of age-matched wild-type mice. SIGNIFICANCE The results indicates that compound 6c had an excellent ability to penetrate the blood-brain barrier and it could effectively distinguish APP/PS1 transgenic mice and wide-type mice. This represents its promising applications for Aβ detection in basic and biomedical research.
Collapse
Affiliation(s)
- Hui Zhou
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China; Pharmaceutical Engineering Department, Henan Technical Institute, Kaifeng, 475004, China
| | - Jihang Zhai
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Huiyuan Gong
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Ru Fang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Yongmei Zhao
- Pharmaceutical Engineering Department, Henan Technical Institute, Kaifeng, 475004, China.
| | - Wen Luo
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
Rashid MH, Sen P. Recent Advancements in Biosensors for the Detection and Characterization of Amyloids: A Review. Protein J 2024; 43:656-674. [PMID: 38824466 DOI: 10.1007/s10930-024-10205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Modern medicine has increased the human lifespan. However, with an increase in average lifespan risk of amyloidosis increases. Amyloidosis is a condition characterized by protein misfolding and aggregation. Early detection of amyloidosis is crucial, yet conventional diagnostic methods are costly and lack precision, necessitating innovative tools. This review explores recent advancements in diverse amyloid detection methodologies, highlighting the need for interdisciplinary research to develop a miniaturized electrochemical biosensor leveraging nanotechnology. However, the diagnostics industry faces obstacles such as skilled labor shortages, standardized selection processes, and concurrent multi-analyte identification challenges. Research efforts are focused on integrating electrochemical techniques into clinical applications and diagnostics, with the successful transition of miniaturized technologies from development to testing posing a significant hurdle. Label-free transduction techniques like voltammetry and electrochemical impedance spectroscopy (EIS) have gained traction due to their rapid, cost-effective, and user-friendly nature.
Collapse
Affiliation(s)
- Md Harun Rashid
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Espargaró A, Álvarez-Berbel I, Busquets MA, Sabate R. In Vivo Assays for Amyloid-Related Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:433-458. [PMID: 38598824 DOI: 10.1146/annurev-anchem-061622-023326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Amyloid-related diseases, such as Alzheimer's and Parkinson's disease, are devastating conditions caused by the accumulation of abnormal protein aggregates known as amyloid fibrils. While assays involving animal models are essential for understanding the pathogenesis and developing therapies, a wide array of standard analytical techniques exists to enhance our understanding of these disorders. These techniques provide valuable information on the formation and propagation of amyloid fibrils, as well as the pharmacokinetics and pharmacodynamics of candidate drugs. Despite ethical concerns surrounding animal use, animal models remain vital tools in the search for treatments. Regardless of the specific animal model chosen, the analytical methods used are usually standardized. Therefore, the main objective of this review is to categorize and outline the primary analytical methods used in in vivo assays for amyloid-related diseases, highlighting their critical role in furthering our understanding of these disorders and developing effective therapies.
Collapse
Affiliation(s)
- Alba Espargaró
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Irene Álvarez-Berbel
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
| | - Maria Antònia Busquets
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sabate
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Miura Y, Namioka S, Iwai A, Yoshida N, Konno H, Sohma Y, Kanai M, Makabe K. Redesign of a thioflavin-T-binding protein with a flat β-sheet to evaluate a thioflavin-T-derived photocatalyst with enhanced affinity. Int J Biol Macromol 2024; 269:131992. [PMID: 38697433 DOI: 10.1016/j.ijbiomac.2024.131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Amyloids, proteinous aggregates with β-sheet-rich fibrils, are involved in several neurodegenerative diseases such as Alzheimer's disease; thus, their detection is critically important. The most common fluorescent dye for amyloid detection is thioflavin-T (ThT), which shows on/off fluorescence upon amyloid binding. We previously reported that an engineered globular protein with a flat β-sheet, peptide self-assembly mimic (PSAM), can be used as an amyloid binding model. In this study, we further explored the residue-specific properties of ThT-binding to the flat β-sheet by introducing systematic mutations. We found that site-specific mutations at the ThT-binding channel enhanced affinity. We also evaluated the binding of a ThT-based photocatalyst, which showed the photooxygenation activity on the amyloid fibril upon light radiation. Upon binding of the photocatalyst to the PSAM variant, singlet oxygen-generating activity was observed. The results of this study expand our understanding of the detailed binding mechanism of amyloid-specific molecules.
Collapse
Affiliation(s)
- Yuina Miura
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Sae Namioka
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Iwai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Norio Yoshida
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-Ward, Nagoya 464-8601, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Youhei Sohma
- Graduate School of Medical and Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
14
|
Dormann D, Lemke EA. Adding intrinsically disordered proteins to biological ageing clocks. Nat Cell Biol 2024; 26:851-858. [PMID: 38783141 DOI: 10.1038/s41556-024-01423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Research into how the young and old differ, and which biomarkers reflect the diverse biological processes underlying ageing, is a current and fast-growing field. Biological clocks provide a means to evaluate whether a molecule, cell, tissue or even an entire organism is old or young. Here we summarize established and emerging molecular clocks as timepieces. We emphasize that intrinsically disordered proteins (IDPs) tend to transform into a β-sheet-rich aggregated state and accumulate in non-dividing or slowly dividing cells as they age. We hypothesize that understanding these protein-based molecular ageing mechanisms might provide a conceptual pathway to determining a cell's health age by probing the aggregation state of IDPs, which we term the IDP clock.
Collapse
Affiliation(s)
- Dorothee Dormann
- Biocenter, Johannes Gutenberg University, Mainz, Germany.
- Institute for Molecular Biology, Mainz, Germany.
| | - Edward Anton Lemke
- Biocenter, Johannes Gutenberg University, Mainz, Germany.
- Institute for Molecular Biology, Mainz, Germany.
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Stepanchuk AA, Stys PK. Spectral Fluorescence Pathology of Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:898-908. [PMID: 38407017 DOI: 10.1021/acschemneuro.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Protein misfolding has been extensively studied in the context of neurodegenerative disorders and systemic amyloidoses. Due to misfolding and aggregation of proteins being highly heterogeneous and generating a variety of structures, a growing body of evidence illustrates numerous ways how the aggregates contribute to progression of diseases such as Alzheimer's disease, Parkinson's disease, and prion disorders. Different misfolded species of the same protein, commonly referred to as strains, appear to play a significant role in shaping the disease clinical phenotype and clinical progression. The distinct toxicity profiles of various misfolded proteins underscore their importance. Current diagnostics struggle to differentiate among these strains early in the disease course. This review explores the potential of spectral fluorescence approaches to illuminate the complexities of protein misfolding pathology and discusses the applications of advanced spectral methods in the detection and characterization of protein misfolding disorders. By examining spectrally variable probes, current data analysis approaches, and important considerations for the use of these techniques, this review aims to provide an overview of the progress made in this field and highlights directions for future research.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
16
|
Gao H, Chen J, Huang Y, Zhao R. Advances in targeted tracking and detection of soluble amyloid-β aggregates as a biomarker of Alzheimer's disease. Talanta 2024; 268:125311. [PMID: 37857110 DOI: 10.1016/j.talanta.2023.125311] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Misfolding and aggregation of amyloid-β (Aβ) peptides are key hallmarks of Alzheimer's disease (AD). With accumulating evidence suggesting that different Aβ species have varied neurotoxicity and implications in AD development, the discovery of affinity ligands and analytical approaches to selective distinguish, detect, and monitor Aβ becomes an active research area. Remarkable advances have been achieved, which not only promote our understanding of the biophysical chemistry of the protein aggregation during neurodegeneration, but also provide promising tools for early detection of the disease. In view of this, we summarize the recent progress in selective and sensitive approaches for tracking and detection of Aβ species. Specific attentions are given to soluble Aβ oligomers, due to their crucial roles in AD development and occurrence at early stages. The design principle, performance of targeting units, and their cooperative effects with signal reporters for Aβ analysis are discussed. The applications of the novel targeting probes and sensing systems for dynamic monitoring oligomerization, measuring Aβ in biosamples and in vivo imaging in brain are summarized. Finally, the perspective and challenges are discussed regarding the future development of Aβ-targeting analytical tools to explore the unknown field to contribute to the early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Munan S, Chang YT, Samanta A. Chronological development of functional fluorophores for bio-imaging. Chem Commun (Camb) 2024; 60:501-521. [PMID: 38095135 DOI: 10.1039/d3cc04895k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Functional fluorophores represent an emerging research field, distinguished by their diverse applications, especially in sensing and cellular imaging. After the discovery of quinine sulfate and subsequent elucidation of the fluorescence mechanism by Sir George Stokes, research in the field of fluorescence gained momentum. Over the past few decades, advancements in sophisticated instruments, including super-resolution microscopy, have further promoted cellular imaging using traditional fluorophores. These advancements include deciphering sensing mechanisms via photochemical reactions and scrutinizing the applications of fluorescent probes that specifically target organelles. This approach elucidates molecular interactions with biomolecules. Despite the abundance of literature illustrating different classes of probe development, a concise summary of newly developed fluorophores remains inadequate. In this review, we systematically summarize the chronological discovery of traditional fluorophores along with new fluorophores. We briefly discuss traditional fluorophores ranging from visible to near-infrared (NIR) in the context of cellular imaging and in vivo imaging. Furthermore, we explore ten new core fluorophores developed between 2007 and 2022, which exhibit advanced optical properties, providing new insights into bioimaging. We illustrate the utilization of new fluorophores in cellular imaging of biomolecules, such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and proteins and microenvironments, especially pH and viscosity. Few of the fluorescent probes provided new insights into disease progression. Furthermore, we speculate on the potential prospects and significant challenges of existing fluorophores and their potential biomedical research applications. By addressing these aspects, we intend to illuminate the compelling advancements in fluorescent probe development and their potential influence across various fields.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| |
Collapse
|
18
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
19
|
Ghosh S, Iyer LS, Chowdhury R, Addy PS. Nontoxic Aggregation-Induced Emissive Luminogen for the Detection of Amyloid Fibrils and Cellular Protein Aggregates. ACS APPLIED BIO MATERIALS 2023; 6:4592-4597. [PMID: 37890087 DOI: 10.1021/acsabm.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Protein misfolding and aggregation resulting in amyloid formation is directly linked to various diseases. Hence, there is keen interest in developing probes for the selective detection of such misfolded aggregated proteins. In this paper, we have shown the use of a nontoxic aggregation-induced emissive luminogen (AIEgen), BIDCPV, for the selective detection of insulin amyloid fibrils and their various stages of formation. We further verified the selective response of BIDCPV toward amyloid fibrils by testing the probe against Aβ 42 peptides, which is well known to form the fibrils. Additionally, the low toxicity, efficient cellular internalization capability, and photostability make BIDCPV a unique candidate for sensing protein aggregates inside mammalian cells.
Collapse
Affiliation(s)
- Saurajit Ghosh
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Lavanya Suresh Iyer
- Department of Bio Science, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Rajdeep Chowdhury
- Department of Bio Science, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Partha Sarathi Addy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
20
|
Yang J, Ding W, Zhu B, Zhen S, Kuang S, Yang J, Zhang C, Wang P, Yang F, Yang L, Yin W, Tanzi RE, Shen S, Ran C. Bioluminescence Imaging with Functional Amyloid Reservoirs in Alzheimer's Disease Models. Anal Chem 2023; 95:14261-14270. [PMID: 37712902 DOI: 10.1021/acs.analchem.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Bioluminescence imaging has changed the daily practice of preclinical research on cancer and other diseases over the last few decades; however, it has rarely been applied in preclinical research on Alzheimer's disease (AD). In this Article, we demonstrated that bioluminescence imaging could be used to report the levels of amyloid beta (Aβ) species in vivo. We hypothesized that AkaLumine, a newly discovered substrate for luciferase, could bind to Aβ aggregates and plaques. We further speculated that the Aβ aggregates/fibrils/plaques could be considered as "functional amyloids", which have a reservoir function to sequester and release AkaLumine to control the bioluminescence intensity, which could be used to report the levels of Aβs. Our hypotheses have been validated via in vitro solution tests, mimic studies with brain tissues and mice, two-photon imaging with AD mice, and in vivo bioluminescence imaging using transgenic AD mice that were virally transduced with AkaLuciferase (AkaLuc), a new luciferase that generates bioluminescence in the near-infrared window. As expected, compared to the control group, we observed that the Aβ group showed lower bioluminescence intensity due to AkaLumine sequestering at early time points, while higher intensity was due to AkaLumine releasing at later time points. Lastly, we demonstrated that this method could be used to monitor AD progression and the therapeutic effectiveness of avagacestat, a well-studied gamma-secretase inhibitor. Importantly, a good correlation (R2 = 0.81) was established between in vivo bioluminescence signals and Aβ burdens of the tested AD mice. We believe that our approach can be easily implemented into daily imaging experiments and has tremendous potential to change the daily practice of preclinical AD research.
Collapse
Affiliation(s)
- Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Sherri Zhen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shi Kuang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Jun Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Peng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Liuyue Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wei Yin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| |
Collapse
|
21
|
Wang Y, Liu W, Dong X, Sun Y. Design of Self-Assembled Nanoparticles as a Potent Inhibitor and Fluorescent Probe for β-Amyloid Fibrillization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12576-12589. [PMID: 37624641 DOI: 10.1021/acs.langmuir.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alzheimer's disease (AD) remains incurable due to its complex pathogenesis. The deposition of β-amyloid (Aβ) in the brain appears much earlier than any clinical symptoms and plays an essential role in the occurrence and development of AD neuropathology, which implies the importance of early theranostics. Herein, we designed a self-assembled bifunctional nanoparticle (LC8-pCG-fLC8) for Aβ fluorescent diagnosis and inhibition. The nanoparticle was synthesized by click chemistry from Aβ-targeting peptide Ac-LVFFARKC-NH2 (LC8) and an Aβ fluorescent probe f with the zwitterionic copolymer poly(carboxybetaine methacrylate-glycidyl methacrylate) (p(CBMA-GMA), pCG). Owing to the high reactivity of epoxy groups, the peptide concentration of LC8-pCG-fLC8 nanoparticles reached about 4 times higher than that of the existing inhibitor LVFFARK@poly(carboxybetaine) (LK7@pCB). LC8-pCG-fLC8 exhibited remarkable inhibitory capability (suppression efficiency of 83.0% at 20 μM), altered the aggregation pathway of Aβ, and increased the survival rate of amyloid-induced cultured cells from 76.5% to 98.0% at 20 μM. Notably, LC8-pCG-fLC8 possessed excellent binding affinity, good biostability, and high fluorescence responsivity to β-sheet-rich Aβ oligomers and fibrils, which could be used for the early diagnosis of Aβ aggregation. More importantly, in vivo tests using transgenic C. elegans CL2006 stain showed that LC8-pCG-fLC8 could specifically image Aβ plaques, prolong the lifespan (from 13 to 17 days), and attenuate the AD-like symptoms (reducing paralysis and Aβ deposition). Therefore, self-assembled nanoparticles hold great potential in AD theranostics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
22
|
Warerkar OD, Mudliar NH, Ahuja T, Shahane SD, Singh PK. A highly sensitive hemicyanine-based near-infrared fluorescence sensor for detecting toxic amyloid aggregates in human serum. Int J Biol Macromol 2023; 247:125621. [PMID: 37392920 DOI: 10.1016/j.ijbiomac.2023.125621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The development of an accurate and sensitive sensor for detecting amyloid plaques, which are responsible for many protein disorders like Alzheimer's disease, is crucial for early diagnosis. Recently, there has been a notable increase in the development of fluorescence probes that exhibit emission in the red region (>600 nm), aiming to effectively tackle the challenges encountered when working with complex biological matrices. In the current investigation, a hemicyanine-based probe, called LDS730, has been used for the sensing of amyloid fibrils, which belong to the Near-Infrared Fluorescence (NIRF) family of dyes. NIRF probes provide higher precision in detection, prevent photo-damage, and minimize the autofluorescence of biological specimens. The LDS730 sensor emits in the near-infrared region and shows a 110-fold increase in fluorescence turn-on emission when bound to insulin fibrils, making it a highly sensitive sensor. The sensor has an emission maximum of ~710 nm in a fibril-bound state, which shows a significant red shift along with a Stokes' shift of ~50 nm. The LDS730 sensor also displays excellent performance in the complicated human serum matrix, with a limit of detection (LOD) of 103 nM. Molecular docking calculations suggest that the most likely binding location of LDS730 in the fibrillar structure is the inner channels of amyloid fibrils along its long axis, and the sensor engages in several types of hydrophobic interactions with neighboring amino acid residues of the fibrillar structure. Overall, this new amyloid sensor has great potential for the early detection of amyloid plaques and for improving diagnostic accuracy.
Collapse
Affiliation(s)
- Oshin D Warerkar
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Tanya Ahuja
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Sailee D Shahane
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
23
|
Chen Y. Two-Photon Fluorescent Probes for Amyloid-β Plaques Imaging In Vivo. Molecules 2023; 28:6184. [PMID: 37687013 PMCID: PMC10488448 DOI: 10.3390/molecules28176184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Amyloid-β (Aβ) peptide deposition, hyperphosphorylated tau proteins, reactive astrocytes, high levels of metal ions, and upregulated monoamine oxidases are considered to be the primary pathological markers of Alzheimer's disease (AD). Among them, Aβ peptide deposition or Aβ plaques, is regarded as the initial factor in the pathogenesis of AD and a critical pathological hallmark in AD. This review highlights recently Aβ-specific fluorescent probes for two-photon imaging of Aβ plaques in vivo. It includes the synthesis and detection mechanism of probes, as well as their application to two-photon imaging of Aβ plaques in vivo.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Dang C, Wang Y, Li Q, Lu Y. Neuroimaging modalities in the detection of Alzheimer's disease-associated biomarkers. PSYCHORADIOLOGY 2023; 3:kkad009. [PMID: 38666112 PMCID: PMC11003434 DOI: 10.1093/psyrad/kkad009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 04/28/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological changes in AD patients occur up to 10-20 years before the emergence of clinical symptoms. Specific diagnosis and appropriate intervention strategies are crucial during the phase of mild cognitive impairment (MCI) and AD. The detection of biomarkers has emerged as a promising tool for tracking the efficacy of potential therapies, making an early disease diagnosis, and prejudging treatment prognosis. Specifically, multiple neuroimaging modalities, including magnetic resonance imaging (MRI), positron emission tomography, optical imaging, and single photon emission-computed tomography, have provided a few potential biomarkers for clinical application. The MRI modalities described in this review include structural MRI, functional MRI, diffusion tensor imaging, magnetic resonance spectroscopy, and arterial spin labelling. These techniques allow the detection of presymptomatic diagnostic biomarkers in the brains of cognitively normal elderly people and might also be used to monitor AD disease progression after the onset of clinical symptoms. This review highlights potential biomarkers, merits, and demerits of different neuroimaging modalities and their clinical value in MCI and AD patients. Further studies are necessary to explore more biomarkers and overcome the limitations of multiple neuroimaging modalities for inclusion in diagnostic criteria for AD.
Collapse
Affiliation(s)
- Chun Dang
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yanchao Wang
- Department of Neurology, Chifeng University of Affiliated Hospital, Chifeng 024000, China
| | - Qian Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu 610000, China
| |
Collapse
|
25
|
Wang R, Pang SC, Li JY, Li CL, Liu JM, Wang YM, Chen ML, Li YB. A review of the current research on in vivo and in vitro detection for alpha-synuclein: a biomarker of Parkinson's disease. Anal Bioanal Chem 2023; 415:1589-1605. [PMID: 36688984 DOI: 10.1007/s00216-023-04520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Parkinson's disease is a health-threatening neurodegenerative disease of the elderly with clinical manifestations of motor and non-motor deficits such as tremor palsy and loss of smell. Alpha-synuclein (α-Syn) is the pathological basis of PD, it can abnormally aggregate into insoluble forms such as oligomers, fibrils, and plaques, causing degeneration of nigrostriatal dopaminergic neurons in the substantia nigra in the patient's brain and the formation of Lewy bodies (LBs) and Lewy neuritis (LN) inclusions. As a result, achieving α-Syn aggregate detection in the early stages of PD can effectively stop or delay the progression of the disease. In this paper, we provide a brief overview and analysis of the molecular structures and α-Syn in vivo and in vitro detection methods, such as mass spectrometry, antigen-antibody recognition, electrochemical sensors, and imaging techniques, intending to provide more technological support for detecting α-Syn early in the disease and intervening in the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Rui Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.,College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shu-Chao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jing-Ya Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chan-Lian Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun-Miao Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yu-Ming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mei-Ling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yu-Bo Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
26
|
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Mol Imaging Biol 2023; 25:240-264. [PMID: 36745354 DOI: 10.1007/s11307-023-01800-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.
Collapse
|
27
|
Wang Q, Zhong J, Li K, Wu J, Wang X, Jiang S, Dai J, Cheng Y. Compact Luminol Chemiluminophores for In Vivo Detection and Imaging of β-Sheet Protein Aggregates. Anal Chem 2023; 95:1065-1073. [PMID: 36542087 DOI: 10.1021/acs.analchem.2c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein aggregation has been found in a wide range of neurodegenerative protein-misfolding diseases. The demand for in vivo technologies to identify protein aggregation is at the leading edge for the pathogenic study, diagnostic development, and therapeutic intervention of these devastating disorders. Herein, we report a series of luminol analogues to construct a facile chemiluminescence (CL)-based approach for in vivo detection and imaging of β-sheet protein aggregates. The synthesized compounds exhibited a distinct chemiluminescent response with long emission wavelengths toward reactive oxygen species under physiological conditions and displayed signal amplification in the presence of β-sheet protein aggregates, including α-synuclein, β-amyloid, and tau. Among them, CyLumi-3 was further evaluated as a chemiluminescent probe in preclinical models. By intravenous administration into the model mice via the tail vein, in vivo CL imaging noninvasively detected the specific CL of the probe targeting the α-synuclein aggregates in the brains of living mice. Based on its structural characteristics, CyLumi-3 can readily interact with α-synuclein aggregates with significantly enhanced fluorescence and can identify α-synuclein aggregates in vivo via distinctive CL amplification, which could pave the way for a more comprehensive understanding of protein aggregation in preclinical studies and would provide new hints for developing small-molecule chemiluminophores for protein aggregates.
Collapse
Affiliation(s)
- Qinyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kexin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiajun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shen Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Zhang T, Chen X, Yuan C, Pang X, Shangguan P, Liu Y, Han L, Sun J, Lam JWY, Liu Y, Wang J, Shi B, Zhong Tang B. Near-Infrared Aggregation-Induced Emission Luminogens for In Vivo Theranostics of Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202211550. [PMID: 36336656 DOI: 10.1002/anie.202211550] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Optimized theranostic strategies for Alzheimer's disease (AD) remain almost absent from bench to clinic. Current probes and drugs attempting to prevent β-amyloid (Aβ) fibrosis encounter failures due to the blood-brain barrier (BBB) penetration challenge and blind intervention time window. Herein, we design a near-infrared (NIR) aggregation-induced emission (AIE) probe, DNTPH, via balanced hydrophobicity-hydrophilicity strategy. DNTPH binds selectively to Aβ fibrils with a high signal-to-noise ratio. In vivo imaging revealed its excellent BBB permeability and long-term tracking ability with high-performance AD diagnosis. Remarkably, DNTPH exhibits a strong inhibitory effect on Aβ fibrosis and promotes fibril disassembly, thereby attenuating Aβ-induced neurotoxicity. DNTPH treatment significantly reduced Aβ plaques and rescued learning deficits in AD mice. Thus, DNTPH serves as the first AIE in vivo theranostic agent for real-time NIR imaging of Aβ plaques and AD therapy simultaneously.
Collapse
Affiliation(s)
- Tianfu Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Congmin Yuan
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaobin Pang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, 475004, Kaifeng, China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, 475004, Kaifeng, China
| | - Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China.,Centre for motor neuron disease, Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
30
|
Sen A, Mora AK, Koli M, Mula S, Kundu S, Nath S. Sensing lysozyme fibrils by salicylaldimine substituted BODIPY dyes - A correlation with molecular structure. Int J Biol Macromol 2022; 220:901-909. [PMID: 35998856 DOI: 10.1016/j.ijbiomac.2022.08.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Quick and efficient detection of protein fibrils has enormous impact on the diagnosis and treatment of amyloid related neurological diseases. Among several methods, fluorescence based techniques have garnered most importance in the detection of amyloid fibrils due to its high sensitivity and extreme simplicity. Among other classes of molecular probes, BODIPY derivatives have been employed extensively for the detection of amyloid fibrils. However, there are very few studies on the relationship between the molecular structure of BODIPY dyes and their amyloid sensing activity. Here in a BODIPY based salicylaldimine Schiff base and its corresponding boron complex have been evaluated for their ability to sense amyloid fibrils from hen-egg white lysozyme using steady state and time-resolved spectroscopic techniques. Both dyes show fluorescence enhancement as well as increase in their excited state lifetime upon their binding with lysozyme fibrils. However, the BODIPY derivative which shows more emission enhancement in fibrillar solution has much lower affinity towards amyloid fibrils as compared to other derivative. This contrasting behaviour in the emission enhancement and binding affinity has been explained on the basis of differences in their photophysical properties in water and amyloid fibril originating from the difference in their molecular structure. Such correlation between the amyloid sensitivity and the molecular structure of the probe can open up a new strategy for designing new efficient amyloid probes.
Collapse
Affiliation(s)
- Ayentika Sen
- Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Soumitra Kundu
- Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
31
|
Mallesh R, Khan J, Pradhan K, Roy R, Jana NR, Jaisankar P, Ghosh S. Design and Development of Benzothiazole-Based Fluorescent Probes for Selective Detection of Aβ Aggregates in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:2503-2516. [PMID: 35926183 DOI: 10.1021/acschemneuro.2c00361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The formation and accumulation of amyloid beta (Aβ) peptide are considered the crucial events that are responsible for the progression of Alzheimer's disease (AD). Herein, we have designed and synthesized a series of fluorescent probes by using electron acceptor-donor end groups interacting with a π-conjugating system for the detection of Aβ aggregates. The chemical structure of these probes denoted as RMs, having a conjugated π-system (C═C), showed a maximum emission in PBS (>600 nm), which is the best range for a fluorescent imaging probe. Among all these probes, RM-28 showed an excellent fluorescence property with an emission maximum of >598 nm upon binding to Aβ aggregates. RM-28 also showed high sensitivity (7.5-fold) and high affinities toward Aβ aggregates (Kd = 175.69 ± 4.8 nM; Ka = 0.5 × 107 M-1). It can cross the blood-brain barrier of mice efficiently. The affinity of RM-28 toward Aβ aggregates was observed in 3xTg-AD brain sections of the hippocampus and cortex region using a fluorescent imaging technique, as well as an in vitro fluorescence-based binding assay with Aβ aggregates. Moreover, RM-28 is highly specific to Aβ aggregates and does not bind with intracellular proteins like bovine serum albumin (BSA) and α-synuclein (α-Syn) aggregates. The results indicate that the probe RM-28 emerges as an efficient and veritable highly specific fluorescent probe for the detection of Aβ aggregates in both in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Rathnam Mallesh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Krishnangsu Pradhan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Nihar Ranjan Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Parasuraman Jaisankar
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
32
|
Rai H, Gupta S, Kumar S, Yang J, Singh SK, Ran C, Modi G. Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer's Disease. J Med Chem 2022; 65:8550-8595. [PMID: 35759679 DOI: 10.1021/acs.jmedchem.1c01619] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A person suspected of having Alzheimer's disease (AD) is clinically diagnosed for the presence of principal biomarkers, especially misfolded amyloid-beta (Aβ) and tau proteins in the brain regions. Existing radiotracer diagnostic tools, such as PET imaging, are expensive and have limited availability for primary patient screening and pre-clinical animal studies. To change the status quo, small-molecular near-infrared (NIR) probes have been rapidly developed, which may serve as an inexpensive, handy imaging tool to comprehend the dynamics of pathogenic progression in AD and assess therapeutic efficacy in vivo. This Perspective summarizes the biochemistry of Aβ and tau proteins and then focuses on structurally diverse NIR probes with coverages of their spectroscopic properties, binding affinity toward Aβ and tau species, and theranostic effectiveness. With the summarized information and perspective discussions, we hope that this paper may serve as a guiding tool for designing novel in vivo imaging fluoroprobes with theranostic capabilities in the future.
Collapse
Affiliation(s)
- Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sushil K Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| |
Collapse
|
33
|
Liu XY, Wang XJ, Shi L, Liu YH, Wang L, Li K, Bu Q, Cen XB, Yu XQ. Rational Design of Quinoxalinone-Based Red-Emitting Probes for High-Affinity and Long-Term Visualizing Amyloid-β In Vivo. Anal Chem 2022; 94:7665-7673. [PMID: 35578920 DOI: 10.1021/acs.analchem.2c01046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with insidious onset, and the deposition of amyloid-β (Aβ) is believed to be one of the main cause. Fluorescence imaging is a promising technique for this task, but the Aβ gold standard probe ThT developed based on this still has shortcomings. The development of a new fluorescent probe to detect Aβ plaques is thought to be essential. Herein, a series of red to near-infrared emitting fluorescent probes QNO-ADs with newly quinoxalinone skeleton are designed to detect Aβ plaques. They all demonstrate excellent optical properties and high binding affinity (∼Kd = 20 nM) to Aβ aggregates. As the most outstanding candidate, QNO-AD-3 shows significant signal-to-noise (S/N) ratio at the level of in vitro binding studies, and the brilliant fluorescence staining results in favor of grasping the approximate distribution of Aβ plaques in the brain slice. In vivo Aβ plaques imaging suggests that QNO-AD-3 can cross the BBB and have a long retention time in the brain with low biological toxicity. In addition, the results of docking theoretical calculation also provide some references for the design of Aβ probe. Overall, given the high affinity of QNO-AD-3 and the ability to monitor Aβ plaques for a long time that is not common now, we believe QNO-AD-3 will be an effective tool for an Aβ-related matrix and AD disease research in the future.
Collapse
Affiliation(s)
- Xin-Yao Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xiao-Jie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiao-Bo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China.,Department of Chemistry, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
34
|
Su D, Diao W, Li J, Pan L, Zhang X, Wu X, Mao W. Strategic Design of Amyloid-β Species Fluorescent Probes for Alzheimer's Disease. ACS Chem Neurosci 2022; 13:540-551. [PMID: 35132849 DOI: 10.1021/acschemneuro.1c00810] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a high mortality and high disability rates neurodegenerative disease characterized by irreversible progression and poses a significant social and economic burden throughout the world. However, currently approved AD therapeutic agents only alleviate symptoms and there is still a lack of practical therapeutic regimens to stop or slow the progression of this disease. Thus, there is urgently needed novel diagnosis tools and drugs for early diagnosis and treatment of AD. Among several AD pathological hallmarks, amyloid-β (Aβ) peptide deposition is considered a critical initiating factor in AD. In recent years, with the advantages of excellent sensitivity and high resolution, near-infrared fluorescence (NIRF) imaging has attracted the attention of many researchers to develop Aβ plaque probes. This review mainly focused on different NIRF probe design strategies for imaging Aβ species to pave the way for the future design of novel NIRF probes for early diagnosis AD.
Collapse
Affiliation(s)
- Dunyan Su
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610093, P. R. China
| |
Collapse
|
35
|
Mukherjee A, Al-Lahham R, Corkins ME, Samanta S, Schmeichel AM, Singer W, Low PA, Govindaraju T, Soto C. Identification of Multicolor Fluorescent Probes for Heterogeneous Aβ Deposits in Alzheimer's Disease. Front Aging Neurosci 2022; 13:802614. [PMID: 35185519 PMCID: PMC8852231 DOI: 10.3389/fnagi.2021.802614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Accumulation of amyloid-beta (Aβ) into amyloid plaques and hyperphosphorylated tau into neurofibrillary tangles (NFTs) are pathological hallmarks of Alzheimer's disease (AD). There is a significant intra- and inter-individual variability in the morphology and conformation of Aβ aggregates, which may account in part for the extensive clinical and pathophysiological heterogeneity observed in AD. In this study, we sought to identify an array of fluorescent dyes to specifically probe Aβ aggregates, in an effort to address their diversity. We screened a small library of fluorescent probes and identified three benzothiazole-coumarin derivatives that stained both vascular and parenchymal Aβ deposits in AD brain sections. The set of these three dyes allowed the visualization of Aβ deposits in three different colors (blue, green and far-red). Importantly, two of these dyes specifically stained Aβ deposits with no apparent staining of hyperphosphorylated tau or α-synuclein deposits. Furthermore, this set of dyes demonstrated differential interactions with distinct types of Aβ deposits present in the same subject. Aβ aggregate-specific dyes identified in this study have the potential to be further developed into Aβ imaging probes for the diagnosis of AD. In addition, the far-red dye we identified in this study may serve as an imaging probe for small animal imaging of Aβ pathology. Finally, these dyes in combination may help us advance our understanding of the relation between the various Aβ deposits and the clinical diversity observed in AD.
Collapse
Affiliation(s)
- Abhisek Mukherjee
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rabab Al-Lahham
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mark E. Corkins
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | | | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Phillip A. Low
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
36
|
Marín J, Aguilera P, Lagos R, Marcoleta A. Assessment of Intracellular Amyloid Formation in Fixed and Live Bacteria Using Fluorescence Microscopy. Methods Mol Biol 2022; 2538:261-273. [PMID: 35951305 DOI: 10.1007/978-1-0716-2529-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although amyloid aggregation has been generally associated with protein misfolding and neurodegenerative diseases in mammals, bacteria and other organisms have harnessed amyloidogenesis to perform diverse biological processes. These functional amyloids, some of them secreted and others intracellular, require that the producing cells keep aggregation under control in the cytoplasm upon protein translation, preventing their inherent toxicity. Thus, it is highly relevant to understand how intracellular amyloid formation occurs and is regulated, its metabolic consequences, and the formation dynamics and fate of the amyloid inclusions upon cell division. This chapter describes methods leveraging fluorescence microscopy and fixed- or live-cell imaging to monitor intracellular amyloid formation in bacterial cells.
Collapse
Affiliation(s)
- Josefina Marín
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paulina Aguilera
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés Marcoleta
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
37
|
Shumail H, Khalid S, Alqahtani T, Algahtany M, Azhar Ud Din M, Alqahtani A. An overview on therapeutic role of Diferuloylmethane (Curcumin) in Azheimer’s disease and sleep disorders. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin is widely used in spices in Asia. It has been widely explored for various diseases as therapeutic agent. Alzheimer’s disease (AD) is a neurodegenerative disease associated with dementia and cognitive disabilities. With the progression of disease, various changes appear in the brain cells that greatly affect the daily routine of the patient including sleep-wake disturbances. In the last few decades, extensive research has been carried out on this disease suggesting the development of non-steroidal anti-inflammatory drugs for its treatment. Since long, turmeric has been used in Asian countries as a home remedy for treating various ailments. Curcumin is an active ingredient isolated from the turmeric plant and is composed of curcuminoids. Because of its anti-inflammatory, antioxidant, anti-apoptotic and neuroprotective properties, curcumin can be safely administered to stop the progression of dementia and can be used for the development of such drugs that can reverse the neurotic damage caused by AD. This review article provides a comprehensive overview on the research carried out for AD using curcumin as active model drug.
Collapse
Affiliation(s)
- Hoor Shumail
- Department of Microbiology, Women University Mardan, Pakistan
| | - Shah Khalid
- Department of Botany, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M. Azhar Ud Din
- Professor Xu Jiaping Molecular Biology Laboratory, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
38
|
Oh Y, Lee T, Kim MK, Chong Y. Thiophene‐π‐Cyanoacetamides Show Intense and Tau‐selective Turn‐on Fluorescence in the Near‐Infrared Region. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yeonji Oh
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University Seoul 143–701 South Korea
| | - Tae‐gum Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University Seoul 143–701 South Korea
| | - Mi Kyoung Kim
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University Seoul 143–701 South Korea
| | - Youhoon Chong
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University Seoul 143–701 South Korea
| |
Collapse
|
39
|
Ehrlich RS, Shiao AL, Li M, Teppang KL, Jeoung KY, Theodorakis EA, Yang J. Exploring the Effect of Aliphatic Substituents on Aryl Cyano Amides on Enhancement of Fluorescence upon Binding to Amyloid-β Aggregates. ACS Chem Neurosci 2021; 12:2946-2952. [PMID: 34270227 DOI: 10.1021/acschemneuro.1c00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The self-assembly of amyloid-β (Aβ) peptides into amyloid aggregates is a pathological hallmark of Alzheimer's Disease. We previously reported a fluorescent Aryl Cyano Amide (ARCAM) probe that exhibits an increase in fluorescence emission upon binding to Aβ aggregates in solution and in neuronal tissue. Here, we investigate the effect of introducing small aliphatic substituents on the spectroscopic properties of ARCAM both free in solution and when bound to aggregated Aβ. We found that introducing substituents designed to hinder the rotation of bonds between the electron donor and acceptor on these fluorophores can affect the overall brightness of fluorescence emission of the probes in amyloid-free solutions, but the relative fluorescence enhancement of these probes in amyloid-containing solutions is dependent on the location of the substituents on the ARCAM scaffold. We also observed the capability to tune the excitation or emission wavelength of these probes by introducing electron-donating or -withdrawing substituents that putatively affect either the energy required for photoexcitation or the stability of the photoexcited state. These studies reveal new design principles for developing ARCAM-based fluorescent Aβ-binding probes with an enhanced fluorescence signal compared to background and tunable spectroscopic properties, which may lead to improved chemical tools for aiding in the diagnosis of amyloid-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Rachel S. Ehrlich
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Alexander L. Shiao
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Meihan Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Kristine L. Teppang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Kun Yong Jeoung
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
40
|
Sun L, Cho HJ, Sen S, Arango AS, Huynh TT, Huang Y, Bandara N, Rogers BE, Tajkhorshid E, Mirica LM. Amphiphilic Distyrylbenzene Derivatives as Potential Therapeutic and Imaging Agents for Soluble and Insoluble Amyloid β Aggregates in Alzheimer's Disease. J Am Chem Soc 2021; 143:10462-10476. [PMID: 34213901 PMCID: PMC8762579 DOI: 10.1021/jacs.1c05470] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease, and efficient therapeutic and early diagnostic agents for AD are still lacking. Herein, we report the development of a novel amphiphilic compound, LS-4, generated by linking a hydrophobic amyloid-binding distyrylbenzene fragment with a hydrophilic triazamacrocycle, which dramatically increases the binding affinity toward various amyloid β (Aβ) peptide aggregates, especially for soluble Aβ oligomers. Moreover, upon the administration of LS-4 to 5xFAD mice, fluorescence imaging of LS-4-treated brain sections reveals that LS-4 can penetrate the blood-brain barrier and bind to the Aβ oligomers in vivo. In addition, the treatment of 5xFAD mice with LS-4 reduces the amount of both amyloid plaques and associated phosphorylated tau aggregates vs the vehicle-treated 5xFAD mice, while microglia activation is also reduced. Molecular dynamics simulations corroborate the observation that introducing a hydrophilic moiety into the molecular structure of LS-4 can enhance the electrostatic interactions with the polar residues of the Aβ species. Finally, exploiting the Cu2+-chelating property of the triazamacrocycle, we performed a series of imaging and biodistribution studies that show the 64Cu-LS-4 complex binds to the amyloid plaques and can accumulate to a significantly larger extent in the 5xFAD mouse brains vs the wild-type controls. Overall, these results illustrate that the novel strategy, to employ an amphiphilic molecule containing a hydrophilic moiety attached to a hydrophobic amyloid-binding fragment, can increase the binding affinity for both soluble and insoluble Aβ aggregates and can thus be used to detect and regulate various Aβ species in AD.
Collapse
Affiliation(s)
- Liang Sun
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong-Jun Cho
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Soumyo Sen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andres S Arango
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Yiran Huang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Liviu M Mirica
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
41
|
Warerkar OD, Mudliar NH, Singh PK. A hemicyanine based fluorescence turn-on sensor for amyloid fibril detection in the far-red region. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Zhang Y, Ding C, Li C, Wang X. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer's disease. Adv Clin Chem 2021; 103:135-190. [PMID: 34229849 DOI: 10.1016/bs.acc.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid plaques generated from the accumulation of amyloid-β peptides (Aβ) fibrils in the brain is one of the main hallmarks of Alzheimer's disease (AD), a most common neurodegenerative disorder. Aβ aggregation can produce neurotoxic oligomers and fibrils, which has been widely accepted as the causative factor in AD pathogenesis. Accordingly, both soluble oligomers and insoluble fibrils have been considered as diagnostic biomarkers for AD. Among the existing analytical methods, fluorometry using fluorescent probes has exhibited promising potential in quantitative detection and imaging of both soluble and insoluble Aβ species, providing a valuable approach for the diagnosis and drug development of AD. In this review, the most recent advances in the fluorescent probes for soluble or insoluble Aβ aggregates are discussed in terms of design strategy, probing mechanism, and potential applications. In the end, future research directions of fluorescent probes for Aβ species are also proposed.
Collapse
Affiliation(s)
- Yunhua Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Cen Ding
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Changhong Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, PR China.
| |
Collapse
|
43
|
Abstract
Thioflavin-T is used to image amyloid aggregates because of the excellent turn-on fluorescence properties, but binding affinities are low. By mounting multiple dye units on the surface of a vesicle, the binding affinity for α-synuclein fibrils is increased by three orders of magnitude, and the optical response is increased. Cooperative interactions of the dye headgroup and lipid with the protein provide a general strategy for the construction of multivalent amyloid probes based on vesicles.
Collapse
Affiliation(s)
- Istvan Kocsis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Elena Sanna
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
44
|
Kasus-Jacobi A, Washburn JL, Land CA, Pereira HA. Neutrophil Granule Proteins Inhibit Amyloid Beta Aggregation and Neurotoxicity. Curr Alzheimer Res 2021; 18:414-427. [PMID: 34429047 PMCID: PMC9791948 DOI: 10.2174/1567205018666210823095044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A role for neutrophils in the pathogenesis of Alzheimer's disease (AD) is emerging. We previously showed that the neutrophil granule proteins cationic antimicrobial protein of 37 kDa (CAP37), cathepsin G (CG), and neutrophil elastase (NE) directly bind the amyloid-beta peptide Aβ1-42, a central player in AD pathogenesis. CAP37, CG, and NE are serine proteases that can cleave Aβ1-42 at different sites and with different catalytic activities. OBJECTIVE In this study, we compared the effects of these three proteins on Aβ1-42 fibrillation and neurotoxicity. METHODS Using mass spectrometry and in vitro aggregation assay, we found that NE and CG efficiently cleave Aβ1-42. This cleavage correlates well with the inhibition of Aβ1-42 aggregation into fibrils. In contrast, CAP37 did not efficiently cleave Aβ1-42, but was still able to inhibit its fibrillation, most likely through a quenching effect. Inhibition of Aβ1-42 aggregation by NE and CG neutralized its toxicity measured in cultured neurons. In contrast, inhibition of Aβ1-42 aggregation by CAP37 did not inhibit its neurotoxicity. RESULTS We found that a peptide derived from CAP37 could mimic the quenching and inhibition of Aβ1-42 aggregation effects of the full-length protein. Additionally, this peptide was able to inhibit the neurotoxicity of the most toxic Aβ1-42 aggregate, an effect that was not found with the full-length CAP37. CONCLUSION These results shed light on the mechanisms of action of neutrophil granule proteins with regard to inhibition of Aβ1-42 aggregation and neurotoxicity and open up a possible strategy for the discovery of new disease-modifying drugs for AD.
Collapse
Affiliation(s)
- Anne Kasus-Jacobi
- Department of Pharmaceutical Sciences
- Oklahoma Center for Neuroscience
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | - H. Anne Pereira
- Department of Pharmaceutical Sciences
- Oklahoma Center for Neuroscience
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
45
|
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001945. [PMID: 32902000 DOI: 10.1002/adma.202001945] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Neurodegenerative diseases are debilitating disorders that feature progressive and selective loss of function or structure of anatomically or physiologically associated neuronal systems. Both chronic and acute neurodegenerative diseases are associated with high morbidity and mortality along with the death of neurons in different areas of the brain; moreover, there are few or no effective curative therapy options for treating these disorders. There is an urgent need to diagnose neurodegenerative disease as early as possible, and to distinguish between different disorders with overlapping symptoms that will help to decide the best clinical treatment. Recently, in neurodegenerative disease research, fluorescent-probe-mediated biomarker visualization techniques have been gaining increasing attention for the early diagnosis of neurodegenerative diseases. A survey of fluorescent probes for sensing and imaging biomarkers of neurodegenerative diseases is provided. These imaging probes are categorized based on the different potential biomarkers of various neurodegenerative diseases, and their advantages and disadvantages are discussed. Guides to develop new sensing strategies, recognition mechanisms, as well as the ideal features to further improve neurodegenerative disease fluorescence imaging are also explored.
Collapse
Affiliation(s)
- Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
46
|
Gao W, Wang W, Dong X, Sun Y. Nitrogen-Doped Carbonized Polymer Dots: A Potent Scavenger and Detector Targeting Alzheimer's β-Amyloid Plaques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002804. [PMID: 33006250 DOI: 10.1002/smll.202002804] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/05/2020] [Indexed: 05/16/2023]
Abstract
The fibrillization and deposition of β-amyloid protein (Aβ) are recognized to be the pathological hallmarks of Alzheimer's disease (AD), which signify the need for the effective detection and inhibition of Aβ accumulation. Development of multifunctional agents that can inhibit Aβ aggregation, rapidly disaggregate fibrils, and image aggregates is one of the effective strategies to treat and diagnose AD. Herein, the multifunctionality of nitrogen-doped carbonized polymer dots (CPDs) targeting Aβ aggregation is reported. CPDs inhibit the fibrillization of Aβ monomers and rapidly disintegrate Aβ fibrils by electrostatic interactions, hydrogen-bonding and hydrophobic interactions with Aβ in a time scale of seconds to minutes. Moreover, the interactions make CPDs label Aβ fibrils and emit enhanced red fluorescence by the binding, so CPDs can be used for in vivo imaging of the amyloids in transgenic Caenorhabditis elegans CL2006 as an AD model. Importantly, CPDs are demonstrated to scavenge the in vivo amyloid plaques and to promote the lifespan extension of CL2006 strain by alleviating the Aβ-triggered toxicity. Taken together, the multifunctional CPDs show an exciting prospect for further investigations in Aβ-targeted AD treatment and diagnosis, and this study provides new insight into the development of carbon materials in AD theranostics.
Collapse
Affiliation(s)
- Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
47
|
Fueyo-González F, González-Vera JA, Alkorta I, Infantes L, Jimeno ML, Aranda P, Acuña-Castroviejo D, Ruiz-Arias A, Orte A, Herranz R. Environment-Sensitive Probes for Illuminating Amyloid Aggregation In Vitro and in Zebrafish. ACS Sens 2020; 5:2792-2799. [PMID: 32551591 DOI: 10.1021/acssensors.0c00587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aberrant aggregation of certain peptides and proteins, forming extracellular plaques of fibrillar material, is one of the hallmarks of amyloid diseases, such as Alzheimer's and Parkinson's. Herein, we have designed a new family of solvatochromic dyes based on the 9-amino-quinolimide moiety capable of reporting during the early stages of amyloid fibrillization. We have rationally improved the photophysical properties of quinolimides by placing diverse amino groups at the 9-position of the quinolimide core, leading to higher solvatochromic and fluorogenic character and higher lifetime dependence on the hydrophobicity of the environment, which represent excellent properties for the sensitive detection of prefibrillar aggregates. Among the different probes prepared, the 9-azetidinyl-quinolimide derivative showed striking performance in the following β-amyloid peptide (Aβ) aggregation in solution in real time and identifying the formation of different types of early oligomers of Aβ, the most important species linked to cytotoxicity, using novel, multidimensional fluorescence microscopy, with one- or two-photon excitation. Interestingly, the new dye allowed the visualization of proteinaceous inclusion bodies in a zebrafish model with neuronal damage induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Our results support the potential of the novel fluorophores as powerful tools to follow amyloid aggregation using fluorescence microscopy in vivo, revealing heterogeneous populations of different types of aggregates and, more broadly, to study protein interactions.
Collapse
Affiliation(s)
| | - Juan A. González-Vera
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lourdes Infantes
- Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid, Spain
| | - Maria Luisa Jimeno
- Centro de Química Orgánica Lora Tamayo (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Paula Aranda
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Dario Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Alvaro Ruiz-Arias
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Angel Orte
- Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Rosario Herranz
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
48
|
Pravin N, Kumar R, Tripathi S, Kumar P, Mohite GM, Navalkar A, Panigrahi R, Singh N, Gadhe LG, Manchanda S, Shimozawa M, Nilsson P, Johansson J, Kumar A, Maji SK, Shanmugam M. Benzimidazole-based fluorophores for the detection of amyloid fibrils with higher sensitivity than Thioflavin-T. J Neurochem 2020; 156:1003-1019. [PMID: 32750740 DOI: 10.1111/jnc.15138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Protein aggregation into amyloid fibrils is a key feature of a multitude of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Prion disease. To detect amyloid fibrils, fluorophores with high sensitivity and better efficiency coupled with the low toxicity are in high demand even to date. In this pursuit, we have unveiled two benzimidazole-based fluorescence sensors ([C15 H15 N3 ] (C1) and [C16 H16 N3 O2 ] (C2), which possess exceptional affinity toward different amyloid fibrils in its submicromolar concentration (8 × 10-9 M), whereas under a similar concentration, the gold standard Thioflavin-T (ThT) fails to bind with amyloid fibrils. These fluorescent markers bind to α-Syn amyloid fibrils as well as amyloid fibrils forming other proteins/peptides including Aβ42 amyloid fibrils. The 1 H-15 N heteronuclear quantum correlation spectroscopy nuclear magnetic resonance data collected on wild-type α-Syn monomer with and without the fluorophores (C1 and C2) reveal that there is weak or no interactions between C1 or C2 with residues in α-Syn monomer, which indirectly reflects the specific binding ability of C1 and C2 to the α-Syn amyloid fibrils. Detailed studies further suggest that C1 and C2 can detect/bind with the α-Syn amyloid fibril as low as 100 × 10-9 M. Extremely low or no cytotoxicity is observed for C1 and C2 and they do not interfere with α-Syn fibrillation kinetics, unlike ThT. Both C1/C2 not only shows selective binding with amyloid fibrils forming various proteins/peptides but also displays excellent affinity and selectivity toward α-Syn amyloid aggregates in SH-SY5Y cells and Aβ42 amyloid plaques in animal brain tissues. Overall, our data show that the developed dyes could be used for the detection of amyloid fibrils including α-Syn and Aβ42 amyloids with higher sensitivity as compared to currently used ThT.
Collapse
Affiliation(s)
- Narayanaperumal Pravin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Pardeep Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ganesh M Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Laxmikant G Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shaffi Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Makoto Shimozawa
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
49
|
Kaur A, New EJ, Sunde M. Strategies for the Molecular Imaging of Amyloid and the Value of a Multimodal Approach. ACS Sens 2020; 5:2268-2282. [PMID: 32627533 DOI: 10.1021/acssensors.0c01101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein aggregation has been widely implicated in neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia, Parkinson's disease, and Huntington disease, as well as in systemic amyloidoses and conditions associated with localized amyloid deposits, such as type-II diabetes. The pressing need for a better understanding of the factors governing protein assembly has driven research for the development of molecular sensors for amyloidogenic proteins. To date, a number of sensors have been developed that report on the presence of protein aggregates utilizing various modalities, and their utility demonstrated for imaging protein aggregation in vitro and in vivo. Analysis of these sensors highlights the various advantages and disadvantages of the different imaging modalities and makes clear that multimodal sensors with properties amenable to more than one imaging technique need to be developed. This critical review highlights the key molecular scaffolds reported for molecular imaging modalities such as fluorescence, positron emission tomography, single photon emission computed tomography, and magnetic resonance imaging and includes discussion of the advantages and disadvantages of each modality, and future directions for the design of amyloid sensors. We also discuss the recent efforts focused on the design and development of multimodal sensors and the value of cross-validation across multiple modalities.
Collapse
Affiliation(s)
- Amandeep Kaur
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales 2006, Australia
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth J. New
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney, School of Chemistry, Faculty of Science, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales 2006, Australia
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
50
|
Zohrabi T, Amiri-Sadeghan A, Ganjali MR, Hosseinkhani S. Diphenylalanin nanofibers-inspired synthesis of fluorescent gold nanoclusters for screening of anti-amyloid drugs. Methods Appl Fluoresc 2020; 8:045002. [PMID: 32580175 DOI: 10.1088/2050-6120/ab9fef] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein misfolding and aggregation into amyloid structures is linked with a number of pathophysiological disorders. In the past decade, significant progresses have been made in the drug discovery strategies against toxic aggregates. Although lack of specificity and high sensitivity for in vitro screening system still seen. Here we demonstrate a new targeting probe based on FF diphenylalanine peptide -protected gold nanoclusters (FF AuNCs). Diphenylalanine peptide has previously been shown to self-assemble into well-ordered fiber like the fibers that are observed in amyloid aggregates. We used of the self-assembly properties along with the ability of FF dipeptide in reduction of gold ions for synthesis of novel Au nanoclusters. We used FF AuNCs for monitoring of effectiveness of anti-amyloid drugs. Fluorescence was considerably diminished when drugs at different concentrations added, due to destruction of the amyloid fibers. Furthermore, the analysis of several components demonstrates significant selectivity against the amyloid disrupting molecules. Prepared FF AuNCs will gain possible strategy for in vitro screening of amyloid disrupting molecules.
Collapse
Affiliation(s)
- Tayebeh Zohrabi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|