1
|
Köşeci T, Seyyar M, Kıdı MM, Biter S, Eser K, Kefeli U, Nayır E, Duman BB, Mete B, Demirhindi H, Çil T. Prognostic Significance of the Combined Albumin-To-Alkaline Phosphatase Ratio (AAPR) and Haemoglobin-Albumin-Lymphocyte-Platelet (HALP) Score in Patients with Metastatic Renal Cell Carcinoma Treated by Targeted Therapy: A New Prognostic Combined Risk Scoring. J Clin Med 2025; 14:1742. [PMID: 40095849 PMCID: PMC11900617 DOI: 10.3390/jcm14051742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Renal cell carcinoma (RCC) accounts for 2-3% of all cancers, with approximately 25% of patients being detected at the metastatic stage. This study aimed to determine the prognostic significance of co-evaluating two risk parameters: one, the HALP score based on haemoglobin, albumin, lymphocyte, and platelet counts, and the other, albumin-to-alkaline phosphatase ratio (AAPR) in patients with metastatic RCC treated with targeted therapy. Methods: This retrospective cohort study included 147 patients with metastatic RCC. The HALP score and AAPR values were calculated from pre-treatment blood test results, and followingly, the cut-off value was determined by using ROC analysis. Patients were categorised into three groups with a low, moderate or high combined risk score based on this cut-off value. The effect of these risk groups on survival was evaluated. Results: The mean age of patients was 64.1 ± 11.9. The median follow-up time was 38.3 months, and the mortality rate was 53.7% in all groups. Kaplan-Meier survival analysis showed a statistically significant difference between the combined scores of the risk groups: the median survival time was 51.6 months in the low-risk group, 20.7 months in the medium-risk group, and 10.4 months in the high-risk group (p < 0.001), with 5-year survival rates being 38.8% in the low-risk group, 30% in the intermediate-risk group, and 19% in the high-risk group. When compared to the low-risk group, Cox regression analysis revealed that the mortality risk, i.e., HR (hazard ratio), was 2.42 times higher in the intermediate-risk group and 3.76 times higher in the high-risk group. A nephrectomy operation decreased the mortality risk (HR = 0.24) by 4.16 times. Conclusions: This new combined risk scoring, obtained from co-evaluating the HALP score and AAPR, was found to be an independent prognostic factor in metastatic RCC patients. This combined risk scoring is expected to help clinicians in treatment decisions.
Collapse
Affiliation(s)
- Tolga Köşeci
- Department of Medical Oncology, Faculty of Medicine, Çukurova University, 01330 Adana, Türkiye; (M.M.K.); (S.B.)
| | - Mustafa Seyyar
- Department of Medical Oncology, Gaziantep City Hospital, 27470 Gaziantep, Türkiye;
| | - Mehmet Mutlu Kıdı
- Department of Medical Oncology, Faculty of Medicine, Çukurova University, 01330 Adana, Türkiye; (M.M.K.); (S.B.)
| | - Sedat Biter
- Department of Medical Oncology, Faculty of Medicine, Çukurova University, 01330 Adana, Türkiye; (M.M.K.); (S.B.)
| | - Kadir Eser
- Department of Oncology, Mersin University Hospital, 33240 Mersin, Türkiye;
| | - Umut Kefeli
- Department of Medical Oncology, Faculty of Medicine, Kocaeli University, 41001 Kocaeli, Türkiye;
| | - Erdinç Nayır
- Department of Medical Oncology, Mersin Medical Park Hospital, 33200 Mersin, Türkiye;
| | - Berna Bozkurt Duman
- Department of Medical Oncology, Adana City Training and Research Hospital, University of Health Sciences, 01370 Adana, Türkiye; (B.B.D.); (T.Ç.)
| | - Burak Mete
- Department of Public Health, Faculty of Medicine, Çukurova University, 01330 Adana, Türkiye;
| | - Hakan Demirhindi
- Department of Public Health, Faculty of Medicine, Çukurova University, 01330 Adana, Türkiye;
| | - Timuçin Çil
- Department of Medical Oncology, Adana City Training and Research Hospital, University of Health Sciences, 01370 Adana, Türkiye; (B.B.D.); (T.Ç.)
| |
Collapse
|
2
|
García-Hernández N, Calzada F, Bautista E, Sánchez-López JM, Valdes M, Hernández-Caballero ME, Ordoñez-Razo RM. Quantitative Proteomics and Molecular Mechanisms of Non-Hodgkin Lymphoma Mice Treated with Incomptine A, Part II. Pharmaceuticals (Basel) 2025; 18:242. [PMID: 40006055 PMCID: PMC11858899 DOI: 10.3390/ph18020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Incomptine A (IA) has cytotoxic activity in non-Hodgkin lymphoma (NHL) cancer cell lines. Its effects on U-937 cells include induction of apoptosis, production of reactive oxygen species, and inhibition of glycolytic enzymes. We examined the altered protein levels present in the lymph nodes of an in vivo mouse model. Methods: We induced an in vivo model with Balb/c mice with U-937 cells and treated it with IA or methotrexate, as well as healthy mice. We determined expressed proteins by TMT based on the LC-MS/MS method (Data are available via ProteomeXchange with identifier PXD060392) and a molecular docking study targeting 15 deregulated proteins. We developed analyses through the KEGG, Reactome, and Gene Ontology databases. Results: A total of 2717 proteins from the axillary and inguinal lymph nodes were analyzed and compared with healthy mice. Of 412 differentially expressed proteins, 132 were overexpressed (FC ≥ 1.5) and 117 were underexpressed (FC ≤ 0.67). This altered expression was associated with 20 significantly enriched processes, including chromatin remodeling, transcription, translation, metabolic and energetic processes, oxidative phosphorylation, glycolysis/gluconeogenesis, cell proliferation, cytoskeletal organization, and with cell death with necroptosis. Conclusions: We confirmed the previously observed dose-dependent effect of IA as a secondary metabolite with important potential as an anticancer agent for the treatment of NHL, showing that the type of drug or the anatomical location influences the response to treatment. The IA promises to be a likely safer and more effective treatment to improve outcomes, reduce toxicities, and improve survival in patients with NHL, initially targeting histones and transcription factors that will affect cell death proteins.
Collapse
Affiliation(s)
- Normand García-Hernández
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital Pediatría 2° Piso, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
| | - Elihú Bautista
- SECIHTI-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, San Luis Potosí, Mexico;
| | - José Manuel Sánchez-López
- Hospital Infantil de Tlaxcala, Investigación y Enseñanza, 20 de Noviembre S/M, San Matias Tepetomatitlan, Apetatitlan de de Antonio Carvajal 90606, Tlaxcala, Mexico;
- Phagocytes Architecture and Dynamics, IPBS, UMR5089 CNRS-Université Toulouse 3, 205 route de Narbonne, 31077 Toulouse, France
| | - Miguel Valdes
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Miguel Hidalgo, Mexico City 11340, Mexico
| | | | - Rosa María Ordoñez-Razo
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital Pediatría 2° Piso, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
| |
Collapse
|
3
|
Jiang Y, Wang T, Qiao LX, Wang LJ, Zhang CY. Construction of an end-repairing-engineered quadratic in vitro transcription machine for single-molecule monitoring of alkaline phosphatase in human cancers. Talanta 2025; 283:127104. [PMID: 39490305 DOI: 10.1016/j.talanta.2024.127104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Alkaline phosphatase (ALP) is an essential hydrolase widely present in humans, and it extensively acts as a biomarker for multiple human diseases. Conventional ALP assays suffer from complicated synthesis, tedious operation, low sensitivity, and large sample consumption. Herein, we construct an end-repairing-engineered quadratic in vitro transcription machine for single-molecule monitoring of ALP in diverse cancers with 3'-phosphoryl (PO4) nucleic acid as a macromolecular substrate. In presence of ALP, it catalyzes the removal of 3'-PO4 group to yield a 3'-hydroxyl end in hairpin probe 1 (HP1). Under the catalysis of Taq ligase, 3'-hydroxylated HP1 and hairpin probe 2 (HP2) are ligated together to form an intact transcription template. With the addition of T7 RNA polymerase, in vitro transcription amplification is activated to synthesize numerous reporter probes. Resulting reporter probes can bind with signal probes to initiate duplex-specific nuclease (DSN)-aided cyclic degradation of signal probes. Eventually, multiple cycles of degradation-liberation-hybridization induce the generation of large amounts of FAM fluorophores that are counted via single-molecule imaging. Due to high specificity of ALP-directed 3'-end dephosphorylation, high efficiency of quadratic in vitro transcription cascades, and ultrahigh signal-to-noise ratio (SNR) of single-molecule counting, this machine can detect ALP with a limit of detection (LOD) of 7.93 × 10-8 U/μL in vitro and 1 cell in vivo. Furthermore, it can be applied for the evaluation of enzyme kinetics, screening of potential antidrugs, and quantification of ALP level in various cancer cells and human serums, holding potential in 3'-phosphatases-associated biological study and clinical diagnosis.
Collapse
Affiliation(s)
- Yao Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210000, China
| | - Li-Xue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Sarkar S, Chatterjee A, Kim D, Saritha C, Barman S, Jana B, Ryu JH, Das A. Host-Guest Adduct as a Stimuli-Responsive Prodrug: Enzyme-Triggered Self-Assembly Process of a Short Peptide Within Mitochondria to Induce Cell Apoptosis. Adv Healthc Mater 2025; 14:e2403243. [PMID: 39506431 DOI: 10.1002/adhm.202403243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Indexed: 11/08/2024]
Abstract
To address the issue of nonspecific biodistribution of a chemotherapeutic drug, stable [2]pseudorotaxane complexes (PK@CAOPP and PR@CAOPP) are used to demonstrate a proof of concept. Cationic -PPh3 + moiety in CAOPP allows specific localization of the PK@CAOPP/ PR@CAOPP in the mitochondrial membrane (MM). Electrostatic interaction between the cationic LysinePK or ArgininePR moiety and the negatively charged phosphoesterCAOPP functionality in CAOPP favours strong adduct formation. The ALP-induced hydrolytic cleavage of the phosphoester moiety in cancer cells triggers dephosphorylation and releases PK/ PR moiety from PK@CAOPP/PR@CAOPP. PK or PR, derived from the Phe-Phe dipeptide, formed fibril-like molecular aggregates in the MM to induce dysfunction, depolarization, ROS generation and apoptotic MCF7 cell death. Such phenomena were not observed in ALP-negative HEK293 normal cells. These propositions were confirmed through control studies using NBDK and PE, other guest molecules. Smaller size and inclusion of the short peptides (PK or PR) within the hydrophobic interior of CAOPP, were attributed to their stability in blood serum. Thus, we have demonstrated the use of supramolecular adducts as a potential therapeutic option for treating cancer cells without affecting healthy cells. The efficacy was also established with an in-vivo MCF7 tumour xenograft model using Balb/c nude mice.
Collapse
Affiliation(s)
- Sandip Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Atin Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cevella Saritha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, 844102, India
| | - Surajit Barman
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Batakrishna Jana
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Amitava Das
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
5
|
Ran Y, Liu Z, Ma H, Li C, Zhou J, Li D, Guo Z, Dan L, Zhao Z, Zou Z, Su S, Yin Z. Associations between 25-hydroxyvitamin D/calcium/alkaline phosphatase levels and the risk of developing kidney stones: Results from NHANES (2013-2018)-based and Mendelian randomization studies. Medicine (Baltimore) 2025; 104:e41323. [PMID: 39854758 PMCID: PMC11771664 DOI: 10.1097/md.0000000000041323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
This study explores the relationship between 25-hydroxyvitamin D/calcium/alkaline phosphatase (ALP) levels and kidney stone development via cross-sectional and Mendelian randomization (MR) analyses. We used data from the National Health and Nutrition Examination Survey (NHANES) 2013 to 2018 to explore the associations of 25(OH)D metabolite, calcium, and ALP levels with kidney stone development, LDSC analysis to determine the associations between their genetically predicted levels and kidney stone development, and MR analysis to determine the causality of those relationship via genome-wide association studies (GWASs). The cross-sectional study revealed a relationship between ALP levels and kidney stone development (Model 1: OR = 1.004, 95% CI = 1.001-1.007, P = .005; Model 2: OR = 1.004, 95% CI = 1.001-1.007, P = .007; Model 3: OR = 1.003, 95% CI = 1.001-1.006, P = .011) in both men and women. LDSC analysis also revealed a genetic correlation between ALP concentrations and kidney stone development (ukb-b-18372: rg = 0.296, P = 1.45E-04; GCST90044237: rg = 0.157, P = .004). The results of both MR analyses demonstrated that kidney stones cause elevated ALP levels (IVW: OR = 2.233, 95% CI = 1.113-4.480, P = .024, preliminary analysis; OR = 1.003, 95% CI = 1.000-1.005, P = .025, validation analysis). MR analysis also revealed that elevated serum calcium levels increased the risk of developing kidney stones (IVW: OR = 1.002, 95% CI = 1.000-1.003, P = 4.258E-04, preliminary analysis; OR = 1.592, 95% CI = 1.365-1.858, P = 3.367E-09, validation analysis). Our study strongly supports a positive association between kidney stone development and ALP levels. Although observational studies did not reveal an association between calcium levels and kidney stone development, MR analysis suggested a positive association between calcium levels and kidney stone development. Our study provides new and more reliable evidence and research directions for the prevention, diagnosis and treatment of kidney stones.
Collapse
Affiliation(s)
- Yueli Ran
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhenyu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hang Ma
- The First Affliliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Chaofan Li
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Jiangtao Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dongyang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ziqi Guo
- Department of Urology, The First People Hospital of Lingbao, Lingbao, People’s Republic of China
| | - Lifeng Dan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zecang Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhonglin Zou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shuai Su
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhikang Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
6
|
Badirujjaman M, Thummer RP, Bhabak KP. Esterase-Responsive Self-Immolative Prodrugs for the Sustained Delivery of the Anticancer Drug 5-Fluorouracil with Turn-On Fluorescence. Chem Asian J 2025; 20:e202400846. [PMID: 39484866 DOI: 10.1002/asia.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Stimuli-responsive prodrugs of anticancer drugs are advantageous for the selective delivery of drugs to cancer cells with minimized off-target side effects. In the present study, esterase-activatable fluorogenic prodrugs of the chemotherapeutic drug 5-fluorouracil (5-FU) have been rationally designed and synthesized using multi-step organic synthesis. While 5-FU was connected directly with the fluorophore via a C-N bond in the prodrug BJ-50, an additional self-immolative benzylic spacer with a carbonate linker was incorporated in the prodrug BJ-92. Although absorption and emission spectroscopic studies revealed the activation of both the prodrugs by porcine liver esterase (PLE), reverse-phase HPLC studies confirmed the inability of BJ-50 to release the active drug 5-FU. In contrast, a sustained release of 5-FU and Cou-OH was observed from BJ-92 in the presence of PLE. The endogenous esterase-mediated activation of the prodrug BJ-92 was validated by the turn-on fluorescence in A549 cells and the anti-proliferative activities in A549, and HEK-293 cells. Modulation of the expression of a few cancer marker proteins by BJ-92 and 5-FU was studied to evaluate their anticancer activities. As esterases are overexpressed in cancer cells, the prodrug in the present study would be helpful in selectively delivering 5-FU to cancer cells with reduced off-target side-effects.
Collapse
Affiliation(s)
- Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
7
|
Jia Y, Tang Y, Shao Y, Li X. High preoperative serum alkaline phosphatase levels predict worse disease-free survival in patients with surgically treated non-metastatic renal cell carcinoma. Asian J Surg 2024:S1015-9584(24)02699-X. [PMID: 39613611 DOI: 10.1016/j.asjsur.2024.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024] Open
Affiliation(s)
- Yige Jia
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaxiong Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanxiang Shao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Liu Y, Zou L, Niu H, Li Z, Ren H, Zhang X, Liao H, Zhou Z, Zhang X, Huang X, Pan H, Rong S, Ma H. Graphite Phase Carbon Nitride Nanosheets-Based Fluorescent Sensors for Analysis and Detection. Crit Rev Anal Chem 2024:1-13. [PMID: 39589754 DOI: 10.1080/10408347.2024.2431222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Fluorescent sensors reflect information such as the concentration or content of the analysis by interacting with a specific recognition group to change the signal of the fluorophore. It has attracted much attention because of its advantages of high sensitivity, fast detection speed and low cost, and it has become an effective alternative to traditional detection methods. Graphitic phase carbon nitride nanosheets (g-CNNs) are a class of carbon-based fluorescent nanomaterials derived from bulk graphite phase carbon nitride (g-C3N4), which have attracted much attention from scholars because of their advantages of low cost, simple fabrication, high quantum yield, strong stability and nontoxicity. Functional modified g-CNNs can greatly improve the photocatalytic performance. At present, although there have been some researches on fluorescent sensors based on g-CNNs. Nevertheless, there are few reviews about the g-CNNs-based fluorescent sensors. Therefore, in addition to summarizing the sensing mechanism of fluorescent sensors (such as photoinduced electron transfer, fluorescence resonance energy transfer, and intramolecular charge transfer) and the advantages and disadvantages of common signal substances, this paper focused on the application progress of g-CNNs-based fluorescent sensors in the field of analysis and detection.
Collapse
Affiliation(s)
- Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zhiren Zhou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xueqing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Huang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
9
|
Diamantis D, Tsiailanis AD, Papaemmanouil C, Nika MC, Kanaki Z, Golic Grdadolnik S, Babic A, Tzakos EP, Fournier I, Salzet M, Kushwaha PP, Thomaidis NS, Rampias T, Shankar E, Karakurt S, Gupta S, Tzakos AG. Development of a novel apigenin prodrug programmed for alkaline-phosphatase instructed self-inhibition to combat cancer. J Biomol Struct Dyn 2024; 42:8638-8659. [PMID: 37639498 DOI: 10.1080/07391102.2023.2247083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Elevated levels of alkaline phosphatase (ALP) in the tumor microenvironment (TME) are a hallmark of cancer progression and thus inhibition of ALP could serve as an effective approach against cancer. Herein, we developed a novel prodrug approach to tackle cancer that bears self-inhibiting alkaline phosphatase-responsiveness properties that can enhance at the same time the solubility of the parent compound. To probe this novel concept, we selected apigenin as the cytotoxic agent since we first unveiled, that it directly interacts and inhibits ALP activity. Consequently, we rationally designed and synthesized, using a self-immolative linker, an ALP responsive apigenin-based phosphate prodrug, phospho-apigenin. Phospho-apigenin markedly increased the stability of the parent compound apigenin. Furthermore, the prodrug exhibited enhanced antiproliferative effect in malignant cells with elevated ALP levels, compared to apigenin. This recorded potency of the developed prodrug was further confirmed in vivo where phospho-apigenin significantly suppressed by 52.8% the growth of PC-3 xenograft tumors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dimitrios Diamantis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Antonios D Tsiailanis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Christina Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Simona Golic Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Andrej Babic
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Lille, France
- Institut Universitaire de France, Paris
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Lille, France
- Institut Universitaire de France, Paris
| | - Prem Prakash Kushwaha
- Department of Urology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eswar Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Serdar Karakurt
- Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece
| |
Collapse
|
10
|
Fathi M, Zarei A, Moghimi A, Jalali P, Salehi Z, Gholamin S, Jadidi-Niaragh F. Combined cancer immunotherapy based on targeting adenosine pathway and PD-1/PDL-1 axis. Expert Opin Ther Targets 2024; 28:757-777. [PMID: 39305018 DOI: 10.1080/14728222.2024.2405090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Cancer immunotherapy has revolutionized the field of oncology, offering new hope to patients with advanced malignancies. Tumor-induced immunosuppression limits the effectiveness of current immunotherapeutic strategies, such as PD-1/PDL-1 checkpoint inhibitors. Adenosine, a purine nucleoside molecule, is crucial to this immunosuppression because it stops T cells from activating and helps regulatory T cells grow. Targeting the adenosine pathway and blocking PD-1/PDL-1 is a potential way to boost the immune system's response to tumors. AREAS COVERED This review discusses the current understanding of the adenosine pathway in tumor immunology and the preclinical and clinical data supporting the combination of adenosine pathway inhibitors with PD-1/PDL-1 blockade. We also discuss the challenges and future directions for developing combination immunotherapy targeting the adenosine pathway and the PD-1/PDL-1 axis for cancer treatment. EXPERT OPINION The fact that the adenosine signaling pathway controls many immune system processes suggests that it has a wide range of therapeutic uses. Within the next five years, there will be tremendous progress in this area, and the standard of care for treating malignant tumors will have switched from point-to-point therapy to the integration of immunological networks comprised of multiple signaling pathways, like the adenosine axis.
Collapse
Affiliation(s)
- Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ata Moghimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Gholamin
- City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA
- City of Hope Department of Radiation Oncology, Duarte, CA, USA
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Sönmez MR, Tuncay E, Aydin İC, Bezir N, Torun M, Uzun O, Gülmez S, Polat E, Duman M. Prognostic importance of preoperative albumin-to-alkaline phosphatase ratio in colorectal cancer patients. POLISH JOURNAL OF SURGERY 2024; 96:31-37. [PMID: 39465637 DOI: 10.5604/01.3001.0054.7078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
<b>Introduction:</b> Colorectal cancer (CRC) prognosis is typically determined based on clinical stage and histopathological findings, yet patients with the same stage and histological structure can exhibit varying survival outcomes. This highlights the need for additional prognostic biomarkers. Serum biomarkers are gaining increasing significance due to their affordability and accessibility. The albumin-alkaline phosphatase ratio (AAPR) has been associated with prognosis in hepatocellular and gastric cancers, but its role in CRC remains underexplored.<b>Aim:</b> This study aimed to evaluate the effect of the albumin-alkaline phosphatase ratio (AAPR) on the prognosis of patients with colorectal cancer (CRC).<b>Material and method:</b> Data from 358 patients who had undergone surgery for CRC were analyzed retrospectively to identify factors that could predict overall survival (OS). The Roc-Curve test was applied to determine the power of the preoperative AAPR in predicting mortality. Kaplan Meier and log-rank tests were used to examine the survival times of the patients.<b>Results:</b> Our findings revealed that an albumin-alkaline phosphatase cut-off ratio above 0.67 predicted mortality with a sensitivity of 17.54% and a specificity of 92.22%. Although patients with a lower AAPR exhibited a slightly shorter mean survival time compared to those above the cut-off value, this difference did not reach statistical significance (P = .112).<b>Conclusions:</b> The results of this study did not provide evidence to support the AAPR as a potential prognostic factor in patients with colorectal cancer.
Collapse
Affiliation(s)
- Mehmet Reşit Sönmez
- TR University of Health Sciences, Ministry of Health Kartal Kosuyolu High Specialization Training, and Research Hospital Gastroenterological Surgery Clinic
| | - Elif Tuncay
- TR University of Health Sciences, Ministry of Health Kartal Kosuyolu High Specialization Training, and Research Hospital Gastroenterological Surgery Clinic
| | - İsa Caner Aydin
- TR University of Health Sciences, Ministry of Health Kartal Kosuyolu High Specialization Training, and Research Hospital Gastroenterological Surgery Clinic
| | - Nurdan Bezir
- TR University of Health Sciences, Ministry of Health Kartal Kosuyolu High Specialization Training, and Research Hospital Gastroenterological Surgery Clinic
| | - Mehmet Torun
- TR University of Health Sciences, Ministry of Health Kartal Kosuyolu High Specialization Training, and Research Hospital Gastroenterological Surgery Clinic
| | - Orhan Uzun
- Department of Gastrointestinal Surgery, University of Health Sciences, Kosuyolu Higher Specialty Training and Research Hospital, Istanbul, Turkey
| | - Selçuk Gülmez
- Department of Gastrointestinal Surgery, University of Health Sciences, Kosuyolu Higher Specialty Training and Research Hospital, Istanbul, Turkey
| | - Erdal Polat
- Department of Gastrointestinal Surgery, University of Health Sciences, Kosuyolu Higher Specialty Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Duman
- TR University of Health Sciences, Ministry of Health Kartal Kosuyolu High Specialization Training, and Research Hospital Gastroenterological Surgery Clinic
| |
Collapse
|
12
|
Deng Y, Fu C, Xu A, He R, Lu W, Liu M. Enzymatic fluorescent supramolecular hydrogel with aggregation-induced emission characteristics for sensing alkaline phosphatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124334. [PMID: 38678837 DOI: 10.1016/j.saa.2024.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Alkaline phosphatase is an important biomarker for medical diagnosis. An enzymatic fluorescence supramolecular hydrogel with AIE properties was developed and used for sensing alkaline phosphatase in vitro and in living cells. In the presence of ALP, K(TPE)EFYp was partially converted to the hydrogelator K(TPE)EFY and self-assembled into nanofibers to form Hydrogel. With the sol-gel transition and the AIE effect, the fluorescence emission was turned on. The linear concentration range of ALP activity in vitro quantified by this method was determined as 0-3 U/L with aLODat 0.02 U/L. In addition, cell imaging and serum experiment showed that K(TPE)EFYp could also be used to detect ALP activity in living cells and biological samples.
Collapse
Affiliation(s)
- Yun Deng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China.
| | - Cheng Fu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China
| | - Aifei Xu
- School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China
| | - Rongxiang He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China
| | - Wangting Lu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China
| | - Min Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China.
| |
Collapse
|
13
|
Li C, Sun C, Li Y, Dong L, Wang X, Li R, Su J, Cao Q, Xin S. Therapeutic and prognostic effect of disulfidptosis-related genes in lung adenocarcinoma. Heliyon 2024; 10:e33764. [PMID: 39050421 PMCID: PMC11267016 DOI: 10.1016/j.heliyon.2024.e33764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Disulfidptosis, a new form of cell death, may be induced by disulfide stress associated with cystine disulfide buildup, which can promote cell toxicity, leading to cell death. Nevertheless, the role of direct prognosis and the mechanism underlying the regulation of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD) are still unknown. This study aimed to investigate the role of DRGs in LUAD prognosis and diagnosis through multiomics analysis. First, copy number variations (CNVs) and mutations in the 10 genes were assessed. Considering that five differentially expressed genes (DEGs) were associated with disulfidptosis, a novel DRG score that can be utilized to anticipate LUAD prognosis was developed. Next, the generated receiver operating characteristic (ROC) and survival curves demonstrated that the model had an excellent predictive quality in LUAD in both the training and validation cohorts. Meanwhile, substantial functional disparities between the high DRG group and the low DRG group were observed, and the second gap mitosis (G2M) checkpoint, E2 promoter-binding factor (E2F) targets, and myelocytomatosis (MYC) target activities were consistently higher in the high DRG group than in the low DRG group. Additionally, the T-cell dysfunction score and tumor inflammation signature (Merck18) were negatively correlated with DRGs, whereas myeloid-derived suppressor cells (MDSCs) were positively correlated with DRGs. Moreover, DRGs were negatively linked to most of the immunological checkpoints. Meanwhile, samples of low DRGs benefited more from immune checkpoint blockade (ICB). The correlation analysis between DRGs and clinical characteristics revealed increasing malignancy with increasing DRG scores. Drug sensitization experiment results indicated that sensitivity to cisplatin, vincristine, docetaxel, and gemcitabine was higher in the high DRG group than in the low DRG group. The function of model genes in LUAD was also verified using immunohistochemistry, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, 5-ethynyl-2'-deoxyuridine (EDU), and clonogenic formation.
Collapse
Affiliation(s)
- Changshuan Li
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Chao Sun
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Yakun Li
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Lin Dong
- Department of Oncology, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Xian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| |
Collapse
|
14
|
Xiong LH, Yang L, Geng J, Tang BZ, He X. All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic-Photodynamic Therapy. ACS NANO 2024; 18:17837-17851. [PMID: 38938113 DOI: 10.1021/acsnano.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities. Consequently, the activated AIE probes can efficiently destroy cancer cell membranes and lead to the death of cancer cells within 30 min. A superior efficacy in cancer cell ablation is demonstrated in vitro and in vivo. The cancer-associated biomarker response-derived discriminative FL imaging and synergistic chemodynamic-photodynamic therapy are expected to provide a promising avenue for precise image-guided cancer therapy.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Langyi Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangtao Geng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Liaqat M, Khan RA, Fischer F, Kamal S. Relationship between prostate-specific antigen, alkaline phosphatase levels, and time-to-tumor shrinkage: understanding the progression of prostate cancer in a longitudinal study. BMC Urol 2024; 24:137. [PMID: 38956570 PMCID: PMC11221162 DOI: 10.1186/s12894-024-01522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND This study delves into the complex interplay among prostate-specific antigen, alkaline phosphatase, and the temporal dynamics of tumor shrinkage in prostate cancer. By investigating the longitudinal trajectories and time-to-prostate cancer tumor shrinkage, we aim to untangle the intricate patterns of these biomarkers. This understanding is pivotal for gaining profound insights into the multifaceted aspects of prostate cancer progression. The joint model approach serves as a comprehensive framework, facilitating the elucidation of intricate interactions among these pivotal elements within the context of prostate cancer . METHODS A new joint model under a shared parameters strategy is proposed for mixed bivariate longitudinal biomarkers and event time data, for obtaining accurate estimates in the presence of missing covariate data. The primary innovation of our model resides in its effective management of covariates with missing observations. Built upon established frameworks, our joint model extends its capabilities by integrating mixed longitudinal responses and accounting for missingness in covariates, thus confronting this particular challenge. We posit that these enhancements bolster the model's utility and dependability in real-world contexts characterized by prevalent missing data. The main objective of this research is to provide a model-based approach to get full information from prostate cancer data collected with patients' baseline characteristics ( Age , body mass index ( BMI ), GleasonScore , Grade , and Drug ) and two longitudinal endogenous covariates ( Platelets and Bilirubin ). RESULTS The results reveal a clear association between prostate-specific antigen and alkaline phosphatase biomarkers in the context of time-to-prostate cancer tumor shrinkage. This underscores the interconnected dynamics of these key indicators in gauging disease progression. CONCLUSIONS The analysis of the prostate cancer dataset, incorporating a joint evaluation of mixed longitudinal prostate-specific antigen and alkaline phosphatase biomarkers alongside tumor status, has provided valuable insights into disease progression. The results demonstrate the effectiveness of the proposed joint model, as evidenced by accurate estimates. The shared variables associated with both longitudinal biomarkers and event times consistently deviate from zero, highlighting the robustness and reliability of the model in capturing the complex dynamics of prostate cancer progression. This approach holds promise for enhancing our understanding and predictive capabilities in the clinical assessment of prostate cancer.
Collapse
Affiliation(s)
- Madiha Liaqat
- College of Statistical and Actuarial Sciences (CSAS), University of the Punjab, Lahore, Pakistan
| | - Rehan Ahmad Khan
- College of Statistical and Actuarial Sciences (CSAS), University of the Punjab, Lahore, Pakistan
| | - Florian Fischer
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Shahid Kamal
- College of Statistical and Actuarial Sciences (CSAS), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
16
|
Huang L, Gao R, Nan L, Qi J, Yang S, Shao S, Xie J, Pan M, Qiu T, Zhang J. Anti-VEGFR2-Interferon α Promotes the Infiltration of CD8+ T Cells in Colorectal Cancer by Upregulating the Expression of CCL5. J Immunother 2024; 47:195-204. [PMID: 38654631 DOI: 10.1097/cji.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
SUMMARY Immunocytokines are a promising immunotherapeutic approach in cancer therapy. Anti-VEGFR2-interferon α (IFNα) suppressed colorectal cancer (CRC) growth and enhanced CD8 + T-cell infiltration in the tumor microenvironment, exhibiting great clinical translational potential. However, the mechanism of how the anti-VEGFR2-IFNα recruits T cells has not been elucidated. Here, we demonstrated that anti-VEGFR2-IFNα suppressed CRC metastasis and enhanced CD8 + T-cell infiltration. RNA sequencing revealed a transcriptional activation of CCL5 in metastatic CRC cells, which was correlated with T-cell infiltration. IFNα but not anti-VEGFR2 could further upregulate CCL5 in tumors. In immunocompetent mice, both IFNα and anti-VEGFR2-IFNα increased the subset of tumor-infiltrating CD8 + T cells through upregulation of CCL5. Knocking down CCL5 in tumor cells attenuated the infiltration of CD8 + T cells and dampened the antitumor efficacy of anti-VEGFR2-IFNα treatment. We, therefore, propose upregulation of CCL5 is a key to enhance infiltration of CD8 + T cells in metastatic CRC with IFNα and IFNα-based immunocytokine treatments. These findings may help the development of IFNα related immune cytokines for the treatment of less infiltrated tumors.
Collapse
Affiliation(s)
- Linhua Huang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Rui Gao
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Lidi Nan
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jingyao Qi
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Siyu Yang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Shao
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jiajun Xie
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | | | - Juan Zhang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
17
|
Zhu Y, Jiang M, Gu Z, Shang H, Tang C, Guo T. Elucidating the role of liver enzymes as markers and regulators in ovarian cancer: a synergistic approach using Mendelian randomization, single-cell analysis, and clinical evidence. Hum Genomics 2024; 18:71. [PMID: 38915066 PMCID: PMC11197171 DOI: 10.1186/s40246-024-00642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE To investigate the association between liver enzymes and ovarian cancer (OC), and to validate their potential as biomarkers and their mechanisms in OC. Methods Genome-wide association studies for OC and levels of enzymes such as Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase, and gamma-glutamyltransferase were analyzed. Univariate and multivariate Mendelian randomization (MR), complemented by the Steiger test, identified enzymes with a potential causal relationship to OC. Single-cell transcriptomics from the GSE130000 dataset pinpointed pivotal cellular clusters, enabling further examination of enzyme-encoding gene expression. Transcription factors (TFs) governing these genes were predicted to construct TF-mRNA networks. Additionally, liver enzyme levels were retrospectively analyzed in healthy individuals and OC patients, alongside the evaluation of correlations with cancer antigen 125 (CA125) and Human Epididymis Protein 4 (HE4). RESULTS A total of 283 single nucleotide polymorphisms (SNPs) and 209 SNPs related to ALP and AST, respectively. Using the inverse-variance weighted method, univariate MR (UVMR) analysis revealed that ALP (P = 0.050, OR = 0.938) and AST (P = 0.017, OR = 0.906) were inversely associated with OC risk, suggesting their roles as protective factors. Multivariate MR (MVMR) confirmed the causal effect of ALP (P = 0.005, OR = 0.938) on OC without reverse causality. Key cellular clusters including T cells, ovarian cells, endothelial cells, macrophages, cancer-associated fibroblasts (CAFs), and epithelial cells were identified, with epithelial cells showing high expression of genes encoding AST and ALP. Notably, TFs such as TCE4 were implicated in the regulation of GOT2 and ALPL genes. OC patient samples exhibited decreased ALP levels in both blood and tumor tissues, with a negative correlation between ALP and CA125 levels observed. CONCLUSION This study has established a causal link between AST and ALP with OC, identifying them as protective factors. The increased expression of the genes encoding these enzymes in epithelial cells provides a theoretical basis for developing novel disease markers and targeted therapies for OC.
Collapse
Affiliation(s)
- Yinxing Zhu
- Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou, 225300, China
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Min Jiang
- Department of Rehabilitation, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Zihan Gu
- Nanjing University of Finance & Economics, Nanjing, 210023, China
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Hongyu Shang
- Taizhou Polytechnic College, Taizhou, 225300, China
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Caiyin Tang
- Department of Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| | - Ting Guo
- Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou, 225300, China.
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
18
|
Ganesan K, Xu C, Xie C, Sui Y, Zheng C, Gao F, Chen J. Cryoprotective isoliquiritigenin-zein phosphatidylcholine nanoparticles inhibits breast cancer-bone metastasis by targeting JAK-STAT signaling pathways. Chem Biol Interact 2024; 396:111037. [PMID: 38719172 DOI: 10.1016/j.cbi.2024.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Breast cancer (BC) is the most common cancer in women and is known for its tendency to spread to the bones, causing significant health issues and mortality. In this study, we aimed to investigate whether cryoprotective isoliquiritigenin-zein phosphatidylcholine nanoparticles (ISL@ZLH NPs) could inhibit BC-induced bone destruction and tumor metastasis in both in vitro and animal models. To evaluate the potential of ISL@ZLH NPs, we conducted various experiments. First, we assessed cell viability, colony formation, transwell migration, and wound healing assays to determine the impact of ISL@ZLH NPs on BC cell behavior. Western blotting, TRAP staining and ALP activity were performed to examine the effects of ISL@ZLH NPs on osteoclast formation induced by MDA-MB-231 cell-conditioned medium and RANKL treated RAW 264.7 cells. Furthermore, we assessed the therapeutic impact of ISL@ZLH NPs on tumor-induced bone destruction using a mouse model of BC bone metastasis. Treatment with ISL@ZLH NPs effectively suppressed BC cell proliferation, colony formation, and motility, reducing their ability to metastasize. ISL@ZLH NPs significantly inhibited osteoclast formation and the expression of factors associated with bone destruction in BC cells. Additionally, ISL@ZLH NPs suppressed JAK-STAT signaling in RAW264.7 cells. In the BCBM mouse model, ISL@ZLH NPs led to a significant reduction in osteolytic bone lesions compared to the control group. Histological analysis and TRAP staining confirmed that ISL@ZLH NPs preserved the integrity of bone structure, preventing invasive metastasis by confining tumor growth to the bone marrow cavity. Furthermore, ISL@ZLH NPs effectively suppressed tumor-induced osteoclastogenesis, a key process in BC-related bone destruction. Our findings demonstrate that ISL@ZLH NPs have the potential to inhibit BC-induced bone destruction and tumor metastasis by targeting JAK-STAT signaling pathways and suppressing tumor-induced osteoclastogenesis. These results underscore the therapeutic promise of ISL@ZLH NPs in managing BC metastasis to the bones.
Collapse
Affiliation(s)
- Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cong Xu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chunguang Xie
- Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Sui
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chuan Zheng
- Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Gao
- Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Shi S, Kan A, Lu L, Zhao W, Jiang W. An acid-responsive DNA hydrogel-mediated cascaded enzymatic nucleic acid amplification system for the sensitive imaging of alkaline phosphatase in living cells. Analyst 2024; 149:3026-3033. [PMID: 38618891 DOI: 10.1039/d4an00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Alkaline phosphatase (ALP) is a class of hydrolase that catalyzes the dephosphorylation of phosphorylated species in biological tissues, playing an important role in many physiological and pathological processes. Sensitive imaging of ALP activity in living cells is contributory to the research on these processes. Herein, we propose an acid-responsive DNA hydrogel to deliver a cascaded enzymatic nucleic acid amplification system into cells for the sensitive imaging of intracellular ALP activity. The DNA hydrogel is formed by two kinds of Y-shaped DNA monomers and acid-responsive cytosine-rich linkers. The amplification system contained Bst DNA polymerase (Bst DP), Nt.BbvCI endonuclease, a Recognition Probe (RP, containing a DNAzyme sequence, a Nt.BbvCI recognition sequence, and a phosphate group at the 3'-end), and a Signal Probe (SP, containing a cleavage site for DNAzyme, Cy3 and BHQ2 at the two ends). The amplification system was trapped into the DNA hydrogel and taken up by cells, and the cytosine-rich linkers folded into a quadruplex i-motif in the acidic lysosomes, leading to the collapse of the hydrogel and releasing the amplification system. The phosphate groups on RPs were recognized and removed by the target ALP, triggering a polymerization-nicking cycle to produce large numbers of DNAzyme sequences, which then cleaved multiple SPs, restoring Cy3 fluorescence to indicate the ALP activity. This strategy achieved sensitive imaging of ALP in living HeLa, MCF-7, and NCM460 cells, and realized the sensitive detection of ALP in vitro with a detection limit of 2.0 × 10-5 U mL-1, providing a potential tool for the research of ALP-related physiological and pathological processes.
Collapse
Affiliation(s)
- Shaochuan Shi
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| | - Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Lu Lu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Weichong Zhao
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| |
Collapse
|
20
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
21
|
Abdel Shaheed C, Hayes C, Maher CG, Ballantyne JC, Underwood M, McLachlan AJ, Martin JH, Narayan SW, Sidhom MA. Opioid analgesics for nociceptive cancer pain: A comprehensive review. CA Cancer J Clin 2024; 74:286-313. [PMID: 38108561 DOI: 10.3322/caac.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023] Open
Abstract
Pain is one of the most burdensome symptoms in people with cancer, and opioid analgesics are considered the mainstay of cancer pain management. For this review, the authors evaluated the efficacy and toxicities of opioid analgesics compared with placebo, other opioids, nonopioid analgesics, and nonpharmacologic treatments for background cancer pain (continuous and relatively constant pain present at rest), and breakthrough cancer pain (transient exacerbation of pain despite stable and adequately controlled background pain). They found a paucity of placebo-controlled trials for background cancer pain, although tapentadol or codeine may be more efficacious than placebo (moderate-certainty to low-certainty evidence). Nonsteroidal anti-inflammatory drugs including aspirin, piroxicam, diclofenac, ketorolac, and the antidepressant medicine imipramine, may be at least as efficacious as opioids for moderate-to-severe background cancer pain. For breakthrough cancer pain, oral transmucosal, buccal, sublingual, or intranasal fentanyl preparations were identified as more efficacious than placebo but were more commonly associated with toxicities, including constipation and nausea. Despite being recommended worldwide for the treatment of cancer pain, morphine was generally not superior to other opioids, nor did it have a more favorable toxicity profile. The interpretation of study results, however, was complicated by the heterogeneity in the study populations evaluated. Given the limited quality and quantity of research, there is a need to reappraise the clinical utility of opioids in people with cancer pain, particularly those who are not at the end of life, and to further explore the effects of opioids on immune system function and quality of life in these individuals.
Collapse
Affiliation(s)
- Christina Abdel Shaheed
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Christopher Hayes
- College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Christopher G Maher
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Jane C Ballantyne
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Martin Underwood
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
- University Hospitals of Coventry and Warwickshire, Coventry, United Kingdom
| | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer H Martin
- College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Sujita W Narayan
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark A Sidhom
- Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
- South Western Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Wang Y, Zhang Y, Li M, Gao X, Su D. An Efficient Strategy for Constructing Fluorescent Nanoprobes for Prolonged and Accurate Tumor Imaging. Anal Chem 2024; 96:2481-2490. [PMID: 38293931 DOI: 10.1021/acs.analchem.3c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activatable near-infrared (NIR) fluorescent probes possess advantages of high selectivity, sensitivity, and deep imaging depth, holding great potential in the early diagnosis and prognosis assessment of tumors. However, small-molecule fluorescent probes are largely limited due to the rapid diffusion and metabolic clearance of activated fluorophores in vivo. Herein, we propose an efficient and reproducible novel strategy to construct activatable fluorescent nanoprobes through bioorthogonal reactions and the strong gold-sulfur (Au-S) interactions to achieve an enhanced permeability and retention (EPR) effect, thereby achieving prolonged and high-contrast tumor imaging in vivo. To demonstrate the merits of this strategy, we prepared an activatable nanoprobe, hCy-ALP@AuNP, for imaging alkaline phosphatase (ALP) activity in vivo, whose nanoscale properties facilitate accumulation and long-term retention in tumor lesions. Tumor-overexpressed ALP significantly increased the fluorescence signal of hCy-ALP@AuNP in the NIR region. More importantly, compared with the small-molecule probe hCy-ALP-N3, the nanoprobe hCy-ALP@AuNP significantly improved the distribution and retention time in the tumor, thus improving the imaging window and accuracy. Therefore, this nanoprobe platform has great potential in the efficient construction of biomarker-responsive fluorescent nanoprobes to realize precise tumor diagnosis in vivo.
Collapse
Affiliation(s)
- Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Mingrui Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
23
|
Chen K, Cheng X, Xue S, Chen J, Zhang X, Qi Y, Chen R, Zhang Y, Wang H, Li W, Cheng G, Huang Y, Xiong Y, Chen L, Mu C, Gu M. Albumin conjugation promotes arsenic trioxide transport through alkaline phosphatase-associated transcytosis in MUC4 wildtype pancreatic cancer cells. Int J Biol Macromol 2024; 257:128756. [PMID: 38092098 DOI: 10.1016/j.ijbiomac.2023.128756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Pancreatic cancer (PC) has a poor prognosis due to chemotherapy resistance and unfavorable drug transportation. Albumin conjugates are commonly used as drug carriers to overcome these obstacles. However, membrane-bound glycoprotein mucin 4 (MUC4) has emerged as a promising biomarker among the genetic mutations affecting albumin conjugates therapeutic window. Human serum albumin-conjugated arsenic trioxide (HSA-ATO) has shown potential in treating solid tumors but is limited in PC therapy due to unclear targets and mechanisms. This study investigated the transport mechanisms and therapeutic efficacy of HSA-ATO in PC cells with different MUC4 mutation statuses. Results revealed improved penetration of ATO into PC tumors through conjugated with HSA. However, MUC4 mutation significantly affected treatment sensitivity and HSA-ATO uptake both in vitro and in vivo. Mutant MUC4 cells exhibited over ten times higher IC50 for HSA-ATO and approximately half the uptake compared to wildtype cells. Further research demonstrated that ALPL activation by HSA-ATO enhanced transcytosis in wildtype MUC4 PC cells but not in mutant MUC4 cells, leading to impaired uptake and weaker antitumor effects. Reprogramming the transport process holds potential for enhancing albumin conjugate efficacy in PC patients with different MUC4 mutation statuses, paving the way for stratified treatment using these delivery vehicles.
Collapse
Affiliation(s)
- Kaidi Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Xiao Cheng
- Huzhou Institute for Food and Drug Control, Huzhou 313000, PR China
| | - Shuai Xue
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Junyan Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Xu Zhang
- Zhejiang Heze Pharmaceutical Technology Co., Ltd., Hangzhou 310018, Zhejiang, PR China
| | - Yuwei Qi
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Rong Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Yan Zhang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Hangjie Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Wei Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Guilin Cheng
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Ye Huang
- Department of Pharmacy, Zhejiang Provincial Dermatology Hospital, Huzhou 313200, Zhejiang, PR China
| | - Yang Xiong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China; Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Liping Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, PR China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Chaofeng Mu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China.
| | - Mancang Gu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China.
| |
Collapse
|
24
|
Buttiens K, Maksoudian C, Perez Gilabert I, Rios Luci C, Manshian BB, Soenen SJ. Inorganic Nanoparticles Change Cancer-Cell-Derived Extracellular Vesicle Secretion Levels and Cargo Composition, Resulting in Secondary Biological Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66-83. [PMID: 38163254 DOI: 10.1021/acsami.3c12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Over the past decades, the medical exploitation of nanotechnology has been largely increasing and finding its way into translational research and clinical applications. Despite their biomedical potential, uncertainties persist regarding the intricate role that nanomaterials may play on altering physiology in healthy and diseased tissues. Extracellular vesicles (EVs) are recognized as an important pathway for intercellular communication and known to be mediators of cellular stress. EVs are currently explored for targeted delivery of therapeutic agents, including nanoformulations, to treat and diagnose cancer or other diseases. Here, we aimed to investigate whether nanomaterials could have a possible impact on EV functionality, their safety, and whether EVs can play a role in nanomaterial toxicity profiles. To evaluate this, the impact of inorganic nanomaterial administration on EVs derived from murine melanoma and human breast cancer cells was tested. Cells were incubated with subtoxic concentrations of 4 different biomedically relevant inorganic nanoparticles (NPs): gold, silver, silicon dioxide, or iron oxide. The results displayed a clear NP and cell-type-dependent effect on increasing or decreasing EV secretion. Furthermore, the expression pattern of several EV-derived miRNAs was significantly changed upon NP exposure, compared to nontreated cells. Detailed pathway analysis and additional studies confirmed that EVs obtained from NP-exposed cells could influence immunological responses and cellular physiology. Together, these data reveal that NPs can have wide-ranging effects which can result in toxicity concerns or enhanced therapeutic potential as a secondary enhanced effect mediated and enhanced by EVs.
Collapse
Affiliation(s)
- Kiana Buttiens
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
25
|
Kim D, Ki Y, Kim W, Park D, Joo J, Jeon H, Nam J. Low albumin-to-alkaline phosphatase ratio is associated with inferior prognosis in patients with head and neck cancer underwent concurrent chemoradiation: A propensity score-matched analysis. J Cancer Res Ther 2023; 19:1340-1344. [PMID: 37787305 DOI: 10.4103/jcrt.jcrt_158_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Low albumin-to-alkaline phosphatase ratio (AAPR) is associated with tumor progression and poor survival outcome in some malignancies. Purpose We aimed to determine the prognostic value of AAPR in head and neck cancer (HNC) patients underwent concurrent chemoradiotherapy (CCRT). Materials and Methods We retrospectively reviewed medical records of 342 patients with HNC treated with definitive or adjuvant CCRT from 2007 to 2017. Receiver-operator characteristic curve assessed the cut-off value and predictive accuracy of AAPR for disease progression. Propensity score-matched (PSM) method was performed to balance baseline characteristics. Multivariate Cox regression analyses screened the independent prognostic factors for progression-free survival (PFS) and overall survival (OS). Results The median follow-up duration was 40 months. The optimal cut-off level of AAPR was 0.523. In the PSM cohort, an AAPR < 0.523 was related to worse PFS and OS (PFS: Hazard ratio [HR], 1.936; 95% confidence interval [CI], 1.212 to 3.249; P = 0.001 and OS: HR, 1.832; 95% CI, 1.117 to 3.478; P = 0.02) compared with those with an AAPR ≥ 0.523. AJCC stage IVA-B also showed poor survival outcome compared with patients with AJCC stage II--III (PFS: HR, 1.855; 95% CI, 1.173 to 2.933; P = 0.008 and OS: HR, 1.905; 95% CI, 1.131 to 3.211; P = 0.015). Conclusions HNC patients with low AAPR independently have worse survival outcomes than do high AAPR patients. These findings might help physicians predict treatment outcome and guide treatment strategy in patients with HNC underwent CCRT.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea
| | - Yongkan Ki
- Department of Radiation Oncology, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Yangsan, South Korea
| | - Wontaek Kim
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea
| | - Dahl Park
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea
| | - Jihyeon Joo
- Department of Radiation Oncology, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Yangsan, South Korea
| | - Hosang Jeon
- Department of Radiation Oncology, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Yangsan, South Korea
| | - Jiho Nam
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea
| |
Collapse
|
26
|
Mensali N, Köksal H, Joaquina S, Wernhoff P, Casey NP, Romecin P, Panisello C, Rodriguez R, Vimeux L, Juzeniene A, Myhre MR, Fåne A, Ramírez CC, Maggadottir SM, Duru AD, Georgoudaki AM, Grad I, Maturana AD, Gaudernack G, Kvalheim G, Carcaboso AM, de Alava E, Donnadieu E, Bruland ØS, Menendez P, Inderberg EM, Wälchli S. ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma. Nat Commun 2023; 14:3375. [PMID: 37291203 PMCID: PMC10250459 DOI: 10.1038/s41467-023-39097-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS. The target recognition element of the second-generation CAR construct is based on two antibodies, previously shown to react against OS. T cells transduced with these CAR constructs mediate efficient and effective cytotoxicity against ALPL-positive cells in in vitro settings and in state-of-the-art in vivo orthotopic models of primary and metastatic OS, without unexpected toxicities against hematopoietic stem cells or healthy tissues. In summary, CAR-T cells targeting ALPL-1 show efficiency and specificity in treating OS in preclinical models, paving the path for clinical translation.
Collapse
Affiliation(s)
- Nadia Mensali
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Hakan Köksal
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sandy Joaquina
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Patrik Wernhoff
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Nicholas P Casey
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Paola Romecin
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
| | - Carla Panisello
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
| | - René Rodriguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBER-ONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lene Vimeux
- Université de Paris, Institut Cochin, INSERM, CNRS, Equipe labellisée Ligue Contre le Cancer, F-75014, PARIS, France
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marit R Myhre
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Anne Fåne
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Carolina Castilla Ramírez
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBER-ONC, 41013, Seville, Spain
| | | | - Adil Doganay Duru
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anna-Maria Georgoudaki
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Iwona Grad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andrés Daniel Maturana
- Laboratory of Animal Cell Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gustav Gaudernack
- Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Angel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Institut de Recerca Sant Joan de Deu, Barcelona, 08950, Spain
| | - Enrique de Alava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBER-ONC, 41013, Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009, Seville, Spain
| | - Emmanuel Donnadieu
- Université de Paris, Institut Cochin, INSERM, CNRS, Equipe labellisée Ligue Contre le Cancer, F-75014, PARIS, France
| | - Øyvind S Bruland
- Department of Oncology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
- CIBER-ONC, ISCIII, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway.
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
27
|
Liu J, Li RS, Zhang L, Wang J, Dong Q, Xu Z, Kang Y, Xue P. Enzyme-Activatable Polypeptide for Plasma Membrane Disruption and Antitumor Immunity Elicitation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206912. [PMID: 36932931 DOI: 10.1002/smll.202206912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Indexed: 06/15/2023]
Abstract
Enzyme-instructed self-assembly of bioactive molecules into nanobundles inside cells is conceived to potentially disrupt plasma membrane and subcellular structure. Herein, an alkaline phosphatase (ALP)-activatable hybrid of ICG-CF4 KYp is facilely synthesized by conjugating photosensitizer indocyanine green (ICG) with CF4 KYp peptide via classical Michael addition reaction. ALP-induced dephosphorylation of ICG-CF4 KYp enables its transformation from small-molecule precursor into rigid nanofibrils, and such fibrillation in situ causes severe mechanical disruption of cytomembrane. Besides, ICG-mediated photosensitization causes additional oxidative damage of plasma membrane by lipid peroxidation. Hollow MnO2 nanospheres devote to deliver ICG-CF4 KYp into tumorous tissue through tumor-specific acidity/glutathione-triggered degradation of MnO2 , which is monitored by fluorescent probing and magnetic resonance imaging. The burst release of damage-associated molecular patterns and other tumor antigens during therapy effectively triggers immunogenetic cell death and improves immune stimulatory, as demonstrated by the promotion of dendritic cell maturation and CD8+ lymphocyte infiltration, as well as constraint of regulatory T cell population. Taken together, such cytomembrane injury strategy based on peptide fibrillation in situ holds high clinical promise for lesion-specific elimination of primary, abscopal, and metastatic tumors, which may enlighten more bioinspired nanoplatforms for anticancer theranostics.
Collapse
Affiliation(s)
- Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Rong Sheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Chemical Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Lei Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jie Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
28
|
McKinney LP, Singh R, Jordan IK, Varambally S, Dammer EB, Lillard JW. Transcriptome Analysis Identifies Tumor Immune Microenvironment Signaling Networks Supporting Metastatic Castration-Resistant Prostate Cancer. ONCO 2023; 3:81-95. [PMID: 38435029 PMCID: PMC10906979 DOI: 10.3390/onco3020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer death in American men. Metastatic castration-resistant prostate cancer (mCRPC) is the most lethal form of PCa and preferentially metastasizes to the bones through incompletely understood molecular mechanisms. Herein, we processed RNA sequencing data from patients with mCRPC (n = 60) and identified 14 gene clusters (modules) highly correlated with mCRPC bone metastasis. We used a novel combination of weighted gene co-expression network analysis (WGCNA) and upstream regulator and gene ontology analyses of clinically annotated transcriptomes to identify the genes. The cyan module (M14) had the strongest positive correlation (0.81, p = 4 × 10-15) with mCRPC bone metastasis. It was associated with two significant biological pathways through KEGG enrichment analysis (parathyroid hormone synthesis, secretion, and action and protein digestion and absorption). In particular, we identified 10 hub genes (ALPL, PHEX, RUNX2, ENPP1, PHOSPHO1, PTH1R, COL11A1, COL24A1, COL22A1, and COL13A1) using cytoHubba of Cytoscape. We also found high gene expression for collagen formation, degradation, absorption, cell-signaling peptides, and bone regulation processes through Gene Ontology (GO) enrichment analysis.
Collapse
Affiliation(s)
- Lawrence P. McKinney
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - I. King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sooryanarayana Varambally
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eric B. Dammer
- Department of Biochemistry Emory, University School of Medicine, Atlanta, GA 30329, USA
| | - James W. Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
29
|
Jassas RS, Naeem N, Sadiq A, Mehmood R, Alenazi NA, Al-Rooqi MM, Mughal EU, Alsantali RI, Ahmed SA. Current status of N-, O-, S-heterocycles as potential alkaline phosphatase inhibitors: a medicinal chemistry overview. RSC Adv 2023; 13:16413-16452. [PMID: 37274413 PMCID: PMC10233329 DOI: 10.1039/d3ra01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Heterocycles are a class of compounds that have been found to be potent inhibitors of alkaline phosphatase (AP), an enzyme that plays a critical role in various physiological processes such as bone metabolism, cell growth and differentiation, and has been linked to several diseases such as cancer and osteoporosis. AP is a widely distributed enzyme, and its inhibition has been considered as a therapeutic strategy for the treatment of these diseases. Heterocyclic compounds have been found to inhibit AP by binding to the active site of the enzyme, thereby inhibiting its activity. Heterocyclic compounds such as imidazoles, pyrazoles, and pyridines have been found to be potent AP inhibitors and have been studied as potential therapeutics for the treatment of cancer, osteoporosis, and other diseases. However, the development of more potent and selective inhibitors that can be used as therapeutics for the treatment of various diseases is an ongoing area of research. Additionally, the study of the mechanism of action of heterocyclic AP inhibitors is an ongoing area of research, which could lead to the identification of new targets and new therapeutic strategies. The enzyme known as AP has various physiological functions and is present in multiple tissues and organs throughout the body. This article presents an overview of the different types of AP isoforms, their distribution, and physiological roles. It also discusses the structure and mechanism of AP, including the hydrolysis of phosphate groups. Furthermore, the importance of AP as a clinical marker for liver disease, bone disorders, and cancer is emphasized, as well as its use in the diagnosis of rare inherited disorders such as hypophosphatasia. The potential therapeutic applications of AP inhibitors for different diseases are also explored. The objective of this literature review is to examine the function of alkaline phosphatase in various physiological conditions and diseases, as well as analyze the structure-activity relationships of recently reported inhibitors. The present review summarizes the structure-activity relationship (SAR) of various heterocyclic compounds as AP inhibitors. The SAR studies of these compounds have revealed that the presence of a heterocyclic ring, particularly a pyridine, pyrimidine, or pyrazole ring, in the molecule is essential for inhibitory activity. Additionally, the substitution pattern and stereochemistry of the heterocyclic ring also play a crucial role in determining the potency of the inhibitor.
Collapse
Affiliation(s)
- Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Rabia Mehmood
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| |
Collapse
|
30
|
Tyagi K, Kumari R, Venkatesh V. Alkaline phosphatase (ALP) activatable small molecule-based prodrugs for cancer theranostics. Org Biomol Chem 2023; 21:4455-4464. [PMID: 37191120 DOI: 10.1039/d3ob00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Highly water-soluble small molecule-based prodrugs (5-FUPD and SAHAPD) are formulated. They comprise a phosphate group to lock the active drug payload (5-fluorouracil and SAHA) along with a turn-on fluorophore consisting of a glutathione (GSH) depletory feature. Installation of the phosphate group along with purification of final product has been accomplished in an operationally facile manner. Activation of the prodrugs is facilitated by alkaline phosphatase (ALP)-mediated hydrolysis of the phosphate group followed by 1,8-elimination. The prodrugs were found to be highly effective against ALP flared human cervical cancer (HeLa) and liver cancer (HepG2) cell lines. Most notably, they were found to be innocuous to normal liver cells (WRL-68).
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| | - Reena Kumari
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| |
Collapse
|
31
|
Wu H, Ju S, Ling Y, Sun H, Tang Y, Tong C. Gelatinous lanthanide coordination polymer with aggregation-enhanced antenna effect for ratiometric detection of endogenous alkaline phosphatase. J Colloid Interface Sci 2023; 645:338-349. [PMID: 37150007 DOI: 10.1016/j.jcis.2023.04.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
Aggregation-induced emission (AIE) and antenna effect (AE) are two significant behaviors that have attracted increasing attention. However, it is challenging to achieve the synergistic effect of AIE and AE in luminescent materials for more extensive applications. Here, four gelatinous Ln3+ coordination polymers (Ln-CPs) are synthesized by self-assembly of ciprofloxacin (CIP), adenosine monophosphate (AMP), and Ln3+ ions in aqueous medium. Encouragingly, a remarkable increase in the characteristic fluorescence of Ln3+ and a significant decrease in CIP are observed along with increasing concentration of Ln-CPs, which is attributed to the large aggregates formed by self-assembly that strictly constrain the intramolecular motions of antenna ligands, thereby achieving the aggregation-enhanced AE. More meaningfully, Eu-CP not only shows a rice-like morphology at high aggregation state, but also provides an opportunity for the selective detection of alkaline phosphatase (ALP). A new flower-like polymer is formed upon incubating Eu-CP with ALP, accompanied by the fluorescence quenching of Eu3+ and recovery of CIP, a ratiometric determination of ALP in the range of 0.1-6.0 U·L-1 is thus achieved. Additionally, ALP assay in human serum and bioimaging in living cells have been successfully performed. This research opens a new horizon for the fabrication of Ln3+-based luminescent materials with promising applications.
Collapse
Affiliation(s)
- Huifang Wu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Shiying Ju
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuwei Ling
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Haozhe Sun
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Changlun Tong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Lam KWK, Chau JHC, Yu EY, Sun F, Lam JWY, Ding D, Kwok RTK, Sun J, He X, Tang BZ. An Alkaline Phosphatase-Responsive Aggregation-Induced Emission Photosensitizer for Selective Imaging and Photodynamic Therapy of Cancer Cells. ACS NANO 2023; 17:7145-7156. [PMID: 37067178 DOI: 10.1021/acsnano.2c08855] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fluorescence-guided photodynamic therapy (PDT) has been considered as an emerging strategy for precise cancer treatment by making use of photosensitizers (PSs) with reactive oxygen species (ROS) generation. Some efficient PSs have been reported in recent years, but multifunctional PSs that are responsive to cancer-specific biomarkers are rarely reported. In this study, we introduced a phosphate group as a cancer-specific biomarker of alkaline phosphatase (ALP) on a PS with the features of aggregation-induced emission (AIE) for cancer cell imaging and therapy. In cancer cells with high ALP expression, the phosphate group on the AIE probe is selectively hydrolyzed by ALP. Consequently, the hydrophobic probe residue is aggregated in aqueous media and gives a "turn on" fluorescent response. Moreover, fluorescence-guided PDT was realized by the aggregates of probe residue with strong ROS generation efficiency under white light irradiation. Overall, this work presents a strategy of applying ALP-responsive AIE PS for specific imaging cancer cells and succeeding with specific PDT upon the cancer biomarker stimulated responsive reactions.
Collapse
Affiliation(s)
- Kristy W K Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Joe H C Chau
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Eric Y Yu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Feiyi Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Dan Ding
- Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
33
|
Peng T, Fan J, Xie B, Wang Q, Chen Y, Li Y, Wu K, Feng C, Li T, Chen H, Pu X, Liu J. Alkaline phosphatase combines with CT factors for differentiating small (≤ 4 cm) fat-poor angiomyolipoma from renal cell carcinoma: a multiple quantitative tool. World J Urol 2023; 41:1345-1351. [PMID: 37093317 DOI: 10.1007/s00345-023-04367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
PURPOSE This study aimed to evaluate the diagnostic value of serum and CT factors to establish a convenient diagnostic method for differentiating small (≤ 4 cm) fat-poor angiomyolipoma (AML) from renal cell carcinoma (RCC). MATERIALS AND METHODS This study analyzed the preoperative serum laboratory data and CT data of 32 fat-poor AML patients and 133 RCC patients. The CT attenuation value of tumor (AVT), relative enhancement ratio (RER), and heterogeneous degree of tumor were detected using region of interest on precontrast phase (PCP) and the corticomedullary phase. Multivariate regression was performed to filter the main factors. The main factors were selected to establish the prediction models. The area under the curve (AUC) was measured to evaluate the diagnostic efficacy. RESULTS Fat-poor AML was more common found in younger (47.91 ± 2.09 years vs 53.63 ± 1.17 years, P = 0.02) and female (70.68 vs 28.13%, P < 0.001) patients. Alkaline phosphatase (ALP) was higher in RCC patients (81.80 ± 1.75 vs 63.25 ± 2.95 U/L, P < 0.01). For CT factors, fat-poor AML was higher in PCP_AVT (40.30 ± 1.49 vs 32.98 ± 0.69Hu, P < 0.01) but lower in RER (67.17 ± 3.17 vs 84.64 ± 2.73, P < 0.01). Gender, ALP, PCP_AVT and RER was found valuable for the differentiation. When compared with laboratory-based or CT-based diagnostic models, the combination model integrating gender, ALP, PCP_AVT and RER shows the best diagnostic performance (AUC = 0.922). CONCLUSION ALP was found higher in RCC patients. Female patients with ALP < 70.50U/L, PCP_AVT > 35.97Hu and RER < 82.66 are more likely to be diagnose as fat-poor AML.
Collapse
Affiliation(s)
- Tianming Peng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Junhong Fan
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Binyang Xie
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qianqian Wang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Yuchun Chen
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Yong Li
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Kunlin Wu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Chunxiang Feng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Teng Li
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Hanzhong Chen
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
34
|
Liu WC, Li MP, Hong WY, Zhong YX, Sun BL, Huang SH, Liu ZL, Liu JM. A practical dynamic nomogram model for predicting bone metastasis in patients with thyroid cancer. Front Endocrinol (Lausanne) 2023; 14:1142796. [PMID: 36950687 PMCID: PMC10025497 DOI: 10.3389/fendo.2023.1142796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
PURPOSE The aim of this study was to established a dynamic nomogram for assessing the risk of bone metastasis in patients with thyroid cancer (TC) and assist physicians to make accurate clinical decisions. METHODS The clinical data of patients with TC admitted to the First Affiliated hospital of Nanchang University from January 2006 to November 2016 were included in this study. Demographic and clinicopathological parameters of all patients at primary diagnosis were analyzed. Univariate and multivariate logistic regression analysis was applied to build a predictive model incorporating parameters. The discrimination, calibration, and clinical usefulness of the nomogram were evaluated using the C-index, ROC curve, calibration plot, and decision curve analysis. Internal validation was evaluated using the bootstrapping method. RESULTS A total of 565 patients were enrolled in this study, of whom 25 (4.21%) developed bone metastases. Based on logistic regression analysis, age (OR=1.040, P=0.019), hemoglobin (HB) (OR=0.947, P<0.001) and alkaline phosphatase (ALP) (OR=1.006, P=0.002) levels were used to construct the nomogram. The model exhibited good discrimination, with a C-index of 0.825 and good calibration. A C-index value of 0.815 was achieved on interval validation analysis. Decision curve analysis showed that the nomogram was clinically useful when intervention was decided at a bone metastases possibility threshold of 1%. CONCLUSIONS This dynamic nomogram, with relatively good accuracy, incorporating age, HB, and ALP, could be conveniently used to facilitate the prediction of bone metastasis risk in patients with TC.
Collapse
Affiliation(s)
- Wen-Cai Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, Nanchang, China
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Meng-Pan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Wen-Yuan Hong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yan-Xin Zhong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Bo-Lin Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Shan-Hu Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Zhi-Li Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Jia-Ming Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Shang X, Yan Y, Li J, Zhou X, Xiang X, Huang R, Li X, Ma C, Nie X. A turn-on fluorescent strategy for alkaline phosphatase detection based on enzyme-assisted signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121939. [PMID: 36219964 DOI: 10.1016/j.saa.2022.121939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
As a representative biochemical indicator, alkaline phosphatase (ALP) is of great importance in indicating and diagnosing clinical diseases. Herein, we developed a signal-on fluorescence sensing method for sensitive ALP activity detection based on the enzyme-assisted target recycling (EATR) technique. In this method, a two-step signal amplification process is designed. In the presence of ALP, the 3' phosphate group of an ss-DNA is removed explicitly by ALP, thus releasing free 3'-OH. Terminal deoxynucleotidyl transferase (TdT) can subsequently extend this substrate to generate poly(A) tails, converting the trace-level ALP information into multiple sequences and achieving the first-time amplification. A poly(T) Taqman probe labeled with FAM and BHQ1 provides the second one under the assistance of T7 exonuclease (T7 Exo) through alternate hybridization and degradation of ds-DNA regions. The previously quenched fluorescence is recovered due to the departure of FAM/BHQ1 during the cleavage of T7 Exo. Thus, taking advantage of template-free TdT-mediated polymerization and T7 Exo-based EATR, this strategy shows a sensitive LOD at 0.0074 U/L (S/N = 3) and a linear range of 0.01-8 U/L between ALP concentration and fluorescence intensity. To further verify the specificity and accuracy in practical application, we challenged it in a set of co-existing interference and biological environments and have gained satisfying results. The proposed method successfully quantified the ALP levels in clinical human serum samples, suggesting its applicability in practical application. Moreover, we have used this method to investigate the inhibition effects of Na3VO4. Above all, the proposed assay is sensitive, facile, and cost-effective for ALP determining, holding a promising perspective and excellent potential in clinical diagnosis and drug screening.
Collapse
Affiliation(s)
- Xueling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ying Yan
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xi Zhou
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xinying Xiang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha 410013, China.
| |
Collapse
|
36
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
37
|
Lu S, Wei L, He W, Bi Z, Qian Y, Wang J, Lei H, Li K. Recent Advances in the Enzyme-Activatable Organic Fluorescent Probes for Tumor Imaging and Therapy. ChemistryOpen 2022; 11:e202200137. [PMID: 36200519 PMCID: PMC9535506 DOI: 10.1002/open.202200137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Indexed: 11/06/2022] Open
Abstract
The exploration of advanced probes for cancer diagnosis and treatment is of high importance in fundamental research and clinical practice. In comparison with the traditional "always-on" probes, the emerging activatable probes enjoy advantages in promoted accuracy for tumor theranostics by specifically releasing or activating fluorophores at the targeting sites. The main designing principle for these probes is to incorporate responsive groups that can specifically react with the biomarkers (e. g., enzymes) involved in tumorigenesis and progression, realizing the controlled activation in tumors. In this review, we summarize the latest advances in the molecular design and biomedical application of enzyme-responsive organic fluorescent probes. Particularly, the fluorophores can be endowed with ability of generating reactive oxygen species (ROS) to afford the photosensitizers, highlighting the potential of these probes in simultaneous tumor imaging and therapy with rational design. We hope that this review could inspire more research interests in the development of tumor-targeting theranostic probes for advanced biological studies.
Collapse
Affiliation(s)
- Song‐Bo Lu
- Shenzhen Key Laboratory of Smart Healthcare Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
| | - Luyao Wei
- Shenzhen Key Laboratory of Smart Healthcare Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
| | - Wenjing He
- Shenzhen Key Laboratory of Smart Healthcare Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
| | - Zhen‐Yu Bi
- Shenzhen Key Laboratory of Smart Healthcare Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
| | - Yuhan Qian
- Shenzhen Key Laboratory of Smart Healthcare Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
| | - Jinghan Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
| | - Hongqiu Lei
- Shenzhen Key Laboratory of Smart Healthcare Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
| |
Collapse
|
38
|
Yekehfallah V, Pahlavanneshan S, Sayadmanesh A, Momtahan Z, Ma B, Basiri M. Generation and Functional Characterization of PLAP CAR-T Cells against Cervical Cancer Cells. Biomolecules 2022; 12:biom12091296. [PMID: 36139135 PMCID: PMC9496028 DOI: 10.3390/biom12091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is one of the cancer treatment modalities that has recently shown promising results in treating hematopoietic malignancies. However, one of the obstacles that need to be addressed in solid tumors is the on-target and off-tumor cytotoxicity due to the lack of specific tumor antigens with low expression in healthy cells. Placental alkaline phosphatase (PLAP) is a shared placenta- and tumor-associated antigen (TAA) that is expressed in ovarian, cervical, colorectal, and prostate cancers and is negligible in normal cells. In this study, we constructed second-generation CAR T cells with a fully human scFv against PLAP antigen andthen evaluated the characteristics of PLAP CAR T cells in terms of tonic signaling and differentiation in comparison with ΔPLAP CAR T cells and CD19 CAR T cells. In addition, by co-culturing PLAP CAR T cells with HeLa and CaSki cells, we analyzed the tumor-killing functions and the secretion of anti-tumor molecules. Results showed that PLAP CAR T cells not only proliferated during co-culture with cancer cells but also eliminated them in vitro. We also observed increased secretion of IL-2, granzyme A, and IFN-γ by PLAP CAR T cells upon exposure to the target cells. In conclusion, PLAP CAR T cells are potential candidates for further investigation in cervical cancer and, potentially, other solid tumors.
Collapse
Affiliation(s)
- Vahid Yekehfallah
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665666311, Iran
| | - Saghar Pahlavanneshan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1968917313, Iran
| | - Ali Sayadmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665666311, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
| | - Zahra Momtahan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Bin Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Correspondence: (B.M.); (M.B.); Tel.: +86-21-62933631 (B.M.); +98-21-40223417 (M.B.)
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665666311, Iran
- Correspondence: (B.M.); (M.B.); Tel.: +86-21-62933631 (B.M.); +98-21-40223417 (M.B.)
| |
Collapse
|
39
|
Chang D, Li Y, Chen Y, Wang X, Zang D, Liu T. Polyoxometalate-based nanocomposites for antitumor and antibacterial applications. NANOSCALE ADVANCES 2022; 4:3689-3706. [PMID: 36133327 PMCID: PMC9470027 DOI: 10.1039/d2na00391k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 06/07/2023]
Abstract
Polyoxometalates (POMs), as emerging inorganic metal oxides, have been shown to have significant biological activity and great medicinal value. Nowadays, biologically active POM-based organic-inorganic hybrid materials have become the next generation of antibacterial and anticancer drugs because of their customizable molecular structures related to their highly enhanced antitumor activity and reduced toxicity to healthy cells. In this review, the current developed strategies with POM-based materials for the purpose of antibacterial and anticancer activities from different action principles inducing cell death and hyperpolarization, cell plasma membrane destruction, interference with bacterial respiratory chain and inhibiting bacterial growth are overviewed. Moreover, specific interactions between POM-based materials and biomolecules are highlighted for a better understanding of their antibacterial and anticancer mechanisms. POMs have great promise as next-generation antibacterial and anticancer drugs, and this review will provide a valuable systematic reference for the further development of POM-based nanomaterials.
Collapse
Affiliation(s)
- Dening Chang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yanda Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yuxuan Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Dejin Zang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Teng Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| |
Collapse
|
40
|
Nofouzi K, Almasi P, Fakhri-Dameshgieh AA, Khordadmehr M, Baradaran B, Asadi M, Sarbakhsh P, Hamidian G. Suppression of the malignancy of mammary tumor in mice model by inactivated preparation of Mycobacterium obuense. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:393-401. [PMID: 36320313 PMCID: PMC9548232 DOI: 10.30466/vrf.2021.525359.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/08/2021] [Indexed: 11/20/2022]
Abstract
Breast cancer (BC) is a significant cause of global mortality in women. This study was aimed to evaluate the immune-activation of malignant BC via the administration of attenuated Mycobacterium obuense. For this purpose, an in vivo model was developed with BALB/c mice. Mice were injected with 2.00 × 106 4T1 cells with breast tumor cell line. Forty-two mice were equally divided into control as well as low dose (0.20 mg 100 µL-1) and high dose (0.50 mg 100 µL-1) groups of M. obuense to investigate gene expression in the antitumor effects of M. obuense. In one group, paclitaxel was administrated as a choice drug in BC treatment. Antitumor manners were characterized by cytotoxicity against tumor target cells, size of the tumor and the expression of some BC metastatic genes together with pathology. The MTT assay demonstrated that different concentrations of both low and a high dose of bacteria did present no cytotoxicity effect on 4T1 cells. According to our findings, M. obuense significantly repressed tumor growth. M. obuense downregulated the expression of collagen type I alpha 1 (COLIA1), cFos, alkaline phosphatase (ALP), claudin 3 (cldn3), and conversely, activated transcription factor 4 (ATF4) and Twist related protein-1 (Twist1). All these alternations induced a decrease in the migratory and invasive capabilities of BC. The result of pathology was indicative of tumor regression in the paclitaxel and HK- M. obuense -recipient group. Thus, it seems most likely that M. obuense might impinge upon cell growth and metastatic behavior of malignant cells exerting anti-tumor activity in BC.
Collapse
Affiliation(s)
- Katayoon Nofouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; ,Correspondence Katayoon Nofouzi. DVM, DVSc Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran. E-mail:
| | - Parsa Almasi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department of Statics and Epidemiology, Faculty of Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
41
|
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
42
|
Bel’skaya LV, Sarf EA. Prognostic Value of Salivary Biochemical Indicators in Primary Resectable Breast Cancer. Metabolites 2022; 12:552. [PMID: 35736486 PMCID: PMC9227854 DOI: 10.3390/metabo12060552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the fact that breast cancer was detected in the early stages, the prognosis was not always favorable. In this paper, we examined the impact of clinical and pathological characteristics of patients and the composition of saliva before treatment on overall survival and the risk of recurrence of primary resectable breast cancer. The study included 355 patients of the Omsk Clinical Oncology Center with a diagnosis of primary resectable breast cancer (T1-3N0-1M0). Saliva was analyzed for 42 biochemical indicators before the start of treatment. We have identified two biochemical indicators of saliva that can act as prognostic markers: alkaline phosphatase (ALP) and diene conjugates (DC). Favorable prognostic factors were ALP activity above 71.7 U/L and DC level above 3.93 c.u. Additional accounting for aspartate aminotransferase (AST) activity allows for forming a group with a favorable prognosis, for which the relative risk is reduced by more than 11 times (HR = 11.49, 95% CI 1.43-88.99, p = 0.01591). Salivary AST activity has no independent prognostic value. Multivariate analysis showed that tumor size, lymph nodes metastasis status, malignancy grade, tumor HER2 status, and salivary ALP activity were independent predictors. It was shown that the risk of recurrence decreased with menopause and increased with an increase in the size of the primary tumor and lymph node involvement. Significant risk factors for recurrence were salivary ALP activity below 71.7 U/L and DC levels below 3.93 c.u. before treatment. Thus, the assessment of biochemical indicators of saliva before treatment can provide prognostic information comparable in importance to the clinicopathological characteristics of the tumor and can be used to identify a risk group for recurrence in primary resectable breast cancer.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14 Tukhachevsky str, 644043 Omsk, Russia;
| | | |
Collapse
|
43
|
Ouyang J, Sun L, Zeng F, Wu S. Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Ma F, Zhao NN, Liu M, Xu Q, Zhang CY. Single-Molecule Biosensing of Alkaline Phosphatase in Cells and Serum Based on Dephosphorylation-Triggered Catalytic Assembly and Disassembly of the Fluorescent DNA Chain. Anal Chem 2022; 94:6004-6010. [PMID: 35384669 DOI: 10.1021/acs.analchem.2c00603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkaline phosphatase (ALP) is a valuable biomarker and effective therapeutic target for the diagnosis and treatment of diverse human diseases, including bone disorder, cardiovascular disease, and cancers. The reported ALP assays often suffer from laborious procedures, costly reagents, inadequate sensitivity, and large sample consumption. Herein, we report a new single-molecule fluorescent biosensor for the simple and ultrasensitive detection of ALP. In this assay, the ALP-catalyzed dephosphorylation of detection probe can protect the detection probe against lambda exonuclease-mediated digestion, and the remaining detection probes can trigger ceaseless hybridization between two Cy5-labeled hairpin probes through toehold-mediated DNA strand displacement, generating a long fluorescent DNA chain, which can be subsequently separated from unhybridized hairpin probes and disassembled into dispersed Cy5 moieties upon NaOH treatment. The free Cy5 moieties indicate the presence of ALP and can be directly quantified via single-molecule counting. This biosensor enables efficient amplification and transduction of the target ALP signal through enzyme-free assembly and disassembly processes, significantly simplifying the experimental procedure and improving the assay accuracy. The proposed biosensor allows specific and ultrasensitive detection of ALP activity with a detection limit down to 2.61 × 10-6 U mL-1 and is suitable for ALP inhibition assay and kinetic analysis. Moreover, this biosensor can be applied for endogenous ALP detection in human cells and clinical human serum, holding the potential in the ALP biological function study and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
45
|
Zhong Y, Yang L, Zhou Y, Peng J. Biomarker-responsive Fluorescent Probes for In Vivo Imaging of Liver Injury. Chem Asian J 2022; 17:e202200038. [PMID: 35182452 DOI: 10.1002/asia.202200038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/16/2022] [Indexed: 11/08/2022]
Abstract
Liver injury-related diseases have aroused widespread concern due to its extreme unpredictability, acute onset, and severe consequences. Nowadays, the clinical prediction and assessment of liver injury mainly focus on histopathological and serological approaches, which undergoes a tedious process and sometimes requires invasive biopsy. Over the past decades, fluorescence imaging technique have emerged as a rising star for the diagnosis of diseases owing to its noninvasiveness, high fidelity and ease of operation. On regard to liver injury, the fluorescent probes have been delicately designed to response a variety of endogenous biomolecules to precisely offer comprehensive information about the lesion site. Herein, we make a brief summary and discussion about the design strategies and applications of the recently reported fluorescent biosensors responsive to a series of biomarkers involved in the liver injury. The potential prospects and remaining challenges are also discussed to promote the progression in this field.
Collapse
Affiliation(s)
- Yang Zhong
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA
| | - Lulu Yang
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, CHINA
| | - Yunyun Zhou
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA
| | - Juanjuan Peng
- China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing, CHINA
| |
Collapse
|
46
|
Moura SL, Pallarès-Rusiñol A, Sappia L, Martí M, Pividori MI. The activity of alkaline phosphatase in breast cancer exosomes simplifies the biosensing design. Biosens Bioelectron 2022; 198:113826. [PMID: 34891059 DOI: 10.1016/j.bios.2021.113826] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022]
Abstract
This work addresses a biosensor combining the immunomagnetic separation and the electrochemical biosensing based on the intrinsic ALP activity of the exosomes. This approach explores for the first time two different types of biomarkers on exosomes, in a unique biosensing device combining two different biorecognition reaction: immunological and enzymatic. Besides, the intrinsic activity of alkaline phosphatase (ALP) in exosomes as a potential biomarker of carcinogenesis as well as osseous metastatic invasion is also explored. To achieve that, as an in vitro model, exosomes from human fetal osteoblasts are used. It is demonstrated that the electrochemical biosensor improves the analytical performance of the gold standard colorimetric assay for the detection of ALP activity in exosomes, providing a limit of detection of 4.39 mU L-1, equivalent to 105 exosomes μL-1. Furthermore, this approach is used to detect and quantify exosomes derived from serum samples of breast cancer patients. The electrochemical biosensor shows reliable results for the differentiation of healthy donors and breast cancer individuals based on the immunomagnetic separation using specific epithelial biomarkers CD326 (EpCAM) combined with the intrinsic ALP activity electrochemical readout.
Collapse
Affiliation(s)
- Silio Lima Moura
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Arnau Pallarès-Rusiñol
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Luciano Sappia
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mercè Martí
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - María Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
47
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
48
|
Su W, Qiu T, Zhang M, Hao C, Zeng P, Huang Z, Du W, Yun T, Xuan Y, Zhang L, Guo Y, Jiao W. Systems biomarker characteristics of circulating alkaline phosphatase activities for 48 types of human diseases. Curr Med Res Opin 2022; 38:201-209. [PMID: 34719310 DOI: 10.1080/03007995.2021.2000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Most human diseases are accompanied by systems changes. Systems biomarkers should reflect such changes. The phosphorylation and dephosphorylation of biomolecules maintain human homeostasis. However, the systems biomarker characteristics of circulating alkaline phosphatase, a routine blood test conducted for many human diseases, have never been investigated. METHOD This study retrieved the circulating alkaline phosphatase (ALP) activities from patients with 48 clinically confirmed diseases and healthy individuals from the database of our hospital during the past five years. A detailed analysis of the statistical characteristics of ALP was conducted, including quantiles, receiving operator curve (ROC), and principal component analysis. RESULTS Among the 48 diseases, 45 had increased, and three had decreased median levels of ALP activities compared to the healthy control. Preeclampsia, hepatic encephalopathy, pancreatic cancer, and liver cancer had the highest median values, whereas nephrotic syndrome, lupus erythematosus, and nephritis had decreased median values compared to the healthy control. Further, area under curve (AUC) values were ranged between 0.61 and 0.87 for 19 diseases, and the ALP activities were the best systems biomarker for preeclampsia (AUC 0.87), hepatic encephalopathy (AUC 0.87), liver cancer (AUC 0.81), and pancreatic cancer (AUC 0.81). CONCLUSIONS Alkaline phosphatase was a decent systems biomarker for 19 different types of human diseases. Understanding the molecular mechanisms of over-up-and-down-regulation of ALP activities might be the key to understanding the whole-body systems' reactions during specific disease progression.
Collapse
Affiliation(s)
- Wenhao Su
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Qiu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pengjiao Zeng
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhangfeng Huang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxing Du
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianxiang Yun
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunpeng Xuan
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yachong Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Le‐Vinh B, Akkuş‐Dağdeviren ZB, Le NN, Nazir I, Bernkop‐Schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao Le‐Vinh
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Zeynep Burcu Akkuş‐Dağdeviren
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| | - Nguyet‐Minh Nguyen Le
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Imran Nazir
- Department of Pharmacy COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| |
Collapse
|
50
|
Tsai MH, Chuang HC, Lin YT, Yang KL, Lu H, Huang TL, Tsai WL, Su YY, Fang FM. The Prognostic Value of Preoperative Albumin-to-Alkaline Phosphatase Ratio on Survival Outcome for Patients With Locally Advanced Oral Squamous Cell Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221141254. [DOI: 10.1177/15330338221141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: This retrospective cohort study was to assess the prognostic value of preoperative albumin-to-alkaline phosphatase ratio (AAPR) on survival outcome for patients with locally advanced oral squamous cell carcinoma (LAOSCC). Methods: A total of 250 patients with LAOSCC receiving upfront radical surgery at a single institute from January 2008 to December 2017 were enrolled. The primary endpoint was the survival predictability of preoperative AAPR on the 5-year overall survival (OS), cancer-specific survival (CSS), and disease-free survival (DFS). Cox proportional hazards model was used for survival analysis. The X-tile software was used to estimate the optimal cut-off value of preoperative AAPR on survival prediction. A predictive nomogram incorporating the clinicopathological factors on OS was further generated. Results: The 5-year OS, CSS, and DFS rates were 68.6%, 79.7%, and 61.7%, respectively. The optimal cut-off of preoperative AAPR to predict the 5-year OS was observed to be 0.51. For those with preoperative AAPR≧0.51, the 5-year OS, CSS, and DFS were statistically significantly superior to those with preoperative AAPR<0.51 (OS: 76.1% vs 48.5%, P < .001; CSS: 84.3% vs 66.4%, P = .005; DFS: 68.9% vs 42.6%, P < .001). In Cox model, we observed that preoperative AAPR<0.51 was a significantly negative prognosticator of OS (HR: 2.22, 95% CI: 1.466-3.361, P < .001), CSS (HR: 2.037, 95% CI: 1.16-3.578, P = .013), and DFS (HR: 1.756, 95% CI: 1.075-2.868, P = .025). After adding the variable of preoperative AAPR, the c-index of the predictive nomogram incorporating assorted clinicopathological factors increases from 0.663 to 0.692 for OS. Conclusion: Our results suggest that preoperative AAPR serves as an independent survival predictor for patients with LAOSCC. The nomogram incorporating preoperative AAPR and various clinicopathological features may be a convenient tool to estimate the mortality risk for patients with LAOSCC.
Collapse
Affiliation(s)
- Ming-Hsien Tsai
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- College of Pharmacy and Health Care, Tajen University, Pingtung County
| | - Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan
| | - Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- College of Pharmacy and Health Care, Tajen University, Pingtung County
| | - Kun-Lin Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Hui Lu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Tai-Lin Huang
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Department of Hematology and Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Wen-Ling Tsai
- Department of Cosmetics and Fashion Styling, Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung
| | - Yan-Ye Su
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Fu-Min Fang
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung
| |
Collapse
|