1
|
Brown RB. Statins in the Cause and Prevention of Cancer: Confounding by Indication and Mediation by Rhabdomyolysis and Phosphate Toxicity. J Cardiovasc Dev Dis 2024; 11:296. [PMID: 39330354 PMCID: PMC11432391 DOI: 10.3390/jcdd11090296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Statins are drugs used in cardiovascular pharmacotherapy to decrease hypercholesterolemia and lower the risk of atherosclerosis. Statins also increase the risk of rhabdomyolysis, which is often minimized in comparison with large relative risk reductions of cardiovascular disease reported in clinical trials. By contrast, absolute risk reductions of cardiovascular disease are often clinically insignificant and unreported in statin clinical trials. Additionally, cytotoxic effects of statins inhibit cancer cell proliferation and reduce cancer risk, but other studies found that statins are carcinogenic. Due to an inverse association between incidence of cancer and atherosclerosis, the indication to prescribe statins likely biases the association of statins with cancer prevention. Dietary patterns associated with atherosclerosis and cancer contain inverse amounts of cholesterol and phosphate, an essential mineral that stimulates tumorigenesis. Accordingly, lower cancer risk is associated with high dietary cholesterol intake and increased risk of atherosclerosis. Furthermore, serum is exposed to excessive inorganic phosphate that could increase cancer risk as rhabdomyolysis induced by statins releases phosphate from skeletal muscle breakdown. Increased risk of comorbid conditions associated with statins may share the mediating factor of phosphate toxicity. More research is warranted on statins in the cause and prevention of cancer.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Brown RB, Bigelow P. Can a Low-Phosphate Diet for Chronic Kidney Disease Treat Cancer? An Interdisciplinary Literature Review. MEDICINES (BASEL, SWITZERLAND) 2024; 11:5. [PMID: 38392693 PMCID: PMC10890503 DOI: 10.3390/medicines11020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Background: Cancer therapeutics have a low success rate in clinical trials. An interdisciplinary approach is needed to translate basic, clinical, and remote fields of research knowledge into novel cancer treatments. Recent research has identified high dietary phosphate intake as a risk factor associated with cancer incidence. A model of tumor dynamics predicted that reducing phosphate levels sequestered in the tumor microenvironment could substantially reduce tumor size. Coincidently, a low-phosphate diet is already in use to help patients with chronic kidney disease manage high serum phosphate levels. Methods: A grounded-theory literature-review method was used to synthesize interdisciplinary findings from the basic and clinical sciences, including oncology, nephrology, nutritional epidemiology, and dietetic research on cancer. Results: Findings of tumor remission associated with fasting and a ketogenic diet, which lower intake of dietary phosphate, support the hypothesis that a low-phosphate diet will reduce levels of phosphate sequestered in the tumor microenvironment and reduce tumor size. Additionally, long-term effects of a low-phosphate diet may reverse dysregulated phosphate metabolism associated with tumorigenesis and prevent cancer recurrence. Conclusions: Evidence in this article provides the rationale to test a low-phosphate diet as a dietary intervention to reduce tumor size and lower risk of cancer recurrence.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Tyagi S, Mani S. Combined Administration of Metformin and Vitamin D: A Futuristic Approach for Management of Hyperglycemia. Cardiovasc Hematol Agents Med Chem 2024; 22:258-275. [PMID: 37929731 DOI: 10.2174/0118715257261643231018102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Diabetes is a series of metabolic disorders that can be categorized into three types depending on different aspects associated with age at onset, intensity of insulin resistance, and beta- cell dysfunction: Type 1 and 2 Diabetes, and Gestational Diabetes Mellitus. Type 2 Diabetes Mellitus (T2DM) has recently been found to account for more than 85% of diabetic cases. The current review intends to raise awareness among clinicians/researchers that combining vitamin D3 with metformin may pave the way for better T2DM treatment and management. An extensive literature survey was performed to analyze vitamin D's role in regulating insulin secretion, their action on the target cells and thus maintaining the normal glucose level. On the other side, the anti-hyperglycemic effect of metformin as well as its detailed mechanism of action was also studied. Interestingly both compounds are known to exhibit the antioxidant effect too. Literature supporting the correlation between diabetic phenotypes and deficiency of vitamin D was also explored further. To thoroughly understand the common/overlapping pathways responsible for the antidiabetic as well as antioxidant nature of metformin and vitamin D3, we compared their antihyperglycemic and antioxidant activities. With this background, we are proposing the hypothesis that it would be of great interest if these two compounds could work in synergy to better manage the condition of T2DM and associated disorders.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
4
|
Brown RB, Bigelow P, Dubin JA, Neiterman E. Breast cancer, alcohol, and phosphate toxicity. J Appl Toxicol 2024; 44:17-27. [PMID: 37332052 DOI: 10.1002/jat.4504] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Alcohol consumption is associated with an increased risk of breast cancer, even at low alcohol intake levels, but public awareness of the breast cancer risk associated with alcohol intake is low. Furthermore, the causative mechanisms underlying alcohol's association with breast cancer are unknown. The present theoretical paper uses a modified grounded theory method to review the research literature and propose that alcohol's association with breast cancer is mediated by phosphate toxicity, the accumulation of excess inorganic phosphate in body tissue. Serum levels of inorganic phosphate are regulated through a network of hormones released from the bone, kidneys, parathyroid glands, and intestines. Alcohol burdens renal function, which may disturb the regulation of inorganic phosphate, impair phosphate excretion, and increase phosphate toxicity. In addition to causing cellular dehydration, alcohol is an etiologic factor in nontraumatic rhabdomyolysis, which ruptures cell membranes and releases inorganic phosphate into the serum, leading to hyperphosphatemia. Phosphate toxicity is also associated with tumorigenesis, as high levels of inorganic phosphate within the tumor microenvironment activate cell signaling pathways and promote cancer cell growth. Furthermore, phosphate toxicity potentially links cancer and kidney disease in onco-nephrology. Insights into the mediating role of phosphate toxicity may lead to future research and interventions that raise public health awareness of breast cancer risk and alcohol consumption.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joel A Dubin
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Elena Neiterman
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Brown RB, Bigelow P, Dubin JA. Breast Cancer and Bone Mineral Density in a U.S. Cohort of Middle-Aged Women: Associations with Phosphate Toxicity. Cancers (Basel) 2023; 15:5093. [PMID: 37894460 PMCID: PMC10604967 DOI: 10.3390/cancers15205093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer is associated with phosphate toxicity, the toxic effect from dysregulated phosphate metabolism that can stimulate tumorigenesis. Phosphate toxicity and dysregulated phosphate metabolism are also associated with bone mineral abnormalities, including excessive bone mineral loss and deposition. Based on shared associations with dysregulated phosphate metabolism and phosphate toxicity, a hypothesis proposed in the present mixed methods-grounded theory study posits that middle-aged women with incidence of breast cancer had a greater magnitude of changes in bone mineral density over time compared with women who remained cancer-free. To test this hypothesis, a mixed-effects model was used to analyze the associations of breast cancer incidence with spinal bone mineral density changes in the U.S. Study of Women's Health Across the Nation. Compared with women in the cohort who remained cancer-free, women who self-reported breast cancer had higher bone mineral density at baseline, but had more rapid losses in bone mineral density during follow-up visits. These findings agree with the hypothesis that a greater magnitude of changes in bone mineral density over time is associated with breast cancer in a cohort of middle-aged women. The findings also have implications for studies investigating dysregulated phosphate metabolism and phosphate toxicity as causative factors of bone metastasis in metastatic breast cancer. Additionally, the authors previously found increased breast cancer risk associated with high dietary phosphate intake in the same cohort of middle-aged women, and more studies should investigate a low-phosphorus diet to reduce bone mineral abnormalities and tumorigenesis in breast cancer patients.
Collapse
Affiliation(s)
- Ronald B. Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (P.B.); (J.A.D.)
| | - Philip Bigelow
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (P.B.); (J.A.D.)
| | - Joel A. Dubin
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (P.B.); (J.A.D.)
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
6
|
Donati S, Palmini G, Aurilia C, Falsetti I, Marini F, Giusti F, Iantomasi T, Brandi ML. Calcifediol: Mechanisms of Action. Nutrients 2023; 15:4409. [PMID: 37892484 PMCID: PMC10610216 DOI: 10.3390/nu15204409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Due to its essential role in calcium and phosphate homeostasis, the secosteroid hormone calcitriol has received growing attention over the last few years. Calcitriol, like other steroid hormones, may function through both genomic and non-genomic mechanisms. In the traditional function, the interaction between the biologically active form of vitamin D and the vitamin D receptor (VDR) affects the transcription of thousands of genes by binding to repeated sequences present in their promoter region, named vitamin D-responsive elements (VDREs). Non-transcriptional effects, on the other hand, occur quickly and are unaffected by inhibitors of transcription and protein synthesis. Recently, calcifediol, the immediate precursor metabolite of calcitriol, has also been shown to bind to the VDR with weaker affinity than calcitriol, thus exerting gene-regulatory properties. Moreover, calcifediol may also trigger rapid non-genomic responses through its interaction with specific membrane vitamin D receptors. Membrane-associated VDR (mVDR) and protein disulfide isomerase family A member 3 (Pdia3) are the best-studied candidates for mediating these rapid responses to vitamin D metabolites. This paper provides an overview of the calcifediol-related mechanisms of action, which may help to better understand the vitamin D endocrine system and to identify new therapeutic targets that could be important for treating diseases closely associated with vitamin D deficiency.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Francesca Marini
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy;
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (S.D.); (G.P.); (C.A.); (I.F.); (F.G.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy;
- Donatello Bone Clinic, Villa Donatello Hospital, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Brown RB. Phosphate toxicity and SERCA2a dysfunction in sudden cardiac arrest. FASEB J 2023; 37:e23030. [PMID: 37302010 DOI: 10.1096/fj.202300414r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Almost half of the people who die from sudden cardiac arrest have no detectable heart disease. Among children and young adults, the cause of approximately one-third of deaths from sudden cardiac arrest remains unexplained after thorough examination. Sudden cardiac arrest and related sudden cardiac death are attributed to dysfunctional cardiac ion-channels. The present perspective paper proposes a pathophysiological mechanism by which phosphate toxicity from cellular accumulation of dysregulated inorganic phosphate interferes with normal calcium handling in the heart, leading to sudden cardiac arrest. During cardiac muscle relaxation following contraction, SERCA2a pumps actively transport calcium ions into the sarcoplasmic reticulum, powered by ATP hydrolysis that produces ADP and inorganic phosphate end products. Reviewed evidence supports the proposal that end-product inhibition of SERCA2a occurs as increasing levels of inorganic phosphate drive up phosphate toxicity and bring cardiac function to a sudden and unexpected halt. The paper concludes that end-product inhibition from ATP hydrolysis is the mediating factor in the association of sudden cardiac arrest with phosphate toxicity. However, current technology lacks the ability to directly measure this pathophysiological mechanism in active myocardium, and further research is needed to confirm phosphate toxicity as a risk factor in individuals with sudden cardiac arrest. Moreover, phosphate toxicity may be reduced through modification of dietary phosphate intake, with potential for employing low-phosphate dietary interventions to reduce the risk of sudden cardiac arrest.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
Brown RB. Dysregulated phosphate metabolism in autism spectrum disorder: associations and insights for future research. Expert Rev Mol Med 2023; 25:e20. [PMID: 37309057 PMCID: PMC10407224 DOI: 10.1017/erm.2023.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/14/2023]
Abstract
Studies of autism spectrum disorder (ASD) related to exposure to toxic levels of dietary phosphate are lacking. Phosphate toxicity from dysregulated phosphate metabolism can negatively impact almost every major organ system of the body, including the central nervous system. The present paper used a grounded theory-literature review method to synthesise associations of dysregulated phosphate metabolism with the aetiology of ASD. Cell signalling in autism has been linked to an altered balance between phosphoinositide kinases, which phosphorylate proteins, and the counteracting effect of phosphatases in neuronal membranes. Glial cell overgrowth in the developing ASD brain can lead to disturbances in neuro-circuitry, neuroinflammation and immune responses which are potentially related to excessive inorganic phosphate. The rise in ASD prevalence has been suggested to originate in changes to the gut microbiome from increasing consumption of additives in processed food, including phosphate additives. Ketogenic diets and dietary patterns that eliminate casein also reduce phosphate intake, which may account for many of the suggested benefits of these diets in children with ASD. Dysregulated phosphate metabolism is causatively linked to comorbid conditions associated with ASD such as cancer, tuberous sclerosis, mitochondrial dysfunction, diabetes, epilepsy, obesity, chronic kidney disease, tauopathy, cardiovascular disease and bone mineral disorders. Associations and proposals presented in this paper offer novel insights and directions for future research linking the aetiology of ASD with dysregulated phosphate metabolism and phosphate toxicity from excessive dietary phosphorus intake.
Collapse
Affiliation(s)
- Ronald B. Brown
- University of Waterloo, School of Public Health Sciences, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
9
|
Houston DA, Stephen LA, Jayash SN, Myers K, Little K, Hopkinson M, Pitsillides AA, MacRae VE, Millan JL, Staines KA, Farquharson C. Increased PHOSPHO1 and alkaline phosphatase expression during the anabolic bone response to intermittent parathyroid hormone delivery. Cell Biochem Funct 2023; 41:189-201. [PMID: 36540015 PMCID: PMC10946561 DOI: 10.1002/cbf.3772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The administration of intermittent parathyroid hormone (iPTH) is anabolic to the skeleton. Recent studies with cultured osteoblasts have revealed that the expression of PHOSPHO1, a bone-specific phosphatase essential for the initiation of mineralisation, is regulated by PTH. Therefore, this study sought to determine whether the bone anabolic response to iPTH involves modulation of expression of Phospho1 and of other enzymes critical for bone matrix mineralisation. To mimic iPTH treatment, primary murine osteoblasts were challenged with 50 nM PTH for 6 h in every 48 h period for 8 days (4 cycles), 14 days (7 cycles) and 20 days (10 cycles) in total. The expression of both Phospho1 and Smpd3 was almost completely inhibited after 4 cycles, whereas 10 cycles were required to stimulate a similar response in Alpl expression. To explore the in vivo role of PHOSPHO1 in PTH-mediated osteogenesis, the effects of 14- and 28-day iPTH (80 µg/kg/day) administration was assessed in male wild-type (WT) and Phospho1-/- mice. The expression of Phospho1, Alpl, Smpd3, Enpp1, Runx2 and Trps1 expression was enhanced in the femora of WT mice following iPTH administration but remained unchanged in the femora of Phospho1-/- mice. After 28 days of iPTH administration, the anabolic response in the femora of WT was greater than that noted in Phospho1-/- mice. Specifically, cortical and trabecular bone volume/total volume, as well as cortical thickness, were increased in femora of iPTH-treated WT but not in iPTH-treated Phospho1-/- mice. Trabecular bone osteoblast number was also increased in iPTH-treated WT mice but not in iPTH-treated Phospho1-/- mice. The increased levels of Phospho1, Alpl, Enpp1 and Smpd3 in WT mice in response to iPTH administration is consistent with their contribution to the potent anabolic properties of iPTH in bone. Furthermore, as the anabolic response to iPTH was attenuated in mice deficient in PHOSPHO1, this suggests that the osteoanabolic effects of iPTH are at least partly mediated via bone mineralisation processes.
Collapse
Affiliation(s)
- Dean A. Houston
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Louise A. Stephen
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Soher N. Jayash
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Katherine Myers
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Kirsty Little
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Mark Hopkinson
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| | | | - Vicky E. MacRae
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Jose Luis Millan
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Katherine A. Staines
- School of Applied Sciences, Centre for Stress and Age‐Related DiseaseUniversity of BrightonBrightonUK
| | - Colin Farquharson
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| |
Collapse
|
10
|
The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14020056. [PMID: 36826855 PMCID: PMC9959312 DOI: 10.3390/jfb14020056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Bone is capable of adjusting size, shape, and quality to maintain its strength, toughness, and stiffness and to meet different needs of the body through continuous remodeling. The balance of bone homeostasis is orchestrated by interactions among different types of cells (mainly osteoblasts and osteoclasts), extracellular matrix, the surrounding biological milieus, and waste products from cell metabolisms. Inorganic ions liberated into the localized microenvironment during bone matrix degradation not only form apatite crystals as components or enter blood circulation to meet other bodily needs but also alter cellular activities as molecular modulators. The osteoinductive potential of inorganic motifs of bone has been gradually understood since the last century. Still, few have considered the naturally generated ionic microenvironment's biological roles in bone remodeling. It is believed that a better understanding of the naturally balanced ionic microenvironment during bone remodeling can facilitate future biomaterial design for bone tissue engineering in terms of the modulatory roles of the ionic environment in the regenerative process.
Collapse
|
11
|
Sinha S, Haque M. Obesity, Diabetes Mellitus, and Vascular Impediment as Consequences of Excess Processed Food Consumption. Cureus 2022; 14:e28762. [PMID: 36105908 PMCID: PMC9441778 DOI: 10.7759/cureus.28762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 12/15/2022] Open
Abstract
Regular intake of ready-to-eat meals is related to obesity and several noninfectious illnesses, such as cardiovascular diseases, hypertension, diabetes mellitus (DM), and tumors. Processed foods contain high calories and are often enhanced with excess refined sugar, saturated and trans fat, Na+ andphosphate-containing taste enhancers, and preservatives. Studies showed that monosodium glutamate (MSG) induces raised echelons of oxidative stress, and excessive hepatic lipogenesis is concomitant to obesity and type 2 diabetes mellitus (T2DM). Likewise, more than standard salt intake adversely affects the cardiovascular system, renal system, and central nervous system (CNS), especially the brain. Globally, excessive utilization of phosphate-containing preservatives and additives contributes unswervingly to excessive phosphate intake through food. In addition, communities and even health experts, including medical doctors, are not well-informed about the adverse effects of phosphate preservatives on human health. Dietary phosphate excess often leads to phosphate toxicity, ultimately potentiating kidney disease development. The mechanisms involved in phosphate-related adverse effects are not explainable. Study reports suggested that high blood level of phosphate causes vascular ossification through the deposition of Ca2+ and substantially alters fibroblast growth factor-23 (FGF23) and calcitriol.
Collapse
|
12
|
Parkinson’s Disease Etiology: Insights and Associations with Phosphate Toxicity. Int J Mol Sci 2022; 23:ijms23158060. [PMID: 35897635 PMCID: PMC9331560 DOI: 10.3390/ijms23158060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The present paper investigated the association of Parkinson’s disease etiology with phosphate toxicity, a pathophysiological condition in which dysregulated phosphate metabolism causes excessive inorganic phosphate sequestration in body tissue that damages organ systems. Excessive phosphate is proposed to reduce Complex I function of the mitochondrial electron transport chain in Parkinson’s disease and is linked to opening of the mitochondrial permeability transition pore, resulting in increased reactive oxygen species, inflammation, DNA damage, mitochondrial membrane depolarization, and ATP depletion causing cell death. Parkinson’s disease is associated with α-synuclein and Lewy body dementia, a secondary tauopathy related to hyperphosphorylation of tau protein, and tauopathy is among several pathophysiological pathways shared between Parkinson’s disease and diabetes. Excessive phosphate is also associated with ectopic calcification, bone mineral disorders, and low levels of serum vitamin D in patients with Parkinson’s disease. Sarcopenia and cancer in Parkinson’s disease patients are also associated with phosphate toxicity. Additionally, Parkinson’s disease benefits are related to low dietary phosphate intake. More studies are needed to investigate the potential mediating role of phosphate toxicity in the etiology of Parkinson’s disease.
Collapse
|
13
|
Alexander R, Debiec N, Razzaque MS, He P. Inorganic phosphate-induced cytotoxicity. IUBMB Life 2021; 74:117-124. [PMID: 34676972 DOI: 10.1002/iub.2561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Phosphate, an essential nutrient, is available in organic and inorganic forms. The balance of phosphate is central for cellular homeostasis through the genomic roles of DNA and RNA synthesis and cell signaling processes. Therefore, an imbalance of this nutrient, manifested, either as a deficiency or excess in phosphate levels, can result in pathology, ranging from cytotoxicity to musculoskeletal defects. Inorganic phosphate (Pi) overdosing can result in a wide spectrum of cytotoxicity processes, as noted in both animal models and human studies. These include rewired cell signaling pathways, impaired bone mineralization, infertility, premature aging, vascular calcification, and renal dysfunction. This article briefly reviews the regulation of phosphate homeostasis and elaborates on cytotoxic effects of excessive Pi, as documented in cell-based models.
Collapse
Affiliation(s)
- Rachel Alexander
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Nicholas Debiec
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Mohammad S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
14
|
Mason DL, Godugu K, Nnani D, Mousa SA. Effects of sevelamer carbonate versus calcium acetate on vascular calcification, inflammation, and endothelial dysfunction in chronic kidney disease. Clin Transl Sci 2021; 15:353-360. [PMID: 34599865 PMCID: PMC8841464 DOI: 10.1111/cts.13151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Hyperphosphatemia is present in most patients with end‐stage renal disease (ESRD) and has been associated with increased cardiovascular mortality. Phosphate binders (calcium‐based and calcium free) are the mainstay pharmacologic treatment to lower phosphorus levels in patients with ESRD. We evaluated biochemical markers of vascular calcification, inflammation, and endothelial dysfunction in patients with chronic kidney disease (CKD) treated with sevelamer carbonate (SC) versus calcium acetate (CA). Fifty patients with CKD (stages 3 and 4) were enrolled and assigned to treatment with SC and CA for 12 weeks. At the end of the study the biomarkers of vascular calcification, inflammation, and endothelial dysfunction were analyzed. A significant increase in HDL‐cholesterol was observed with SC but not with CA in patients with CKD. Treatment with SC reduced serum phosphate, calcium phosphate, and FGF‐23 levels and there was no change with CA treatment. The inflammatory markers IL‐8, IFN‐γ, and TNFα decreased with response to both treatments. The levels of IL‐6 significantly increased with CA treatment and no change was observed in the SC treatment group. SC showed favorable effects on anti‐inflammatory and vascular calcification biomarkers compared to CA treatment in patients with CKD stages 3 and 4 with normal phosphorous values.
Collapse
Affiliation(s)
- Darius L Mason
- Methodist Le Bonheur Healthcare, Memphis, Tennessee, USA.,Department of Clinical Pharmacy & Translational Science, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kavitha Godugu
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Daryl Nnani
- Department of Pharmacy, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, New York, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
15
|
Gupta D, Hossain KMZ, Roe M, Smith EF, Ahmed I, Sottile V, Grant DM. Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture. ACS APPLIED BIO MATERIALS 2021; 4:5987-6004. [DOI: 10.1021/acsabm.1c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dhanak Gupta
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Kazi M. Zakir Hossain
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Martin Roe
- Nanoscale & Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Emily F. Smith
- Nanoscale & Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - David M. Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
16
|
Ridder LO, Harsløf T, Sikjaer T, Underbjerg L, Rejnmark L. Determinants of hypercalciuria and renal calcifications in chronic hypoparathyroidism: A cross-sectional study. Clin Endocrinol (Oxf) 2021; 95:286-294. [PMID: 33756016 DOI: 10.1111/cen.14470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Hypercalciuria, impaired kidney function and renal calcifications are common in chronic hypoparathyroidism (HypoPT). We aimed to study associations between indices of known importance to the kidney in HypoPT by hypothesizing adverse effects of hypercalciuria on renal outcomes. DESIGN We used cross-sectional design. PATIENTS We identified all patients followed for chronic HypoPT at our department and who had been examined by a 24-h urine collection for measurement of renal calcium excretion (24 h U-Ca). MEASUREMENTS By chart review, we identified additional biochemistry measured in close connection with the collection of urine, as well as demographic, treatments and anthropometrics. RESULTS The 166 included patients (79.5% females) had a high prevalence of hypercalciuria (65.7%). In multiple adjusted analyses, hypercalciuria was in an independent manner inversely associated with (residual) levels of plasma PTH and positively associated with levels of 1,25-dihydroxyvitamin D and ionized calcium as well as 24 h U-phosphate, gender, and etiology (surgical vs. non-surgical). Overall, this model explained 54% (p < .001) of the variation in the presence of hypercalciuria. Chronic kidney disease stage three or above was present in 18.3% of the patients, and 42.6% of the 54 patients examined by renal imaging had renal calcifications. However, neither renal function nor renal calcifications were associated with 24 h U-Ca. CONCLUSIONS Hypercalciuria, impaired renal function and renal calcifications are common in hypoparathyroidism. Hypercalciuria is to a large extent explained by indices of known physiological importance to 24 h U-Ca. However, in the present study, a high renal calcium excretion did not explain renal impairment or kidney calcifications.
Collapse
Affiliation(s)
- Lukas Ochsner Ridder
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tanja Sikjaer
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Line Underbjerg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
RGS14 Regulation of Post-Synaptic Signaling and Spine Plasticity in Brain. Int J Mol Sci 2021; 22:ijms22136823. [PMID: 34201943 PMCID: PMC8268017 DOI: 10.3390/ijms22136823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons. RGS14 is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system, and cortex. Behaviorally, RGS14 regulates spatial and object memory, female-specific responses to cued fear conditioning, and environmental- and psychostimulant-induced locomotion. At the cellular level, RGS14 acts as a scaffolding protein that integrates G protein, Ras/ERK, and calcium/calmodulin signaling pathways essential for spine plasticity and cell signaling, allowing RGS14 to naturally suppress long-term potentiation (LTP) and structural plasticity in hippocampal area CA2 pyramidal cells. Recent proteomics findings indicate that RGS14 also engages the actomyosin system in the brain, perhaps to impact spine morphogenesis. Of note, RGS14 is also a nucleocytoplasmic shuttling protein, where its role in the nucleus remains uncertain. Balanced nuclear import/export and dendritic spine localization are likely essential for RGS14 neuronal functions as a regulator of synaptic plasticity. Supporting this idea, human genetic variants disrupting RGS14 localization also disrupt RGS14’s effects on plasticity. This review will focus on the known and unexplored roles of RGS14 in cell signaling, physiology, disease and behavior.
Collapse
|
18
|
Stockman J, Villaverde C. Concerns related to dietary phosphorus intake in cats. J Am Vet Med Assoc 2021; 258:1325-1331. [PMID: 34061616 DOI: 10.2460/javma.258.12.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Laflamme D, Backus R, Brown S, Butterwick R, Czarnecki-Maulden G, Elliott J, Fascetti A, Polzin D. A review of phosphorus homeostasis and the impact of different types and amounts of dietary phosphate on metabolism and renal health in cats. J Vet Intern Med 2020; 34:2187-2196. [PMID: 33159358 PMCID: PMC7694857 DOI: 10.1111/jvim.15961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Elevated concentrations of serum phosphate are linked with progression and increased case fatality rate in animals and humans with chronic kidney disease. Elevated concentrations of serum phosphate can be a risk factor for development of renal and cardiovascular diseases or osteoporosis in previously healthy people. In rodents, an excess intake of dietary phosphorus combined with an inverse dietary calcium : phosphorus ratio (<1 : 1) contributes to renal calcification. Renal injury also has occured in cats fed experimental diets supplemented with highly soluble phosphate salts, especially in diets with inverse calcium : phosphorus ratios. However, not all phosphorus sources contribute similarly to this effect. This review, which focuses on cats, summarizes the published evidence regarding phosphorus metabolism and homeostasis, including the relative impact of different dietary phosphorus sources, and their impact on the kidneys. No data currently shows that commercial cat foods induce renal injury. However, some diets contain high amounts of phosphorus relative to recommendations and some have inverse Ca : P ratios and so could increase the risk for development of kidney disease. While limiting the use of highly soluble phosphates appears to be important, there are insufficient data to support a specific upper limit for phosphate intake. This review also proposes areas where additional research is needed in order to strengthen conclusions and recommendations regarding dietary phosphorus for cats.
Collapse
Affiliation(s)
| | - Robert Backus
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Scott Brown
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | | | - Jonathan Elliott
- Royal Veterinary College, University of London, London, United Kingdom
| | - Andrea Fascetti
- Department of Molecular Biosciences, University of California, Davis, California, USA
| | - David Polzin
- Veterinary Clinical Sciences Department, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
20
|
He P, Mann-Collura O, Fling J, Edara N, Hetz R, Razzaque MS. High phosphate actively induces cytotoxicity by rewiring pro-survival and pro-apoptotic signaling networks in HEK293 and HeLa cells. FASEB J 2020; 35:e20997. [PMID: 32892444 DOI: 10.1096/fj.202000799rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for human health. Due to the changes in our dietary pattern, dietary Pi overload engenders systemic phosphotoxicity, including excessive Pi-related vascular calcification and chronic tissue injury. The molecular mechanisms of the seemingly distinct phenotypes remain elusive. In this study, we investigated Pi-mediated cellular response in HEK293 and HeLa cells. We found that abnormally high Pi directly mediates diverse cellular toxicity in a dose-dependent manner. Up to 10 mM extracellular Pi promotes cell proliferation by activating AKT signaling cascades and augmenting cell cycle progression. By introducing additional Pi, higher than the concentration of 40 mM, we observed significant cell damage caused by the interwoven Pi-related biological processes. Elevated Pi activates mitogen-activated protein kinase (MAPK) signaling, encompassing extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and Jun amino-terminal kinase (JNK), which consequently potentiates Pi triggered lethal epithelial-mesenchymal transition (EMT). Synergistically, high Pi-caused endoplasmic reticulum (ER) stress also contributes to apparent apoptosis. To counteract, Pi-activated AKT signaling promotes cell survival by activating the mammalian target of rapamycin (mTOR) signaling and blocking ER stress. Pharmacologically or genetically abrogating Pi transport, the impact of high Pi-induced cytotoxicity could be reduced. Taken together, abnormally high extracellular Pi results in a broad spectrum of toxicity by rewiring complicated signaling networks that control cell growth, cell death, and homeostasis.
Collapse
Affiliation(s)
- Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Olivia Mann-Collura
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Jacob Fling
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Naga Edara
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Rebecca Hetz
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
21
|
Brown RB. Diabetes, Diabetic Complications, and Phosphate Toxicity: A Scoping Review. Curr Diabetes Rev 2020; 16:674-689. [PMID: 31686640 DOI: 10.2174/1573399815666191104113236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
This article presents a scoping review and synthesis of research findings investigating the toxic cellular accumulation of dysregulated inorganic phosphate-phosphate toxicity-as a pathophysiological determinant of diabetes and diabetic complications. Phosphorus, an essential micronutrient, is closely linked to the cellular metabolism of glucose for energy production, and serum inorganic phosphate is often transported into cells along with glucose during insulin therapy. Mitochondrial dysfunction and apoptosis, endoplasmic reticulum stress, neuronal degeneration, and pancreatic cancer are associated with dysregulated levels of phosphate in diabetes. Ectopic calcification involving deposition of calcium-phosphate crystals is prevalent throughout diabetic complications, including vascular calcification, nephropathy, retinopathy, and bone disorders. A low-glycemic, low-phosphate dietary intervention is proposed for further investigations in the treatment and prevention of diabetes and related diabetic pathologies.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
22
|
Brown RB. Potential interaction of inflammatory hyperemia and hyperphosphatemia in tumorigenesis. Future Oncol 2019; 15:3909-3916. [PMID: 31729262 DOI: 10.2217/fon-2019-0213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present article proposes that the association of inflammation with cancer is potentially mediated by the interaction of inflammatory hyperemia and hyperphosphatemia. Hyperemia increases blood flow rate and blood volume, and hyperphosphatemia is caused by elevated serum levels of dysregulated inorganic phosphate. It is hypothesized that the interaction of inflammatory hyperemia and hyperphosphatemia circulates increased amounts of inorganic phosphate to the tumor microenvironment, where increased uptake of inorganic phosphate through sodium-phosphate cotransporters is sequestered in cells. Elevated levels of intracellular phosphorus increase biosynthesis of ribosomal RNA, leading to increased protein synthesis that supports tumor growth. The present article also proposes that the interaction of inflammatory hyperemia and hyperphosphatemia may help explain a chemopreventive mechanism associated with NSAIDs.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health & Health Systems, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
23
|
Sankannavar R, Chaudhari S. An imperative approach for fluorosis mitigation: Amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:230-237. [PMID: 31154169 DOI: 10.1016/j.jenvman.2019.05.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/11/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Drinking of fluoride (F-) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge. Therefore, defluoridation without disturbing water quality is imperative. Hydroxyapatite (HAP) is proved to have a potential application for defluoridation; however, its dissolution during defluoridation is a concern for its implementation. Experiments conducted by suspending HAP in F- solution and deionized water without F- show that former had high residual pH and PO43- than the latter with Ca2+ being absent in the former. This indicates that Ca2+ had participated in defluoridation and promoted HAP dissolution when Ca2+ was unavailable. Hence, HAP dissolution seems to be a governing step for defluoridation. However, higher residual PO43- and pH affect drinking water quality, and its usage may pose additional health problems. Thus, Ca2+ deficient defluoridated water is unfit for drinking unless it is treated further. Hence, the present work proposes a novel method to overcome HAP dissolution by amending aqueous Ca2+ to F- water. The results show that amending Ca2+ efficiently prevents HAP dissolution and enhances defluoridation capacity as an added feature. Furthermore, speciation using MINEQL+ and FTIR of fluoride-calcium treated HAPs suggest the possibility of defluoridation by aqueous CaF+ adsorption onto HAP besides F- ion exchange with OH-.
Collapse
Affiliation(s)
- Ravi Sankannavar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India; Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| | - Sanjeev Chaudhari
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| |
Collapse
|
24
|
Abstract
Recently reported findings from major clinical trials show no cancer protection from vitamin D supplementation, and results from observational studies of vitamin D in cancer prevention are inconsistent. There is a need for new hypotheses to guide investigations of the controversies surrounding vitamin D supplementation and cancer. Bioactive vitamin D, 1,25(OH)2D, is an endocrine factor that regulates phosphate homeostasis by increasing dietary phosphate intestinal absorption. When phosphorus serum levels are high, as in hyperphosphatemia, an endocrine feedback mechanism lowers bioactive vitamin D which reduces intestinal phosphate absorption. Low vitamin D levels have been associated with cancer incidence, and tumorigenesis is associated with high levels of dysregulated phosphate in the body. In this mini-review, the author hypothesizes that hyperphosphatemia may be an intermediating factor in the association of lowered vitamin D levels and increased risk for tumorigenesis. Furthermore, this article challenges the UVB-vitamin D-cancer hypothesis which proposes that reduced cancer incidence at lower geographic latitudes is related to high levels of vitamin D from UVB exposure. The author proposes that reduced phosphorus content and availability in tropical and subtropical soil, and lower dietary phosphate intake from consumption of tropical and subtropical crops (as in the Mediterranean diet), may mediate the association of reduced cancer risk with lower latitudes.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
25
|
Szymczak-Pajor I, Śliwińska A. Analysis of Association between Vitamin D Deficiency and Insulin Resistance. Nutrients 2019; 11:E794. [PMID: 30959886 PMCID: PMC6520736 DOI: 10.3390/nu11040794] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Recent evidence revealed extra skeleton activity of vitamin D, including prevention from cardiometabolic diseases and cancer development as well as anti-inflammatory properties. It is worth noting that vitamin D deficiency is very common and may be associated with the pathogenesis of insulin-resistance-related diseases, including obesity and diabetes. This review aims to provide molecular mechanisms showing how vitamin D deficiency may be involved in the insulin resistance formation. The PUBMED database and published reference lists were searched to find studies published between 1980 and 2019. It was identified that molecular action of vitamin D is involved in maintaining the normal resting levels of ROS and Ca2+, not only in pancreatic β-cells, but also in insulin responsive tissues. Both genomic and non-genomic action of vitamin D is directed towards insulin signaling. Thereby, vitamin D reduces the extent of pathologies associated with insulin resistance such as oxidative stress and inflammation. More recently, it was also shown that vitamin D prevents epigenetic alterations associated with insulin resistance and diabetes. In conclusion, vitamin D deficiency is one of the factors accelerating insulin resistance formation. The results of basic and clinical research support beneficial action of vitamin D in the reduction of insulin resistance and related pathologies.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland.
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland.
| |
Collapse
|
26
|
Goodson JM, Shi P, Razzaque MS. Dietary phosphorus enhances inflammatory response: A study of human gingivitis. J Steroid Biochem Mol Biol 2019; 188:166-171. [PMID: 30738820 DOI: 10.1016/j.jsbmb.2019.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/12/2023]
Abstract
Phosphates are associated with numerous disorders, ranging from vascular calcification to premature aging, possibly because of an increased inflammatory response. We therefore investigated the association of dietary phosphorus with gingivitis. We analyzed consumption of both phosphorus and sugar and related it to the concentrations of inflammatory biomarkers in saliva samples collected from 8314 children (mean age, 9.99 ± 0.68 years). About 64% of the children consumed more than 1250 mg phosphorus daily, and 34% consumed more than 82 g of sugar daily. Gingivitis was prevalent, with an average of 74% of possible gingival sites considered red. Quantile regression analysis revealed a statistically significant correlation between the occurrence of gingivitis and calorie-adjusted phosphorus intake and between gingivitis and calorie-adjusted sugar intake (both significant either as a linear trend or a categorical variable). In a subset (n = 744) investigation of nutrient consumption related to salivary biomarkers, we found that elevated calorie-adjusted phosphorus intake was directly associated with salivary IL-1β concentration (OR1.40, 95% CI 1.04-1.89), and inversely associated with salivary IL-4 concentration (OR0.62, 95% CI 0.46-0.84). Sugar intake was not significantly associated with either biomarker. Thus, elevated dietary phosphorus consumption may influence inflammatory disease by altering cytokine levels.
Collapse
Affiliation(s)
- J Max Goodson
- Department of Applied Oral Sciences, Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA, USA
| | - Ping Shi
- Department of Applied Oral Sciences, Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA, USA
| | - Mohammed S Razzaque
- Department of Applied Oral Sciences, Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA, USA; College of Advancing & Professional Studies (CAPS), University of Massachusetts Boston (UMB), Boston, MA, USA; Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA.
| |
Collapse
|
27
|
Dysregulated Phosphate Metabolism, Periodontal Disease, and Cancer: Possible Global Health Implications. Dent J (Basel) 2019; 7:dj7010018. [PMID: 30754693 PMCID: PMC6473307 DOI: 10.3390/dj7010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
An association between periodontal disease and cancer has been established in recent studies, but no common etiology has been identified in the hopes of reducing the global burden of these non-communicable diseases. This perspective article hypothesizes that the determinant mediating the association of periodontal disease with cancer is dysregulated phosphate metabolism. Phosphate, an essential dietary micronutrient, is dysregulated in chronic kidney disease, and both cancer and periodontal disease are associated with chronic kidney disease. Reviewed evidence includes the association between phosphate toxicity and cancer development, and the association between periodontal disease and chronic kidney disease-mineral and bone disorder includes conditions such as ectopic calcification and bone resorption, which may be indirectly related to periodontal disease. Dental calculus in periodontal disease contains calcium phosphate crystals that are deposited from excess calcium and phosphate in saliva. Alveolar bone resorption may be linked systemically to release of parathyroid hormone in response to hypocalcemia induced by hyperphosphatemia. More research is needed to examine the role of dysregulated phosphate metabolism in periodontal disease.
Collapse
|
28
|
Shimada M, Shutto-Uchita Y, Yamabe H. Lack of Awareness of Dietary Sources of Phosphorus Is a Clinical Concern. In Vivo 2019; 33:11-16. [PMID: 30587596 PMCID: PMC6364062 DOI: 10.21873/invivo.11432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023]
Abstract
Hyperphosphatemia is a serious complication in patients with chronic kidney disease (CKD), and is associated with more rapid progression as well as higher risk of mortality, and higher rate of cardiovascular disease accidents. CKD patients are usually advised to adopt a low phosphate diet in addition to phosphate-lowering medications, if necessary. However, there is a lack of awareness of the dietary sources of phosphate, especially hidden phosphate intake from phosphate additives in processed foods and carbonated beverages. Appropriate nutritional education could be an effective solution in reducing phosphate toxicity without introducing an additional pill burden or malnutrition.
Collapse
Affiliation(s)
- Michiko Shimada
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | |
Collapse
|
29
|
Thomas L, Xue J, Dominguez Rieg JA, Rieg T. Contribution of NHE3 and dietary phosphate to lithium pharmacokinetics. Eur J Pharm Sci 2018; 128:1-7. [PMID: 30419292 DOI: 10.1016/j.ejps.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/09/2018] [Accepted: 11/08/2018] [Indexed: 01/13/2023]
Abstract
Lithium is one of the mainstays for the treatment of bipolar disorder despite its side effects on the endocrine, neurological, and renal systems. Experimentally, lithium has been used as a measure to determine proximal tubule reabsorption based on the assumption that lithium and sodium transport go in parallel in the proximal tubule. However, the exact mechanism by which lithium is reabsorbed remains elusive. The majority of proximal tubule sodium reabsorption is directly or indirectly mediated by the sodium-hydrogen exchanger 3 (NHE3). In addition, sodium-phosphate cotransporters have been implicated in renal lithium reabsorption. In order to better understand the role of sodium-phosphate cotransporters involved in lithium (re)absorption, we studied lithium pharmacokinetics in: i) tubule-specific NHE3 knockout mice (NHE3loxloxPax8Cre), and ii) mice challenged with low or high phosphate diets. Intravenous or oral administration of lithium did not result in differences in lithium bioavailability, half-life, maximum plasma concentrations, area under the curve, lithium clearance, or urinary lithium/creatinine ratios between control and NHE3loxloxPax8Cre mice. After one week of dietary phosphate challenges, lithium bioavailability was ~30% lower on low versus high dietary phosphate, possibly the consequence of a smaller area under the curve after oral administration. This was associated with higher apparent lithium clearance after oral administration and lower urinary lithium/creatinine ratios on low versus high dietary phosphate. Collectively, renal NHE3 does not play a role in lithium pharmacokinetics; however, dietary phosphate could have an indirect effect on lithium bioavailability and lithium disposition.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
30
|
Erem S, Razzaque MS. Dietary phosphate toxicity: an emerging global health concern. Histochem Cell Biol 2018; 150:711-719. [PMID: 30159784 DOI: 10.1007/s00418-018-1711-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Phosphate is a common ingredient in many healthy foods but, it is also present in foods containing additives and preservatives. When found in foods, phosphate is absorbed in the intestines and filtered from the blood by the kidneys. Generally, any excess is excreted in the urine. In renal pathologies, however, such as chronic kidney disease, a reduced renal ability to excrete phosphate can result in excess accumulation in the body. This accumulation can be a catalyst for widespread damage to the cellular components, bones, and cardiovascular structures. This in turn can reduce mortality. Because of an incomplete understanding of the mechanism for phosphate homeostasis, and the multiple organ systems that can modulate it, treatment strategies designed to minimize phosphate burden are limited. The Recommended Dietary Allowance (RDA) for phosphorous is around 700 mg/day for adults, but the majority of healthy adult individuals consume far more phosphate (almost double) than the RDA. Studies suggest that low-income populations are particularly at risk for dietary phosphate overload because of the higher amounts of phosphate found in inexpensive, processed foods. Education in nutrition, as well as access to inexpensive healthy food options may reduce risks for excess consumption as well as a wide-range of disorders, ranging from cardiovascular diseases to kidney diseases to tumor formation. Pre-clinical and clinical studies suggest that dietary phosphate overload has toxic and prolonged adverse health effects. Improved regulations for reporting of phosphate concentrations on food labels are necessary so that people can make more informed choices about their diets and phosphate consumption. This is especially the case given the lack of treatments available to mitigate the short and long-term effects of dietary phosphate overload-related toxicity. Phosphate toxicity is quickly becoming a global health concern. Without measures in place to reduce dietary phosphate intake, the conditions associated with phosphate toxicity will likely to cause untold damage to the wellbeing of individuals around the world.
Collapse
Affiliation(s)
- Sarah Erem
- Department of Pathology, Saba University School of Medicine, Saba, Dutch Caribbean, The Netherlands
| | - Mohammed S Razzaque
- Department of Pathology, Saba University School of Medicine, Saba, Dutch Caribbean, The Netherlands.
- Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA.
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine & Health Sciences, Kigali, Rwanda.
- Department of Pathology, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Boulevard, Room: B2-306, Erie, PA, 16509, USA.
| |
Collapse
|
31
|
Razzaque MS. Can adverse effects of excessive vitamin D supplementation occur without developing hypervitaminosis D? J Steroid Biochem Mol Biol 2018; 180:81-86. [PMID: 28734988 DOI: 10.1016/j.jsbmb.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 12/25/2022]
Abstract
Vitamin D is a fat-soluble hormone that has endocrine, paracrine and autocrine functions. Consumption of vitamin D-supplemented food & drugs have increased significantly in the last couple of decades due to campaign and awareness programs. Despite such wide use of artificial vitamin D supplements, serum level of 25 hydroxyvitamin D does not always reflect the amount of uptake. In contrast to the safe sunlight exposure, prolonged and disproportionate consumption of vitamin D supplements may lead to vitamin D intoxication, even without developing hypervitaminosis D. One of the reasons why vitamin D supplementation is believed to be safe is, it rarely raises serum vitamin D levels to the toxic range even after repeated intravenous ingestion of extremely high doses of synthetic vitamin D analogs. However, prolonged consumption of vitamin D supplementation may induce hypercalcemia, hypercalciuria and hyperphosphatemia, which are considered to be the initial signs of vitamin D intoxication. It is likely that calcium and phosphorus dysregulation, induced by exogenous vitamin D supplementation, may lead to tissue and organ damages, even without developing hypervitaminosis D. It is needed to be emphasized that, because of tight homeostatic control of calcium and phosphorus, when hypercalcemia and/or hyperphosphatemia is apparent following vitamin D supplementation, the process of tissue and/or organ damage might already have been started.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA, USA; Department of Preventive & Community Dentistry, School of Dentistry, University of Rwanda College of Medicine & Health Sciences, Kigali, Rwanda; Department of Oral Health Policy & Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA; Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA.
| |
Collapse
|
32
|
Elevated FGF23 Levels in Mice Lacking the Thiazide-Sensitive NaCl cotransporter (NCC). Sci Rep 2018; 8:3590. [PMID: 29483574 PMCID: PMC5826922 DOI: 10.1038/s41598-018-22041-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/15/2018] [Indexed: 11/17/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) participates in the orchestration of mineral metabolism by inducing phosphaturia and decreasing the production of 1,25(OH)2D3. It is known that FGF23 release is stimulated by aldosterone and extracellular volume depletion. To characterize this effect further in a model of mild hypovolemia, we studied mice lacking the thiazide sensitive NaCl cotransporter (NCC). Our data indicate that NCC knockout mice (KO) have significantly higher FGF23, PTH and aldosterone concentrations than corresponding wild type (WT) mice. However, 1,25(OH)2D3, fractional phosphate excretion and renal brush border expression of the sodium/phosphate co-transporter 2a were not different between the two genotypes. In addition, renal expression of FGF23 receptor FGFR1 and the co-receptor Klotho were unaltered in NCC KO mice. FGF23 transcript was increased in the bone of NCC KO mice compared to WT mice, but treatment of primary murine osteoblasts with the NCC inhibitor hydrochlorothiazide did not elicit an increase of FGF23 transcription. In contrast, the mineralocorticoid receptor blocker eplerenone reversed excess FGF23 levels in KO mice but not in WT mice, indicating that FGF23 upregulation in NCC KO mice is primarily aldosterone-mediated. Together, our data reveal that lack of renal NCC causes an aldosterone-mediated upregulation of circulating FGF23.
Collapse
|
33
|
Uwitonze AM, Murererehe J, Ineza MC, Harelimana EI, Nsabimana U, Uwambaye P, Gatarayiha A, Haq A, Razzaque MS. Effects of vitamin D status on oral health. J Steroid Biochem Mol Biol 2018; 175:190-194. [PMID: 28161532 DOI: 10.1016/j.jsbmb.2017.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 01/20/2023]
Abstract
Normal humans of all ages have the innate ability to produce vitamin D following sunlight exposure. Inadequate vitamin D status has shown to be associated with a wide variety of diseases, including oral health disorders. Insufficient sunlight exposure may accelerate some of these diseases, possibly due to impaired vitamin D synthesis. The beneficial effects of vitamin D on oral health are not only limited to the direct effects on the tooth mineralization, but are also exerted through the anti-inflammatory functions and the ability to stimulate the production of anti-microbial peptides. In this article, we will briefly discuss the genesis of various oral diseases due to inadequate vitamin D level in the body and elucidate the potential benefits of safe sunlight exposure for the maintenance of oral and general health.
Collapse
Affiliation(s)
- Anne Marie Uwitonze
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Julienne Murererehe
- Department of Oral Maxillofacial Surgery & Oral Pathology, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Marie Claire Ineza
- Department of Restorative & Prosthetic Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Eliane Ingabire Harelimana
- Department of Restorative & Prosthetic Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Usiel Nsabimana
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Peace Uwambaye
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Agnes Gatarayiha
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda
| | - Afrozul Haq
- Research & Development, Gulf Diagnostic Center Hospital, Abu Dhabi, UAE
| | - Mohammed S Razzaque
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, Kigali, Rwanda; Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA, USA; Department of Oral Health Policy & Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
34
|
Phosphorus and mortality risk in end-stage renal disease: A meta-analysis. Clin Chim Acta 2017; 474:108-113. [PMID: 28903022 DOI: 10.1016/j.cca.2017.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/06/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Studies on the association of abnormal serum phosphorus level with all-cause mortality in patients with end-stage renal disease (ESRD) have yielded inconsistent results. OBJECTIVE To evaluate the association of abnormal serum phosphorus level with all-cause mortality in patients with ESRD requiring dialysis by conducting a meta-analysis. METHODS Pubmed and Embase databases were searched through March 2017 to identify all observational studies that assessed the association between abnormal serum phosphorus level and all-cause mortality risk in patients with ESRD requiring dialysis. Pooled hazard risk (HR) with 95% confidence interval (CI) was calculated for the highest versus referent phosphorus category and lower versus referent phosphorus category, separately. RESULTS Nine cohort studies were eligible for analysis. During 12 to 97.6months follow-up duration, 24,463 death events occurred among 1,992,869 ESRD patients. Meta-analysis showed that the pooled HR of all-cause mortality was 1.16 (95% CI 1.06-1.28) for the lower versus referent serum phosphorus category. Similarly, patients with highest serum phosphorus levels were associated with an increased risk of all-cause mortality (HR 1.39; 95% CI 1.31-1.47) compared with those in the referent phosphorus category. Subgroup analyses revealed that the effect of phosphorus on the all-cause mortality risk appeared to be stronger within 2years follow-up. CONCLUSIONS Both very high and very low values of phosphorus are independently associated with an increased risk for all-cause mortality in ESRD patients requiring dialysis. This meta-analysis highlighted a non-linear association of serum phosphorus with all-cause mortality among dialysis-dependent ESRD patients.
Collapse
|
35
|
Smith ER, Hewitson TD, Cai MMX, Aghagolzadeh P, Bachtler M, Pasch A, Holt SG. A novel fluorescent probe-based flow cytometric assay for mineral-containing nanoparticles in serum. Sci Rep 2017; 7:5686. [PMID: 28720774 PMCID: PMC5515983 DOI: 10.1038/s41598-017-05474-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Calciprotein particles, nanoscale aggregates of insoluble mineral and binding proteins, have emerged as potential mediators of phosphate toxicity in patients with Chronic Kidney Disease. Although existing immunochemical methods for their detection have provided compelling data, these approaches are indirect, lack specificity and are subject to a number of other technical and theoretical shortcomings. Here we have developed a rapid homogeneous fluorescent probe-based flow cytometric method for the detection and quantitation of individual mineral-containing nanoparticles in human and animal serum. This method allows the discrimination of membrane-bound from membrane-free particles and different mineral phases (amorphous vs. crystalline). Critically, the method has been optimised for use on a conventional instrument, without the need for manual hardware adjustments. Using this method, we demonstrate a consistency in findings across studies of Chronic Kidney Disease patients and commonly used uraemic animal models. These studies demonstrate that renal dysfunction is associated with the ripening of calciprotein particles to the crystalline state and reveal bone metabolism and dietary mineral as important modulators of circulating levels. Flow cytometric analysis of calciprotein particles may enhance our understanding of mineral handling in kidney disease and provide a novel indicator of therapeutic efficacy for interventions targeting Chronic Kidney Disease-Mineral Bone Disorder.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia. .,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael M X Cai
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Matthias Bachtler
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Andreas Pasch
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Bai W, Li J, Liu J. Serum phosphorus, cardiovascular and all-cause mortality in the general population: A meta-analysis. Clin Chim Acta 2016; 461:76-82. [PMID: 27475981 DOI: 10.1016/j.cca.2016.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The association between elevated serum phosphorus concentration and cardiovascular or all-cause mortality yielded conflicting results. OBJECTIVE To assess the association between elevated serum phosphorus concentration and cardiovascular or all-cause mortality in the general population by conducting a meta-analysis. METHODS We systematically searched the Pubmed and Embase databases until March 2016 for the prospective studies investigating serum phosphorus concentration and cardiovascular or all-cause mortality in the general population. We pooled risk ratio (RR) and corresponding 95% confidence intervals (CI) for the highest versus the reference category of serum concentration of phosphorus. RESULTS Six prospective cohort studies involving 120,269 subjects were identified. When compared the highest with the reference concentration of serum phosphorus, the pooled RR of cardiovascular mortality and all-cause mortality were 1.36 (95% CI 1.07-1.72) and 1.35 for all-cause mortality (95% CI 1.15-1.58), respectively. Stratified analyses revealed that elevated serum phosphorus significantly increased all-cause mortality risk among men (RR 1.33; 95% CI 1.11-1.60), but not in women (RR 1.09; 95% CI 0.89-1.33). CONCLUSIONS Elevated serum phosphorus concentration is independently associated with excessive risk of cardiovascular and all-cause mortality in the general population without chronic kidney disease. Serum phosphorus on all-cause mortality risk appears to be pronounced in men but exhibits no clear effect on women. However, gender difference of elevated serum phosphorus on mortality risk should be verified by more prospective studies.
Collapse
Affiliation(s)
- Wenwei Bai
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.
| | - Jing Li
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Juan Liu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| |
Collapse
|
37
|
Brown RB, Haq A, Stanford CF, Razzaque MS. Vitamin D, phosphate, and vasculotoxicity. Can J Physiol Pharmacol 2015; 93:1077-82. [DOI: 10.1139/cjpp-2015-0083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular calcification is a complex process that results in the ectopic deposition of calcium-phosphate hydroxyapatite. Medial and intimal vascular calcification is frequently present in patients with diabetes mellitus and chronic kidney disease (CKD), and markedly increases the morbidity and mortality of these patients. Increased serum levels of calcium and phosphate, along with the use of active vitamin D metabolites, are commonly implicated in the evolvement of vascular wall mineralization in CKD patients. Because CKD patients have lower serum levels of vitamin D, they are routinely prescribed vitamin D supplements that exert a dualistic role that is both healthful and harmful in these patients, perhaps protecting bone health, but at the expense of promoting vascular pathology. This review briefly explains how reducing the phosphate burden in CKD patients could minimize vitamin-D-associated vascular wall calcification.
Collapse
Affiliation(s)
- Ronald B. Brown
- College of Human Ecology, Kansas State University, Manhattan, KS 66506, USA
| | - Afrozul Haq
- Division of Research & Development, VPS Healthcare, Abu Dhabi, UAE
| | | | - Mohammed S. Razzaque
- Division of Research & Development, VPS Healthcare, Abu Dhabi, UAE
- Department of Applied Oral Sciences, Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
38
|
Phosphate toxicity: a stealth biochemical stress factor? Med Mol Morphol 2015; 49:1-4. [DOI: 10.1007/s00795-015-0122-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 11/26/2022]
|