1
|
Shi H, Wang L, Hu Y, Li G, Zhou M, Hui R, Ma L, Yao L. Enterovirus E infections in goats with respiratory disease. BMC Vet Res 2025; 21:71. [PMID: 39962514 PMCID: PMC11834325 DOI: 10.1186/s12917-025-04537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Enterovirus E (EV-E) has been called bovine enterovirus and has been found in both healthy animals and sick animals. To date, the pathogenicity of EV-E in goats is still unclear, and the natural infection of EV-E in goats has not been reported in China. In this study, natural infections of EV-E in goat herds were reported in China. RESULTS From March 2023 to April 2023, an emerging respiratory disease affected goats in 12 backyard farms in Henan Province, central China. To investigate the pathogens associated with the disease, samples were collected: sick group included six lung samples from dead goats and 68 nasal swabs and 68 blood samples from sick goats; health group included 36 nasal swabs and 36 blood samples from healthy goats in the same farms; control group included 15 nasal swabs and 15 blood samples from healthy goats in five different farms. Then, these samples were analysed by serology, isolation and molecular detection methods. By molecular detection, 83.3% (5/6) of lung samples, 51.5% (35/68) of nasal samples, and 33.8% (23/68) of blood samples were positive for EV-E in sick group. Four complete EV-E genomes were successfully sequenced and analysed. Compared with genomic sequences of EV A-J, at the nucleotide level the similarities of VP1, P1 and polyprotein genes of the 4 strains were 35.3% to 80.4%, 40.2% to 79.3%, and 49.5% to 82.0%, respectively. At the amino acid level, the similarities of VP1, P1 and Polyprotein were 38.4% to 87.1%, 42.9% to 88.7%, and 51.4% to 91.6%, respectively. Based on the VP1, P1 and Polyprotein sequences, the four strains were clustered with the subtype EV-E4 isolates. In addition, no recombinant event was observed in the four strains in our work by RDP analysis. CONCLUSIONS This is the first molecular evidence of natural infection of genotype E4 in goats with respiratory disease in China. Greater prevention and control measures should be carried out for this disease.
Collapse
Affiliation(s)
- Hong Shi
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, People's Republic of China.
| | - Long Wang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, People's Republic of China
| | - Yun Hu
- Henan Province Engineering Technology Research Center of Animal Disease Control and Prevention, Nanyang Vocational College of Agriculture, Nanyang, People's Republic of China
| | - Guoguang Li
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, People's Republic of China
| | - Mengxiao Zhou
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, People's Republic of China
| | - Ruiqing Hui
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, People's Republic of China
| | - Lei Ma
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, People's Republic of China.
| |
Collapse
|
2
|
Peng Y, Luo Y, Pan L, Hou Y, Qin L, Lan L, Ouyang K, Chen Y, Wei Z, Qin Y, Huang W. Immunogenicity analysis based on VP1 and VP2 proteins of bovine enterovirus. Virology 2024; 600:110260. [PMID: 39442312 DOI: 10.1016/j.virol.2024.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Bovine enterovirus (BEV) infection manifests as a spectrum of clinical signs affecting the respiratory, gastrointestinal, and reproductive systems in cattle. Outbreaks of this disease results in large economic losses to the bovine industry worldwide. Currently there are no efficacious vaccines and medicines to prevent BEV infection. In the present study, reverse transcription-polymerase chain reaction was used to amplify the VP1 and VP2 genes of BEV, enabling the synthesis of a chimeric recombinant protein which contained partial sequences from both proteins. Subsequently, the emulsified purified proteins with Freund's adjuvant were used for triple-fold immunization of 4-week-old Institute of Cancer Research (ICR) mice. The mice were subsequently subjected to a challenge assay which elicited an immune response that was characterized by elevated titers of BEV-specific neutralizing antibodies. Notably, the results showed that the purification of pET32a-VP1 and pET32a-VP2 proteins markedly curtailed virus excretion and mitigated the histopathological damage usually associated with BEV infections. These were observed in the small intestines, kidneys and brain in infected animals. It also alleviated clinical symptoms such as hypothermia and weight loss. In summary, this study offers a theoretical and practical basis for BEV vaccine development.
Collapse
Affiliation(s)
- Yuxin Peng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Liuna Pan
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yue Hou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Lishan Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Liuyi Lan
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| |
Collapse
|
3
|
Zhu L, Zhang H, Zhang X, Xia L. RNA m6A methylation regulators in sepsis. Mol Cell Biochem 2024; 479:2165-2180. [PMID: 37659034 DOI: 10.1007/s11010-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
N6-methyladenosine (m6A) modification is a class of epitope modifications that has received significant attention in recent years, particularly in relation to its role in various diseases, including sepsis. Epigenetic research has increasingly focused on m6A modifications, which is influenced by the dynamic regulation of three protein types: ‟Writers" (such as METTL3/METTL14/WTAP)-responsible for m6A modification; ‟Erasers" (FTO and ALKBH5)-involved in m6A de-modification; and ‟Readers" (YTHDC1/2, YTHDF1/2/3)-responsible for m6A recognition. Sepsis, a severe and fatal infectious disease, has garnered attention regarding the crucial effect of m6A modifications on its development. In this review, we attempted to summarize the recent studies on the involvement of m6A and its regulators in sepsis, as well as the significance of m6A modifications and their regulators in the development of novel drugs and clinical treatment. The potential value of m6A modifications and modulators in the diagnosis, treatment, and prognosis of sepsis has also been discussed.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
4
|
Wang J, Ji J, Zhong Y, Meng W, Wan S, Ding X, Chen Z, Wu W, Jia K, Li S. Construction of recombinant fluorescent LSDV for high-throughput screening of antiviral drugs. Vet Res 2024; 55:33. [PMID: 38493160 PMCID: PMC10943802 DOI: 10.1186/s13567-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/18/2024] Open
Abstract
Lumpy skin disease virus (LSDV) infection is a major socio-economic issue that seriously threatens the global cattle-farming industry. Here, a recombinant virus LSDV-ΔTK/EGFP, expressing enhanced green fluorescent protein (EGFP), was constructed with a homologous recombination system and applied to the high-throughput screening of antiviral drugs. LSDV-ΔTK/EGFP replicates in various kidney cell lines, consistent with wild-type LSDV. The cytopathic effect, viral particle morphology, and growth performance of LSDV-ΔTK/EGFP are consistent with those of wild-type LSDV. High-throughput screening allowed to identify several molecules that inhibit LSDV-ΔTK/EGFP replication. The strong inhibitory effect of theaflavin on LSDV was identified when 100 antiviral drugs were screened in vitro. An infection time analysis showed that theaflavin plays a role in the entry of LSDV into cells and in subsequent viral replication stages. The development of this recombinant virus will contribute to the development of LSDV-directed antiviral drugs and the study of viral replication and mechanisms of action.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jinzhao Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Yongcheng Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Wenxin Meng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shaobin Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Xiaoqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Weiyong Wu
- Agriculture and Rural Affairs Bureau of Luocheng Mulao Autonomous County, Guangxi, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China.
| |
Collapse
|
5
|
Guo Y, Chen Y, Wang Q, Wang Z, Gong L, Sun Y, Song Z, Chang H, Zhang G, Wang H. Emodin and rhapontigenin inhibit the replication of African swine fever virus by interfering with virus entry. Vet Microbiol 2023; 284:109794. [PMID: 37295229 DOI: 10.1016/j.vetmic.2023.109794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Africa swine fever (ASF) is a highly pathogenic contagion caused by African swine fever virus (ASFV), which not only affects the development of domestic pig industry, but also causes huge losses to the world agricultural economy. Vaccine development targeting ASFV remains elusive, which leads to severe difficulties in disease prevention and control. Emodin (EM) and rhapontigenin (RHAG), which are extracted from the dried rhizome of Polygonum knotweed, have various biological properties such as anti-neoplastic and anti-bacterial activities, but no studies have reported that they have anti-ASFV effects. This study discovered that EM and RHAG at different concentrations had a significant dose-dependent inhibitory effect on the ASFV GZ201801 strain in porcine alveolar macrophages (PAMs), and at the specified concentration, EM and RHAG showed continuous inhibition at 24 h, 48 h and 72 h. Not only did they strongly impact virion attachment and internalization, but also inhibit the early stages of ASFV replication. Further research proved that the expression level of Rab 7 protein was reduced by EM and RHAG, and treatments with EM and RHAG induced the accumulation of free cholesterol in endosomes and inhibited endosomal acidification, which prevented the virus from escaping and shelling from late endosomes. This study summarized the application of EM and RHAG in inhibiting ASFV replication in-vitro. Similarly, EM and RHAG targeted Rab 7 in the viral endocytosis pathway, inhibited viral infection, and induced the accumulation of cholesterol in the endosomes and the acidification of the endosomes to inhibit uncoating. A reference could be made to the results of this study when developing antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yanchen Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Qiumei Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Zhiyuan Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Zebu Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Hao Chang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China.
| |
Collapse
|
6
|
Arita M, Fuchino H. Characterization of Anti-Poliovirus Compounds Isolated from Edible Plants. Viruses 2023; 15:v15040903. [PMID: 37112883 PMCID: PMC10145814 DOI: 10.3390/v15040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Poliovirus (PV) is the causative agent of poliomyelitis and is a target of the global eradication programs of the World Health Organization (WHO). After eradication of type 2 and 3 wild-type PVs, vaccine-derived PV remains a substantial threat against the eradication as well as type 1 wild-type PV. Antivirals could serve as an effective means to suppress the outbreak; however, no anti-PV drugs have been approved at present. Here, we screened for effective anti-PV compounds in a library of edible plant extracts (a total of 6032 extracts). We found anti-PV activity in the extracts of seven different plant species. We isolated chrysophanol and vanicoside B (VCB) as the identities of the anti-PV activities of the extracts of Rheum rhaponticum and Fallopia sachalinensis, respectively. VCB targeted the host PI4KB/OSBP pathway for its anti-PV activity (EC50 = 9.2 μM) with an inhibitory effect on in vitro PI4KB activity (IC50 = 5.0 μM). This work offers new insights into the anti-PV activity in edible plants that may serve as potent antivirals for PV infection.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi 208-0011, Tokyo, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba 305-0843, Ibaraki, Japan
| |
Collapse
|
7
|
Wang X, Yang S, Li Y, Jin X, Lu J, Wu M. Role of emodin in atherosclerosis and other cardiovascular diseases: Pharmacological effects, mechanisms, and potential therapeutic target as a phytochemical. Biomed Pharmacother 2023; 161:114539. [PMID: 36933375 DOI: 10.1016/j.biopha.2023.114539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/20/2023] Open
Abstract
The morbidity and mortality of cardiovascular diseases (CVDs) are increasing in recent years, and atherosclerosis (AS), a major CVD, becomes a disorder that afflicts human beings severely, especially the elders. AS is recognized as the primary cause and pathological basis of some other CVDs. The active constituents of Chinese herbal medicines have garnered increasing interest in recent researches owing to their influence on AS and other CVDs. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a naturally occurring anthraquinone derivative found in some Chinese herbal medicines such as Rhei radix et rhizome, Polygoni cuspidati rhizoma et radix and Polygoni multiflori root. In this paper, we first review the latest researches about emodin's pharmacology, metabolism and toxicity. Meanwhile, it has been shown to be effective in treating CVDs caused by AS in dozens of previous studies. Therefore, we systematically reviewed the mechanisms by which emodin treats AS. In summary, these mechanisms include anti-inflammatory activity, lipid metabolism regulation, anti-oxidative stress, anti-apoptosis and vascular protection. The mechanisms of emodin in other CVDs are also discussed, such as vasodilation, inhibition of myocardial fibrosis, inhibition of cardiac valve calcification and antiviral properties. We have further summarized the potential clinical applications of emodin. Through this review, we hope to provide guidance for clinical and preclinical drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Jin
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Luo Y, Liu H, Zou Y, Qiao C, Su Y, Zhu X, Zhang G, Huang W, Qin Y, Pan Y, Huang W. Molecular Epidemiology of Bovine Enteroviruses and Genome Characterization of Two Novel Bovine Enterovirus Strains in Guangxi, China. Microbiol Spectr 2023; 11:e0378522. [PMID: 36877012 PMCID: PMC10101013 DOI: 10.1128/spectrum.03785-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/04/2023] [Indexed: 03/07/2023] Open
Abstract
Bovine enterovirus (BEV) is a highly infectious pathogen that may cause respiratory and gastrointestinal disease outbreaks in cattle. This study aimed to investigate the prevalence and genetic characteristics of BEVs in Guangxi Province, China. A total of 1,168 fecal samples from 97 different bovine farms were collected between October 2021 and July 2022 in Guangxi Province, China. BEV was confirmed using a reverse transcription-PCR (RT-PCR) method targeting the 5' untranslated region (UTR), and isolates were genotyped by sequencing their genomes. The nearly complete genome sequences of eight BEV strains showing cytopathic effects in MDBK cells were determined and analyzed. In total, 125 (10.7%) of 1,168 fecal samples were positive for BEV. BEV infection was significantly associated with farming patterns and clinical symptoms (P < 0.05; odds ratio [OR] > 1). Molecular characterization indicated that five BEV strains from this study belonged to EV-E2 and one strain to EV-E4. Two BEV strains (GXNN2204 and GXGL2215) could not be assigned to a known type. Strain GXGL2215 showed the closest genetic relationship with GX1901 (GenBank accession number MN607030; China) in its VP1 (67.5%) and P1 (74.7%) and with NGR2017 (MH719217; Nigeria) in its polyprotein (72.0%). It was also close to the EV-E4 strain GXYL2213 from this study when the complete genome (81.7%) was compared. Strain GXNN2204 showed the closest genetic relationship with Ho12 (LC150008; Japan) in the VP1 (66.5%), P1 (71.6%), and polyprotein (73.2%). Genome sequence analysis suggested that strains GXNN2204 and GXGL2215 originated from the genomic recombination of EV-E4 and EV-F3 and EV-E2 and EV-E4, respectively. This study reports the cocirculation of multiple BEV types and the identification of two novel BEV strains in Guangxi, China, and it will provide further insights into the epidemiology and evolution of BEV in China. IMPORTANCE Bovine enterovirus (BEV) is a pathogen that causes intestinal, respiratory, and reproductive disease infections in cattle. This study reports on the widespread prevalence and biological characteristics of the different BEV types which currently exist in Guangxi Province, China. It also provides a reference for the study of the prevalence of BEV in China.
Collapse
Affiliation(s)
- Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Huanghao Liu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yanlin Zou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Chengpeng Qiao
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yaquan Su
- Guangxi Agricultural Vocational University, Nanning, China
| | - Xinyue Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Guangxin Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Wenfei Huang
- Guangxi Agricultural Vocational University, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yan Pan
- Guangxi Agricultural Vocational University, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| |
Collapse
|
9
|
Sharma N, Kulkarni GT, Bhatt AN, Satija S, Singh L, Sharma A, Dua K, Karwasra R, Khan AA, Ahmad N, Raza K. Therapeutic Options for the SARS-CoV-2 Virus: Is There a Key in Herbal Medicine? Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SARS-CoV-2 has been responsible for over 500 million cumulative cases all over the world since December 2019 and has marked the third introduction of a highly pathogenic virus after SARS-CoV and MERS-CoV. This virus is in a winning situation because scientists are still racing to explore effective therapeutics, vaccines, and event treatment regimens. In view of progress in current disease management, until now none of the preventive/treatment measures can be considered entirely effective to treat SARS-CoV-2 infection. Therefore, it is required to look up substitute ways for the management of this disease. In this context, herbal medicines could be a good choice. This article emphasizes the antiviral potential of some herbal constituents which further can be a drug of choice in SARS-CoV-2 treatment. This article may be a ready reference for discovering natural lead compounds and targets in SARS-CoV-2 associated works.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Anant Narayan Bhatt
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Lubhan Singh
- Department of Pharmacology, KharvelSubharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, India
| | - Anjana Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, UP, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Govt of India, New Delhi, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Govt of India, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Zheng S, Wang X, Hu H, Xia Y, Diao X, Qiu W, Xue C, Cao Y, Xu Z. Emodin from Aloe inhibits Swine acute diarrhea syndrome coronavirus in cell culture. Front Vet Sci 2022; 9:978453. [PMID: 36061121 PMCID: PMC9433657 DOI: 10.3389/fvets.2022.978453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteropathogenic coronavirus that causes severe diarrhea in neonatal piglets, leading to serious economic losses to the pig industries. At present, there are no effective control measures for SADS, making an urgent need to exploit effective antiviral therapies. Here, we confirmed that Aloe extract (Ae) can strongly inhibit SADS-CoV in Vero and IPI-FX cells in vitro. Furthermore, we detected that Emodin from Ae had anti-SADS-CoV activity in cells but did not impair SADS-CoV infectivity directly. The time-of-addition assay showed that Emodin inhibits SADS-CoV infection at the whole stages of the viral replication cycle. Notably, we found that Emodin can significantly reduce virus particles attaching to the cell surface and induce TLR3 (p < 0.001), IFN-λ3 (p < 0.01), and ISG15 (p < 0.01) expressions in IPI-FX cells, indicating that the anti-SADS-CoV activity of Emodin might be due to blocking viral attachment and the activation of TLR3-IFN-λ3-ISG15 signaling axis. These results suggest that Emodin has the potential value for the development of anti-SADS-CoV drugs.
Collapse
|
11
|
Isolation and Identification of Two Clinical Strains of the Novel Genotype Enterovirus E5 in China. Microbiol Spectr 2022; 10:e0266221. [PMID: 35652637 PMCID: PMC9241952 DOI: 10.1128/spectrum.02662-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Most enterovirus (EV) infections are subclinical but, occasionally, can cause severe and potentially fatal diseases in humans and animals. Currently, EVs are divided into 12 types (A to L) based on phylogenetic analysis and on their natural hosts. Bovine enterovirus (BEV) is an essential member of the enterovirus belonging to the types E and F that attacks cattle as its natural host and causes clinical disorders in the digestive, respiratory, and reproductive tracts. In 2020, several dairy farms in China experienced cow mortality with acute clinical signs, including fever, and diarrhea. In these cases, GX20-1 and JS20-1 virus strains were isolated and sequenced. Cellular adaptation of these two strains showed efficient replications on Madin-Darby bovine kidney (MDBK) cells and produced a significant cytopathogenic effect (CPE). However, on baby hamster kidney (BHK-21) and Vero cells, viral replication was inefficient and did not produce CPE. As noted in comparative genomics analysis, these two strains showed distant evolutionary relationships with the well-known E1 to E4 and F1 to F4 subtypes of BEV and high sequence identities with the candidate type Enterovirus E5, a novel genotype recently identified based on the genomic data of three strains, including the GX20-1 and JS20-1 strains. This study provides the first evidence of a novel genotype bovine enterovirus infection in Chinese cattle herds, a potential threat to the cattle industry in China. IMPORTANCE Bovine enterovirus (BEV) is a cattle-infecting pathogen. This study is the first report of natural infection of a novel genotype of enterovirus in herds of cattle in China. The homology of the novel enterovirus is far different from the structural protein of other enteroviruses and has different cellular adaptations. This study provides a reference for the biological characteristics and prevalence of the novel enterovirus in Chinese cattle populations.
Collapse
|
12
|
Luo L, Yang J, Wang C, Wu J, Li Y, Zhang X, Li H, Zhang H, Zhou Y, Lu A, Chen S. Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1123-1145. [PMID: 34705221 PMCID: PMC8548270 DOI: 10.1007/s11427-020-1959-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
As coronavirus disease 2019 (COVID-19) threatens human health globally, infectious disorders have become one of the most challenging problem for the medical community. Natural products (NP) have been a prolific source of antimicrobial agents with widely divergent structures and a range vast biological activities. A dataset comprising 618 articles, including 646 NP-based compounds from 672 species of natural sources with biological activities against 21 infectious pathogens from five categories, was assembled through manual selection of published articles. These data were used to identify 268 NP-based compounds classified into ten groups, which were used for network pharmacology analysis to capture the most promising lead-compounds such as agelasine D, dicumarol, dihydroartemisinin and pyridomycin. The distribution of maximum Tanimoto scores indicated that compounds which inhibited parasites exhibited low diversity, whereas the chemistries inhibiting bacteria, fungi, and viruses showed more structural diversity. A total of 331 species of medicinal plants with compounds exhibiting antimicrobial activities were selected to classify the family sources. The family Asteraceae possesses various compounds against C. neoformans, the family Anacardiaceae has compounds against Salmonella typhi, the family Cucurbitacea against the human immunodeficiency virus (HIV), and the family Ancistrocladaceae against Plasmodium. This review summarizes currently available data on NP-based antimicrobials against refractory infections to provide information for further discovery of drugs and synthetic strategies for anti-infectious agents.
Collapse
Affiliation(s)
- Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, China
| | - Jie Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yafang Li
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xu Zhang
- weMED Health, Houston, 77054, USA
| | - Hui Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Zhang
- Akupunktur Akademiet, Aabyhoej, Aarhus, 8230, Denmark
| | - Yumei Zhou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 518033, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
13
|
Shao Q, Liu T, Wang W, Liu T, Jin X, Chen Z. Promising Role of Emodin as Therapeutics to Against Viral Infections. Front Pharmacol 2022; 13:902626. [PMID: 35600857 PMCID: PMC9115582 DOI: 10.3389/fphar.2022.902626] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Emodin is an anthraquinone derivative that is widely present in natural plants and has a wide spectrum of pharmacological effects, such as antibacterial, anti-inflammatory, anti-fibrotic and anticancer and so on. Through reviewing studies on antiviral effect of emodin in the past decades, we found that emodin exhibits ability of inhibiting the infection and replication of more than 10 viruses in vitro and in vivo, including herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), coxsackievirus B (CVB), hepatitis B virus (HBV), influenza A virus (IAV), SARS-CoV, viral haemorrhagic septicaemia rhabdovirus (VHSV), enterovirus 71 (EV71), dengue virus serotype 2 (DENV-2) and Zika virus (ZIKV). Therefore, this review aims to summarize the antiviral effect of emodin, in order to provide reference and hopes to support the further investigations.
Collapse
Affiliation(s)
- Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianli Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhuo Chen,
| |
Collapse
|
14
|
Su Y, Wu T, Yu XY, Huo WB, Wang SH, Huan C, Liu YM, Liu JM, Cui MN, Li XH, Yu JH. Inhibitory effect of tanshinone IIA, resveratrol and silibinin on enterovirus 68 production through inhibiting ATM and DNA-PK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153977. [PMID: 35305353 DOI: 10.1016/j.phymed.2022.153977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Human enterovirus 68 (EV68) is a primary etiological agent for respiratory illnesses, while no effective drug has yet used in clinics largely because the pathogenesis of EV68 is not clear. DNA damage response (DDR) responds to cellular DNA breaks and is also involved in viral replication. Three DDR pathways includes ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK). Natural products proved to be an excellent source for the discovery and isolation of novel antivirals. Among them, tanshinone IIA, resveratrol, silibinin, rutin and quercetin are reported to target DDR, therefore their roles in anti-EV68 are investigated in this study. PURPOSE This study investigated the anti-EV68 ability of various natural compounds related to DDR. STUDY DESIGN AND METHODS The methods include cell counting, flow cytometry, western blot, Immunofluorescence staining, comet assays, quantitative real-time RT PCR and short interfering RNAs (siRNAs) for analysis of cell number, cell cycle, protein expression, protein location, DNA damage, mRNA level and knock down target gene, respectively. RESULTS EV68 infection induced DDR. Down-regulation or inhibition of ATM or DNA-PK lowered DDR in EV68-infected cells and mitigated viral protein expression, however, down-regulation or inhibition of ATR unexpectedly up-regulated DDR, and promoted viral protein expression. Meanwhile tanshinone IIA, resveratrol, and silibinin inhibited ATM and/or DNA-PK activation and decreased viral proliferation, while rutin and quercetin inhibited ATR activation and promoted viral production. The role of them in ATM, DNA-PK and ATR activation was consistent with previous reports. CONCLUSION Tanshinone IIA, resveratrol and silibinin inhibited EV68 proliferation through inhibiting ATM and/or DNA-PK activation, and they were effective anti-EV68 candidates.
Collapse
Affiliation(s)
- Ying Su
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Ting Wu
- Neonatal Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiao-Yan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Wen-Bo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Shao-Hua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yu-Meng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jin-Ming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Min-Na Cui
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xin-Hua Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jing-Hua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China; Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Soleiman-Meigooni S, Hoseini Yekta N, Sheikhan HR, Aminianfar M, Hamidi-Farahani R, Ahmadi M, Asgari A, Kazemi-Galougahi MH, Rahimi R. Efficacy of a standardized herbal formulation from Glycyrrhiza glabra L. as an adjuvant treatment in hospitalized patients with COVID-19: A Randomized Controlled trial. J Ayurveda Integr Med 2022; 13:100670. [PMID: 36320214 PMCID: PMC9613802 DOI: 10.1016/j.jaim.2022.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/10/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction As no specific pharmacological intervention has been known for COVID-19, medicinal plants may be a suitable candidate for management of this disease. The aim of this study was to investigate the efficacy of a herbal syrup from licorice as an adjuvant treatment in hospitalized patients with COVID-19. Materials and methods 213 hospitalized patients diagnosed with COVID-19 were assigned to receive either standardized licorice syrup as an adjuvant treatment plus standard care [Syrup Group (SYRUP), N = 91], or standard care alone [Standard Group (STANDARD), N = 104], for 7 days. The primary endpoint was duration of hospitalization in survivors. The secondary endpoints included 25% increase in oxygen saturation, C-reactive protein (CRP) difference and lymphocyte difference from baseline, number of death and number of patients transferred to ICU. Results Mean duration of admission was 5.24 days in SYRUP and 7.14 days in STANDARD (p < 0.001). Oxygen saturation increased in 86 of 91 patients (94.5%) in the licorice group, compared to 83 of 104 patients (79.8%) in the control group (p = 0.002). There was no significant difference between the two groups in the number of patients died during hospitalization (p = 0.837). Five patients in SYRUP and 16 patients in STANDARD were transferred to ICU (p < 0.026). Mean reduction in CRP (p < 0.001) and mean increase in the number of lymphocytes (p = 0.008) in SYRUP were significantly higher than STANDARD. Discussion Licorice syrup as an adjuvant treatment demonstrated promising results on duration of hospital admission, O2 saturation as well as inflammatory markers in COVID-19 patients; however, further clinical studies with larger sample size are suggested to achieve more conclusive results.
Collapse
Affiliation(s)
| | - Nafiseh Hoseini Yekta
- Department of Persian Medicine, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sheikhan
- Faculty of Agriculture and Natural Resources, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Mohammad Aminianfar
- Department of Infectious Diseases, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Ramin Hamidi-Farahani
- Department of Infectious Diseases, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mousa Ahmadi
- Department of Infectious Diseases, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Ali Asgari
- Department of Infectious Diseases, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | | | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author.
| |
Collapse
|
16
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
17
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
18
|
Zhang R, Cheng M, Liu B, Yuan M, Chen D, Wang Y, Wu Z. DEAD-Box Helicase DDX6 Facilitated RIG-I-Mediated Type-I Interferon Response to EV71 Infection. Front Cell Infect Microbiol 2021; 11:725392. [PMID: 34485180 PMCID: PMC8414799 DOI: 10.3389/fcimb.2021.725392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have shown that DEAD (Glu-Asp-Ala-Glu)-box RNA helicases play important roles in viral infection, either as cytosolic sensors of pathogenic molecules or as essential host factors against viral infection. In the current study, we found that DDX6, an RNA helicase belonging to the DEAD-box family of helicase, exhibited anti-Enterovirus 71 activity through augmenting RIG-I-mediated type-I IFN response. Moreover, DDX6 binds viral RNA to form an RNA-protein complex to positively regulate the RIG-I-mediated interferon response; however, EV71 has evolved a strategy to antagonize the antiviral effect of DDX6 by proteolytic degradation of the molecule through its non-structural protein 2A, a virus-encoded protease.
Collapse
Affiliation(s)
- Rui Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Min Cheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Meng Yuan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yujiong Wang
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Xu Z, Huang M, Xia Y, Peng P, Zhang Y, Zheng S, Wang X, Xue C, Cao Y. Emodin from Aloe Inhibits Porcine Reproductive and Respiratory Syndrome Virus via Toll-Like Receptor 3 Activation. Viruses 2021; 13:v13071243. [PMID: 34206896 PMCID: PMC8310261 DOI: 10.3390/v13071243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe reproductive failure in sows and respiratory diseases in growing and finishing pigs and results in great economic losses to the swine industry. Although vaccines are available, PRRSV remains a major threat to the pig farms. Thus, there is an urgent need to develop antiviral drugs to compensate for vaccines. In this study, we report that Aloe extract (Ae) can strongly inhibit PRRSV in Marc-145 cells and porcine alveolar macrophages lines (iPAMs) in vitro. Furthermore, we identified a novel anti-PRRSV molecule, Emodin, from Ae by high-performance liquid chromatography (HPLC). Emodin exerted its inhibitory effect through targeting the whole stages of PRRSV infectious cycle. Moreover, we also found that Emodin can inactivate PRRSV particles directly. Notably, we confirmed that Emodin was able to significantly induce Toll-like receptor 3 (TLR3) (p < 0.01), IFN-α (p < 0.05) and IFN-β expression in iPAMs, indicating that induction of antiviral agents via TLR3 activation by Emodin might contribute to its anti-PRRSV effect. These findings imply that the Emodin from Aloe could hamper the proliferation of PRRSV in vitro and might constitute a new approach for treating PRRSV infection.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
| | - Meiyan Huang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
| | - Yongbo Xia
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
| | - Peng Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
| | - Shumei Zheng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
| | - Xiaowei Wang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; (Z.X.); (M.H.); (Y.X.); (P.P.); (Y.Z.); (S.Z.); (X.W.); (C.X.)
- School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
- Correspondence: ; Tel.: +86-(20)-3933-2938; Fax: +86-(20)-3933-2841
| |
Collapse
|
20
|
Shi M, Peng B, Li A, Li Z, Song P, Li J, Xu R, Li N. Broad Anti-Viral Capacities of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule and Rational use Against COVID-19 Based on Literature Mining. Front Pharmacol 2021; 12:640782. [PMID: 34054522 PMCID: PMC8160462 DOI: 10.3389/fphar.2021.640782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/14/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) has become a matter of international concern as the disease is spreading exponentially. Statistics showed that infected patients in China who received combined treatment of Traditional Chinese Medicine and modern medicine exhibited lower fatality rate and relatively better clinical outcomes. Both Lian-Hua-Qing-Wen Capsule (LHQWC) and Jin-Hua-Qing-Gan Granule (JHQGG) have been recommended by China Food and Drug Administration for the treatment of COVID-19 and have played a vital role in the prevention of a variety of viral infections. Here, we desired to analyze the broad-spectrum anti-viral capacities of LHQWC and JHQGG, and to compare their pharmacological functions for rational clinical applications. Based on literature mining, we found that both LHQWC and JHQGG were endowed with multiple antiviral activities by both targeting viral life cycle and regulating host immune responses and inflammation. In addition, from literature analyzed, JHQGG is more potent in modulating viral life cycle, whereas LHQWC exhibits better efficacies in regulating host anti-viral responses. When translating into clinical applications, oral administration of LHQWC could be more beneficial for patients with insufficient immune functions or for patients with alleviated symptoms after treatment with JHQGG.
Collapse
Affiliation(s)
- Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - An Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyun Li
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Li
- Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Lee YR, Chang CM, Yeh YC, Huang CYF, Lin FM, Huang JT, Hsieh CC, Wang JR, Liu HS. Honeysuckle Aqueous Extracts Induced let-7a Suppress EV71 Replication and Pathogenesis In Vitro and In Vivo and Is Predicted to Inhibit SARS-CoV-2. Viruses 2021; 13:v13020308. [PMID: 33669264 PMCID: PMC7920029 DOI: 10.3390/v13020308] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
Honeysuckle (Lonicera japonica Thunb) is a traditional Chinese medicine (TCM) with an antipathogenic activity. MicroRNAs (miRNAs) are small non-coding RNA molecules that are ubiquitously expressed in cells. Endogenous miRNA may function as an innate response to block pathogen invasion. The miRNA expression profiles of both mice and humans after the ingestion of honeysuckle were obtained. Fifteen overexpressed miRNAs overlapped and were predicted to be capable of targeting three viruses: dengue virus (DENV), enterovirus 71 (EV71) and SARS-CoV-2. Among them, let-7a was examined to be capable of targeting the EV71 RNA genome by reporter assay and Western blotting. Moreover, honeysuckle-induced let-7a suppression of EV71 RNA and protein expression as well as viral replication were investigated both in vitro and in vivo. We demonstrated that let-7a targeted EV71 at the predicted sequences using luciferase reporter plasmids as well as two infectious replicons (pMP4-y-5 and pTOPO-4643). The suppression of EV71 replication and viral load was demonstrated in two cell lines by luciferase activity, RT-PCR, real-time PCR, Western blotting and plaque assay. Furthermore, EV71-infected suckling mice fed honeysuckle extract or inoculated with let-7a showed decreased clinical scores and a prolonged survival time accompanied with decreased viral RNA, protein expression and virus titer. The ingestion of honeysuckle attenuates EV71 replication and related pathogenesis partially through the upregulation of let-7a expression both in vitro and in vivo. Our previous report and the current findings imply that both honeysuckle and upregulated let-7a can execute a suppressive function against the replication of DENV and EV71. Taken together, this evidence indicates that honeysuckle can induce the expression of let-7a and that this miRNA as well as 11 other miRNAs have great potential to prevent and suppress EV71 replication.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Ming Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung Medical Center, Keelung 204, Taiwan;
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chi-Ying F. Huang
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Feng-Mao Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Juan-Ting Huang
- Division of Big Data, Phalanx Biotech Group, Hsinchu 300, Taiwan;
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan;
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- M. Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2378)
| |
Collapse
|
22
|
Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front Pharmacol 2020; 11:571434. [PMID: 33324206 PMCID: PMC7724033 DOI: 10.3389/fphar.2020.571434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
A new coronavirus causing severe acute respiratory syndrome (SARS-CoV-2) has emerged and with it, a global investigation of new antiviral treatments and supportive care for organ failure due to this life-threatening viral infection. Traditional Persian Medicine (TPM) is one of the most ancient medical doctrines mostly known with the manuscripts of Avicenna and Rhazes. In this paper, we first introduce a series of medicinal plants that would potentially be beneficial in treating SARS-CoV-2 infection according to TPM textbooks. Then, we review medicinal plants based on the pharmacological studies obtained from electronic databases and discuss their mechanism of action in SARS-CoV-2 infection. There are several medicinal plants in TPM with cardiotonic, kidney tonic, and pulmonary tonic activities, protecting the lung, heart, and kidney, the three main vulnerable organs in SARS-CoV-2 infection. Some medicinal plants can prevent "humor infection", a situation described in TPM which has similar features to SARS-CoV-2 infection. Pharmacological evaluations are in line with the therapeutic activities of several plants mentioned in TPM, mostly through antiviral, cytoprotective, anti-inflammatory, antioxidant, and anti-apoptotic mechanisms. Amongst the primarily-introduced medicinal plants from TPM, rhubarb, licorice, garlic, saffron, galangal, and clove are the most studied plants and represent candidates for clinical studies. The antiviral compounds isolated from these plants provide novel molecular structures to design new semisynthetic antiviral agents. Future clinical studies in healthy volunteers as well as patients suffering from pulmonary infections are necessary to confirm the safety and efficacy of these plants as complementary and integrative interventions in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
23
|
Cui Y, Chen LJ, Huang T, Ying JQ, Li J. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin J Nat Med 2020; 18:425-435. [PMID: 32503734 DOI: 10.1016/s1875-5364(20)30050-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a derived anthraquinone compound extracted from roots and barks of pharmaceutical plants, including Rheum palmatum, Aloe vera, Giant knotweed, Polygonum multiflorum and Polygonum cuspidatum. The review aims to provide a scientific summary of emodin in pharmacological activities and toxicity in order to identify the therapeutic potential for its use in human specific organs as a new medicine. Based on the fundamental properties, such as anticancer, anti-inflammatory, antioxidant, antibacterial, antivirs, anti-diabetes, immunosuppressive and osteogenesis promotion, emodin is expected to become an effective preventive and therapeutic drug of cancer, myocardial infarction, atherosclerosis, diabetes, acute pancreatitis, asthma, periodontitis, fatty livers and neurodegenerative diseases. This article intends to provide a novel insight for further development of emodin, hoping to reveal the potential of emodin and necessity of further studies in this field.
Collapse
Affiliation(s)
- Ya Cui
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Liu-Jing Chen
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Tu Huang
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Jian-Qiong Ying
- West China Hospital of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | - Juan Li
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Friedman M, Xu A, Lee R, N. Nguyen D, A. Phan T, M. Hamada S, Panchel R, C. Tam C, H. Kim J, W. Cheng L, M. Land K. The Inhibitory Activity of Anthraquinones against Pathogenic Protozoa, Bacteria, and Fungi and the Relationship to Structure. Molecules 2020; 25:molecules25133101. [PMID: 32646028 PMCID: PMC7411742 DOI: 10.3390/molecules25133101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Plant-derived anthraquinones were evaluated in cell assays for their inhibitory activities against the parasitic protozoa Trichomonas vaginalis human strain G3 that causes the sexually transmitted disease trichomoniasis in women, Tritrichomonas foetus bovine strain D1 that causes sexually transmitted diseases in farm animals (bulls, cows, and pigs), Tritrichomonas foetus-like strain C1 that causes diarrhea in domestic animals (cats and dogs), and bacteria and fungi. The anthraquinones assessed for their inhibitory activity were anthraquinone, aloe-emodin (1,8-dihydroxy-3-hydroxymethylanthraquinone), anthrarufin (1,5-dihydroxyanthraquinone), chrysazin (1,8-dihydroxyanthraquinone), emodin (1,3,8-trihydroxy-6-methylanthraquinone), purpurin (1,2,4-trihydroxyanthraquinone), and rhein (1,8-dihydroxy-3-carboxyanthraquinone). Their activities were determined in terms of IC50 values, defined as the concentration that inhibits 50% of the cells under the test conditions and calculated from linear dose response plots for the parasitic protozoa, and zone of inhibition for bacteria and fungi, respectively. The results show that the different substituents on the anthraquinone ring seem to influence the relative potency. Analysis of the structure–activity relationships in protozoa indicates that the aloe-emodin and chrysazin with the highest biological activities merit further study for their potential to help treat the diseases in women and domestic and farm animals. Emodin also exhibited antifungal activity against Candida albicans. The suggested mechanism of action and the additional reported beneficial biological properties of anthraquinones suggest that they have the potential to ameliorate a broad spectrum of human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
- Correspondence: ; Tel.: +1-510-559-5615
| | - Alexander Xu
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (A.X.); (R.L.); (D.N.N.); (T.A.P.); (S.M.H.); (R.P.); (K.M.L.)
| | - Rani Lee
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (A.X.); (R.L.); (D.N.N.); (T.A.P.); (S.M.H.); (R.P.); (K.M.L.)
| | - Daniel N. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (A.X.); (R.L.); (D.N.N.); (T.A.P.); (S.M.H.); (R.P.); (K.M.L.)
| | - Tina A. Phan
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (A.X.); (R.L.); (D.N.N.); (T.A.P.); (S.M.H.); (R.P.); (K.M.L.)
| | - Sabrina M. Hamada
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (A.X.); (R.L.); (D.N.N.); (T.A.P.); (S.M.H.); (R.P.); (K.M.L.)
| | - Rima Panchel
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (A.X.); (R.L.); (D.N.N.); (T.A.P.); (S.M.H.); (R.P.); (K.M.L.)
| | - Christina C. Tam
- Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (C.C.T.); (J.H.K.); (L.W.C.)
| | - Jong H. Kim
- Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (C.C.T.); (J.H.K.); (L.W.C.)
| | - Luisa W. Cheng
- Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (C.C.T.); (J.H.K.); (L.W.C.)
| | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (A.X.); (R.L.); (D.N.N.); (T.A.P.); (S.M.H.); (R.P.); (K.M.L.)
| |
Collapse
|
25
|
Zhang S, Yu X, Meng X, Huo W, Su Y, Liu J, Liu Y, Zhang J, Wang S, Yu J. Coxsackievirus A6 Induces Necroptosis for Viral Production. Front Microbiol 2020; 11:42. [PMID: 32117097 PMCID: PMC7011610 DOI: 10.3389/fmicb.2020.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a febrile exanthematous disease with typical or atypical symptoms. Typical HFMD is usually caused by enterovirus 71 (EV71) or coxsackievirus A16, while atypical HFMD is usually caused by coxsackievirus A6 (CA6). In recent years, worldwide outbreaks of CA6-associated HFMD have dramatically increased, although the pathogenic mechanism of CA6 is still unclear. EV71 has been established to induce caspase-dependent apoptosis, but in this study, we demonstrate that CA6 infection promotes a distinct pathway of cell death that involves loss of cell membrane integrity. Necrostatin-1, an inhibitor of necroptosis, blocks the cell death induced by CA6 infection, but Z-DEVD-FMK, an inhibitor of caspase-3, has no effect on CA6-induced cell death. Furthermore, CA6 infection up-regulates the expression of the necroptosis signaling molecule RIPK3. Importantly, necrostatin-1 inhibits CA6 viral production, as assessed by its ability to inhibit levels of VP1 protein and genomic RNA and infectious particles. CA6-induced necroptosis is not dependent on the generation of reactive oxygen species; however, viral 3D protein can directly bind RIPK3, which is suggestive of a direct mechanism of necroptosis induction. Therefore, these results indicate that CA6 induces a mechanism of RIPK3-dependent necroptosis for viral production that is distinct from the mechanism of apoptosis induced by typical HFMD viruses.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
26
|
Huang HI, Lin JY, Chen SH. EV71 Infection Induces IFNβ Expression in Neural Cells. Viruses 2019; 11:v11121121. [PMID: 31817126 PMCID: PMC6950376 DOI: 10.3390/v11121121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Enterovirus 71 (EV71) can invade the central nervous system (CNS) and cause neurological disease. Accumulating evidence indicates that EV71 can directly infect neurons in the CNS. Innate immune responses in the CNS have been known to play an essential role in limiting pathogen infections. Thus, investigating the effects of EV71 infection of neural cells is important for understanding disease pathogenesis. In this study, human neural cells were infected with EV71, and interferonβ (IFNβ) expression was examined. Our results show that IFNβ expression was upregulated in EV71-infected neural cells via pattern recognition receptors (PRRs) sensing of virus RNA. The PRRs Toll-like receptor 3 (TLR3), Toll-like receptor 8 (TLR8), and melanoma differentiation-associated gene-5 (MDA-5), but not retinoic acid-inducible gene-I (RIG-I) and Toll-like receptor 7 (TLR7), were found to be EV71-mediated IFNβ induction. Although viral proteins exhibited the ability to cleave mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor (TIR) domain-containing adaptor-inducing IFN-β (TRIF) in neural cells, levels of viral protein expression were low in these cells. Furthermore, neural cells efficiently produced IFNβ transcripts upon EV71 vRNA stimulation. Treating infected cells with anti-IFNβ antibodies resulted in increased virus replication, indicating that IFNβ release may play a role in limiting viral growth. These results indicate that EV71 infection can induce IFNβ expression in neural cells through PRR pathways.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33303, Taiwan
- Correspondence:
| | - Jhao-Yin Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
| | - Sheng-Hung Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
| |
Collapse
|
27
|
Meng X, Yu X, Liu C, Wang Y, Song F, Huan C, Huo W, Zhang S, Li Z, Zhang J, Zhang W, Yu J. Effect of ingredients from Chinese herbs on enterovirus D68 production. Phytother Res 2018; 33:174-186. [PMID: 30346067 DOI: 10.1002/ptr.6214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Xiangling Meng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Chunyu Liu
- Acupuncture Department The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
| | - Ying Wang
- Department of Gastroenterology, The First Hospital of Jilin University Jilin University Changchun China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| |
Collapse
|
28
|
Wang Z, Wang Y, Wang S, Meng X, Song F, Huo W, Zhang S, Chang J, Li J, Zheng B, Liu Y, Zhang Y, Zhang W, Yu J. Coxsackievirus A6 Induces Cell Cycle Arrest in G0/G1 Phase for Viral Production. Front Cell Infect Microbiol 2018; 8:279. [PMID: 30159255 PMCID: PMC6104138 DOI: 10.3389/fcimb.2018.00279] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological data indicate that outbreaks of hand, foot, and mouth disease (HFMD), which can be categorized according to its clinical symptoms as typical or atypical, have markedly increased worldwide. A primary causative agent for typical HFMD outbreaks, enterovirus 71 (EV71), has been shown to manipulate the cell cycle in S phase for own replication; however, it is not clear whether coxsackievirus (CVA6), the main agent for atypical HFMD, also regulates the host cell cycle. In this study, we demonstrate for the first time that CVA6 infection arrests the host cell cycle in G0/G1-phase. Furthermore, synchronization in G0/G1 phase, but not S phase or G2/M phase, promotes viral production. To investigate the mechanism of cell cycle arrest induced by CVA6 infection, we analyzed cell cycle progression after cell cycle synchronization at G0/G1 or G2/M. Our results demonstrate that CVA6 infection promotes G0/G1 phase entry from G2/M phase, and inhibits G0/G1 exit into S phase. In line with its role to arrest cells in G0/G1 phase, the expression of cyclinD1, CDK4, cyclinE1, CDK2, cyclinB1, CDK1, P53, P21, and P16 is regulated by CVA6. Finally, the non-structural proteins of CVA6, RNA-dependent RNA polymerase 3D and protease 3C , are demonstrated to be responsible for the G0/G1-phase arrest. These findings suggest that CVA6 infection arrested cell cycle in G0/G1-phase via non-structural proteins 3D and 3C, which may provide favorable environments for virus production.
Collapse
Affiliation(s)
- Zengyan Wang
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Wang
- Chemistry of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin Univrsity, Changchun, China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin Univrsity, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin Univrsity, Changchun, China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin Univrsity, Changchun, China
| | - Junliang Chang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jingliang Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanqiu Liu
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yahong Zhang
- Key Laboratory of Natural Medicines and Immunotechnology of Henan Province, Henan University, Kaifeng, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
29
|
Song YD, Li XZ, Wu YX, Shen Y, Liu FF, Gao PP, Sun L, Qian F. Emodin alleviates alternatively activated macrophage and asthmatic airway inflammation in a murine asthma model. Acta Pharmacol Sin 2018; 39:1317-1325. [PMID: 29417945 DOI: 10.1038/aps.2017.147] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Alternatively activated macrophages (AAMs) are not only associated with asthma but also lead to asthmatic airway inflammation and remodeling. Inhibition of AAMs is an alternative therapeutic strategy for treating asthma. In this study we investigated whether emodin (1,3,8-trihydroxy-6-methylanthraquinone), isolated from the rhizome of Rheum palmatum, alleviated asthmatic airway inflammation and reduced AAM polarization in a murine asthma model. Mice were sensitized with a triple allergen mix containing dust mite, ragweed and aspergillus (DRA). In mice with DRA-induced asthma, asthmatic inflammation was significantly enhanced. Intraperitoneal injection of emodin (20 mg·kg-1·d-1, ip) 1 h prior to DRA challenge on days 12-14 significantly decreased pulmonary eosinophil and lymphocyte infiltration, mucus secretion and serum IgE production, as well as IL-4 and IL-5 production in bronchoalveolar lavage fluid. In response to emodin treatment, activated markers of AAM Ym-1, Fizz-1 and arginase-1 in the lung tissues were remarkably decreased. In mouse bone marrow-derived macrophages (BMDMs) in vitro, emodin (2-50 μmol/L) dose-dependently inhibited IL-4-induced AAM polarization and STAT6 phosphorylation. Collectively, our results suggest that emodin effectively ameliorates asthmatic airway inflammation and AAM polarization, and it may therefore become a potential agent for the treatment of asthma.
Collapse
|
30
|
Chen D, Tian X, Zou X, Xu S, Wang H, Zheng N, Wu Z. Harmine, a small molecule derived from natural sources, inhibits enterovirus 71 replication by targeting NF-κB pathway. Int Immunopharmacol 2018; 60:111-120. [DOI: 10.1016/j.intimp.2018.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023]
|
31
|
Song F, Yu X, Zhong T, Wang Z, Meng X, Li Z, Zhang S, Huo W, Liu X, Zhang Y, Zhang W, Yu J. Caspase-3 Inhibition Attenuates the Cytopathic Effects of EV71 Infection. Front Microbiol 2018; 9:817. [PMID: 29755438 PMCID: PMC5932146 DOI: 10.3389/fmicb.2018.00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Previous studies demonstrate that human enterovirus 71 (EV71), a primary causative agent for hand, foot, and mouth disease, activates caspase-3 through the non-structural viral 3C protein to induce host cell apoptosis; however, until now it was unclear how 3C activates caspase-3 and how caspase-3 activation affects viral production. Our results demonstrate that 3C binds caspase-8 and caspase-9 but does not directly bind caspase-3 to activate them, and that the proteolytic activity of 3C is required by the activation of caspase-8, caspase-9, and caspase-3. Inhibition of caspase-3 activity attenuates apoptosis in 3C-transfected cells. Furthermore, caspase-3 inhibitor protects host cells from the cytopathic effect of EV71 infection and prevents cell cycle arrest, which is known to be favored for EV71 viral replication. Inhibition of caspase-3 activity decreases EV71 viral protein expression and viral production, but has no effect on viral entry, replication, even polyprotein translation. Therefore, caspase-3 is exploited functionally by EV71 to facilitate its production, which suggests a novel therapeutic approach for the treatment and prevention of hand, foot, and mouth disease.
Collapse
Affiliation(s)
- Fengmei Song
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China.,Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Ting Zhong
- College of Pharmacy, Central South University, Changsha, China
| | - Zengyan Wang
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Xin Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yahong Zhang
- Key Laboratory of Natural Medicines and Immunotechnology of Henan Province, Henan University, Kaifeng, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
32
|
MODERN METHODS OF DIAGNOSIS OF ENTEROVIRUS INFECTION IN THE MOUTH. WORLD OF MEDICINE AND BIOLOGY 2018. [DOI: 10.26724/2079-8334-2018-1-63-178-180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Wang Y, Gao H, Wu T, Wang Z, Song F, Chen A, Zhang J, Zhang W, Zhang H, Yu J. Pseudolaric acid B induced autophagy, but not apoptosis, in MRC5 human fibroblast cells. Oncol Lett 2017; 15:863-870. [PMID: 29399151 PMCID: PMC5772809 DOI: 10.3892/ol.2017.7426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/18/2017] [Indexed: 01/08/2023] Open
Abstract
Autophagy and apoptosis are closely associated. In previous studies, pseudolaric acid B (PAB), a diterpene acid isolated from the root and trunk bark of Pseudolarix kaempferi Gordon (Pinaceae), was demonstrated to induce apoptosis in various cell lines. However, in L929 murine fibrosarcoma and SW579 human thyroid squamous cell carcinoma cells, only autophagy was induced. In the present study, another cell line, MRC5 human lung fibroblast cells, was identified in which PAB only induced autophagy. The relationship between apoptosis and autophagy subsequent to PAB treatment in MRC5 cells was explored. When autophagy was inhibited by 3-methyladenine (3MA), apoptosis was induced in the PAB-treated MRC5 cells. To study the mechanism for the promotion of apoptosis by 3MA in the PAB-treated cells, the expression of members from the apoptotic signal pathways was assessed. As Bcl-2, Bcl-2 associated X and pro-caspase-9 expression following PAB treatment was not affected by 3MA treatment, it was determined that apoptosis was induced independent of the mitochondrial pathway of apoptosis. As Fas and pro-caspase-8 expression following PAB treatment were not altered by 3MA, it was further determined that the death receptor pathway was not induced. However, the phosphorylation of c-Jun-N-terminal kinase and the expression of pro-caspase-3 were upregulated, and the phosphorylation of extracellular signal-regulated kinase downregulated, by the combination of PAB and 3MA treatment compared with PAB alone. It was also observed that 3MA did not affect the microtubule aggregation ability of PAB. Therefore, inhibiting autophagy in MRC5 cells did not affect the role of PAB in microtubule aggregation, while apoptosis was induced. This may present a strategy to enhance the anti-tumor effects of PAB.
Collapse
Affiliation(s)
- Yue Wang
- Research Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China.,Chemistry of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Hongmei Gao
- Medicinal Chemistry, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Ting Wu
- Neonatal Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Zengyan Wang
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Antian Chen
- College of Medicine, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jing Zhang
- College of Medicine, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wenyan Zhang
- Research Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Zhang
- Chemistry of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Jinghua Yu
- Research Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|