1
|
Stec NE, Barker FG, Brastianos PK. Targeted treatment for craniopharyngioma. J Neurooncol 2025; 172:503-513. [PMID: 39951179 DOI: 10.1007/s11060-025-04942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 04/04/2025]
Abstract
INTRODUCTION Craniopharyngioma is a rare solid-cystic tumor of the hypothalamopituitary region. Two distinct craniopharyngioma types (formerly subtypes), adamantinomatous and papillary, have been described. These tumors often manifest with neuroendocrine dysfunction, vision problems, hydrocephalus, and cognitive changes. Despite efforts to spare vital brain structures, conventional treatments such as surgery and radiation can exacerbate preceding deficits and contribute to permanent neurologic impairment. Recent studies have identified BRAF-V600E mutations in nearly all papillary craniopharyngiomas (PCP), and CTNNB1/Wnt pathway alterations in adamantinomatous craniopharyngiomas (ACP). These discoveries have advanced our understanding of craniopharyngioma pathogenesis and have opened opportunities for targeted biological treatments. PURPOSE The primary objective of this article is to review the current landscape of targeted treatments in papillary and adamantinomatous craniopharyngioma. RESULTS Treatment of PCP with BRAF/MEK inhibition has demonstrated durable tumor response in the adjuvant and neoadjuvant settings in multiple case studies and one phase II clinical trial. Although treatment advances are more limited for ACP, CTNNB1/Wnt pathway inhibitors showed promising results in pre-clinical studies and are under continued investigation. CONCLUSION The efficacy of BRAF/MEK inhibition in PCP supports the use of targeted therapy in patients with newly diagnosed PCP. The optimal targeted treatment combinations and their timing, duration, long-term effects, and sequencing with traditional therapeutic modalities have not been established and warrant further study. Targeted therapies represent a significant advancement in the field of oncology, and craniopharyngiomas are viable candidates for these approaches pending further research.
Collapse
Affiliation(s)
- Natalie E Stec
- Divisions of Neuro-Oncology and Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Fred G Barker
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Priscilla K Brastianos
- Divisions of Neuro-Oncology and Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Mechahougui H, Gutmans J, Gouasmi R, Smekens L, Friedlaender A. BRAF Targeting Across Solid Tumors: Molecular Aspects and Clinical Applications. Int J Mol Sci 2025; 26:3757. [PMID: 40332392 PMCID: PMC12027668 DOI: 10.3390/ijms26083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
BRAF mutations are critical drivers in cancers such as melanoma, colorectal cancer, and non-small-cell lung cancer. The most common mutation, BRAF V600E, is a key therapeutic target. Targeted treatments with BRAF and MEK inhibitors have significantly improved progression-free and overall survival in melanoma patients. However, in cancers like metastatic colorectal cancer, BRAF mutations are associated with poor outcomes due to aggressive disease behavior and resistance to conventional chemotherapy. Despite progress, resistance to BRAF/MEK inhibitors remains a major challenge, often driven by secondary mutations in the mitogen-activated protein kinase (MAPK) pathway, activation of alternative pathways such as phosphoinositide 3-kinases (PI3Ks)/protein kinase B (AKT), or changes in the tumor microenvironment. These challenges have motivated ongoing research into combining BRAF inhibitors with immunotherapies to enhance and prolong treatment effectiveness. Future research must also account for the role of the cancer's tissue of origin, as the biological context significantly influences response to targeted therapies, highlighting the need for a deeper understanding of tumor biology, micro-environment, and genetics.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France;
| | - Laure Smekens
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | | |
Collapse
|
3
|
Galus Ł, Tusień-Małecka D, Mackiewicz J. Elevated lactate dehydrogenase in adjuvant BRAF and MEK inhibitor therapy does not have diagnostic significance in detecting melanoma recurrence. Contemp Oncol (Pozn) 2025; 29:107-112. [PMID: 40330447 PMCID: PMC12051877 DOI: 10.5114/wo.2025.149038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/16/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Lactate dehydrogenase (LDH) is an intracellular enzyme the concentration of which in the serum of melanoma patients is a commonly used biomarker for detecting recurrence, monitoring the effectiveness of ongoing systemic treatment, and for determination of prognosis. Material and methods In this report we evaluated the clinical value of elevated LDH during adjuvant BRAF (dabrafenib) and MEK (trametinib) inhibitors in 23 patients after resection of stage III cutaneous, BRAF-mutated melanoma. Results The treatment was administered for one year or until disease progression or unactable toxicity. In all patients, an increase in LDH was observed during treatment, of whom 18 patients had an increase to values above the upper limit of normal, while 4 patients had an increase within normal limits. After discontinuation of dabrafenib with trametinib, a decrease in LDH levels was observed in all patients except one, in whom treatment was discontinued due to disease progression. The increase in LDH was not associated with disease progression. Hypotheses explaining the increase in LDH include, among others, the immunomodulatory effect of BRAF and MEK inhibitors and the effect of drugs in question on the MAPK pathway in wild-type BRAF cells. Conclusions Information on the common increase in LDH in patients undergoing adjuvant therapy with dabrafenib with trametinib will avoid additional imaging studies in many situations and may prevent unnecessary emotional stress for patients.
Collapse
Affiliation(s)
- Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Daria Tusień-Małecka
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
4
|
Tanoli Z, Fernández-Torras A, Özcan UO, Kushnir A, Nader KM, Gadiya Y, Fiorenza L, Ianevski A, Vähä-Koskela M, Miihkinen M, Seemab U, Leinonen H, Seashore-Ludlow B, Tampere M, Kalman A, Ballante F, Benfenati E, Saunders G, Potdar S, Gómez García I, García-Serna R, Talarico C, Beccari AR, Schaal W, Polo A, Costantini S, Cabri E, Jacobs M, Saarela J, Budillon A, Spjuth O, Östling P, Xhaard H, Quintana J, Mestres J, Gribbon P, Ussi AE, Lo DC, de Kort M, Wennerberg K, Fratelli M, Carreras-Puigvert J, Aittokallio T. Computational drug repurposing: approaches, evaluation of in silico resources and case studies. Nat Rev Drug Discov 2025:10.1038/s41573-025-01164-x. [PMID: 40102635 DOI: 10.1038/s41573-025-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Repurposing of existing drugs for new indications has attracted substantial attention owing to its potential to accelerate drug development and reduce costs. Hundreds of computational resources such as databases and predictive platforms have been developed that can be applied for drug repurposing, making it challenging to select the right resource for a specific drug repurposing project. With the aim of helping to address this challenge, here we overview computational approaches to drug repurposing based on a comprehensive survey of available in silico resources using a purpose-built drug repurposing ontology that classifies the resources into hierarchical categories and provides application-specific information. We also present an expert evaluation of selected resources and three drug repurposing case studies implemented within the Horizon Europe REMEDi4ALL project to demonstrate the practical use of the resources. This comprehensive Review with expert evaluations and case studies provides guidelines and recommendations on the best use of various in silico resources for drug repurposing and establishes a basis for a sustainable and extendable drug repurposing web catalogue.
Collapse
Affiliation(s)
- Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Drug Discovery and Chemical Biology (DDCB) Consortium, Biocenter Finland, University of Helsinki, Helsinki, Finland.
| | | | - Umut Onur Özcan
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aleksandr Kushnir
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kristen Michelle Nader
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yojana Gadiya
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
| | - Laura Fiorenza
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mitro Miihkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Umair Seemab
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Brinton Seashore-Ludlow
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marianna Tampere
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Adelinn Kalman
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Flavio Ballante
- Chemical Biology Consortium Sweden (CBCS), SciLifeLab, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gary Saunders
- European Infrastructure for Translational Medicine (EATRIS ERIC), Amsterdam, The Netherlands
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | | | | | - Wesley Schaal
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrea Polo
- Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Susan Costantini
- Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Enrico Cabri
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marc Jacobs
- Fraunhofer-Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Alfredo Budillon
- Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Päivi Östling
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henri Xhaard
- Drug Discovery and Chemical Biology (DDCB) Consortium, Biocenter Finland, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jordi Quintana
- Chemotargets SL, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Mestres
- Chemotargets SL, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
- Institut de Quimica Computacional i Catalisi, Facultat de Ciencies, Universitat de Girona, Girona, Catalonia, Spain
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
| | - Anton E Ussi
- European Infrastructure for Translational Medicine (EATRIS ERIC), Amsterdam, The Netherlands
| | - Donald C Lo
- European Infrastructure for Translational Medicine (EATRIS ERIC), Amsterdam, The Netherlands
| | - Martin de Kort
- European Infrastructure for Translational Medicine (EATRIS ERIC), Amsterdam, The Netherlands
| | - Krister Wennerberg
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
do Prado-Souza LFL, Ferraz LS, Citrangulo Tortelli T, Ribeiro CAJ, do Amaral DT, Arruda DC, de Oliveira ÉA, Chammas R, Maria-Engler SS, Rodrigues T. Exploiting Paradoxical Activation of Oncogenic MAPK Signaling by Targeting Mitochondria to Sensitize NRAS Mutant-Melanoma to Vemurafenib. Int J Mol Sci 2025; 26:2675. [PMID: 40141318 PMCID: PMC11942190 DOI: 10.3390/ijms26062675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Vemurafenib is a BRAF (rapidly accelerated fibrosarcoma B-type)-targeted therapy used to treat patients with advanced, unresectable melanoma. It inhibits the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) pathway and tumor proliferation in BRAFV600E-mutated melanoma cells. Resistance to vemurafenib has been reported in melanoma patients due to secondary NRAS (neuroblastoma RAS viral oncogene homolog) mutations, which lead to paradoxical MAPK pathway activation and tumor proliferation. However, the impact of this paradoxical activation on mitochondrial dynamics and function in NRAS-mutated melanoma is unclear. Here, we investigated the effects of vemurafenib on NRASQ61R-mutated melanoma cells, focusing on mitochondrial dynamics and function. As expected, vemurafenib did not exhibit cytotoxicity in SK-MEL-147 NRASQ61R-mutated melanoma cells, even after 72 h of incubation. However, it significantly enhanced the MAPK/ERK signaling through paradoxical activation, accompanied by decreased expression of mitochondrial fusion proteins and activation of the fission protein DRP1 (dynamin-related protein 1), leading to small, rounded mitochondrial morphology. These observations were corroborated by transcriptome data obtained from NRAS-mutated melanoma patients, showing MFN1 (mitofusin 1) and OPA1 (optic atrophy 1) downregulation and DNM1L (DRP1 gene) upregulation. Interestingly, inhibition of mitochondrial fission with mdivi-1 or modulation of oxidative phosphorylation via respiratory chain inhibition or uncoupling significantly sensitized NRASQ61R-mutated melanoma cells to vemurafenib. Despite vemurafenib's low cytotoxicity in NRAS-mutated melanoma, targeting mitochondrial dynamics and/or oxidative phosphorylation may offer a promising strategy for combined therapy.
Collapse
Affiliation(s)
- Laura Francisca Leite do Prado-Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Letícia Silva Ferraz
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Tharcísio Citrangulo Tortelli
- Center for Translational Research in Oncology (LIM24), Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil; (T.C.T.J.); (R.C.)
- Comprehensive Center for Precision Oncology, University of São Paulo, Sao Paulo 05508-220, Brazil
| | - César Augusto João Ribeiro
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Danilo Trabuco do Amaral
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Denise Costa Arruda
- Integrated Biotechnology Nucleus (NIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, Sao Paulo 08780-911, Brazil;
| | | | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil; (T.C.T.J.); (R.C.)
- Comprehensive Center for Precision Oncology, University of São Paulo, Sao Paulo 05508-220, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-220, Brazil;
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| |
Collapse
|
6
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
7
|
Valentini R, Quinn J, Murphy MJ. Nevoid melanoma. Clin Dermatol 2025; 43:29-35. [PMID: 39914579 DOI: 10.1016/j.clindermatol.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Nevoid melanoma is a rare subtype of melanoma that is regarded as one of the most difficult to diagnose. It clinically and histopathologically resembles a benign nevus, often resulting in misdiagnosis and allowing the skin cancer to progress further before it is identified. It presents clinically as an elevated brown papillomatous polypoid lesion on the trunk, arms, or legs; microscopically, it is defined by its relative symmetry, deep mitoses, and nevus-like melanocytes. In recent decades, studies have been carried out to understand nevoid melanoma and how it develops, progresses, and can be better identified. Technologic advancements in dermatoscopy, microscopy, and immunohistochemistry have allowed dermatologists and pathologists to have a better understanding of this variant of melanoma to permit an earlier diagnosis. Although nevoid melanoma is not any less aggressive or harmful than other subtypes of melanoma, delayed diagnosis of this skin cancer can be associated with adverse patient outcomes.
Collapse
Affiliation(s)
- Rodolfo Valentini
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Julia Quinn
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Michael J Murphy
- Department of Dermatology, UConn Health, Farmington, Connecticut, USA.
| |
Collapse
|
8
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
9
|
Toye E, Chehrazi-Raffle A, Hwang J, Antonarakis ES. Targeting the multifaceted BRAF in cancer: New directions. Oncotarget 2024; 15:486-492. [PMID: 39018217 PMCID: PMC11254297 DOI: 10.18632/oncotarget.28612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Activating mutations in the mitogen-activated protein kinase (MAPK) pathway represent driver alterations governing tumorigenesis, metastasis, and therapy resistance. MAPK activation predominantly occurs through genomic alterations in RAS and BRAF. BRAF is an effector kinase that functions downstream of RAS and propagates this oncogenic activity through MEK and ERK. Across cancers, BRAF alterations include gain-of-function mutations, copy-number alterations, and structural rearrangements. In cancer patients, BRAF-targeting precision therapeutics are effective against Class I BRAF alterations (p.V600 hotspot mutations) in tumors such as melanomas, thyroid cancers, and colorectal cancers. However, numerous non-Class I BRAF inhibitors are also in development and have been explored in some cancers. Here we discuss the diverse forms of BRAF alterations found in human cancers and the strategies to inhibit them in patients harboring cancers of distinct origins.
Collapse
Affiliation(s)
- Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | - Justin Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Algazi AP, Moon J, Lao CD, Chmielowski B, Kendra KL, Lewis KD, Gonzalez R, Kim K, Godwin JE, Curti BD, Latkovic-Taber M, Lomeli SH, Gufford BT, Scumpia PO, Lo RS, Othus M, Ribas A. A phase 1 study of triple-targeted therapy with BRAF, MEK, and AKT inhibitors for patients with BRAF-mutated cancers. Cancer 2024; 130:1784-1796. [PMID: 38261444 DOI: 10.1002/cncr.35200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Aberrant PI3K/AKT signaling in BRAF-mutant cancers contributes to resistance to BRAF inhibitors. The authors examined dual MAPK and PI3K pathway inhibition in patients who had BRAF-mutated solid tumors (ClinicalTrials.gov identifier NCT01902173). METHODS Patients with BRAF V600E/V600K-mutant solid tumors received oral dabrafenib at 150 mg twice daily with dose escalation of oral uprosertib starting at 50 mg daily, or, in the triplet cohorts, with dose escalation of both oral trametinib starting at 1.5 mg daily and oral uprosertib starting at 25 mg daily. Dose-limiting toxicities (DLTs) were assessed within the first 56 days of treatment. Radiographic responses were assessed at 8-week intervals. RESULTS Twenty-seven patients (22 evaluable) were enrolled in parallel doublet and triplet cohorts. No DLTs were observed in the doublet cohorts (N = 7). One patient had a DLT at the maximum administered dose of triplet therapy (dabrafenib 150 mg twice daily and trametinib 2 mg daily plus uprosertib 75 mg daily). Three patients in the doublet cohorts had partial responses (including one who had BRAF inhibitor-resistant melanoma). Two patients in the triplet cohorts had a partial response, and one patient had an unconfirmed partial response. Pharmacokinetic data suggested reduced dabrafenib and dabrafenib metabolite exposure in patients who were also exposed to both trametinib and uprosertib, but not in whose who were exposed to uprosertib without trametinib. CONCLUSIONS Concomitant inhibition of both the MAPK and PI3K-AKT pathways for the treatment of BRAF-mutated cancers was well tolerated, leading to objective responses, but higher level drug-drug interactions affected exposure to dabrafenib and its metabolites.
Collapse
Affiliation(s)
- Alain P Algazi
- University of California-San Francisco, San Francisco, California, USA
| | - James Moon
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Southwest Oncology Group Statistical Center, Seattle, Washington, USA
| | | | - Bartosz Chmielowski
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, California, USA
| | - Kari L Kendra
- The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Karl D Lewis
- University of Colorado Comprehensive Cancer Center, Denver, Colorado, USA
| | - Rene Gonzalez
- University of Colorado Comprehensive Cancer Center, Denver, Colorado, USA
| | - Kevin Kim
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | | | | | | | - Shirley H Lomeli
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Philip O Scumpia
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, California, USA
| | - Roger S Lo
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, California, USA
| | - Megan Othus
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Zhang J, Joshua AM, Li Y, O'Meara CH, Morris MJ, Khachigian LM. Targeted therapy, immunotherapy, and small molecules and peptidomimetics as emerging immunoregulatory agents for melanoma. Cancer Lett 2024; 586:216633. [PMID: 38281663 DOI: 10.1016/j.canlet.2024.216633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Primary cutaneous melanoma is the most lethal of all skin neoplasms and its incidence is increasing. Clinical management of advanced melanoma in the last decade has been revolutionised by the availability of immunotherapies and targeted therapies, used alone and in combination. This article summarizes advances in the treatment of late-stage melanoma including use of protein kinase inhibitors, antibody-based immune checkpoint inhibitors, adoptive immunotherapy, vaccines and more recently, small molecules and peptidomimetics as emerging immunoregulatory agents.
Collapse
Affiliation(s)
- Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, Garvan Institute of Medical Research, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Yue Li
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Connor H O'Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, ANU Medical School and Canberra Health Services, Australian National University, Acton, Canberra, ACT, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
12
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Sabt A, Khedr MA, Eldehna WM, Elshamy AI, Abdelhameed MF, Allam RM, Batran RZ. New pyrazolylindolin-2-one based coumarin derivatives as anti-melanoma agents: design, synthesis, dual BRAF V600E/VEGFR-2 inhibition, and computational studies. RSC Adv 2024; 14:5907-5925. [PMID: 38370458 PMCID: PMC10870110 DOI: 10.1039/d4ra00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Malignant melanoma is the most invasive skin cancer with the highest risk of death. The inhibition of BRAFV600E appears relevant for overcoming secondary resistance developed during melanoma treatment. BRAFV600E triggers angiogenesis via modification of the expression of angiogenic inducers, which play a crucial role in the metastasis of melanoma. Accordingly, the dual inhibition of the BRAFV600E/VEGFR-2 signaling pathway is considered a rational approach in the design of anti-melanoma candidates. In this study, a new class of pyrazolylindolin-2-one linked coumarin derivatives as dual BRAFV600E/VEGFR-2 inhibitors targeting A375 melanoma cells was designed. Target compounds were tailored to occupy the pockets of BRAFV600E and VEGFR-2. Most of the synthesized compounds demonstrated potent mean growth inhibitory activity against A375 cells. Compound 4j was the most active cytotoxic derivative, displaying an IC50 value at a low micromolar concentration of 0.96 μM with a significant safety profile. Moreover, 4j showed dual potent inhibitory activity against BRAFV600E and VEGFR-2 (IC50 = 1.033 and 0.64 μM, respectively) and was more active than the reference drug sorafenib. Furthermore, derivative 4j caused significant G0/G1 cell cycle arrest, induced apoptosis, and inhibited the migration of melanoma cells. Molecular docking showed that compound 4j achieved the highest ΔG value of -9.5 kcal mol-1 against BRAFV600E and significant ΔG of -8.47 kcal mol-1 against VEGFR-2. Furthermore, the structure-activity relationship study revealed that TPSA directly contributed to the anticancer activity of the tested compounds.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohammed A Khedr
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kuwait University Safat 13110 Kuwait
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University 11795 Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Rasha M Allam
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| |
Collapse
|
14
|
Chen YK, Kanouni T, Arnold LD, Cox JM, Gardiner E, Grandinetti K, Jiang P, Kaldor SW, Lee C, Li C, Martin ES, Miller N, Murphy EA, Timple N, Tyhonas JS, Vassar A, Wang TS, Williams R, Yuan D, Kania RS. The Discovery of Exarafenib (KIN-2787): Overcoming the Challenges of Pan-RAF Kinase Inhibition. J Med Chem 2024; 67:1747-1757. [PMID: 38230963 DOI: 10.1021/acs.jmedchem.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
RAF, a core signaling component of the MAPK kinase cascade, is often mutated in various cancers, including melanoma, lung, and colorectal cancers. The approved inhibitors were focused on targeting the BRAFV600E mutation that results in constitutive activation of kinase signaling through the monomeric protein (Class I). However, these inhibitors also paradoxically activate kinase signaling of RAF dimers, resulting in increased MAPK signaling in normal tissues. Recently, significant attention has turned to targeting RAF alterations that activate dimeric signaling (class II and III BRAF and NRAS). However, the discovery of a potent and selective inhibitor with biopharmaceutical properties suitable to sustain robust target inhibition in the clinical setting has proven challenging. Herein, we report the discovery of exarafenib (15), a highly potent and selective inhibitor that intercepts the RAF protein in the dimer compatible αC-helix-IN conformation and demonstrates anti-tumor efficacy in preclinical models with BRAF class I, II, and III and NRAS alterations.
Collapse
Affiliation(s)
- Young K Chen
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Toufike Kanouni
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Lee D Arnold
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Jason M Cox
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Elisabeth Gardiner
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Kathryn Grandinetti
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Ping Jiang
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Stephen W Kaldor
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Catherine Lee
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Chun Li
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Eric S Martin
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Nichol Miller
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Eric A Murphy
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Noel Timple
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - John S Tyhonas
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Angie Vassar
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Tim S Wang
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Richard Williams
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Ding Yuan
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| | - Robert S Kania
- Kinnate Biopharma, 12830 El Camino Real, Suite 150, San Diego, California 92130, United States
| |
Collapse
|
15
|
Tao AJ, Jiang J, Gadbois GE, Goyal P, Boyle BT, Mumby EJ, Myers SA, English JG, Ferguson FM. A biotin targeting chimera (BioTAC) system to map small molecule interactomes in situ. Nat Commun 2023; 14:8016. [PMID: 38049406 PMCID: PMC10695998 DOI: 10.1038/s41467-023-43507-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023] Open
Abstract
Understanding how small molecules bind to specific protein complexes in living cells is critical to understanding their mechanism-of-action. Unbiased chemical biology strategies for direct readout of protein interactome remodelling by small molecules would provide advantages over target-focused approaches, including the ability to detect previously unknown ligand targets and complexes. However, there are few current methods for unbiased profiling of small molecule interactomes. To address this, we envisioned a technology that would combine the sensitivity and live-cell compatibility of proximity labelling coupled to mass spectrometry, with the specificity and unbiased nature of chemoproteomics. In this manuscript, we describe the BioTAC system, a small-molecule guided proximity labelling platform that can rapidly identify both direct and complexed small molecule binding proteins. We benchmark the system against µMap, photoaffinity labelling, affinity purification coupled to mass spectrometry and proximity labelling coupled to mass spectrometry datasets. We also apply the BioTAC system to provide interactome maps of Trametinib and analogues. The BioTAC system overcomes a limitation of current approaches and supports identification of both inhibitor bound and molecular glue bound complexes.
Collapse
Affiliation(s)
- Andrew J Tao
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiewei Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gillian E Gadbois
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Pavitra Goyal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bridget T Boyle
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth J Mumby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Fleur M Ferguson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Niessner H, Hüsch A, Kosnopfel C, Meinhardt M, Westphal D, Meier F, Schilling B, Sinnberg T. Exploring the In Vitro and In Vivo Therapeutic Potential of BRAF and MEK Inhibitor Combination in NRAS-Mutated Melanoma. Cancers (Basel) 2023; 15:5521. [PMID: 38067230 PMCID: PMC10705743 DOI: 10.3390/cancers15235521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 10/16/2024] Open
Abstract
INTRODUCTION Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that in NRAS-mutant melanoma, the antitumor activity of the MEK inhibitor binimetinib was significantly potentiated by the BRAFV600E/K inhibitor encorafenib through the induction of ER stress, leading to melanoma cell death by apoptotic mechanisms. Encorafenib combined with binimetinib was well tolerated in a phase III trial showing potent antitumor activity in BRAF-mutant melanoma, making a rapid evaluation in NRAS-mutant melanoma imminently feasible. These data provide a mechanistic rationale for the evaluation of binimetinib combined with encorafenib in preclinical and clinical studies on NRAS-mutant metastatic melanoma. METHODS The combination of BRAFi plus MEKi was tested in a monolayer culture of patient-derived cell lines and in corresponding patient-derived tissue slice cultures of NRAS-mutant melanoma. To investigate the treatment in vivo, NSG (NOD. Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice were subcutaneously injected with three different BRAF wild-type melanoma models harboring oncogenic NRAS mutations and treated orally with encorafenib (6 mg/kg body weight, daily) with or without binimetinib (8 mg/kg body weight, twice daily). In parallel, an individual healing attempt was carried out by treating one patient with an NRAS-mutated tumor. RESULTS Encorafenib was able to enhance the inhibitory effect on cell growth of binimetinib only in the cell line SKMel147 in vitro. It failed to enhance the apoptotic effect found in two other NRAS-mutated cell lines. Encorafenib led to a hyperactivation of ERK which could be reduced with the combinational treatment. In two of the three patient-derived tissue slice culture models of NRAS-mutant melanomas, a slight tendency of a combinatorial effect was seen which was not significant. Encorafenib showed a slight induction of the ER stress genes ATF4, CHOP, and NUPR1. The combinational treatment was able to enhance this effect, but not significantly. In the mouse model, the combination therapy of encorafenib with binimetinib resulted in reduced tumor growth compared to the control and encorafenib groups; however, the best effect in terms of tumor growth inhibition was measured in the binimetinib therapy group. The therapy showed no effect in an individual healing attempt for a patient suffering from metastatic, therapy-refractory NRAS-mutated melanoma. CONCLUSION In in vitro and ex vivo settings, the combination therapy was observed to elicit a response; however, it did not amplify the efficacy observed with binimetinib alone, whereas in a patient, the combinational treatment remained ineffective. The preclinical in vivo data showed no increased combinatorial effect. However, the in vivo effect of binimetinib as monotherapy was unexpectedly high in the tested regimen. Nevertheless, binimetinib proved to be advantageous in the treatment of melanoma in vivo and led to high rates of apoptosis in vitro; hence, it still seems to be a good base for combination with other substances in the treatment of patients with NRAS-mutant melanoma.
Collapse
Affiliation(s)
- Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
| | - Anna Hüsch
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany;
| | - Matthias Meinhardt
- Department of Pathology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
| | - Dana Westphal
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, 01307 Dresden, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany;
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
17
|
Chehrazi-Raffle A, Tukachinsky H, Toye E, Sivakumar S, Schrock AB, Bergom HE, Ebrahimi H, Pal S, Dorff T, Agarwal N, Mahal BA, Oxnard GR, Hwang J, Antonarakis ES. Unique Spectrum of Activating BRAF Alterations in Prostate Cancer. Clin Cancer Res 2023; 29:3948-3957. [PMID: 37477913 PMCID: PMC10543965 DOI: 10.1158/1078-0432.ccr-23-1393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Alterations in BRAF have been reported in 3% to 5% of prostate cancer, although further characterization is lacking. Here, we describe the nature of BRAF alterations in prostate cancer using a large cohort from commercially available tissue and liquid biopsies subjected to comprehensive genomic profiling (CGP). EXPERIMENTAL DESIGN Tissue and liquid biopsies from patients with prostate cancer were profiled using FoundationOne CDx and FoundationOne Liquid CDx CGP assays, respectively. Tissue biopsies from non-prostate cancer types were used for comparison (n = 275,151). Genetic ancestry was predicted using a single-nucleotide polymorphism (SNP) based approach. RESULTS Among 15,864 tissue biopsies, BRAF-activating alterations were detected in 520 cases (3.3%). The majority (463 samples, 2.9%) harbored class II alterations, including BRAF rearrangements (243 samples, 1.5%), K601E (101 samples, 0.6%), and G469A (58 samples, 0.4%). BRAF-altered prostate cancers were enriched for CDK12 mutations (OR, 1.87; 9.2% vs. 5.2%; P = 0.018), but depleted in TMPRSS2 fusions (OR, 0.25; 11% vs. 32%; P < 0.0001), PTEN alterations (OR, 0.47; 17% vs. 31%; P < 0.0001), and APC alterations (OR, 0.48; 4.4% vs. 8.9%; P = 0.018) relative to BRAF wild-type (WT) disease. Compared with patients of European ancestry, BRAF alterations were more common in tumors from patients of African ancestry (5.1% vs. 2.9%, P < 0.0001) and Asian ancestry (6.0% vs. 2.9%, P < 0.001). CONCLUSIONS Activating BRAF alterations were detected in approximately 3% of prostate cancers, and most were class II mutations and rearrangements; BRAF V600 mutations were exceedingly rare. These findings suggest that BRAF activation in prostate cancer is unique from other cancers and supports further clinical investigation of therapeutics targeting the mitogen-activated protein kinase (MAPK) pathway.
Collapse
Affiliation(s)
| | | | - Eamon Toye
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Hannah E. Bergom
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hedyeh Ebrahimi
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Sumanta Pal
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Brandon A. Mahal
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Justin Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
18
|
Yu A, Nguyen DH, Nguyen TJ, Wang Z. A novel phosphorylation site involved in dissociating RAF kinase from the scaffolding protein 14-3-3 and disrupting RAF dimerization. J Biol Chem 2023; 299:105188. [PMID: 37625591 PMCID: PMC10520314 DOI: 10.1016/j.jbc.2023.105188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rapidly accelerated fibrosarcoma (ARAF, BRAF, CRAF) kinase is central to the MAPK pathway (RAS-RAF-MEK-ERK). Inactive RAF kinase is believed to be monomeric, autoinhibited, and cytosolic, while activated RAF is recruited to the membrane via RAS-GTP, leading to the relief of autoinhibition, phosphorylation of key regulatory sites, and dimerization of RAF protomers. Although it is well known that active and inactive BRAF have differential phosphorylation sites that play a crucial role in regulating BRAF, key details are still missing. In this study, we report the characterization of a novel phosphorylation site, BRAFS732 (equivalent in CRAFS624), located in proximity to the C-terminus binding motif for the 14-3-3 scaffolding protein. At the C terminus, 14-3-3 binds to BRAFpS729 (CRAFpS621) and enhances RAF dimerization. We conducted mutational analysis of BRAFS732A/E and CRAFS624A/E and revealed that the phosphomimetic S→E mutant decreases 14-3-3 association and RAF dimerization. In normal cell signaling, dimerized RAF phosphorylates MEK1/2, which is observed in the phospho-deficient S→A mutant. Our results suggest that phosphorylation and dephosphorylation of this site fine-tune the association of 14-3-3 and RAF dimerization, ultimately impacting MEK phosphorylation. We further characterized the BRAF homodimer and BRAF:CRAF heterodimer and identified a correlation between phosphorylation of this site with drug sensitivity. Our work reveals a novel negative regulatory role for phosphorylation of BRAFS732 and CRAFS624 in decreasing 14-3-3 association, dimerization, and MEK phosphorylation. These findings provide insight into the regulation of the MAPK pathway and may have implications for cancers driven by mutations in the pathway.
Collapse
Affiliation(s)
- Alison Yu
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Duc Huy Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Thomas Joseph Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA.
| |
Collapse
|
19
|
Tao AJ, Jiang J, Gadbois GE, Goyal P, Boyle BT, Mumby EJ, Myers SA, English JG, Ferguson FM. A Biotin Targeting Chimera (BioTAC) System to Map Small Molecule Interactomes in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554211. [PMID: 37662262 PMCID: PMC10473607 DOI: 10.1101/2023.08.21.554211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Unbiased chemical biology strategies for direct readout of protein interactome remodelling by small molecules provide advantages over target-focused approaches, including the ability to detect previously unknown targets, and the inclusion of chemical off-compete controls leading to high-confidence identifications. We describe the BioTAC system, a small-molecule guided proximity labelling platform, to rapidly identify both direct and complexed small molecule binding proteins. The BioTAC system overcomes a limitation of current approaches, and supports identification of both inhibitor bound and molecular glue bound complexes.
Collapse
Affiliation(s)
- Andrew J. Tao
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Jiewei Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Gillian E. Gadbois
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Pavitra Goyal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Bridget T. Boyle
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Elizabeth J. Mumby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Justin G. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Fleur M. Ferguson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
20
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib alters MDSC differentiation and function by activation of GCN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552588. [PMID: 37645997 PMCID: PMC10461929 DOI: 10.1101/2023.08.09.552588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.
Collapse
|
21
|
Singh A, Sonawane P, Kumar A, Singh H, Naumovich V, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022. ACS OMEGA 2023; 8:27819-27844. [PMID: 37576670 PMCID: PMC10413849 DOI: 10.1021/acsomega.3c00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 08/15/2023]
Abstract
Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and αC-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants.
Collapse
Affiliation(s)
- Ankit
Kumar Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pankaj Sonawane
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Adarsh Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vladislav Naumovich
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Prateek Pathak
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Maria Grishina
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Habibullah Khalilullah
- Department
of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of
Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative and Red Sea Research Center, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Amita Verma
- Bioorganic
and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical
Sciences, Sam Higginbottom University of
Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Pradeep Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
22
|
Tsai JW, Choi JJ, Ouaalam H, Murillo EA, Yeo KK, Vogelzang J, Sousa C, Woods JK, Ligon KL, Warfield SK, Bandopadhayay P, Cooney TM. Integrated response analysis of pediatric low-grade gliomas during and after targeted therapy treatment. Neurooncol Adv 2023; 5:vdac182. [PMID: 36926246 PMCID: PMC10011805 DOI: 10.1093/noajnl/vdac182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Pediatric low-grade gliomas (pLGGs) are the most common central nervous system tumor in children, characterized by RAS/MAPK pathway driver alterations. Genomic advances have facilitated the use of molecular targeted therapies, however, their long-term impact on tumor behavior remains critically unanswered. Methods We performed an IRB-approved, retrospective chart and imaging review of pLGGs treated with off-label targeted therapy at Dana-Farber/Boston Children's from 2010 to 2020. Response analysis was performed for BRAFV600E and BRAF fusion/duplication-driven pLGG subsets. Results Fifty-five patients were identified (dabrafenib n = 15, everolimus n = 26, trametinib n = 11, and vemurafenib n = 3). Median duration of targeted therapy was 9.48 months (0.12-58.44). The 1-year, 3-year, and 5-year EFS from targeted therapy initiation were 62.1%, 38.2%, and 31.8%, respectively. Mean volumetric change for BRAFV600E mutated pLGG on BRAF inhibitors was -54.11%; median time to best volumetric response was 8.28 months with 9 of 12 (75%) objective RAPNO responses. Median time to largest volume post-treatment was 2.86 months (+13.49%); mean volume by the last follow-up was -14.02%. Mean volumetric change for BRAF fusion/duplication pLGG on trametinib was +7.34%; median time to best volumetric response was 6.71 months with 3 of 7 (43%) objective RAPNO responses. Median time to largest volume post-treatment was 2.38 months (+71.86%); mean volume by the last follow-up was +39.41%. Conclusions Our integrated analysis suggests variability in response by pLGG molecular subgroup and targeted therapy, as well as the transience of some tumor growth following targeted therapy cessation.
Collapse
Affiliation(s)
- Jessica W Tsai
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jungwhan John Choi
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hakim Ouaalam
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Efrain Aguilar Murillo
- Department of Radiology, Division of Neuroradiology and Neurointervention, Boston, Massachusetts, USA
| | - Kee Kiat Yeo
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jayne Vogelzang
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Cecilia Sousa
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jared K Woods
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Tabitha M Cooney
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Mikami H, Akasaka E, Nakano H, Sawamura D. Eruptive melanocytic nevi associated with encorafenib and cetuximab combination therapy. J Dermatol 2022; 50:e173-e174. [PMID: 36585744 DOI: 10.1111/1346-8138.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Hanako Mikami
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Eijiro Akasaka
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hajime Nakano
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
24
|
Listro R, Rossino G, Piaggi F, Sonekan FF, Rossi D, Linciano P, Collina S. Urea-based anticancer agents. Exploring 100-years of research with an eye to the future. Front Chem 2022; 10:995351. [PMID: 36186578 PMCID: PMC9520293 DOI: 10.3389/fchem.2022.995351] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Suramin was the first urea-based drug to be approved in clinic, and in the following century a number of milestone drugs based on this scaffold were developed. Indeed, urea soon became a privileged scaffold in medicinal chemistry for its capability to establish a peculiar network of drug-target interactions, for its physicochemical properties that are useful for tuning the druggability of the new chemical entities, and for its structural and synthetic versatility that opened the door to numerous drug design possibilities. In this review, we highlight the relevance of the urea moiety in the medicinal chemistry scenario of anticancer drugs with a special focus on the kinase inhibitors for which this scaffold represented and still represents a pivotal pharmacophoric feature. A general outlook on the approved drugs, recent patents, and current research in this field is herein provided, and the role of the urea moiety in the drug discovery process is discussed form a medicinal chemistry standpoint. We believe that the present review can benefit both academia and pharmaceutical companies' medicinal chemists to prompt research towards new urea derivatives as anticancer agents.
Collapse
Affiliation(s)
- Roberta Listro
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federica Piaggi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Falilat Folasade Sonekan
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Simona Collina
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Talloa D, Triarico S, Agresti P, Mastrangelo S, Attinà G, Romano A, Maurizi P, Ruggiero A. BRAF and MEK Targeted Therapies in Pediatric Central Nervous System Tumors. Cancers (Basel) 2022; 14:4264. [PMID: 36077798 PMCID: PMC9454417 DOI: 10.3390/cancers14174264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
BRAF is a component of the MAPK and PI3K/AKT/mTOR pathways that play a crucial role in cellular proliferation, differentiation, migration, and angiogenesis. Pediatric central nervous system tumors very often show mutations of the MAPK pathway, as demonstrated by next-generation sequencing (NGS), which now has an increasing role in cancer diagnostics. The MAPK mutated pathway in pediatric CNS tumors is the target of numerous drugs, approved or under investigation in ongoing clinical trials. In this review, we describe the main aspects of MAPK and PI3K/AKT/mTOR signaling pathways, with a focus on the alterations commonly involved in tumorigenesis. Furthermore, we reported the main available data about current BRAF and MEK targeted therapies used in pediatric low-grade gliomas (pLLGs), pediatric high-grade gliomas (pHGGs), and other CNS tumors that often present BRAF or MEK mutations. Further molecular stratification and clinical trial design are required for the treatment of pediatric CNS tumors with BRAF and MEK inhibitors.
Collapse
Affiliation(s)
- Dario Talloa
- Scuola di Specializzazione in Pediatria, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Silvia Triarico
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Pierpaolo Agresti
- Scuola di Specializzazione in Pediatria, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Stefano Mastrangelo
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Giorgio Attinà
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Alberto Romano
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Palma Maurizi
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Antonio Ruggiero
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| |
Collapse
|
26
|
Shabna A, Antony J, Vijayakurup V, Saikia M, Liju VB, Retnakumari AP, Amrutha NA, Alex VV, Swetha M, Aiswarya SU, Jannet S, Unni US, Sundaram S, Sherin DR, Anto NP, Bava SV, Chittalakkottu S, Ran S, Anto RJ. Pharmacological attenuation of melanoma by tryptanthrin pertains to the suppression of MITF-M through MEK/ERK signaling axis. Cell Mol Life Sci 2022; 79:478. [PMID: 35948813 PMCID: PMC11072980 DOI: 10.1007/s00018-022-04476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Melanoma is the most aggressive among all types of skin cancers. The current strategies against melanoma utilize BRAFV600E, as a focal point for targeted therapy. However, therapy resistance developed in melanoma patients against the conventional anti-melanoma drugs hinders the ultimate benefits of targeted therapies. A major mechanism by which melanoma cells attain therapy resistance is via the activation of microphthalmia-associated transcription factor-M (MITF-M), the key transcription factor and oncogene aiding the survival of melanoma cells. We demonstrate that tryptanthrin (Tpn), an indole quinazoline alkaloid, which we isolated and characterized from Wrightia tinctoria, exhibits remarkable anti-tumor activity towards human melanoma through the down-regulation of MITF-M. Microarray analysis of Tpn-treated melanoma cells followed by a STRING protein association network analysis revealed that differential expression of genes in melanoma converges at MITF-M. Furthermore, in vitro and in vivo studies conducted using melanoma cells with differential MITF-M expression status, endogenously or ectopically, demonstrated that the anti-melanoma activity of Tpn is decisively contingent on its efficacy in down-regulating MITF-M expression. Tpn potentiates the degradation of MITF-M via the modulation of MEK1/2-ERK1/2-MITF-M signaling cascades. Murine models demonstrate the efficacy of Tpn in attenuating the migration and metastasis of melanoma cells, while remaining pharmacologically safe. In addition, Tpn suppresses the expression of mutated BRAFV600E and inhibits Casein Kinase 2α, a pro-survival enzyme that regulates ERK1/2 homeostasis in many tumor types, including melanoma. Together, we point to a promising anti-melanoma drug in Tpn, by virtue of its attributes to impede melanoma invasion and metastasis by attenuating MITF-M.
Collapse
Affiliation(s)
- Anwar Shabna
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Jayesh Antony
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Zoology, St. Thomas College, Palai, Kottayam, Kerala, India
| | - Vinod Vijayakurup
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, 32610, USA
| | - Minakshi Saikia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Vijayasteltar B Liju
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Archana P Retnakumari
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Nisthul A Amrutha
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kannur, Kerala, 670661, India
| | - Vijai V Alex
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Sreekumar U Aiswarya
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Somaraj Jannet
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Uma Subramanian Unni
- KRIBS-BioNest, Third Campus of Rajiv Gandhi Centre for Biotechnology (RGCB) Kalamassery, Kochi, Kerala, India
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Kottayam, Kerala, 686008, India
| | - Daisy R Sherin
- Indian Institute of Information Technology and Management, Karyavattom, Kazhakkoottam, Kerala, 695581, India
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Smitha V Bava
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Sadasivan Chittalakkottu
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kannur, Kerala, 670661, India
| | - Sophia Ran
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, PO Box 19626, Springfield, IL, USA
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
27
|
Liu T, Zhou L, Xiao Y, Andl T, Zhang Y. BRAF Inhibitors Reprogram Cancer-Associated Fibroblasts to Drive Matrix Remodeling and Therapeutic Escape in Melanoma. Cancer Res 2022; 82:419-432. [DOI: 10.1158/0008-5472.can-21-0614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
|
28
|
Khan PS, Rajesh P, Rajendra P, Chaskar MG, Rohidas A, Jaiprakash S. Recent advances in B-RAF inhibitors as anticancer agents. Bioorg Chem 2022; 120:105597. [PMID: 35033817 DOI: 10.1016/j.bioorg.2022.105597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
The significance of B-RAF in the promotion of cell proliferation and motility was explored by the researchers in the past. However, in 2002, several researchers found that mutation in B-RAF leads to cancer. Extensive research on B-RAF mutations suggested B-RAF V600E mutation as a critical predictive, prognostic and diagnostic biomarker in numerous cancers such as melanoma, thyroid, and colorectal cancers. Based on the significance of B-RAF kinase and associated mutation, the present review will give a brief overview about structure and functions of B-RAF enzyme, its role in different types of cancer, available drugs in the market for B-RAF inhibition, chemical classification and SAR studies of reported investigational B-RAF inhibitors in patented and non-patented literature during last decade. The SAR provided for all the reported inhibitors will help researchers to gain knowledge about the possible structural features required for selective B-RAF inhibition. This insightful analysis of B-RAF will certainly help researchers to develop novel anticancer agents in the future.
Collapse
Affiliation(s)
- Pathan Shahebaaz Khan
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India
| | - Patil Rajesh
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa (Bk), Pune, India
| | - Patil Rajendra
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, M.S., India
| | - Manohar G Chaskar
- Prof Ramkrishna More College, Akurdi, Pune 411044, Maharashtra, India
| | - Arote Rohidas
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul. Republic of Korea
| | - Sangshetti Jaiprakash
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India.
| |
Collapse
|
29
|
Lacouture ME, Wainberg ZA, Patel AB, Anadkat MJ, Stemmer SM, Shacham-Shmueli E, Medina E, Zelinger G, Shelach N, Ribas A. Reducing Skin Toxicities from EGFR Inhibitors with Topical BRAF Inhibitor Therapy. Cancer Discov 2021; 11:2158-2167. [PMID: 33910927 PMCID: PMC8418997 DOI: 10.1158/2159-8290.cd-20-1847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Treatment of cancer with EGFR inhibitors is limited by on-target skin toxicities induced by inhibition of the MAPK pathway. BRAF inhibitors are known to paradoxically activate the MAPK downstream of EGFR, which we confirmed using human skin keratinocytes. We then conducted a phase I clinical trial testing the hypothesis that topical therapy with the BRAF inhibitor LUT014 could improve skin toxicities induced by EGFR inhibitors. Ten patients with metastatic colorectal cancer who had developed acneiform rash while being treated with cetuximab or panitumumab were enrolled in three cohorts. LUT014 was well tolerated, and there were no dose-limiting toxicities. The acneiform rash improved in the 6 patients who started with grade 2 rash in the low and intermediate cohorts. We conclude that topical LUT014 is safe and efficacious in improving rash from EGFR inhibitors, consistent with the mechanism of action inducting paradoxical MAPK activation. SIGNIFICANCE: BRAF inhibitor topical therapy could avoid dose reductions of EGFR inhibitors, locally treating the main dose-limiting skin toxicity of this class of agents.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
| | - Zev A Wainberg
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Anisha B Patel
- The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Milan J Anadkat
- Washington University School of Medicine, St. Louis, Missouri
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Egmidio Medina
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | | | | | - Antoni Ribas
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
30
|
Whiteaker JR, Sharma K, Hoffman MA, Kuhn E, Zhao L, Cocco AR, Schoenherr RM, Kennedy JJ, Voytovich U, Lin C, Fang B, Bowers K, Whiteley G, Colantonio S, Bocik W, Roberts R, Hiltke T, Boja E, Rodriguez H, McCormick F, Holderfield M, Carr SA, Koomen JM, Paulovich AG. Targeted mass spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP Kinase, and AKT signaling. CELL REPORTS METHODS 2021; 1:100015. [PMID: 34671754 PMCID: PMC8525888 DOI: 10.1016/j.crmeth.2021.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
SUMMARY A primary goal of the US National Cancer Institute's Ras initiative at the Frederick National Laboratory for Cancer Research is to develop methods to quantify RAS signaling to facilitate development of novel cancer therapeutics. We use targeted proteomics technologies to develop a community resource consisting of 256 validated multiple reaction monitoring (MRM)-based, multiplexed assays for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. As proof of concept, we quantify the response of melanoma (A375 and SK-MEL-2) and colorectal cancer (HCT-116 and HT-29) cell lines to BRAF inhibition by PLX-4720. These assays replace over 60 Western blots with quantitative mass spectrometry-based assays of high molecular specificity and quantitative precision, showing the value of these methods for pharmacodynamic measurements and mechanism of action studies. Methods, fit-for-purpose validation, and results are publicly available as a resource for the community at assays.cancer.gov. MOTIVATION A lack of quantitative, multiplexable assays for phosphosignaling limits comprehensive investigation of aberrant signaling in cancer and evaluation of novel treatments. To alleviate this limitation, we sought to develop assays using targeted mass spectrometry for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. The resulting assays provide a resource for replacing over 60 Western blots in examining cancer signaling and tumor biology with high molecular specificity and quantitative rigor.
Collapse
Affiliation(s)
- Jeffrey R. Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kanika Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Melissa A. Hoffman
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric Kuhn
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexandra R. Cocco
- Gillings School of Global Public Health, Kenan-Flagler Business School, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Regine M. Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J. Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ulianna Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kiah Bowers
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gordon Whiteley
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Simona Colantonio
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - William Bocik
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Rhonda Roberts
- Antibody Characterization Laboratory, Leidos Biochemical Research Inc, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD 21701, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew Holderfield
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA 94063, USA
| | - Steven A. Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - John M. Koomen
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
31
|
Maloney RC, Zhang M, Jang H, Nussinov R. The mechanism of activation of monomeric B-Raf V600E. Comput Struct Biotechnol J 2021; 19:3349-3363. [PMID: 34188782 PMCID: PMC8215184 DOI: 10.1016/j.csbj.2021.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Oncogenic mutations in the serine/threonine kinase B-Raf, particularly the V600E mutation, are frequent in cancer, making it a major drug target. Although much is known about B-Raf's active and inactive states, questions remain about the mechanism by which the protein changes between these two states. Here, we utilize molecular dynamics to investigate both wild-type and V600E B-Raf to gain mechanistic insights into the impact of the Val to Glu mutation. The results show that the wild-type and mutant follow similar activation pathways involving an extension of the activation loop and an inward motion of the αC-helix. The V600E mutation, however, destabilizes the inactive state by disrupting hydrophobic interactions present in the wild-type structure while the active state is stabilized through the formation of a salt bridge between Glu600 and Lys507. Additionally, when the activation loop is extended, the αC-helix is able to move between an inward and outward orientation as long as the DFG motif adopts a specific orientation. In that orientation Phe595 rotates away from the αC-helix, allowing the formation of a salt bridge between Lys483 and Glu501. These mechanistic insights have implications for the development of new Raf inhibitors.
Collapse
Affiliation(s)
- Ryan C. Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author at: Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
32
|
Pópulo H, Domingues B, Sampaio C, Lopes JM, Soares P. Combinatorial Therapies to Overcome BRAF/MEK Inhibitors Resistance in Melanoma Cells: An in vitro Study. J Exp Pharmacol 2021; 13:521-535. [PMID: 34079392 PMCID: PMC8163970 DOI: 10.2147/jep.s297831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/20/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Melanoma accounts for only 1% of all skin malignant tumors; however, it is the deadliest form of skin cancer. Since 2011, FDA (Food and Drug Administration) approved several novel therapeutic strategies, such as MAPK pathway targeted therapies, to treat cutaneous melanoma patients. However, their improvements in overall survival were limited, due to the development of resistance. METHODS In this work, several combinations of therapies, including the metabolic modulator DCA, were tested in melanoma cell lines, considering that MAPK and PI3K/AKT/mTOR pathways are deregulated and interconnected in melanoma and that the presence of the Warburg effect in melanoma cells may influence the response to therapy. The effect of the treatments was assessed in the proliferation and survival of melanoma cell lines with different genetic profiles. Also, the possibility to overcome resistance to the treatment with vemurafenib was tested. RESULTS In general, higher decrease in cell viability and cell proliferation and increase in apoptosis were obtained after the combination treatments, comparing with single treatments, in all the studied cell lines. The combination of cobimetinib and everolimus appear to be the best treatment option. The BRAFV600E -vemurafenib resistant melanoma cell line showed to retain sensitivity to both everolimus and DCA. DISCUSSION AND CONCLUSION Our results suggest that the combination of MAPK pathway inhibitors with mTOR pathway inhibitors and DCA should be considered as therapeutic options to treat melanoma patients, as the combinations potentiated the effects of each drug alone. In a cell line resistant to vemurafenib, we verified that combined MAPK inhibitors with inhibition of mTOR pathway and/or DCA metabolism modulation might constitute possible strategies in order to overcome resistance to MAPK inhibition.
Collapse
Affiliation(s)
- Helena Pópulo
- Institute of Molecular Pathology and Immunology, IPATIMUP, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Beatriz Domingues
- Institute of Molecular Pathology and Immunology, IPATIMUP, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristina Sampaio
- Institute of Molecular Pathology and Immunology, IPATIMUP, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology, IPATIMUP, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
- Department of Pathology, Hospital São João, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, IPATIMUP, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
33
|
Cook FA, Cook SJ. Inhibition of RAF dimers: it takes two to tango. Biochem Soc Trans 2021; 49:237-251. [PMID: 33367512 PMCID: PMC7924995 DOI: 10.1042/bst20200485] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.
Collapse
Affiliation(s)
- Frazer A. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
34
|
Cui Y, Ma L, Schacke S, Yin JC, Hsueh YP, Jin H, Morrison H. Merlin cooperates with neurofibromin and Spred1 to suppress the Ras-Erk pathway. Hum Mol Genet 2020; 29:3793-3806. [PMID: 33331896 DOI: 10.1093/hmg/ddaa263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The Ras-Erk pathway is frequently overactivated in human tumors. Neurofibromatosis types 1 and 2 (NF1, NF2) are characterized by multiple tumors of Schwann cell origin. The NF1 tumor suppressor neurofibromin is a principal Ras-GAP accelerating Ras inactivation, whereas the NF2 tumor suppressor merlin is a scaffold protein coordinating multiple signaling pathways. We have previously reported that merlin interacts with Ras and p120RasGAP. Here, we show that merlin can also interact with the neurofibromin/Spred1 complex via merlin-binding sites present on both proteins. Further, merlin can directly bind to the Ras-binding domain (RBD) and the kinase domain (KiD) of Raf1. As the third component of the neurofibromin/Spred1 complex, merlin cannot increase the Ras-GAP activity; rather, it blocks Ras binding to Raf1 by functioning as a 'selective Ras barrier'. Merlin-deficient Schwann cells require the Ras-Erk pathway activity for proliferation. Accordingly, suppression of the Ras-Erk pathway likely contributes to merlin's tumor suppressor activity. Taken together, our results, and studies by others, support targeting or co-targeting of this pathway as a therapy for NF2 inactivation-related tumors.
Collapse
Affiliation(s)
- Yan Cui
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Lin Ma
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stephan Schacke
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Jiani C Yin
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310016, China
| | - Helen Morrison
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Germany
| |
Collapse
|
35
|
Nguyen D, Lin LY, Zhou JO, Kibby E, Sia TW, Tillis TD, Vapuryan N, Xu MR, Potluri R, Shin Y, Erler EA, Bronkema N, Boehlmer DJ, Chung CD, Burkhard C, Zeng SH, Grasso M, Acevedo LA, Marmorstein R, Fera D. Identification and Characterization of a B-Raf Kinase α-Helix Critical for the Activity of MEK Kinase in MAPK Signaling. Biochemistry 2020; 59:4755-4765. [PMID: 33272017 DOI: 10.1021/acs.biochem.0c00598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the MAPK pathway, an oncogenic V600E mutation in B-Raf kinase causes the enzyme to be constitutively active, leading to aberrantly high phosphorylation levels of its downstream effectors, MEK and ERK kinases. The V600E mutation in B-Raf accounts for more than half of all melanomas and ∼3% of all cancers, and many drugs target the ATP binding site of the enzyme for its inhibition. Because B-Raf can develop resistance against these drugs and such drugs can induce paradoxical activation, drugs that target allosteric sites are needed. To identify other potential drug targets, we generated and kinetically characterized an active form of B-RafV600E expressed using a bacterial expression system. In doing so, we identified an α-helix on B-Raf, found at the B-Raf-MEK interface, that is critical for their interaction and the oncogenic activity of B-RafV600E. We assessed the binding between B-Raf mutants and MEK using pull downs and biolayer interferometry and assessed phosphorylation levels of MEK in vitro and in cells as well as its downstream target ERK to show that mutating certain residues on this α-helix is detrimental to binding and downstream activity. Our results suggest that this B-Raf α-helix binding site on MEK could be a site to target for drug development to treat B-RafV600E-induced melanomas.
Collapse
Affiliation(s)
- Diep Nguyen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Linda Yingqi Lin
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Jeffrey O Zhou
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Emily Kibby
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Twan W Sia
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Tiara D Tillis
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Narine Vapuryan
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Ming-Ray Xu
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Rajiv Potluri
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - YongJoon Shin
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Elizabeth A Erler
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Naomi Bronkema
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Daniel J Boehlmer
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Christopher D Chung
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Caroline Burkhard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Shirley H Zeng
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael Grasso
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lucila A Acevedo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
36
|
Usta D, Sigaud R, Buhl JL, Selt F, Marquardt V, Pauck D, Jansen J, Pusch S, Ecker J, Hielscher T, Vollmer J, Sommerkamp AC, Rubner T, Hargrave D, van Tilburg CM, Pfister SM, Jones DTW, Remke M, Brummer T, Witt O, Milde T. A Cell-Based MAPK Reporter Assay Reveals Synergistic MAPK Pathway Activity Suppression by MAPK Inhibitor Combination in BRAF-Driven Pediatric Low-Grade Glioma Cells. Mol Cancer Ther 2020; 19:1736-1750. [PMID: 32451331 DOI: 10.1158/1535-7163.mct-19-1021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
Pilocytic astrocytomas as well as other pediatric low-grade gliomas (pLGG) exhibit genetic events leading to aberrant activation of the MAPK pathway. The most common alterations are KIAA1549:BRAF fusions and BRAFV600E and NF1 mutations. Novel drugs targeting the MAPK pathway (MAPKi) are prime candidates for the treatment of these single-pathway diseases. We aimed to develop an assay suitable for preclinical testing of MAPKi in pLGGs with the goal to identify novel MAPK pathway-suppressing synergistic drug combinations. A reporter plasmid (pDIPZ) with a MAPK-responsive ELK-1-binding element driving the expression of destabilized firefly luciferase was generated and packaged using a lentiviral vector system. Pediatric glioma cell lines with a BRAF fusion (DKFZ-BT66) and a BRAFV600E mutation (BT-40) background, respectively, were stably transfected. Modulation of the MAPK pathway activity by MAPKi was measured using the luciferase reporter and validated by detection of phosphorylated protein levels. A screening of a MAPKi library was performed, and synergy of selected combinations was calculated. Screening of a MAPKi library revealed MEK inhibitors as the class inhibiting the pathway with the lowest IC50s, followed by ERK and next-generation RAF inhibitors. Combination treatments with different MAPKi classes showed synergistic effects in BRAF fusion as well as BRAFV600E mutation backgrounds. Here, we report a novel reporter assay for medium- to high-throughput preclinical drug testing in pLGG cell lines. The assay confirmed MEK, ERK, and next-generation RAF inhibitors as potential treatment approaches for KIAA1549:BRAF and BRAFV600E-mutated pLGGs. In addition, the assay revealed that combination treatments synergistically suppressed MAPK pathway activity.
Collapse
Affiliation(s)
- Diren Usta
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Juliane L Buhl
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Viktoria Marquardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany, and Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Pauck
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany, and Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Jansen
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany, Centre for Biological Signalling Studies BIOSS, University of Freiburg, Comprehensive Cancer Center Freiburg (CCCF) and German Consortium for Translational Cancer Research (DKTK), Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Johanna Vollmer
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Alexander C Sommerkamp
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Rubner
- Flow Cytometry Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Darren Hargrave
- Neurooncology and Experimental Therapeutics, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany, and Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany, Centre for Biological Signalling Studies BIOSS, University of Freiburg, Comprehensive Cancer Center Freiburg (CCCF) and German Consortium for Translational Cancer Research (DKTK), Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
37
|
Faloppi L, Puzzoni M, Casadei Gardini A, Silvestris N, Masi G, Marisi G, Vivaldi C, Gadaleta CD, Ziranu P, Bianconi M, Loretelli C, Demurtas L, Lai E, Giampieri R, Galizia E, Ulivi P, Battelli N, Falcone A, Cascinu S, Scartozzi M. Angiogenesis Genotyping and Clinical Outcomes in Patients with Advanced Hepatocellular Carcinoma Receiving Sorafenib: The ALICE-2 Study. Target Oncol 2020; 15:115-126. [DOI: 10.1007/s11523-020-00698-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Hypersensibilité retardée aux tatouages induite par un traitement combiné anti-BRAF/anti-MEK. Ann Dermatol Venereol 2019; 146:725-729. [DOI: 10.1016/j.annder.2019.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/07/2019] [Accepted: 08/21/2019] [Indexed: 01/28/2023]
|
39
|
Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P. Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol 2019; 862:172621. [PMID: 31446019 DOI: 10.1016/j.ejphar.2019.172621] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Melanoma onset and progression are associated with a high variety of activating mutations in the MAPK-pathway, most frequently involving BRAF (35-45%) and NRAS (15-25%) genes, but also c-KIT and PTEN. Targeted therapies with BRAF and MEK inhibitors showed promising results over the past years, but it is known that most responses are temporary, and almost all of patients develop a tumor relapse within one year. Different drug-resistance mechanisms underlie the progression of disease and activation of both MAPK and PI3K/AKT/mTOR pathways. Therefore, in this article we reviewed the main studies about clinical effects of several target inhibitors, describing properly the most prominent mechanisms of both intrinsic and acquired resistance. Furthermore, suggestive strategies for overcoming drug resistance and the most recent alternative combination therapies to optimize the use of MAPK pathway inhibitors were also discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Michela Roberto
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Department of Medical-Surgical Sciences and Translation Medicine, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy.
| | - Martina Panebianco
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Oncology Unit, IDI-IRCCS of Rome, Italy
| |
Collapse
|
40
|
Gunderwala AY, Nimbvikar AA, Cope NJ, Li Z, Wang Z. Development of Allosteric BRAF Peptide Inhibitors Targeting the Dimer Interface of BRAF. ACS Chem Biol 2019; 14:1471-1480. [PMID: 31243962 DOI: 10.1021/acschembio.9b00191] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BRAF is the most frequently mutated kinase in human cancers and is one of the major effectors of oncogenic RAS, making BRAF a target of considerable interest for anticancer drug development. Wild-type BRAF and a variety of oncogenic BRAF mutants are dependent on dimerization of the kinase domain, which also emerges as a culprit of drug resistance and side effects of current BRAF therapies. Thus, allosteric BRAF inhibitors capable of disrupting BRAF dimers could abrogate hyperactivated MAPK (mitogen-activated protein kinase) signaling driven by oncogenic BRAF or RAS and overcome the major limitations of current BRAF inhibitors. To establish this, we applied an in silico approach to design a series of peptide inhibitors targeting the dimer interface of BRAF. One resulting inhibitor was found to potently inhibit the kinase activity of BRAF homo- and heterodimers, including oncogenic BRAFG469A mutant. Moreover, this inhibitor synergizes with FDA-approved, ATP-competitive BRAF inhibitors against dimeric BRAF, suggesting that allosteric BRAF inhibitors have great potential to extend the application of current BRAF therapies. Additionally, targeting the dimer interface of BRAF kinase leads to protein degradation of both RAF and MEK, uncovering a novel scaffolding function of RAF in protecting large MAPK complexes from protein degradation. In conclusion, we have developed a potent lead peptide inhibitor for targeting the dimer interface of BRAF in cancer cells. The dual function of this peptide inhibitor validates the strategy for developing allosteric BRAF inhibitors that specifically dissociate RAF dimers and destabilize the MAPK signaling complex.
Collapse
Affiliation(s)
- Amber Y. Gunderwala
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Anushri A. Nimbvikar
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas J. Cope
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Zhijun Li
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
CRAF mutations in lung cancer can be oncogenic and predict sensitivity to combined type II RAF and MEK inhibition. Oncogene 2019; 38:5933-5941. [PMID: 31285551 PMCID: PMC6756226 DOI: 10.1038/s41388-019-0866-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/04/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Abstract
Two out of 41 non-small cell lung cancer patients enrolled in a clinical study were found with a somatic CRAF mutation in their tumor, namely CRAFP261A and CRAFP207S. To our knowledge, both mutations are novel in lung cancer and CRAFP261A has not been previously reported in cancer. Expression of CRAFP261A in HEK293T cells and BEAS-2B lung epithelial cells led to increased ERK pathway activation in a dimer-dependent manner, accompanied with loss of CRAF phosphorylation at the negative regulatory S259 residue. Moreover, stable expression of CRAFP261A in mouse embryonic fibroblasts and BEAS-2B cells led to anchorage-independent growth. Consistent with a previous report, we could not observe a gain-of-function with CRAFP207S. Type II but not type I RAF inhibitors suppressed the CRAFP261A-induced ERK pathway activity in BEAS-2B cells, and combinatorial treatment with type II RAF inhibitors and a MEK inhibitor led to a stronger ERK pathway inhibition and growth arrest. Our findings suggest that the acquisition of a CRAFP261A mutation can provide oncogenic properties to cells, and that such cells are sensitive to combined MEK and type II RAF inhibitors. CRAF mutations should be diagnostically and therapeutically explored in lung and perhaps other cancers.
Collapse
|
42
|
Heinzerling L, Eigentler TK, Fluck M, Hassel JC, Heller-Schenck D, Leipe J, Pauschinger M, Vogel A, Zimmer L, Gutzmer R. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open 2019; 4:e000491. [PMID: 31231568 PMCID: PMC6555610 DOI: 10.1136/esmoopen-2019-000491] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/06/2019] [Accepted: 03/31/2019] [Indexed: 12/11/2022] Open
Abstract
The inhibition of the mitogen-activated protein kinases signalling pathway through combined use of BRAF and MEK inhibitors (BRAFi+MEKi) represents an established therapeutic option in patients with BRAF-mutated, advanced melanoma. These efficient therapies are well tolerated with mostly moderate and reversible side effects and a discontinuation rate due to adverse events of 11.5%-15.7%. Median duration of therapy ranges between 8.8 and 11.7 months. Based on data from confirmatory trials, safety profiles of three BRAFi+MEKi combinations were reviewed, that is, dabrafenib plus trametinib, vemurafenib plus cobimetinib and encorafenib plus binimetinib. Many adverse events are class effects, such as cutaneous, gastrointestinal, ocular, cardiac and musculoskeletal events; some adverse events are substance associated. Fever (dabrafenib) and photosensitivity (vemurafenib) are the most common and clinically prominent examples. Other adverse events are less frequent and the association to one substance is less strong such as anaemia, facial paresis (encorafenib), neutropenia (dabrafenib), skin rash, QTc prolongation and increased liver function tests (vemurafenib). This narrative review provides recommendations for monitoring, adverse event evaluation and management focusing on the clinically relevant side effects of the three regimens.
Collapse
Affiliation(s)
- Lucie Heinzerling
- Department of Dermatology, University of Erlangen, Erlangen, Germany
| | - Thomas K Eigentler
- Department of Dermatology, Center for Dermatooncology, University Medical Center Tübingen, Tübingen, Germany
| | - Michael Fluck
- Department of Internal Medicine, Fachklinik Hornheide, Münster, Germany
| | - Jessica C Hassel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Jan Leipe
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Matthias Pauschinger
- Department of Cardiology, Klinikum Nürnberg Süd, Paracelsus Medical University Nürnberg, Nuremberg, Germany
| | - Arndt Vogel
- Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital, University Essen-Duisburg, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| |
Collapse
|
43
|
Firestone AJ, Settleman J. A three-drug combination to treat BRAF-mutant cancers. Nat Med 2019; 23:913-914. [PMID: 28777790 DOI: 10.1038/nm.4382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Jeff Settleman
- Calico Life Sciences, South San Francisco, California, USA
| |
Collapse
|
44
|
Savoia P, Fava P, Casoni F, Cremona O. Targeting the ERK Signaling Pathway in Melanoma. Int J Mol Sci 2019; 20:ijms20061483. [PMID: 30934534 PMCID: PMC6472057 DOI: 10.3390/ijms20061483] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
The discovery of the role of the RAS/RAF/MEK/ERK pathway in melanomagenesis and its progression have opened a new era in the treatment of this tumor. Vemurafenib was the first specific kinase inhibitor approved for therapy of advanced melanomas harboring BRAF-activating mutations, followed by dabrafenib and encorafenib. However, despite the excellent results of first-generation kinase inhibitors in terms of response rate, the average duration of the response was short, due to the onset of genetic and epigenetic resistance mechanisms. The combination therapy with MEK inhibitors is an excellent strategy to circumvent drug resistance, with the additional advantage of reducing side effects due to the paradoxical reactivation of the MAPK pathway. The recent development of RAS and extracellular signal-related kinases (ERK) inhibitors promises to add new players for the ultimate suppression of this signaling pathway and the control of pathway-related drug resistance. In this review, we analyze the pharmacological, preclinical, and clinical trial data of the various MAPK pathway inhibitors, with a keen interest for their clinical applicability in the management of advanced melanoma.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Health Science, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Paolo Fava
- Section of Dermatology, Department of Medical Science, University of Turin, 10124 Turin, Italy.
| | - Filippo Casoni
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 58, 20132 Milano, Italy.
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| | - Ottavio Cremona
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 58, 20132 Milano, Italy.
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
45
|
Jiang C, Xie L, Zhang Y, Fujinaga M, Mori W, Kurihara Y, Yamasaki T, Wang F, Zhang MR. Pharmacokinetic Evaluation of [ 11C]CEP-32496 in Nude Mice Bearing BRAF V600E Mutation-Induced Melanomas. Mol Imaging 2019; 17:1536012118795952. [PMID: 30251592 PMCID: PMC6156206 DOI: 10.1177/1536012118795952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CEP-32496, also known as RXDX-105 or Agerafenib, is a new orally active inhibitor for the mutated v-raf murine sarcoma viral oncogene homolog B1 (BRAFV600E), which has attracted considerable attention in clinical trials for the treatment of human cancers. Here, we used carbon-11-labeled CEP-32496 ([11C]CEP-32496) as a positron emission tomography (PET) radiotracer to evaluate its pharmacokinetic properties and explore its potential for in vivo imaging. Following radiotracer synthesis, we performed in vitro binding assays and autoradiography of [11C]CEP-32496 in the A375 melanoma cell line and on tumor tissue sections from mice harboring the BRAFV600E mutation. These were followed by PET scans and biodistribution studies on nude mice bearing subcutaneous A375 cell-induced melanoma. [11C]CEP-32496 showed high binding affinity for BRAFV600E-positive A375 melanoma cells and densely accumulated in the respective tissue sections; this could be blocked by the BRAFV600E selective antagonist sorafenib and by unlabeled CEP-32496. The PET and biodistribution results revealed that [11C]CEP-32496 accumulated continuously but slowly into the tumor within a period of 0 to 60 minutes postinjection in A375-melanoma-bearing nude mice. Metabolite analysis showed high in vivo stability of [11C]CEP-32496 in plasma. Our results indicate that [11C]CEP-32496 has excellent specificity and affinity for the BRAFV600E mutation in vitro, while its noninvasive personalized diagnostic role needs to be studied further.
Collapse
Affiliation(s)
- Cuiping Jiang
- 1 Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,2 Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Xie
- 1 Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yiding Zhang
- 1 Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masayuki Fujinaga
- 1 Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Wakana Mori
- 1 Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yusuke Kurihara
- 1 Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tomoteru Yamasaki
- 1 Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Feng Wang
- 2 Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ming-Rong Zhang
- 1 Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
46
|
Astl L, Tse A, Verkhivker GM. Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View Through the Lens of Residue Interaction Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:187-223. [DOI: 10.1007/978-981-13-8719-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6121328. [PMID: 30647812 PMCID: PMC6311846 DOI: 10.1155/2018/6121328] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used metal nanoparticles in health care industries, particularly due to its unique physical, chemical, optical, and biological properties. It is used as an antibacterial, antiviral, antifungal, and anticancer agent. Camptothecin (CPT) and its derivatives function as inhibitors of topoisomerase and as potent anticancer agents against a variety of cancers. Nevertheless, the combined actions of CPT and AgNPs in apoptosis in human cervical cancer cells (HeLa) have not been elucidated. Hence, we investigated the synergistic combinatorial effect of CPT and AgNPs in human cervical cancer cells. We synthesized AgNPs using sinigrin as a reducing and stabilizing agent. The synthesized AgNPs were characterized using various analytical techniques. The anticancer effects of a combined treatment with CPT and AgNPs were evaluated using a series of cellular and biochemical assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. The findings from this study revealed that the combination of CPT and AgNPs treatment significantly inhibited cell viability and proliferation of HeLa cells. Moreover, the combination effect significantly increases the levels of oxidative stress markers and decreases antioxidative stress markers compared to single treatment. Further, the combined treatment upregulate various proapoptotic gene expression and downregulate antiapoptotic gene expression. Interestingly, the combined treatment modulates various cellular signaling molecules involved in cell survival, cytotoxicity, and apoptosis. Overall, these results suggest that CPT and AgNPs cause cell death by inducing the mitochondrial membrane permeability change and activation of caspase 9, 6, and 3. The synergistic cytotoxicity and apoptosis effect seems to be associated with increased ROS formation and depletion of antioxidant. Certainly, a combination of CPT and AgNPs could provide a beneficial effect in the treatment of cervical cancer compared with monotherapy.
Collapse
|
48
|
Assan F, Vilaine E, Wagner S, Longvert C, Saiag P, Seidowsky A, Bourgault‐Villada I, Massy ZA. Hyponatremia and MAP‐kinase inhibitors in malignant melanoma: Frequency, pathophysiological aspects and clinical consequences. Pigment Cell Melanoma Res 2018; 32:326-331. [PMID: 30387922 DOI: 10.1111/pcmr.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Florence Assan
- Division of Nephrology, Ambroise Paré Hospital APHP Boulogne Billancourt/Paris France
| | - Eve Vilaine
- Division of Nephrology, Ambroise Paré Hospital, APHP Paris‐Ile‐de‐France‐West University (UVSQ) Boulogne Billancourt/Paris France
- INSERM U1018 Team5 Villejuif France
| | | | - Christine Longvert
- Division of Dermatology, Ambroise Paré Hospital, APHP Paris‐Ile‐de‐France‐West University (UVSQ) Boulogne Billancourt/Paris France
| | - Philippe Saiag
- Division of Dermatology, Ambroise Paré Hospital, APHP Paris‐Ile‐de‐France‐West University (UVSQ) Boulogne Billancourt/Paris France
| | - Alexandre Seidowsky
- Division of Nephrology, Ambroise Paré Hospital, APHP Paris‐Ile‐de‐France‐West University (UVSQ) Boulogne Billancourt/Paris France
- INSERM U1018 Team5 Villejuif France
| | - Isabelle Bourgault‐Villada
- Division of Clinical Dermatology‐immunology, Ambroise Paré Hospital, APHP Paris‐Ile‐de‐France‐West University (UVSQ) Boulogne Billancourt/Paris France
| | - Ziad A. Massy
- Division of Nephrology, Ambroise Paré Hospital, APHP Paris‐Ile‐de‐France‐West University (UVSQ) Boulogne Billancourt/Paris France
- INSERM U1018 Team5 Villejuif France
| |
Collapse
|
49
|
Wang PF, Wang ZF, Qiu HY, Huang Y, Hu HM, Wang ZC, Zhu HL. Identification and Biological Evaluation of Novel Type II B-Raf V600E Inhibitors. ChemMedChem 2018; 13:2558-2566. [PMID: 30353975 DOI: 10.1002/cmdc.201800574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/14/2018] [Indexed: 12/15/2022]
Abstract
The mitogen-activated protein kinase (MAPK) pathway plays a vital role in signal transduction networks. Severe diseases may be triggered if it is disturbed by mutated components, especially the kinase B-RafV600E . New inhibitors of the kinase are needed as cases of relapse and resistance with the known drugs have been widely reported in the clinic. In the present work, a new class of B-RafV600E inhibitors was identified by fragment linking. In vitro and in vivo assays were used to demonstrate the pharmacological properties of the compounds. 3-{3-[4-Chloro-3-(trifluoromethyl)phenyl]ureido}-N-[1-(4-methoxyphenyl)-1H-pyrazol-4-yl]benzamide was the most potent agent with IC50 values of 0.035±0.004 μm (B-RafV600E kinase) and 0.39±0.04 μm (A375 cells). Furthermore, no obvious toxicity was observed. Collectively, the results favored justified the design rationale and hinted that this new chemotype might be worth studying further to develop novel B-Raf inhibitor candidates.
Collapse
Affiliation(s)
- Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Ze-Feng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Yue Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Hui-Min Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
50
|
Targeted profiling of RNA translation reveals mTOR-4EBP1/2-independent translation regulation of mRNAs encoding ribosomal proteins. Proc Natl Acad Sci U S A 2018; 115:E9325-E9332. [PMID: 30224479 DOI: 10.1073/pnas.1805782115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PI3K-Akt-mTOR signaling pathway is a master regulator of RNA translation. Pharmacological inhibition of this pathway preferentially and coordinately suppresses, in a 4EBP1/2-dependent manner, translation of mRNAs encoding ribosomal proteins. However, it is unclear whether mechanistic target of rapamycin (mTOR)-4EBP1/2 is the exclusive translation regulator of this group of genes, and furthermore, systematic searches for novel translation modulators have been immensely challenging because of difficulties in scaling existing RNA translation profiling assays. Here, we developed a rapid and highly scalable approach for gene-specific quantitation of RNA translation, termed Targeted Profiling of RNA Translation (TPRT). We applied this technique in a chemical screen for translation modulators, and identified numerous preclinical and clinical therapeutic compounds, with diverse nominal targets, that preferentially suppress translation of ribosomal proteins. Surprisingly, some of these compounds act in a manner that bypasses canonical regulation by mTOR-4EBP1/2. Instead, these compounds exert their translation effects in a manner that is dependent on GCN2-eIF2α, a central signaling axis within the integrated stress response. Furthermore, we were also able to identify metabolic perturbations that also suppress ribosomal protein translation in an mTOR-independent manner. Together, we describe a translation assay that is directly applicable to large-scale RNA translation studies, and that enabled us to identify a noncanonical, mTOR-independent mode for translation regulation of ribosomal proteins.
Collapse
|