1
|
Zhou YY, Li YZ, Liu ZQ, Qin XH, Wu YQ, Chong CJ, Lyu L, Pan CX. Rhamnocitrin induces apoptosis of human nasopharyngeal carcinoma by inhibiting IGF-1R signaling pathway in vitro. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-16. [PMID: 40257328 DOI: 10.1080/10286020.2025.2491611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
This study explored rhamnocitrin's apoptotic effects on human nasopharyngeal carcinoma cell lines (CNE-2/C666-1) and underlying mechanisms. Following treatment with varying concentrations, cell proliferation, apoptosis, and protein expression were analyzed using MTT assay, Hoechst/Annexin V-FITC/PI staining, and western blot. Results showed rhamnocitrin inhibited cell proliferation, induced apoptosis, downregulated IGF-1R, Erk1/2, and Akt phosphorylation, and activated caspase 3, caspase 8, caspase 9, and Bax while inhibiting survivin, Bcl-2, and Mcl-1. In conclusion, rhamnocitrin induces apoptosis in nasopharyngeal carcinoma cells by inhibiting the IGF-1R signaling pathway and its downstream effectors Akt and Erk1/2.
Collapse
Affiliation(s)
- Yan-Yuan Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Department of Analytical Chemistry & Drug Analysis, College of Pharmacy, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Guilin Medical University, Guilin 541199, China
| | - Ya-Zhou Li
- Department of Analytical Chemistry & Drug Analysis, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhi-Qiang Liu
- Department of Analytical Chemistry & Drug Analysis, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xiao-Hui Qin
- Department of Analytical Chemistry & Drug Analysis, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Ya-Qi Wu
- Department of Analytical Chemistry & Drug Analysis, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Chao-Jie Chong
- Department of Analytical Chemistry & Drug Analysis, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Liang Lyu
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin 541199, China
- Key Laboratory of High-Incidence-Tumor early Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning 530021, China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
2
|
Chen C, Wang Q, Liu J. Curcumin inhibits growth and triggers apoptosis in human castration-resistant prostate cancer cells via IGF-1/PI3K/Akt pathway. J Int Med Res 2025; 53:3000605231220807. [PMID: 39921429 PMCID: PMC11806470 DOI: 10.1177/03000605231220807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/23/2023] [Indexed: 02/10/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the possible mechanism by which curcumin inhibits human prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). METHODS CRPC cells were treated with curcumin and their viability was assessed by MTT assay and apoptosis was detected by annexinV/propidium iodide double-staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays. Expression levels of insulin-like growth factor 1 receptor (IGF-1R) were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. Phosphoinositide 3-kinase (PI3K), Akt, and forkhead box protein O1 (FOXO1) expression and phosphorylation were assessed by western blotting. RESULTS The highly expressed PCa-related molecule IGF-1R was down-regulated in CRPC cells after curcumin treatment, as determined by RT-qPCR and western blotting. In addition, curcumin inhibited the tumor-related PI3K/Akt signaling pathway in CRPC cells. Moreover curcumin down-regulated the IGF-1/PI3K/Akt signaling pathway in tumors derived from CRPC cells. CONCLUSIONS These results demonstrated that curcumin inhibits growth and triggers apoptosis of human CRPC cells via the IGF-1/PI3K/Akt pathway, thus providing potential new therapeutic strategies for PCa and CRPC.
Collapse
Affiliation(s)
- Chao Chen
- Department of Urology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Qiwu Wang
- Department of Urology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Jiwen Liu
- Department of Urology, The General Hospital of Western Theater Command PLA, Chengdu, China
| |
Collapse
|
3
|
Chen G, Wang Y, Wang X. Insulin-related traits and prostate cancer: A Mendelian randomization study. Comput Struct Biotechnol J 2024; 23:2337-2344. [PMID: 38867724 PMCID: PMC11167198 DOI: 10.1016/j.csbj.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Investigating the causal relationship between insulin secretion and prostate cancer (PCa) development is challenging due to the multifactorial nature of PCa, which complicates the isolation of the specific impact of insulin-related factors. We conducted a Mendelian randomization (MR) study to investigate the associations between insulin secretion-related traits and PCa. We used 36, 60, 56, 23, 48, and 49 single nucleotide polymorphisms (SNPs) as instrumental variables for fasting insulin, insulin sensitivity, proinsulin, and proinsulin in nondiabetic individuals, individuals with diabetes, and individuals receiving exogenous insulin, respectively. These SNPs were selected from various genome-wide association studies. To clarify the causal relationship between insulin-related traits and PCa, we utilized a multivariable MR analysis to adjust for obesity and body fat percentage. Additionally, two-step Mendelian randomization was conducted to assess the role of insulin-like growth factor 1 (IGF-1) in the relationship between proinsulin and PCa. Two-sample MR analysis revealed strong associations between genetically predicted fasting insulin, insulin sensitivity, proinsulin, and proinsulin in nondiabetic individuals and the development of PCa. After adjustment for obesity and body fat percentage using multivariable MR analysis, proinsulin remained significantly associated with PCa, whereas other factors were not. Furthermore, two-step MR analysis demonstrated that proinsulin acts as a negative factor in prostate carcinogenesis, largely independent of IGF-1. This study provides evidence suggesting that proinsulin may act as a negative factor contributing to the development of PCa. Novel therapies targeting proinsulin may have potential benefits for PCa patients, potentially reducing the need for unnecessary surgical treatments.
Collapse
Affiliation(s)
- Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yi Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
4
|
Yang K, Hu Y, Feng Y, Li K, Zhu Z, Liu S, Lin Y, Yu B. IGF-1R mediates crosstalk between nasopharyngeal carcinoma cells and osteoclasts and promotes tumor bone metastasis. J Exp Clin Cancer Res 2024; 43:46. [PMID: 38342894 PMCID: PMC10860326 DOI: 10.1186/s13046-024-02970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) poses a significant health burden in specific regions of Asia, and some of NPC patients have bone metastases at the time of initial diagnosis. Bone metastasis can cause pathologic fractures and pain, reducing patients' quality of life, and is associated with worse survival. This study aims to unravel the complex role of insulin-like growth factor 1 receptor (IGF-1R) in NPC bone metastasis, offering insights into potential therapeutic targets. METHODS We assessed IGF-1R expression in NPC cells and explored its correlation with bone metastasis. Experiments investigated the impact of osteoclast-secreted IGF-1 on the IGF-1R/AKT/S6 pathway in promoting NPC cell proliferation within the bone marrow. Additionally, the reciprocal influence of tumor-secreted Granulocyte-macrophage colony-stimulating factor (GM-CSF) on osteoclast differentiation and bone resorption was examined. The effects of IGF-1 neutralizing antibody, IGF-1R specific inhibitor (NVP-AEW541) and mTORC inhibitor (rapamycin) on nasopharyngeal carcinoma bone metastasis were also explored in animal experiments. RESULTS Elevated IGF-1R expression in NPC cells correlated with an increased tendency for bone metastasis. IGF-1, secreted by osteoclasts, activated the IGF-1R/AKT/S6 pathway, promoting NPC cell proliferation in the bone marrow. Tumor-secreted GM-CSF further stimulated osteoclast differentiation, exacerbating bone resorption. The IGF-1 neutralizing antibody, NVP-AEW541 and rapamycin were respectively effective in slowing down the rate of bone metastasis and reducing bone destruction. CONCLUSION The intricate interplay among IGF-1R, IGF-1, and GM-CSF highlights potential therapeutic targets for precise control of NPC bone metastasis, providing valuable insights for developing targeted interventions.
Collapse
Affiliation(s)
- Kaifan Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanjun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Feng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kaiqun Li
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyan Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuyi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Głód P, Borski N, Gogola-Mruk J, Opydo M, Ptak A. Bisphenol S and F affect cell cycle distribution and steroidogenic activity of human ovarian granulosa cells, but not primary granulosa tumour cells. Toxicol In Vitro 2023; 93:105697. [PMID: 37717640 DOI: 10.1016/j.tiv.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Bisphenol S (BPS) and F (BPF), a new generation of bisphenols (BPs), are the main substitutes for bisphenol A (BPA). Both have been detected in human body fluids. Importantly, bisphenols are structurally similar to oestrogen, the main sex hormone in females. Because bisphenols bind to nuclear oestrogen receptors (ESR1 and ESR2) and to membrane G-coupled receptor 30 (GPR30), they can disrupt ovarian function. Here, we reveal the molecular mechanism underlying the effects of BPS and BPF on the cell cycle and steroidogenesis in the human ovarian granulosa cell (GC) line HGrC1. We show that BPS and BPF arrest GCs at the G0/G1 phase by inducing expression of cyclin D2, an important event that triggers maximal steroid synthesis in response to the BPS and BPF. We used pharmacological inhibitors to show that BPS and BPF, despite acting via already described pathways, also stimulate steroid secretion via IGF1R pathways in HGrC1 cells. Moreover, we identified differences critical to bisphenols response between normal (HGrC1) and primary tumour granulosa (COV434) cells, that enable COV434 cells to be more resistant to bisphenols. Overall, the data suggest that BPS and BPF drive steroidogenesis in human ovarian GCs by affecting the cell cycle. Furthermore, the results indicate that BPS and BPF act not only via the classical and non-classical ESR pathways, but also via the IGF1R pathway.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
6
|
Soni UK, Jenny L, Hegde RS. IGF-1R targeting in cancer - does sub-cellular localization matter? J Exp Clin Cancer Res 2023; 42:273. [PMID: 37858153 PMCID: PMC10588251 DOI: 10.1186/s13046-023-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.
Collapse
Affiliation(s)
- Upendra K Soni
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liam Jenny
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
8
|
Yin X, Fang W, Yuan M, Sun H, Wang J. Transcriptome Analysis of Leg Muscles and the Effects of ALOX5 on Proliferation and Differentiation of Myoblasts in Haiyang Yellow Chickens. Genes (Basel) 2023; 14:1213. [PMID: 37372393 DOI: 10.3390/genes14061213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. This study aimed to identify candidate genes involved in Haiyang Yellow Chickens' growth and to understand the regulatory role of the key gene ALOX5 (arachidonate 5-lipoxygenase) in myoblast proliferation and differentiation. In order to search the key candidate genes in the process of muscle growth and development, RNA sequencing was used to compare the transcriptomes of chicken muscle tissues at four developmental stages and to analyze the effects of ALOX5 gene interference and overexpression on myoblast proliferation and differentiation at the cellular level. The results showed that 5743 differentially expressed genes (DEGs) (|fold change| ≥ 2; FDR ≤ 0.05) were detected by pairwise comparison in male chickens. Functional analysis showed that the DEGs were mainly involved in the processes of cell proliferation, growth, and developmental process. Many of the DEGs, such as MYOCD (Myocardin), MUSTN1 (Musculoskeletal Embryonic Nuclear Protein 1), MYOG (MYOGenin), MYOD1 (MYOGenic differentiation 1), FGF8 (fibroblast growth factor 8), FGF9 (fibroblast growth factor 9), and IGF-1 (insulin-like growth factor-1), were related to chicken growth and development. KEGG pathway (Kyoto Encyclopedia of Genes and Genomes pathway) analysis showed that the DEGs were significantly enriched in two pathways related to growth and development: ECM-receptor interaction (Extracellular Matrix) and MAPK signaling pathway (Mitogen-Activated Protein Kinase). With the extension of differentiation time, the expression of the ALOX5 gene showed an increasing trend, and it was found that interference with the ALOX5 gene could inhibit the proliferation and differentiation of myoblasts and that overexpression of the ALOX5 gene could promote the proliferation and differentiation of myoblasts. This study identified a range of genes and several pathways that may be involved in regulating early growth, and it can provide theoretical research for understanding the regulation mechanism of muscle growth and development of Haiyang Yellow Chickens.
Collapse
Affiliation(s)
- Xumei Yin
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wenna Fang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Manman Yuan
- Luohe Academy of Agricultural Sciences, Luohe 462000, China
| | - Hao Sun
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
9
|
Emerging Role of IGF-1 in Prostate Cancer: A Promising Biomarker and Therapeutic Target. Cancers (Basel) 2023; 15:cancers15041287. [PMID: 36831629 PMCID: PMC9954466 DOI: 10.3390/cancers15041287] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease driven by gene alterations and microenvironmental influences. Not only enhanced serum IGF-1 but also the activation of IGF-1R and its downstream signaling components has been increasingly recognized to have a vital driving role in the development of PCa. A better understanding of IGF-1/IGF-1R activity and regulation has therefore emerged as an important subject of PCa research. IGF-1/IGF-1R signaling affects diverse biological processes in cancer cells, including promoting survival and renewal, inducing migration and spread, and promoting resistance to radiation and castration. Consequently, inhibitory reagents targeting IGF-1/IGF-1R have been developed to limit cancer development. Multiple agents targeting IGF-1/IGF-1R signaling have shown effects against tumor growth in tumor xenograft models, but further verification of their effectiveness in PCa patients in clinical trials is still needed. Combining androgen deprivation therapy or cytotoxic chemotherapeutics with IGF-1R antagonists based on reliable predictive biomarkers and developing and applying novel agents may provide more desirable outcomes. This review will summarize the contribution of IGF-1 signaling to the development of PCa and highlight the relevance of this signaling axis in potential strategies for cancer therapy.
Collapse
|
10
|
A peptide-centric approach to analyse quantitative proteomics data- an application to prostate cancer biomarker discovery. J Proteomics 2023; 272:104774. [PMID: 36427804 DOI: 10.1016/j.jprot.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
Bottom-up proteomics is a popular approach in molecular biomarker research. However, protein analysts have realized the limitations of protein-based approaches for identifying and quantifying proteins in complex samples, such as the identification of peptides sequences shared by multiple proteins and the difficulty in identifying modified peptides. Thus, there are many exciting opportunities to improve analysis methods. Here, an alternative method focused on peptide analysis is proposed as a complement to the conventional proteomics data analysis. To investigate this hypothesis, a peptide-centric approach was applied to reanalyse a urine proteome dataset of samples from prostate cancer patients and controls. The results were compared with the conventional protein-centric approach. The relevant proteins/peptides to discriminate the groups were detected based on two approaches, p-value and VIP values obtained by a PLS-DA model. A comparison of the two strategies revealed high inconsistency between protein and peptide information and greater involvement of peptides in key PCa processes. This peptide analysis unveiled discriminative features that are lost when proteins are analyzed as homogeneous entities. This type of analysis is innovative in PCa and integrated with the widely used protein-centric approach might provide a more comprehensive view of this disease and revolutionize biomarker discovery. SIGNIFICANCE: In this study, the application of a protein and peptide-centric approaches to reanalyse a urine proteome dataset from prostate cancer (PCa) patients and controls showed that many relevant proteins/peptides are missed by the conservative nature of p-value in statistical tests, therefore, the inclusion of variable selection methods in the analysis of the dataset reported in this work is fruitful. Comparison of protein- and peptide-based approaches revealed a high inconsistency between protein and peptide information and a greater involvement of peptides in key PCa processes. These results provide a new perspective to analyse proteomics data and detect relevant targets based on the integration of peptide and protein information. This data integration allows to unravel discriminative features that normally go unnoticed, to have a more comprehensive view of the disease pathophysiology and to open new avenues for the discovery of biomarkers.
Collapse
|
11
|
Eke I, Aryankalayil MJ, Bylicky MA, Makinde AY, Liotta L, Calvert V, Petricoin EF, Graves EE, Coleman CN. Radiotherapy alters expression of molecular targets in prostate cancer in a fractionation- and time-dependent manner. Sci Rep 2022; 12:3500. [PMID: 35241721 PMCID: PMC8894377 DOI: 10.1038/s41598-022-07394-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The efficacy of molecular targeted therapy depends on expression and enzymatic activity of the target molecules. As radiotherapy modulates gene expression and protein phosphorylation dependent on dose and fractionation, we analyzed the long-term effects of irradiation on the post-radiation efficacy of molecular targeted drugs. We irradiated prostate cancer cells either with a single dose (SD) of 10 Gy x-ray or a multifractionated (MF) regimen with 10 fractions of 1 Gy. Whole genome arrays and reverse phase protein microarrays were used to determine gene expression and protein phosphorylation. Additionally, we evaluated radiation-induced pathway activation with the Ingenuity Pathway Analysis software. To measure cell survival and sensitivity to clinically used molecular targeted drugs, we performed colony formation assays. We found increased activation of several pathways regulating important cell functions such as cell migration and cell survival at 24 h after MF irradiation or at 2 months after SD irradiation. Further, cells which survived a SD of 10 Gy showed a long-term upregulation and increased activity of multiple molecular targets including AKT, IGF-1R, VEGFR2, or MET, while HDAC expression was decreased. In line with this, 10 Gy SD cells were more sensitive to target inhibition with Capivasertib or Ipatasertib (AKTi), BMS-754807 (IGF-1Ri), or Foretinib (VEGFR2/METi), but less sensitive to Panobinostat or Vorinostat (HDACi). In summary, understanding the molecular short- and long-term changes after irradiation can aid in optimizing the efficacy of multimodal radiation oncology in combination with post-irradiation molecularly-targeted drug treatment and improving the outcome of prostate cancer patients.
Collapse
Affiliation(s)
- Iris Eke
- Department of Radiation Oncology, Center for Clinical Sciences Research (CCSR), Stanford University School of Medicine, 269 Campus Dr., Room 1260, Stanford, CA, 94305, USA.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Edward E Graves
- Department of Radiation Oncology, Center for Clinical Sciences Research (CCSR), Stanford University School of Medicine, 269 Campus Dr., Room 1260, Stanford, CA, 94305, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| |
Collapse
|
12
|
Wang P, Mak VCY, Cheung LWT. Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis 2022; 10:199-211. [PMID: 37013053 PMCID: PMC10066341 DOI: 10.1016/j.gendis.2022.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor (IGF) axis plays important roles in cancer development and metastasis. The type 1 IGF receptor (IGF-1R) is a key member in the IGF axis and has long been recognized for its oncogenic role in multiple cancer lineages. Here we review the occurrence of IGF-1R aberrations and activation mechanisms in cancers, which justify the development of anti-IGF-1R therapies. We describe the therapeutic agents available for IGF-1R inhibition, with focuses on the recent or ongoing pre-clinical and clinical studies. These include antisense oligonucleotide, tyrosine kinase inhibitors and monoclonal antibodies which may be conjugated with cytotoxic drug. Remarkably, simultaneous targeting of IGF-1R and several other oncogenic vulnerabilities has shown early promise, highlighting the potential benefits of combination therapy. Further, we discuss the challenges in targeting IGF-1R so far and new concepts to improve therapeutic efficacy such as blockage of the nuclear translocation of IGF-1R.
Collapse
|
13
|
IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway. Cell Signal 2022; 94:110313. [DOI: 10.1016/j.cellsig.2022.110313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
|
14
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
15
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
16
|
Broggi G, Lo Giudice A, Di Mauro M, Pricoco E, Piombino E, Ferro M, Caltabiano R, Morgia G, Russo GI. Insulin signaling, androgen receptor and PSMA immunohistochemical analysis by semi-automated tissue microarray in prostate cancer with diabetes (DIAMOND study). Transl Res 2021; 238:25-35. [PMID: 34314871 DOI: 10.1016/j.trsl.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
In the last years, many studies have highlighted the hypothesis that diabetes and hyperglycemia could be relevant for prostate cancer (PC) development and progression. We aimed to identify the prognostic value of tissue expression of androgen receptor (AR), Prostate-Specific Membrane Antigen (PSMA), Ki-67, insulin receptors (IR) α and β, insulin growth factor-1 (IGF-1) receptor, in patients with PC and to evaluate their association with diabetes. We retrospectively collected data from 360 patients who underwent radical prostatectomy for PC or surgery for benign prostatic hyperplasia (BPH), between 2010 and 2020. We constructed tissue microarray for immunohistochemistry (IHC) analysis. In the final cohort (76 BPH and 284 PC), 57 (15.8%) patients had diabetes, 17 (22.37%) in BPH and 40 (14.08%) in PC (P = 0.08). IR-α was more expressed in patients with PC compared to the BPH Group (95.96% vs 4.04%; P <0.01). We found that AR was associated with increased risk of International Society of Urological Pathology (ISUP) score ≥4 (OR: 2.2; P <0.05), higher association with Ki-67 (OR: 2.2; P <0.05) and IR-α (OR: 5.7; P <0.05); IGF-1 receptor was associated with PSMA (OR: 2.8; P <0.05), Ki-67 (OR: 3.5; P <0.05) and IR-β (OR: 5.1; P <0.05). Finally, IGF-1 receptor was predictive of ISUP ≥ 4 (OR: 16.5; P =0.017) in patients with PC and diabetes. In the present study we highlighted how prostate cancer patients have a different protein expression in the tissue. This expression, and in particular that relating to IGF-1R, is associated with greater tumor aggressiveness in those patients with diabetes. We suppose that these results are attributable to an alteration of the insulin signal which therefore determines a greater mitogenic activity that can influence tumor progression.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Arturo Lo Giudice
- Department of Surgery, Urology Section, University of Catania, Catania, Italy; Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marina Di Mauro
- Department of Surgery, Urology Section, University of Catania, Catania, Italy
| | - Elisabetta Pricoco
- Department of Surgery, Urology Section, University of Catania, Catania, Italy
| | - Eliana Piombino
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029, Catania, Italy
| | - Matteo Ferro
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Giuseppe Morgia
- Department of Surgery, Urology Section, University of Catania, Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029, Catania, Italy
| | - Giorgio Ivan Russo
- Department of Surgery, Urology Section, University of Catania, Catania, Italy.
| |
Collapse
|
17
|
Chen YJ, Chang JT, You GR, Huang CY, Fan KH, Cheng AJ. Panel biomarkers associated with cancer invasion and prognostic prediction for head-neck cancer. Biomark Med 2021; 15:861-877. [PMID: 34032473 DOI: 10.2217/bmm-2021-0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: Cell invasion leading to metastasis is a major cause of treatment failure in head-neck cancers (HNCs). Identifying prognostic molecules associated with invasiveness is imperative for clinical applications. Materials & methods: A systemic approach was used to globally survey invasion-related genes, including transcriptomic profiling, pathway analysis, data mining and prognostic assessment using TCGA-HNSC dataset. Results: Six functional pathways and six hub molecules (LAMA3, LAMC2, THBS1, IGF1R, PDGFB and TGFβ1) were identified that significantly contributed to cell invasion, leading to poor survival in HNC patients. Combinations of multiple biomarkers substantially increased the probability of accurately predicting prognosis. Conclusion: Our six defined invasion-related molecules may be used as a panel signature in precision medicine for prognostic indicators or molecular therapeutic targets for HNC.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Medical School, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Yu Huang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City, 236017, Taiwan
| | - Ann-Joy Cheng
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| |
Collapse
|
18
|
Xie Q, Zhao S, Kang R, Wang X. lncRNA SNHG11 facilitates prostate cancer progression through the upregulation of IGF‑1R expression and by sponging miR‑184. Int J Mol Med 2021; 48:182. [PMID: 34328198 PMCID: PMC8354307 DOI: 10.3892/ijmm.2021.5015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/07/2021] [Indexed: 11/05/2022] Open
Abstract
Long non‑coding RNA (lncRNA) small nucleolar RNA host gene 11 (SNHG11) has been shown to play an important role in the development and progression of numerous types of cancer. However, to the best of our knowledge, the role of SNHG11 in prostate cancer (PCa) development and metastasis remains unclear. Thus, the aim of the present study was to investigate the functional role and molecular mechanisms of SNHG11 in PCa progression. It was revealed that the SNHG11 expression levels were significantly upregulated in PCa tissues, in comparison with those in adjacent normal tissues. Functionally, SNHG11 knockdown significantly suppressed PCa cell proliferation, migration, invasion and metastasis in vitro and in vivo. Furthermore, SNHG11 was found to positively regulate insulin‑like growth factor 1 receptor (IGF‑1R) expression by sponging microRNA (miRNA/miR)‑184 in PCa cells. The results of rescue experiments demonstrated that IGF‑1R overexpression reversed the suppressive effects of SNHG11 knockdown on the proliferation, migration and invasion of PCa cells. On the whole, the findings of the present study suggest that SNHG11 expression is upregulated in PCa and that it facilitates PCa progression, at least in part, via the modulation of the miR‑184/IGF‑1R signaling axis.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Reproduction, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Zhejiang, Taizhou 318000, P.R. China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaolan Wang
- Reproductive Center of Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
19
|
McShane R, Arya S, Stewart AJ, Caie P, Bates M. Prognostic features of the tumour microenvironment in oesophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2021; 1876:188598. [PMID: 34332022 DOI: 10.1016/j.bbcan.2021.188598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Oesophageal adenocarcinoma (OAC) is a disease with an incredibly poor survival rate and a complex makeup. The growth and spread of OAC tumours are profoundly influenced by their surrounding microenvironment and the properties of the tumour itself. Constant crosstalk between the tumour and its microenvironment is key to the survival of the tumour and ultimately the death of the patient. The tumour microenvironment (TME) is composed of a complex milieu of cell types including cancer associated fibroblasts (CAFs) which make up the tumour stroma, endothelial cells which line blood and lymphatic vessels and infiltrating immune cell populations. These various cell types and the tumour constantly communicate through environmental cues including fluctuations in pH, hypoxia and the release of mitogens such as cytokines, chemokines and growth factors, many of which help promote malignant progression. Eventually clusters of tumour cells such as tumour buds break away and spread through the lymphatic system to nearby lymph nodes or enter the circulation forming secondary metastasis. Collectively, these factors need to be considered when assessing and treating patients clinically. This review aims to summarise the ways in which these various factors are currently assessed and how they relate to patient treatment and outcome at an individual level.
Collapse
Affiliation(s)
| | - Swati Arya
- School of Medicine, University of St Andrews, Fife, UK
| | | | - Peter Caie
- School of Medicine, University of St Andrews, Fife, UK
| | - Mark Bates
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
20
|
Yang C, Zhang Y, Segar N, Huang C, Zeng P, Tan X, Mao L, Chen Z, Haglund F, Larsson O, Chen Z, Lin Y. Nuclear IGF1R interacts with NuMA and regulates 53BP1‑dependent DNA double‑strand break repair in colorectal cancer. Oncol Rep 2021; 46:168. [PMID: 34165167 PMCID: PMC8250583 DOI: 10.3892/or.2021.8119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear insulin-like growth factor 1 receptor (nIGF1R) has been associated with poor overall survival and chemotherapy resistance in various types of cancer; however, the underlying mechanism remains unclear. In the present study, immunoprecipitation-coupled mass spectrometry was performed in an IGF1R-overexpressing SW480-OE colorectal cancer cell line to identify the nIGF1R interactome. Network analysis revealed 197 proteins of interest which were involved in several biological pathways, including RNA processing, DNA double-strand break (DSB) repair and SUMOylation pathways. Nuclear mitotic apparatus protein (NuMA) was identified as one of nIGF1R's colocalizing partners. Proximity ligation assay (PLA) revealed different levels of p53-binding protein 1 (53BP1)-NuMA colocalization between IGF1R-positive (R+) and IGF1R-negative (R−) mouse embryonic fibroblasts following exposure to ionizing radiation (IR). 53BP1 was retained by NuMA in the R− cells during IR-induced DNA damage. By contrast, the level of NuMA-53BP1 was markedly lower in R+ cells compared with R− cells. The present data suggested a regulatory role of nIGF1R in 53BP1-dependent DSB repair through its interaction with NuMA. Bright-field PLA analysis on a paraffin-embedded tissue microarray from patients with colorectal cancer revealed a significant association between increased nuclear colocalizing signals of NuMA-53BP1 and a shorter overall survival. These results indicate that nIGF1R plays a role in facilitating 53BP1-dependent DDR by regulating the NuMA-53BP1 interaction, which in turn might affect the clinical outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Chen Yang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Yifan Zhang
- Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, 171 64 Solna, Stockholm, Sweden
| | - Nelly Segar
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Changhao Huang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Pengwei Zeng
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiangzhou Tan
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Linfeng Mao
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Felix Haglund
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
21
|
LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol Metab 2021; 52:101245. [PMID: 33962049 PMCID: PMC8513159 DOI: 10.1016/j.molmet.2021.101245] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The insulin-like growth factor family of ligands (IGF-I, IGF-II, and insulin), receptors (IGF-IR, M6P/IGF-IIR, and insulin receptor [IR]), and IGF-binding proteins (IGFBP-1-6) play critical roles in normal human physiology and disease states. SCOPE OF REVIEW Insulin and insulin receptors are the focus of other chapters in this series and will therefore not be discussed further. Here we review the basic components of the IGF system, their role in normal physiology and in critical pathology's. While this review concentrates on the role of IGFs in human physiology, animal models have been essential in providing understanding of the IGF system, and its regulation, and are briefly described. MAJOR CONCLUSIONS IGF-I has effects via the circulation and locally within tissues to regulate cellular growth, differentiation, and survival, thereby controlling overall body growth. IGF-II levels are highest prenatally when it has important effects on growth. In adults, IGF-II plays important tissue-specific roles, including the maintenance of stem cell populations. Although the IGF-IR is closely related to the IR it has distinct physiological roles both on the cell surface and in the nucleus. The M6P/IGF-IIR, in contrast, is distinct and acts as a scavenger by mediating internalization and degradation of IGF-II. The IGFBPs bind IGF-I and IGF-II in the circulation to prolong their half-lives and modulate tissue access, thereby controlling IGF function. IGFBPs also have IGF ligand-independent cell effects.
Collapse
Affiliation(s)
- Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeff M P Holly
- Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, Australia
| |
Collapse
|
22
|
Rieunier G, Wu X, Harris LE, Mills JV, Nandakumar A, Colling L, Seraia E, Hatch SB, Ebner DV, Folkes LK, Weyer-Czernilofsky U, Bogenrieder T, Ryan AJ, Macaulay VM. Targeting IGF Perturbs Global Replication through Ribonucleotide Reductase Dysfunction. Cancer Res 2021; 81:2128-2141. [PMID: 33509941 DOI: 10.1158/0008-5472.can-20-2860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Inhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint. This phenotype reflected unanticipated regulation of global replication by IGF1 mediated via AKT, MEK/ERK, and JUN to influence expression of ribonucleotide reductase (RNR) subunit RRM2. Consequently, inhibition or depletion of IGF1R downregulated RRM2, compromising RNR function and perturbing dNTP supply. The resulting delay in fork progression and hallmarks of replication stress were rescued by RRM2 overexpression, confirming RRM2 as the critical factor through which IGF1 regulates replication. Suspecting existence of a backup pathway protecting from toxic sequelae of replication stress, targeted compound screens in breast cancer cells identified synergy between IGF inhibition and ATM loss. Reciprocal screens of ATM-proficient/deficient fibroblasts identified an IGF1R inhibitor as the top hit. IGF inhibition selectively compromised growth of ATM-null cells and spheroids and caused regression of ATM-null xenografts. This synthetic-lethal effect reflected conversion of single-stranded lesions in IGF-inhibited cells into toxic DSBs upon ATM inhibition. Overall, these data implicate IGF1R in alleviating replication stress, and the reciprocal IGF:ATM codependence we identify provides an approach to exploit this effect in ATM-deficient cancers. SIGNIFICANCE: This study identifies regulation of ribonucleotide reductase function and dNTP supply by IGFs and demonstrates that IGF axis blockade induces replication stress and reciprocal codependence on ATM. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2128/F1.large.jpg.
Collapse
Affiliation(s)
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Letitia E Harris
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack V Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ashwin Nandakumar
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Laura Colling
- Department of Oncology, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Elena Seraia
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Stephanie B Hatch
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Daniel V Ebner
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Lisa K Folkes
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Thomas Bogenrieder
- AMAL Therapeutics, Geneva, Switzerland
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Anderson J Ryan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
23
|
Li Y, Lu K, Zhao B, Zeng X, Xu S, Ma X, Zhi Y. Depletion of insulin-like growth factor 1 receptor increases radiosensitivity in colorectal cancer. J Gastrointest Oncol 2020; 11:1135-1145. [PMID: 33456988 DOI: 10.21037/jgo-20-210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Although radiation therapy for advanced colorectal cancer (CRC) is very effective in some patients, treatment resistance limits its efficacy. Insulin-like growth factor 1 receptor (IGF1R) can affect tumor responsiveness and sensitivity to radiation in several cancer types. Herein, we studied the underlying function of IGF1R in the resistance of advanced CRC to radiation therapy and the possible use of drugs targeting IGF1R to overcome this resistance in patients with CRC. Methods Differences in the expression levels of the IGF1R were assessed in CRC samples from patients who were radiosensitive or radioresistant. Two radio-resistant colorectal cancer cell lines, SW480 and HT29, were selected for in vitro studies, and the involvement of the IGF1R in their radiation resistance was elucidated by suppressing its expression through a targeted siRNA and through the use of a specific IGF1R inhibitor, BMS-754807. We assessed radiosensitivity in these human CRC cells lines by examining their proliferation and colony formation, as well as cell cycle analysis. Activation of the Akt pathway was assessed using western blotting. Results Compared with tissues from radiosensitive patients, higher IGF1R expression levels were found in patients with radiation-resistant colorectal cancer, while BMS-754807 had improved radiosensitivity and reversed radiation tolerance in both colorectal cancer cell lines. Pre-treatment with BMS-754807 prior to irradiation inhibited Akt phosphorylation, induced cell cycle arrest, and increased DNA damage. Therefore, the IGF1R contributes to radiation resistance of CRC cells in vitro. Conclusions This study supports the notion that the radiosensitivity of radiation-resistant colorectal cancer cells can be enhanced by directly targeting IGF1R expression or activity. Ultimately, the combination of radiotherapy with IGF1R targeted inhibitors could potentially increase its effectiveness in the treatment of advanced colorectal cancer.
Collapse
Affiliation(s)
- Yi Li
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Lu
- Department of Oncology, the Second People's Hospital of Taizhou City, Taizhou, China
| | - Ben Zhao
- Division of Solid Tumor Translational Oncology, German Cancer Consortium and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Xiaokui Zeng
- Department of Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shan Xu
- Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Xin Ma
- Department of Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Nephrology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yunqing Zhi
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| |
Collapse
|
24
|
Crudden C, Shibano T, Song D, Dragomir MP, Cismas S, Serly J, Nedelcu D, Fuentes-Mattei E, Tica A, Calin GA, Girnita A, Girnita L. Inhibition of G Protein-Coupled Receptor Kinase 2 Promotes Unbiased Downregulation of IGF1 Receptor and Restrains Malignant Cell Growth. Cancer Res 2020; 81:501-514. [PMID: 33158816 DOI: 10.1158/0008-5472.can-20-1662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
The ability of a receptor to preferentially activate only a subset of available downstream signal cascades is termed biased signaling. Although comprehensively recognized for the G protein-coupled receptors (GPCR), this process is scarcely explored downstream of receptor tyrosine kinases (RTK), including the cancer-relevant insulin-like growth factor-1 receptor (IGF1R). Successful IGF1R targeting requires receptor downregulation, yet therapy-mediated removal from the cell surface activates cancer-protective β-arrestin-biased signaling (β-arr-BS). As these overlapping processes are initiated by the β-arr/IGF1R interaction and controlled by GPCR-kinases (GRK), we explored GRKs as potential anticancer therapeutic targets to disconnect IGF1R downregulation and β-arr-BS. Transgenic modulation demonstrated that GRK2 inhibition or GRK6 overexpression enhanced degradation of IGF1R, but both scenarios sustained IGF1-induced β-arr-BS. Pharmacologic inhibition of GRK2 by the clinically approved antidepressant, serotonin reuptake inhibitor paroxetine (PX), recapitulated the effects of GRK2 silencing with dose- and time-dependent IGF1R downregulation without associated β-arr-BS. In vivo, PX treatment caused substantial downregulation of IGF1R, suppressing the growth of Ewing's sarcoma xenografts. Functional studies reveal that PX exploits the antagonism between β-arrestin isoforms; in low ligand conditions, PX favored β-arrestin1/Mdm2-mediated ubiquitination/degradation of IGF1R, a scenario usually exclusive to ligand abundancy, making PX more effective than antibody-mediated IGF1R downregulation. This study provides the rationale, molecular mechanism, and validation of a clinically feasible concept for "system bias" targeting of the IGF1R to uncouple downregulation from signaling. Demonstrating system bias as an effective anticancer approach, our study reveals a novel strategy for the rational design or repurposing of therapeutics to selectively cross-target the IGF1R or other RTK. SIGNIFICANCE: This work provides insight into the molecular and biological roles of biased signaling downstream RTK and provides a novel "system bias" strategy to increase the efficacy of anti-IGF1R-targeted therapy in cancer.
Collapse
Affiliation(s)
- Caitrin Crudden
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Takashi Shibano
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Dawei Song
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sonia Cismas
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Julianna Serly
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Daniela Nedelcu
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Andrei Tica
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ada Girnita
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Abstract
Elevated circulating insulin levels are frequently observed in the setting of obesity and early type 2 diabetes, as a result of insensitivity of metabolic tissues to the effects of insulin. Higher levels of circulating insulin have been associated with increased cancer risk and progression in epidemiology studies. Elevated circulating insulin is believed to be a major factor linking obesity, diabetes and cancer. With the development of targeted cancer therapies, insulin signalling has emerged as a mechanism of therapeutic resistance. Although metabolic tissues become insensitive to insulin in the setting of obesity, a number of mechanisms allow cancer cells to maintain their ability to respond to insulin. Significant progress has been made in the past decade in understanding the insulin receptor and its signalling pathways in cancer, and a number of lessons have been learnt from therapeutic failures. These discoveries have led to numerous clinical trials that have aimed to reduce the levels of circulating insulin and to abrogate insulin signalling in cancer cells. With the rising prevalence of obesity and diabetes worldwide, and the realization that hyperinsulinaemia may contribute to therapeutic failures, it is essential to understand how insulin and insulin receptor signalling promote cancer progression.
Collapse
Affiliation(s)
- Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
26
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
27
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Type 1 IGF receptor associates with adverse outcome and cellular radioresistance in paediatric high-grade glioma. Br J Cancer 2019; 122:624-629. [PMID: 31857716 PMCID: PMC7054265 DOI: 10.1038/s41416-019-0677-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/26/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
High-grade glioma (HGG) is highly resistant to therapy, prompting us to investigate the contribution of insulin-like growth factor receptor (IGF-1R), linked with radioresistance in other cancers. IGF-1R immunohistochemistry in 305 adult HGG (aHGG) and 103 paediatric/young adult HGG (pHGG) cases revealed significant association with adverse survival in pHGG, with median survival of 13.5 vs 29 months for pHGGs with moderate/strong vs negative/weak IGF-1R (p = 0.011). Secondly, we tested IGF-1R inhibitor BMS-754807 in HGG cells, finding minimal radiosensitisation of 2/3 aHGG cell lines (dose enhancement ratios DERs < 1.60 at 2–8 Gy), and greater radiosensitisation of 2/2 pHGG cell lines (DERs ≤ 4.16). BMS-754807 did not influence radiation-induced apoptosis but perturbed the DNA damage response with altered induction/resolution of γH2AX, 53BP1 and RAD51 foci. These data indicate that IGF-1R promotes radioresistance in pHGG, potentially contributing to the association of IGF-1R with adverse outcome and suggesting IGF-1R as a candidate treatment target in pHGG.
Collapse
|
29
|
Zhang Z, Lei B, Chai W, Liu R, Li T. Increased expression of insulin-like growth factor-1 receptor predicts poor prognosis in patients with hepatocellular carcinoma. Medicine (Baltimore) 2019; 98:e17680. [PMID: 31689787 PMCID: PMC6946458 DOI: 10.1097/md.0000000000017680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal disease worldwide. In this study, we sought to explore the expression of insulin-like growth factor-1 receptor (IGF-1R) and its prognostic value in HCC.The expressions of IGF-1R mRNA and protein were estimated using quantitative real-time polymerase chain reaction and immunohistochemistry assays, respectively. The association between IGF-1R expression and clinicopathologic characteristic of patients with HCC was analyzed through Chi-squared test. Kaplan-Meier analysis and multivariate Cox analysis were performed to analyze prognostic value of IGF-1R in HCC.The IGF-1R was significantly upregulated in HCC tissues at both mRNA and protein levels compared with adjacent normal ones (P < .01). Its expression was associated with tumor node metastasis stage (P = .037) and lymph node metastasis (P = .027) of patients with HCC. Patients with HCC with high expression of IGF-1R had worse overall survival than those with low expression. IGF-1R might be a potential prognostic biomarker for HCC (hazard ratio [HR] = 1.912, 95% confidence interval [CI]: 1.023-3.572, P = .042).The IGF-1R expression level is upregulated in HCC tissues and may act as a prognostic biomarker for the disease.
Collapse
Affiliation(s)
| | - Bao Lei
- First Department of General Surgery
| | - Wei Chai
- First Department of General Surgery
| | | | - Tiejun Li
- Department of Teaching, Cangzhou Central Hospital, Hebei, China
| |
Collapse
|
30
|
Qureishi A, Rieunier G, Shah KA, Aleksic T, Winter SC, Møller H, Macaulay VM. Radioresistant laryngeal cancers upregulate type 1 IGF receptor and exhibit increased cellular dependence on IGF and EGF signalling. Clin Otolaryngol 2019; 44:1026-1036. [PMID: 31536667 DOI: 10.1111/coa.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/01/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Patients failing radiotherapy for laryngeal squamous cell carcinoma (LSCC) often require salvage total laryngectomy which has major functional consequences, highlighting a need for biomarkers of radiotherapy resistance. In other tumour types, radioresistance has been linked to epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF-1R). Here, we evaluated IGF-1R and EGFR as predictors and mediators of LSCC radioresistance. DESIGN We compared IGF-1R and EGFR immunohistochemical scores in patients with LSCC achieving long-term remission post-radiotherapy (n = 23), patients treated with primary laryngectomy (n = 22) or salvage laryngectomy following radiotherapy recurrence (n = 18). To model radioresistance in vitro, two LSCC cell lines underwent clinically relevant irradiation to 55 Gy in 2.75 Gy fractions. RESULTS Type 1 insulin-like growth factor receptor expression was higher in pre-treatment biopsies of radiotherapy failures compared with those in long-term remission and was upregulated post-radiotherapy. Patients undergoing primary laryngectomy had more advanced T/N stage and greater tumour IGF-1R content than those achieving long-term remission. Pre-treatment EGFR did not associate with radiotherapy outcomes but showed a trend to upregulation post-irradiation. In vitro, radiosensitivity was enhanced by inhibition of EGFR but not IGF. Repeated irradiation upregulated IGF-1R in BICR18 and SQ20B cells and EGFR in SQ20B, and enhanced SQ20B radioresistance. Repeatedly irradiated SQ20B_55 cells were not radiosensitised by inhibition of IGF and/or EGFR, but IGF-1R:EGFR co-inhibition suppressed baseline cell survival more effectively than blockade of either pathway alone, and more effectively than in parental cells. CONCLUSIONS Radiation upregulates IGF-1R and may enhance IGF/EGFR dependence, suggesting that IGF/EGFR blockade may have activity in LSCCs that recur post-radiotherapy.
Collapse
Affiliation(s)
- Ali Qureishi
- Department of Oncology, University of Oxford, Oxford, UK.,Nuffield Department of Surgery, University of Oxford and Department of Head and Neck Surgery, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | | | - Ketan A Shah
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, UK
| | - Stuart C Winter
- Nuffield Department of Surgery, University of Oxford and Department of Head and Neck Surgery, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | - Henrik Møller
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, UK.,Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| |
Collapse
|
31
|
Osher E, Macaulay VM. Therapeutic Targeting of the IGF Axis. Cells 2019; 8:E895. [PMID: 31416218 PMCID: PMC6721736 DOI: 10.3390/cells8080895] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging.
Collapse
Affiliation(s)
- Eliot Osher
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
32
|
Wu X, Scott H, Carlsson SV, Sjoberg DD, Cerundolo L, Lilja H, Prevo R, Rieunier G, Macaulay V, Higgins GS, Verrill CL, Lamb AD, Cunliffe VT, Bountra C, Hamdy FC, Bryant RJ. Increased EZH2 expression in prostate cancer is associated with metastatic recurrence following external beam radiotherapy. Prostate 2019; 79:1079-1089. [PMID: 31104332 PMCID: PMC6563086 DOI: 10.1002/pros.23817] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Enhancer of zeste 2 (EZH2) promotes prostate cancer progression. We hypothesized that increased EZH2 expression is associated with postradiotherapy metastatic disease recurrence, and may promote radioresistance. METHODS EZH2 expression was investigated using immunohistochemistry in diagnostic prostate biopsies of 113 prostate cancer patients treated with radiotherapy with curative intent. Associations between EZH2 expression in malignant and benign tissue in prostate biopsy cores and outcomes were investigated using univariate and multivariate Cox regression analyses. LNCaP and PC3 cell radiosensitivity was investigated using colony formation and γH2AX assays following UNC1999 chemical probe-mediated EZH2 inhibition. RESULTS While there was no significant association between EZH2 expression and biochemical recurrence following radiotherapy, univariate analysis revealed that prostate cancer cytoplasmic and total EZH2 expression were significantly associated with metastasis development postradiotherapy (P = 0.034 and P = 0.003, respectively). On multivariate analysis, the prostate cancer total EZH2 expression score remained statistically significant (P = 0.003), while cytoplasmic EZH2 expression did not reach statistical significance (P = 0.053). No association was observed between normal adjacent prostate EZH2 expression and biochemical recurrence or metastasis. LNCaP and PC3 cell treatment with UNC1999 reduced histone H3 lysine 27 tri-methylation levels. Irradiation of LNCaP or PC3 cells with a single 2 Gy fraction with UNC1999-mediated EZH2 inhibition resulted in a statistically significant, though modest, reduction in cell colony number for both cell lines. Increased γH2AX foci were observed 24 hours after ionizing irradiation in LNCaP cells, but not in PC3, following UNC1999-mediated EZH2 inhibition vs controls. CONCLUSIONS Taken together, these results reveal that high pretreatment EZH2 expression in prostate cancer in diagnostic biopsies is associated with an increased risk of postradiotherapy metastatic disease recurrence, but EZH2 function may only at most play a modest role in promoting prostate cancer cell radioresistance.
Collapse
Affiliation(s)
- Xiaoning Wu
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Helen Scott
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Sigrid V. Carlsson
- Department of Epidemiology & BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Urology Service at the Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Department of UrologyInstitute of Clinical Sciences, Sahlgrenska Academy at Gothenburg UniversityGothenburgSweden
| | - Daniel D. Sjoberg
- Department of Epidemiology & BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Lucia Cerundolo
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Hans Lilja
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
- Department of Laboratory Medicine, Surgery (Urology), and Medicine (GU‐Oncology)Memorial Sloan Kettering Cancer CenterNew YorkNew York
- Department of Translational MedicineLund UniversityMalmöSweden
| | - Remko Prevo
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | | | | | - Geoffrey S. Higgins
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Clare L. Verrill
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUnited Kingdom
| | - Alastair D. Lamb
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Vincent T. Cunliffe
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUnited Kingdom
| | - Chas Bountra
- Nuffield Department of Medicine, Structural Genomics ConsortiumUniversity of OxfordOxfordUnited Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Richard J. Bryant
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
33
|
Zhang M, Sun Y, Meng J, Zhang L, Liang C, Chang C. Targeting AR-Beclin 1 complex-modulated growth factor signaling increases the antiandrogen Enzalutamide sensitivity to better suppress the castration-resistant prostate cancer growth. Cancer Lett 2019; 442:483-490. [PMID: 30423407 PMCID: PMC7217239 DOI: 10.1016/j.canlet.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 12/19/2022]
Abstract
While the recently developed antiandrogen Enzalutamide (Enz) can extend survival for 4.8 months in castration-resistant prostate cancer (CRPC) patients, eventually most of these CRPC patients may develop resistance to the Enz without a clear mechanism. Here we found the expression of Beclin 1 was decreased in both Enz-resistant (EnzR) cell lines (EnzR1-C4-2 and EnzR2-C4-2B) as compared to their parental Enz-sensitive (EnzS) (EnzS1-C4-2 and EnzS2-C4-2B) cells, and targeting the Beclin 1 could lead to increase the Enz-sensitivity in these two CRPC cell lines. Mechanism dissection revealed that Enz might function via altering the interaction between Beclin 1 and the androgen receptor (AR) to decrease the activity of Beclin 1/Vps15/Vps34 complex thus increasing the ERK-mediated growth factor signaling to alter the Enz sensitivity. Interrupting the AR-Beclin 1/ERK signaling with ectopic BECN1 or ERK inhibitor led to alter the Enz sensitivity in both EnzR1-C4-2 and EnzR2-C4-2B cells compared to EnzS1-C4-2 and EnzS2-C4-2B cells, respectively. Together, these results suggest that targeting this newly identified AR-Beclin 1 complex-mediated ERK growth factor signaling with small molecule ERK inhibitor may help potentially develop new therapies to better suppress the EnzR CRPC.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, China
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA; Sex Hormone Research Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
34
|
You GR, Cheng AJ, Lee LY, Huang YC, Liu H, Chen YJ, Chang JT. Prognostic signature associated with radioresistance in head and neck cancer via transcriptomic and bioinformatic analyses. BMC Cancer 2019; 19:64. [PMID: 30642292 PMCID: PMC6332600 DOI: 10.1186/s12885-018-5243-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background Radiotherapy is an indispensable treatment modality in head and neck cancer (HNC), while radioresistance is the major cause of treatment failure. The aim of this study is to identify a prognostic molecular signature associated with radio-resistance in HNC for further clinical applications. Methods Affymetrix cDNA microarrays were used to globally survey different transcriptomes between HNC cell lines and isogenic radioresistant sublines. The KEGG and Partek bioinformatic analytical methods were used to assess functional pathways associated with radioresistance. The SurvExpress web tool was applied to study the clinical association between gene expression profiles and patient survival using The Cancer Genome Atlas (TCGA)-head and neck squamous cell carcinoma (HNSCC) dataset (n = 283). The Kaplan-Meier survival analyses were further validated after retrieving clinical data from the TCGA-HNSCC dataset (n = 502) via the Genomic Data Commons (GDC)-Data-Portal of National Cancer Institute. A panel maker molecule was generated to assess the efficacy of prognostic prediction for radiotherapy in HNC patients. Results In total, the expression of 255 molecules was found to be significantly altered in the radioresistant cell sublines, with 155 molecules up-regulated 100 down-regulated. Four core functional pathways were identified to enrich the up-regulated genes and were significantly associated with a worse prognosis in HNC patients, as the modulation of cellular focal adhesion, the PI3K-Akt signaling pathway, the HIF-1 signaling pathway, and the regulation of stem cell pluripotency. Total of 16 up-regulated genes in the 4 core pathways were defined, and 11 over-expressed molecules showed correlated with poor survival (TCGA-HNSCC dataset, n = 283). Among these, 4 molecules were independently validated as key molecules associated with poor survival in HNC patients receiving radiotherapy (TCGA-HNSCC dataset, n = 502), as IGF1R (p = 0.0454, HR = 1.43), LAMC2 (p = 0.0235, HR = 1.50), ITGB1 (p = 0.0336, HR = 1.46), and IL-6 (p = 0.0033, HR = 1.68). Furthermore, the combined use of these 4 markers product an excellent result to predict worse radiotherapeutic outcome in HNC (p < 0.0001, HR = 2.44). Conclusions Four core functional pathways and 4 key molecular markers significantly contributed to radioresistance in HNC. These molecular signatures may be used as a predictive biomarker panel, which can be further applied in personalized radiotherapy or as radio-sensitizing targets to treat refractory HNC. Electronic supplementary material The online version of this article (10.1186/s12885-018-5243-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Rung You
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yu-Chen Huang
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan. .,Department of Radiation Oncology, Xiamen Chang Gung Memorial Hospital, Xiamen, Fujian, China.
| |
Collapse
|
35
|
Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes (Basel) 2019; 10:genes10010025. [PMID: 30621219 PMCID: PMC6356315 DOI: 10.3390/genes10010025] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany.
| |
Collapse
|
36
|
Aleksic T, Gray N, Wu X, Rieunier G, Osher E, Mills J, Verrill C, Bryant RJ, Han C, Hutchinson K, Lambert AG, Kumar R, Hamdy FC, Weyer-Czernilofsky U, Sanderson MP, Bogenrieder T, Taylor S, Macaulay VM. Nuclear IGF1R Interacts with Regulatory Regions of Chromatin to Promote RNA Polymerase II Recruitment and Gene Expression Associated with Advanced Tumor Stage. Cancer Res 2018; 78:3497-3509. [PMID: 29735545 PMCID: PMC6031306 DOI: 10.1158/0008-5472.can-17-3498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Internalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models. In prostate cancers, IGF1R was predominantly membrane localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF1R, and nuclear IGF1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF1R-binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF1 also enriched RNAPol2 on promoters containing IGF1R-binding sites. These functions were inhibited by IGF1/II-neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected IGF1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF1R, with evidence of correlation between nuclear IGF1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs.Significance: These findings reveal a noncanonical nuclear role for IGF1R in tumorigenesis, with implications for therapeutic evaluation of IGF inhibitory drugs. Cancer Res; 78(13); 3497-509. ©2018 AACR.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Eliot Osher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheng Han
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| | | | - Adam G Lambert
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rajeev Kumar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse, Munich, Germany
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|