1
|
Fabiola León-Galván M, Medina-Rojas DS. DPP-IV and FAS inhibitory peptides: therapeutic alternative against diabesity. J Diabetes Metab Disord 2025; 24:100. [PMID: 40224529 PMCID: PMC11985882 DOI: 10.1007/s40200-025-01613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Diabesity is a modern epidemic that indicates a strong association between obesity and diabetes. Key enzymes have been identified in the development and progression of both diseases, DPP-IV in glucose uptake and FAS in fatty acid synthesis. In both cases, the molecular mechanisms of how each one acts separately have been described, and which are the key inhibitory drugs and molecules for each one. However, although it is known that there is an association between both clinically and molecularly, the mechanism has not been elucidated; therefore, this review focuses on proposing a mechanism of convergence of DPP-IV and FAS in diabesity, and the possible mode of action in which bioactive peptides obtained from plant and animal sources can inhibit these two enzymes in a similar way as drugs do.
Collapse
Affiliation(s)
- Ma. Fabiola León-Galván
- Food Department, Proteomics and Gene Expression Laboratory, University of Guanajuato, Life Science Division, Campus Irapuato-Salamanca, Ex Hacienda el Copal, Carretera Irapuato-Silao km 9.0, Irapuato, C.P 36500 Guanajuato México
- Graduate Program in Biosciences, Proteomics and Gene Expression Laboratory, University of Guanajuato, Life Science Division, Campus Irapuato-Salamanca, Ex Hacienda el Copal, Carretera Irapuato-Silao km 9.0, Irapuato, C.P 36500 Guanajuato México
| | - Daniela Sarahi Medina-Rojas
- Graduate Program in Biosciences, Proteomics and Gene Expression Laboratory, University of Guanajuato, Life Science Division, Campus Irapuato-Salamanca, Ex Hacienda el Copal, Carretera Irapuato-Silao km 9.0, Irapuato, C.P 36500 Guanajuato México
| |
Collapse
|
2
|
Xu X, Zhan C, Qiao J, Yang Y, Li C, Li P, Ma S. Transcriptomic Analysis of Muscle Satellite Cell Regulation on Intramuscular Preadipocyte Differentiation in Tan Sheep. Int J Mol Sci 2025; 26:3414. [PMID: 40244284 PMCID: PMC11989785 DOI: 10.3390/ijms26073414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Intramuscular fat (IMF) content is a key factor influencing meat properties including tenderness, flavor, and marbling. However, the complex molecular mechanisms regulating IMF deposition, especially the interactions between intramuscular preadipocytes (IMAdCs) and skeletal muscle satellite cells (SMSCs), remain unclear. In this study, a direct co-culture system of sheep IMAdCs and SMSCs was used to elucidate their intercellular interactions. RNA sequencing and bioinformatics analyses were performed under monoculture and co-culture conditions for later stages of differentiation. The obtained results showed that SMSCs significantly inhibited the adipogenic capacity of IMAdCs. This was reflected in the co-culture markedly altered gene expression and observations of lipid droplets in our studies, i.e., the PPARG, ACOX2, PIK3R1, FABP5, FYN, ALDOC, PFKM, PFKL, HADH, and HADHB genes were down-regulated in the co-cultured IMAdCs in association with the inhibition of fat deposition, whereas ACSL3, ACSL4, ATF3, EGR1, and IGF1R within the genes upregulated in co-culture IMAdCs were associated with the promotion of lipid metabolism. In addition, GO, KEGG, and ligand-receptor pairing analyses further elucidated the molecular mechanisms of intercellular communication. These findings emphasize the regulatory role of SMSCs on intramuscular preadipocyte differentiation and lipid metabolism, providing a theoretical framework for targeted molecular strategies to improve sheep meat quality.
Collapse
Affiliation(s)
- Xiaochun Xu
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; (C.Z.); (J.Q.); (Y.Y.); (C.L.); (P.L.)
| | - Cong Zhan
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; (C.Z.); (J.Q.); (Y.Y.); (C.L.); (P.L.)
| | - Jiaqi Qiao
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; (C.Z.); (J.Q.); (Y.Y.); (C.L.); (P.L.)
| | - Yuxuan Yang
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; (C.Z.); (J.Q.); (Y.Y.); (C.L.); (P.L.)
| | - Changyuan Li
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; (C.Z.); (J.Q.); (Y.Y.); (C.L.); (P.L.)
| | - Pan Li
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; (C.Z.); (J.Q.); (Y.Y.); (C.L.); (P.L.)
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Hou X, Hu G, Wang H, Yang Y, Sun Q, Bai X. Inhibition of Egr2 Protects against TAC-induced Heart Failure in Mice by Suppressing Inflammation and Apoptosis Via Targeting Acot1 in Cardiomyocytes. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10602-5. [PMID: 40095198 DOI: 10.1007/s12265-025-10602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Heart failure (HF) is a clinical syndrome caused by structural or functional abnormalities in heart. Egr2 has been reported to be protective for multiple diseases, but its effect on HF remains unknown. The present study intended to investigate the potential role of Egr2 in HF and its possible downstream effectors. High Egr2 expression in heart was observed in HF mice. Egr2 knockdown alleviated cardiac damage and function in HF mice. Egr2 knockdown inhibited myocardial inflammation and apoptosis both in vivo and in vitro. Egr2 inhibited Acot1 transcription expression via directly binding to its promoter. Acot1 overexpression reduced Lipopolysaccharide (LPS)-induced cardiomyocyte inflammation and apoptosis. Functional rescue experiments revealed that Acot1 reversed the effects of Egr2 on LPS-induced cell apoptosis and inflammation. Overall, Egr2 knockdown might ameliorate HF by inhibiting inflammation and apoptosis in cardiomyocytes by targeting Acot1. This study might provide evidence to better understand the molecular mechanisms of HF pathogenesis.
Collapse
Affiliation(s)
- Xiaolu Hou
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001, China
| | - Guoling Hu
- Department of Geratology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Heling Wang
- Department of Cardiology, Langfang Changzheng Hospital, Langfang, China
| | - Ying Yang
- Department of Cardiology, Harbin 242 Hospital, Harbin, China
| | - Qi Sun
- Department of Cardiology, Beidahuang Group General Hospital, Harbin, China
| | - Xiuping Bai
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
4
|
Zerad L, Gacem N, Gayda F, Day L, Sinigaglia K, Richard L, Parisot M, Cagnard N, Mathis S, Bole-Feysot C, O’Connell MA, Pingault V, Dambroise E, Keegan LP, Vallat JM, Bondurand N. Overexpression of Egr1 Transcription Regulator Contributes to Schwann Cell Differentiation Defects in Neural Crest-Specific Adar1 Knockout Mice. Cells 2024; 13:1952. [PMID: 39682701 PMCID: PMC11639873 DOI: 10.3390/cells13231952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of Adar1 reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of Adar1 mutant phenotypes. By analyzing RNA-Seq data from the sciatic nerves of mouse pups after conditional neural crest deletion of Adar1 (Adar1cKO), we here identified the transcription factors deregulated in Adar1cKO mutants compared to the controls. Through Adar1;Mavs and Adar1cKO;Egr1 double-mutant mouse rescue analyses, we then highlighted that the aberrant activation of the Mavs adapter protein and overexpression of the early growth response 1 (EGR1) transcription factor contribute to the Adar1 deletion associated defects in Schwann cell development in vivo. In silico and in vitro gene regulation studies additionally suggested that EGR1 might mediate this inhibitory effect through the aberrant regulation of EGR2-regulated myelin genes. We thus demonstrate the role of the Mda5/Mavs pathway, but also that of the Schwann cell transcription factors in Adar1-associated peripheral myelination defects.
Collapse
Affiliation(s)
- Lisa Zerad
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Nadjet Gacem
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Fanny Gayda
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Lucie Day
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Ketty Sinigaglia
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Laurence Richard
- Department of Neurology, Centre de Reference “Neuropathies Périphériques Rares”, CHU Limoges, 87000 Limoges, France; (L.R.); (J.M.V.)
| | - Melanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, 75015 Paris, France; (M.P.); (C.B.-F.)
| | - Nicolas Cagnard
- Bioinformatics Platform, Imagine Institute, INSERM UMR 1163, 75015 Paris, France;
| | - Stephane Mathis
- Department of Neurology (Nerve-Muscle Unit) and ‘Grand Sud-Ouest’ National Reference Center for Neuromuscular Disorders, CHU Bordeaux, Pellegrin Hospital, 33000 Bordeaux, France;
| | - Christine Bole-Feysot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, 75015 Paris, France; (M.P.); (C.B.-F.)
| | - Mary A. O’Connell
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Veronique Pingault
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France;
| | - Liam P. Keegan
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Jean Michel Vallat
- Department of Neurology, Centre de Reference “Neuropathies Périphériques Rares”, CHU Limoges, 87000 Limoges, France; (L.R.); (J.M.V.)
| | - Nadege Bondurand
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| |
Collapse
|
5
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Baudin J, Hernandez-Baixauli J, Romero-Giménez J, Yang H, Mulero F, Puiggròs F, Mardinoglu A, Arola L, Caimari A. A cocktail of histidine, carnosine, cysteine and serine reduces adiposity and improves metabolic health and adipose tissue immunometabolic function in ovariectomized rats. Biomed Pharmacother 2024; 179:117326. [PMID: 39208671 DOI: 10.1016/j.biopha.2024.117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Many women have sought alternative therapies to address menopause. Recently, a multi-ingredient supplement (MIS) containing L-histidine, L-carnosine, L-serine, and L-cysteine has been shown to be effective at ameliorating hepatic steatosis (HS) in ovariectomized (OVX) rats, a postmenopausal oestrogen deficiency model. Considering that HS frequently accompanies obesity, which often occurs during menopause, we aimed to investigate the effects of this MIS for 8 weeks in OVX rats. Twenty OVX rats were orally supplemented with either MIS (OVX-MIS) or vehicle (OVX). Ten OVX rats received vehicle orally along with subcutaneous injections of 17β-oestradiol (OVX-E2), whereas 10 rats underwent a sham operation and received oral and injected vehicles (control group). MIS consumption partly counteracted the fat mass accretion observed in OVX animals, leading to decreased total fat mass, adiposity index and retroperitoneal white adipose tissue (RWAT) adipocyte hypertrophy. OVX-MIS rats also displayed increased lean mass and lean/fat ratio, suggesting a healthier body composition, similar to the results reported for OVX-E2 animals. MIS consumption decreased the circulating levels of the proinflammatory marker CRP, the total cholesterol-to-HDL-cholesterol ratio and the leptin-to-adiponectin ratio, a biomarker of diabetes risk and metabolic syndrome. RWAT transcriptomics indicated that MIS favourably regulated genes involved in adipocyte structure and morphology, cell fate determination and differentiation, glucose/insulin homeostasis, inflammation, response to stress and oxidative phosphorylation, which may be mechanisms underlying the beneficial effects described for OVX-MIS rats. Our results pave the way for using this MIS formulation to improve the body composition and immunometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain; Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Jordi Romero-Giménez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain.
| |
Collapse
|
7
|
Zhang YW, Wu SX, Wang GW, Wan RD, Yang QE. Single-cell analysis identifies critical regulators of spermatogonial development and differentiation in cattle-yak bulls. J Dairy Sci 2024; 107:7317-7336. [PMID: 38642661 DOI: 10.3168/jds.2023-24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024]
Abstract
Spermatogenesis is a continuous process in which functional sperm are produced through a series of mitotic and meiotic divisions and morphological changes in germ cells. The aberrant development and fate transitions of spermatogenic cells cause hybrid sterility in mammals. Cattle-yak, a hybrid animal between taurine cattle (Bos taurus) and yak (Bos grunniens), exhibits male-specific sterility due to spermatogenic failure. In the present study, we performed single-cell RNA sequencing analysis to identify differences in testicular cell composition and the developmental trajectory of spermatogenic cells between yak and cattle-yak. The composition and molecular signatures of spermatogonial subtypes were dramatically different between these 2 animals, and the expression of genes associated with stem cell maintenance, cell differentiation and meiotic entry was altered in cattle-yak, indicating the impairment of undifferentiated spermatogonial fate decisions. Cell communication analysis revealed that signaling within different spermatogenic cell subpopulations was weakened, and progenitor spermatogonia were unable to or delayed receiving and sending signals for transformation to the next stage in cattle-yak. Simultaneously, the communication between niche cells and germ cells was also abnormal. Collectively, we obtained the expression profiles of transcriptome signatures of different germ cells and testicular somatic cell populations at the single-cell level and identified critical regulators of spermatogonial differentiation and meiosis in yak and sterile cattle-yak. The findings of this study shed light on the genetic mechanisms that lead to hybrid sterility and speciation in bovid species.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Wen Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Xining, Qinghai 810016, China
| | - Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
8
|
Kim HY, Jang HJ, Muthamil S, Shin UC, Lyu JH, Kim SW, Go Y, Park SH, Lee HG, Park JH. Novel insights into regulators and functional modulators of adipogenesis. Biomed Pharmacother 2024; 177:117073. [PMID: 38981239 DOI: 10.1016/j.biopha.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Seon-Wook Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
9
|
Harati J, Du P, Galluzzi M, Li X, Lin J, Pan H, Wang PY. Tailored Physicochemical Cues Direct Human Mesenchymal Stem Cell Differentiation through Epigenetic Regulation Using Colloidal Self-Assembled Patterns. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35912-35924. [PMID: 38976770 DOI: 10.1021/acsami.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The extracellular matrix (ECM) shapes the stem cell fate during differentiation by exerting relevant biophysical cues. However, the mechanism of stem cell fate decisions in response to ECM-backed complex biophysical cues has not been fully understood due to the lack of versatile ECMs. Here, we designed two versatile ECMs using colloidal self-assembly technology to probe the mechanisms of their effects on mechanotransduction and stem cell fate regulation. Binary colloidal crystals (BCC) with a hexagonally close-packed structure, composed of silica (5 μm) and polystyrene (0.4 μm) particles as well as a polydimethylsiloxane-embedded BCC (BCCP), were fabricated. They have defined surface chemistry, roughness, stiffness, ion release, and protein adsorption properties, which can modulate the cell adhesion, proliferation, and differentiation of human adipose-derived stem cells (hASCs). On the BCC, hASCs preferred osteogenesis at an early stage but showed a higher tendency toward adipogenesis at later stages. In contrast, the results of BCCP diverged from those of BCC, suggesting a unique regulation of ECM-dependent mechanotransduction. The BCC-mediated cell adhesion reduced the size of the focal adhesion complex, accompanying an ordered spatial organization and cytoskeletal rearrangement. This morphological restriction led to the modulation of mechanosensitive transcription factors, such as c-FOS, the enrichment of transcripts in specific signaling pathways such as PI3K/AKT, and the activation of the Hippo signaling pathway. Epigenetic analyses showed changes in histone modifications across different substrates, suggesting that chromatin remodeling participated in BCC-mediated mechanotransduction. This study demonstrates that BCCs are versatile artificial ECMs that can regulate human stem cells' fate through unique biological signaling, which is beneficial in biomaterial design and stem cell engineering.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Science, Beijing 101408, China
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Massimiliano Galluzzi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xian Li
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
10
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
11
|
Flori L, Piragine E, Calderone V, Testai L. Role of hydrogen sulfide in the regulation of lipid metabolism: Implications on cardiovascular health. Life Sci 2024; 341:122491. [PMID: 38336275 DOI: 10.1016/j.lfs.2024.122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The World Health Organization (WHO) defines obesity as an urgency for health and a social emergency. Today around 39 % of people is overweight, of these over 13 % is obese. It is well-consolidated that the adipose cells are deputy to lipid storage under caloric excess; however, despite the classical idea that adipose tissue has exclusively a passive function, now it is known to be deeply involved in the regulation of systemic metabolism in physiological as well as under obesogenic conditions, with consequences on cardiovascular health. Beside two traditional types of adipose cells (white and brown), recently the beige one has been highlighted as the consequence of the healthy remodeling of white adipocytes, confirming their metabolic adaptability. In this direction, pharmacological, nutraceutical and nutrient-based approaches are addressed to positively influence inflammation and metabolism, thus contributing to reduce the obese-associated cardiovascular risk. In this scenario, hydrogen sulfide emerges as a new mediator that may regulate crucial targets involved in the regulation of metabolism. The current evidence demonstrates that hydrogen sulfide may induce peroxisome proliferator activated receptor γ (PPARγ), a crucial mediator of adipogenesis, inhibit the phosphorylation of perlipin-1 (plin-1), a protein implicated in the lipolysis, and finally promote browning process, through the release of irisin from skeletal muscle. The results summarized in this review suggest an important role of hydrogen sulfide in the regulation of metabolism and in the prevention/treatment of obese-associated cardiovascular diseases and propose new insight on the putative mechanisms underlying the release of hydrogen sulfide or its biosynthesis, delineating a further exciting field of application.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120 Pisa, Italy.
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120 Pisa, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120 Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120 Pisa, Italy.
| |
Collapse
|
12
|
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z, Chen K. Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov 2024; 10:129. [PMID: 38467615 PMCID: PMC10928160 DOI: 10.1038/s41420-024-01904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
The disruption of circadian rhythms caused by long-term shift work can cause metabolic diseases such as obesity. Early growth response 3 (EGR3) is a member of early growth response (EGR) family, which is involved in several cellular responses, had been reported as a circadian rhythm gene in suprachiasmatic nucleus. In this research, EGR3 was found to be widely expressed in the different tissue of human and mice, and downregulated in adipose tissue of obese subjects and high-fat diet mice. Moreover, EGR3 was found negatively regulated by cortisol. In addition, EGR3 is a key negative modulator of hADSCs and 3T3-L1 adipogenesis via regulating HDAC6, which is a downstream target gene of EGR3 and a negative regulator of adipogenesis and lipogenesis. These findings may explain how circadian rhythm disorder induced by shift works can cause obesity. Our study revealed a potential therapeutic target to alleviate metabolic disorders in shift workers and may provide better health guidance to shift workers.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410005, Hunan, PR China
| | - Keke Zhang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
13
|
Kurek JM, Mikołajczyk-Stecyna J, Krejpcio Z. Steviol glycosides from Stevia rebaudiana Bertoni mitigate lipid metabolism abnormalities in diabetes by modulating selected gene expression - An in vivo study. Biomed Pharmacother 2023; 166:115424. [PMID: 37677968 DOI: 10.1016/j.biopha.2023.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
In diabetes, in parallel to hyperglycaemia, elevated serum lipids are also diagnosed, representing a high-risk factor for coronary heart disease and cardiovascular complications. The objective of this study was to unravel the mechanisms that underlie the potential of steviol glycosides (stevioside or rebaudioside A) administered at two doses (500 or 2500 mg/kg body weight for 5 weeks) to regulate lipid metabolism. In this paper, the expression of selected genes responsible for glucose and lipid metabolism (Glut4, Pparγ, Cebpa, Fasn, Lpl and Egr1) in the peripheral tissues (adipose, liver and muscle tissue) was determined using quantitative real-time PCR method. It was found that the supplementation of steviol glycosides affected the expression of Glut4, Cebpa and Fasn genes, depending on the type of the glycoside and its dose, as well as the type of tissue, whish in part may explain the lipid-regulatory potential of steviol glycosides in hyperglycaemic conditions. Nevertheless, more in-depth studies, including human trials, are needed to confirm these effects, before steviol glycosides can be used in the therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Jakub Michał Kurek
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Joanna Mikołajczyk-Stecyna
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Zbigniew Krejpcio
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
14
|
Faggion S, Boschi E, Veroneze R, Carnier P, Bonfatti V. Genomic Prediction and Genome-Wide Association Study for Boar Taint Compounds. Animals (Basel) 2023; 13:2450. [PMID: 37570259 PMCID: PMC10417264 DOI: 10.3390/ani13152450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
With a perspective future ban on surgical castration in Europe, selecting pigs with reduced ability to accumulate boar taint (BT) compounds (androstenone, indole, skatole) in their tissues seems a promising strategy. BT compound concentrations were quantified in the adipose tissue of 1075 boars genotyped at 29,844 SNPs. Traditional and SNP-based breeding values were estimated using pedigree-based BLUP (PBLUP) and genomic BLUP (GBLUP), respectively. Heritabilities for BT compounds were moderate (0.30-0.52). The accuracies of GBLUP and PBLUP were significantly different for androstenone (0.58 and 0.36, respectively), but comparable for indole and skatole (~0.43 and ~0.47, respectively). Several SNP windows, each explaining a small percentage of the variance of BT compound concentrations, were identified in a genome-wide association study (GWAS). A total of 18 candidate genes previously associated with BT (MX1), reproduction traits (TCF21, NME5, PTGFR, KCNQ1, UMODL1), and fat metabolism (CTSD, SYT8, TNNI2, CD81, EGR1, GIPC2, MIGA1, NEGR1, CCSER1, MTMR2, LPL, ERFE) were identified in the post-GWAS analysis. The large number of genes related to fat metabolism might be explained by the relationship between sexual steroid levels and fat deposition and be partially ascribed to the pig line investigated, which is selected for ham quality and not for lean growth.
Collapse
Affiliation(s)
- Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Padova, Italy; (E.B.); (P.C.); (V.B.)
| | - Elena Boschi
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Padova, Italy; (E.B.); (P.C.); (V.B.)
| | - Renata Veroneze
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-999, Brazil;
| | - Paolo Carnier
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Padova, Italy; (E.B.); (P.C.); (V.B.)
| | - Valentina Bonfatti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Padova, Italy; (E.B.); (P.C.); (V.B.)
| |
Collapse
|
15
|
Liu P, Li D, Zhang J, He M, Gao D, Wang Y, Lin Y, Pan D, Li P, Wang T, Li J, Kong F, Zeng B, Lu L, Ma J, Long K, Li G, Tang Q, Jin L, Li M. Comparative three-dimensional genome architectures of adipose tissues provide insight into human-specific regulation of metabolic homeostasis. J Biol Chem 2023; 299:104757. [PMID: 37116707 PMCID: PMC10245122 DOI: 10.1016/j.jbc.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.
Collapse
Affiliation(s)
- Pengliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China.
| | - Jiaman Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Wildlife Conservation Research Department, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine & Genetics, Chengdu Xi'nan Gynecology Hospital, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department & Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Garrido N, Izquierdo M, Hernández-García FI, Núñez Y, García-Torres S, Benítez R, Padilla JÁ, Óvilo C. Differences in Muscle Lipogenic Gene Expression, Carcass Traits and Fat Deposition among Three Iberian Pig Strains Finished in Two Different Feeding Systems. Animals (Basel) 2023; 13:ani13071138. [PMID: 37048394 PMCID: PMC10092979 DOI: 10.3390/ani13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
The Iberian pig breed includes several well-differentiated strains. The present study evaluated carcass traits, fat deposition and muscle expression of important lipogenic genes (SCD, ME1, ACACA, FASN, EGR1, ACOX and ACLY) using 65 male pigs of 3 Iberian strains (20 Lampiño, 23 Torbiscal, and 22 Retinto) finished either in a conventional, concentrate-based system (CF) or in montanera (MF), a traditional free-range system with acorn feeding. Torbiscal had the highest ham, Longissimus thoracis and prime cuts yields, and the thinnest subcutaneous adipose tissue (SAT). Retinto had the highest monounsaturated fatty acids (MUFA) and percentage of intramuscular fat (IMF), while Lampiño had the greatest content of saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), atherogenic (AI) and thrombogenic (TI) indexes in SAT. Conventionally finished pigs had the highest ham, L. thoracis and prime cuts yields, and SFA. Montanera-finished animals had the highest PUFA and MUFA contents, and the lowest AI, TI and n6/n3 ratio in SAT. In relation to gene expression, Retinto had the greatest SCD, FASN and ACLY levels. Most studied genes were overexpressed in CF pigs. In conclusion, MF pigs had healthier fat than CF pigs, and Retinto had the healthiest fat and the greatest lipogenic trend in muscle, supported by IMF and lipogenic gene expression.
Collapse
Affiliation(s)
| | | | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain
| | | | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain
| | - José Á Padilla
- Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
17
|
Effects of Dietary Vitamin E on Intramuscular Fat Deposition and Transcriptome Profile of the Pectoral Muscle of Broilers. J Poult Sci 2023; 60:2023006. [PMID: 36756043 PMCID: PMC9884639 DOI: 10.2141/jpsa.2023006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Vitamin E is an essential micronutrient for animals. The aim of this study was to determine the effect of vitamin E on intramuscular fat (IMF) deposition and the transcriptome profile of the pectoral muscle in broiler chickens. Arbor Acres chickens were divided into five treatment groups fed a basal diet supplemented with 0, 20, 50, 75, and 100 IU/kg dietary DL-α-tocopheryl acetate (vitamin E), respectively. Body weight, carcass performance, and IMF content were recorded. Transcriptome profiles of the pectoral muscles of 35-day-old chickens in the control and treatment groups (100 IU/kg of vitamin E) were obtained by RNA sequencing. The results showed that diets supplemented with 100 IU/kg of vitamin E significantly increased IMF deposition in chickens on day 35. In total, 159 differentially expressed genes (DEGs), including 57 up-regulated and 102 down-regulated genes, were identified in the treatment (100 IU/kg vitamin E) group compared to the control group. These DEGs were significantly enriched in 13 Gene Ontology terms involved in muscle development and lipid metabolism; three signaling pathways, including the mitogen-activated protein kinase and FoxO signaling pathways, which play key roles in muscular and lipid metabolism; 28 biofunctional categories associated with skeletal and muscular system development; 17 lipid metabolism functional categories; and three lipid metabolism and muscle development-related networks. The DEGs, pathways, functional categories, and networks identified in this study provide new insights into the regulatory roles of vitamin E on IMF deposition in broilers. Therefore, diets supplemented with 100 IU/kg of vitamin E will be more beneficial to broiler production.
Collapse
|
18
|
Tang L, Li T, Xie J, Huo Y. Diversity and heterogeneity in human breast cancer adipose tissue revealed at single-nucleus resolution. Front Immunol 2023; 14:1158027. [PMID: 37153595 PMCID: PMC10160491 DOI: 10.3389/fimmu.2023.1158027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction There is increasing awareness of the role of adipose tissue in breast cancer occurrence and development, but no comparison of adipose adjacent to breast cancer tissues and adipose adjacent to normal breast tissues has been reported. Methods Single-nucleus RNA sequencing (snRNA-seq) was used to analyze cancer-adjacent and normal adipose tissues from the same breast cancer patient to characterize heterogeneity. SnRNA-seq was performed on 54513 cells from six samples of normal breast adipose tissue (N) distant from the tumor and tumor-adjacent adipose tissue (T) from the three patients (all surgically resected). Results and discussion Significant diversity was detected in cell subgroups, differentiation status and, gene expression profiles. Breast cancer induces inflammatory gene profiles in most adipose cell types, such as macrophages, endothelial cells, and adipocytes. Furthermore, breast cancer decreased lipid uptake and the lipolytic phenotype and caused a switch to lipid biosynthesis and an inflammatory state in adipocytes. The in vivo trajectory of adipogenesis revealed distinct transcriptional stages. Breast cancer induced reprogramming across many cell types in breast cancer adipose tissues. Cellular remodeling was investigated by alterations in cell proportions, transcriptional profiles and cell-cell interactions. Breast cancer biology and novel biomarkers and therapy targets may be exposed.
Collapse
Affiliation(s)
- Lina Tang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning, China
| | - Jing Xie
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanping Huo
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| |
Collapse
|
19
|
Sánchez-Ramírez E, Ung TPL, Alarcón del Carmen A, del Toro-Ríos X, Fajardo-Orduña GR, Noriega LG, Cortés-Morales VA, Tovar AR, Montesinos JJ, Orozco-Solís R, Stringari C, Aguilar-Arnal L. Coordinated metabolic transitions and gene expression by NAD+ during adipogenesis. J Biophys Biochem Cytol 2022; 221:213521. [PMID: 36197339 PMCID: PMC9538974 DOI: 10.1083/jcb.202111137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 12/17/2022] Open
Abstract
Adipocytes are the main cell type in adipose tissue, which is a critical regulator of metabolism, highly specialized in storing energy as fat. Adipocytes differentiate from multipotent mesenchymal stromal cells (hMSCs) through adipogenesis, a tightly controlled differentiation process involving close interplay between metabolic transitions and sequential programs of gene expression. However, the specific gears driving this interplay remain largely obscure. Additionally, the metabolite nicotinamide adenine dinucleotide (NAD+) is becoming increasingly recognized as a regulator of lipid metabolism, and a promising therapeutic target for dyslipidemia and obesity. Here, we explored how NAD+ bioavailability controls adipogenic differentiation from hMSC. We found a previously unappreciated repressive role for NAD+ on adipocyte commitment, while a functional NAD+-dependent deacetylase SIRT1 appeared crucial for terminal differentiation of pre-adipocytes. Repressing NAD+ biosynthesis during adipogenesis promoted the adipogenic transcriptional program, while two-photon microscopy and extracellular flux analyses suggest that SIRT1 activity mostly relies on the metabolic switch. Interestingly, SIRT1 controls subcellular compartmentalization of redox metabolism during adipogenesis.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Alejandro Alarcón del Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ximena del Toro-Ríos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe R. Fajardo-Orduña
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Victor A. Cortés-Morales
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexico City, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France,Chiara Stringari:
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico,Correspondence to Lorena Aguilar-Arnal:
| |
Collapse
|
20
|
Meriin AB, Zaarur N, Roy D, Kandror KV. Egr1 plays a major role in the transcriptional response of white adipocytes to insulin and environmental cues. Front Cell Dev Biol 2022; 10:1003030. [PMID: 36246998 PMCID: PMC9554007 DOI: 10.3389/fcell.2022.1003030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
It is believed that insulin regulates metabolic functions of white adipose tissue primarily at the post-translational level via the PI3K-Akt-mediated pathway. Still, changes in transcription also play an important role in the response of white adipocytes to insulin and environmental signals. One transcription factor that is dramatically and rapidly induced in adipocytes by insulin and nutrients is called Early Growth Response 1, or Egr1. Among other functions, it directly binds to promoters of leptin and ATGL stimulating the former and inhibiting the latter. Furthermore, expression of Egr1 in adipocytes demonstrates cell autonomous circadian pattern suggesting that Egr1 not only mediates the effect of insulin and nutrients on lipolysis and leptin production but also, coordinates insulin action with endogenous circadian rhythms of adipose tissue.
Collapse
Affiliation(s)
- A. B. Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - N. Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - D. Roy
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - K. V. Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: K. V. Kandror,
| |
Collapse
|
21
|
Kimura S, Tsuruma A, Kato E. Taste 2 Receptor Is Involved in Differentiation of 3T3-L1 Preadipocytes. Int J Mol Sci 2022; 23:ijms23158120. [PMID: 35897692 PMCID: PMC9331636 DOI: 10.3390/ijms23158120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Expression of taste 2 receptor (T2R) genes, also known as bitter taste receptor genes, has been reported in a variety of tissues. The white adipose tissue of mice has been shown to express Tas2r108, Tas2r126, Tas2r135, Tas2r137, and Tas2r143, but the function of T2Rs in adipocytes remains unclear. Here, we show that fasting and stimulation by bitter compounds both increased Tas2r expression in mouse white adipose tissue, and serum starvation and stimulation by bitter compounds both increased the expression of Tas2r genes in 3T3-L1 adipocytes, suggesting that T2Rs have functional roles in adipocytes. RNA sequencing analysis of 3T3-L1 adipocytes stimulated by epicatechin, the ligand of Tas2r126, suggested that this receptor may play a role in the differentiation of adipocytes. Overexpression of Tas2r126 in 3T3-L1 preadipocytes decreases fat accumulation after induction of differentiation and reduces the expression of adipogenic genes. Together, these results indicate that Tas2r126 may be involved in adipocyte differentiation.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan; (S.K.); (A.T.)
- Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ai Tsuruma
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan; (S.K.); (A.T.)
| | - Eisuke Kato
- Division of Fundamental AgriScience and Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan
- Correspondence:
| |
Collapse
|
22
|
Cardoso TF, Bruscadin JJ, Afonso J, Petrini J, Andrade BGN, de Oliveira PSN, Malheiros JM, Rocha MIP, Zerlotini A, Ferraz JBS, Mourão GB, Coutinho LL, Regitano LCA. EEF1A1 transcription cofactor gene polymorphism is associated with muscle gene expression and residual feed intake in Nelore cattle. Mamm Genome 2022; 33:619-628. [PMID: 35816191 DOI: 10.1007/s00335-022-09959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
Cis-acting effects of noncoding variants on gene expression and regulatory molecules constitute a significant factor for phenotypic variation in complex traits. To provide new insights into the impacts of single-nucleotide polymorphisms (SNPs) on transcription factors (TFs) and transcription cofactors (TcoF) coding genes, we carried out a multi-omic analysis to identify cis-regulatory effects of SNPs on these genes' expression in muscle and describe their association with feed efficiency-related traits in Nelore cattle. As a result, we identified one SNP, the rs137256008C > T, predicted to impact the EEF1A1 gene expression (β = 3.02; P-value = 3.51E-03) and the residual feed intake trait (β = - 3.47; P-value = 0.02). This SNP was predicted to modify transcription factor sites and overlaps with several QTL for feed efficiency traits. In addition, co-expression network analyses showed that animals containing the T allele of the rs137256008 SNP may be triggering changes in the gene network. Therefore, our analyses reinforce and contribute to a better understanding of the biological mechanisms underlying gene expression control of feed efficiency traits in bovines. The cis-regulatory SNP can be used as biomarker for feed efficiency in Nelore cattle.
Collapse
Affiliation(s)
- T F Cardoso
- Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - J J Bruscadin
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - J Afonso
- Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - J Petrini
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | - B G N Andrade
- Computer Science Department, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - P S N de Oliveira
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - J M Malheiros
- Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | - M I P Rocha
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A Zerlotini
- Embrapa Agricultural Informatics, Campinas, SP, Brazil
| | - J B S Ferraz
- Department of Veterinary Medicine, University of São Paulo/FZEA, Pirassununga, Brazil
| | - G B Mourão
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | - L L Coutinho
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | | |
Collapse
|
23
|
Erdos E, Divoux A, Sandor K, Halasz L, Smith SR, Osborne TF. Unique role for lncRNA HOTAIR in defining depot-specific gene expression patterns in human adipose-derived stem cells. Genes Dev 2022; 36:566-581. [PMID: 35618313 PMCID: PMC9186385 DOI: 10.1101/gad.349393.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023]
Abstract
In this study, Erdos et al. investigated the role of HOX transcript antisense intergenic RNA (HOTAIR) in adipose tissue biology. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, they found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis, and demonstrate a unique function for HOTAIR in hASC depot-specific regulation of gene expression. Accumulation of fat above the waist is an important risk factor in developing obesity-related comorbidities independently of BMI or total fat mass. Deciphering the gene regulatory programs of the adipose tissue precursor cells within upper body or abdominal (ABD) and lower body or gluteofemoral (GF) depots is important to understand their differential capacity for lipid accumulation, maturation, and disease risk. Previous studies identified the HOX transcript antisense intergenic RNA (HOTAIR) as a GF-specific lncRNA; however, its role in adipose tissue biology is still unclear. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, we found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis. We further demonstrate a direct interaction between HOTAIR and genes with high RNAPII binding in their gene bodies, especially at their 3′ ends or transcription end sites. Computational analysis suggests HOTAIR binds preferentially to the 3′ ends of genes containing predicted strong RNA–RNA interactions with HOTAIR. Together, these results reveal a unique function for HOTAIR in hASC depot-specific regulation of gene expression.
Collapse
Affiliation(s)
- Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Timothy F Osborne
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| |
Collapse
|
24
|
Al-Ali MM, Khan AA, Fayyad AM, Abdallah SH, Khattak MNK. Transcriptomic profiling of the telomerase transformed Mesenchymal stromal cells derived adipocytes in response to rosiglitazone. BMC Genom Data 2022; 23:17. [PMID: 35264099 PMCID: PMC8905835 DOI: 10.1186/s12863-022-01027-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Differentiation of Immortalized Human Bone Marrow Mesenchymal Stromal Cells - hTERT (iMSC3) into adipocytes is in vitro model of obesity. In our earlier study, rosiglitazone enhanced adipogenesis particularly the brown adipogenesis of iMSC3. In this study, the transcriptomic profiles of iMSC3 derived adipocytes with and without rosiglitazone were analyzed through mRNA sequencing. Results A total of 1508 genes were differentially expressed between iMSC3 and the derived adipocytes without rosiglitazone treatment. GO and KEGG enrichment analyses revealed that rosiglitazone regulates PPAR and PI3K-Akt pathways. The constant rosiglitazone treatment enhanced the expression of Fatty Acid Binding Protein 4 (FABP4) which enriched GO terms such as fatty acid binding, lipid droplet, as well as white and brown fat cell differentiation. Moreover, the constant treatment upregulated several lipid droplets (LDs) associated proteins such as PLIN1. Rosiglitazone also activated the receptor complex PTK2B that has essential roles in beige adipocytes thermogenic program. Several uniquely expressed novel regulators of brown adipogenesis were also expressed in adipocytes derived with rosiglitazone: PRDM16, ZBTB16, HOXA4, and KLF15 in addition to other uniquely expressed genes. Conclusions Rosiglitazone regulated several differentially regulated genes and non-coding RNAs that warrant further investigation about their roles in adipogenesis particularly brown adipogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01027-z.
Collapse
Affiliation(s)
- Moza Mohamed Al-Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| | - Abeer Maher Fayyad
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE.,Department of Molecular and Genetic Diagnostics, Megalabs Group, Amman, 11953, Jordan
| | - Sallam Hasan Abdallah
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
25
|
Nahmgoong H, Jeon YG, Park ES, Choi YH, Han SM, Park J, Ji Y, Sohn JH, Han JS, Kim YY, Hwang I, Lee YK, Huh JY, Choe SS, Oh TJ, Choi SH, Kim JK, Kim JB. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab 2022; 34:458-472.e6. [PMID: 35021043 DOI: 10.1016/j.cmet.2021.11.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022]
Abstract
In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.
Collapse
Affiliation(s)
- Hahn Nahmgoong
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Geun Jeon
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeu Park
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yul Ji
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Seul Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ye Young Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Injae Hwang
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Jung Oh
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
26
|
Di Napoli A, Vacca D, Bertolazzi G, Lopez G, Piane M, Germani A, Rogges E, Pepe G, Santanelli Di Pompeo F, Salgarello M, Jobanputra V, Hsiao S, Wrzeszczynski KO, Berti E, Bhagat G. RNA Sequencing of Primary Cutaneous and Breast-Implant Associated Anaplastic Large Cell Lymphomas Reveals Infrequent Fusion Transcripts and Upregulation of PI3K/AKT Signaling via Neurotrophin Pathway Genes. Cancers (Basel) 2021; 13:cancers13246174. [PMID: 34944796 PMCID: PMC8699465 DOI: 10.3390/cancers13246174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cutaneous and breast implant-associated anaplastic large-cell lymphomas are usually localized neoplasms with an indolent clinical course compared to systemic ALCL. However comparative analyses of the molecular features of these two entities have not yet been reported. We performed targeted RNA sequencing, which revealed that fusion transcripts, although infrequent, might represent additional pathogenetic events in both diseases. We also found that these entities display upregulation of the PI3K/Akt pathway and show enrichment in genes of the neurotrophin signaling pathway. These findings advance our knowledge regarding the pathobiology of cALCL and BI-ALCL and point to additional therapeutic targets. Abstract Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
- Correspondence:
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, Palermo University, 90134 Palermo, Italy;
| | - Giorgio Bertolazzi
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University, 90134 Palermo, Italy;
| | - Gianluca Lopez
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Evelina Rogges
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | | | - Marzia Salgarello
- Department of Plastic Surgery, Catholic University of Sacred Heart, University Hospital Agostino Gemelli, 00168 Roma, Italy;
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
- New York Genome Center, New York, NY 10013, USA;
| | - Susan Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| | | | - Emilio Berti
- Department of Dermatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| |
Collapse
|
27
|
Tchegnon E, Liao CP, Ghotbi E, Shipman T, Wang Y, McKay RM, Le LQ. Epithelial stem cell homeostasis in Meibomian gland development, dysfunction, and dry eye disease. JCI Insight 2021; 6:e151078. [PMID: 34499624 PMCID: PMC8564894 DOI: 10.1172/jci.insight.151078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Dry eye disease affects over 16 million adults in the US, and the majority of cases are due to Meibomian gland dysfunction. Unfortunately, the identity of the stem cells involved in Meibomian gland development and homeostasis is not well elucidated. Here, we report that loss of Krox20, a zinc finger transcription factor involved in the development of ectoderm-derived tissues, or deletion of KROX20-expressing epithelial cells disrupted Meibomian gland formation and homeostasis, leading to dry eye disease secondary to Meibomian gland dysfunction. Ablation of Krox20-lineage cells in adult mice also resulted in dry eye disease, implicating Krox20 in homeostasis of the mature Meibomian gland. Lineage-tracing and expression analyses revealed a restricted KROX20 expression pattern in the ductal areas of the Meibomian gland, although Krox20-lineage cells generate the full, mature Meibomian gland. This suggests that KROX20 marks a stem/progenitor cell population that differentiates to generate the entire Meibomian gland. Our Krox20 mouse models provide a powerful system that delineated the identity of stem cells required for Meibomian gland development and homeostasis and can be used to investigate the factors underlying these processes. They are also robust models of Meibomian gland dysfunction-related dry eye disease, with a potential for use in preclinical therapeutic screening.
Collapse
Affiliation(s)
- Edem Tchegnon
- Department of Dermatology and.,Genetics, Development and Disease Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chung-Ping Liao
- Department of Dermatology and.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | - Lu Q Le
- Department of Dermatology and.,Genetics, Development and Disease Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hamon Center for Regenerative Science and Medicine.,Simmons Comprehensive Cancer Center, and.,O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Saxena A, Mathur N, Tiwari P, Mathur SK. Whole transcriptome RNA-seq reveals key regulatory factors involved in type 2 diabetes pathology in peripheral fat of Asian Indians. Sci Rep 2021; 11:10632. [PMID: 34017037 PMCID: PMC8137704 DOI: 10.1038/s41598-021-90148-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
The prevalence of Type 2 Diabetes has reached an epidemic proportion particularly in south Asian countries. We have earlier shown that the anatomical fat distribution, termed 'thin fat phenotype' in this population indeed plays a major role for their T2D-predisposition it is indeed the sick fat or adiposopathy, which is the root cause of metabolic syndrome and diabetes and affects both-peripheral, as well as visceral adipose tissue compartments. In present study, we have attempted to unravel the altered regulatory mechanisms at the level of transcription factors, and miRNAs those may likely accounts to T2D pathophysiology in femoral subcutaneous adipose tissue. We prioritized transcription factors and protein kinases as likely upstream regulators of obtained differentially expressed genes in this RNA-seq study. An inferred network of these upstream regulators was then derived and the role of TFs and miRNAs in T2D pathophysiology was explored. In conclusions, this RNS-Seq study finds that peripheral subcutaneous adipose tissue among Asian Indians show pathology characterized by altered lipid, glucose and protein metabolism, adipogenesis defect and inflammation. A network of regulatory transcription factors, protein kinases and microRNAs have been imputed which converge on the process of adipogenesis. As the majority of these genes also showed altered expression in diabetics and some of them are also circulatory, therefore they deserve further investigation for potential clinical diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Computer Engineering and Applications, Institute of Engineering and Technology, GLA University, Mathura, 281406, India
| | - Nitish Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India
| | - Pradeep Tiwari
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, 303007, India
| | - Sandeep Kumar Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India.
| |
Collapse
|
29
|
Chromenopyrimidinone Controls Stemness and Malignancy by suppressing CD133 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051193. [PMID: 32397206 PMCID: PMC7281429 DOI: 10.3390/cancers12051193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant human cancer that has increasing mortality rates worldwide. Because CD133+ cells control tumor maintenance and progression, compounds that target CD133+ cancer cells could be effective in combating HCC. We found that the administration of chromenopyrimidinone (CPO) significantly decreased spheroid formation and the number of CD133+ cells in mixed HCC cell populations. CPO not only significantly inhibited cell proliferation in HCC cells exhibiting different CD133 expression levels, but also effectively induced apoptosis and increased the expression of LC3-II in HCC cells. CPO also exhibits in vivo therapeutic efficiency in HCC. Specifically, CPO suppressed the expression of CD133 by altering the subcellular localization of CD133 from the membrane to lysosomes in CD133+ HCC cells. Moreover, CPO treatment induced point mutations in the ADRB1, APOB, EGR2, and UBE2C genes and inhibited the expression of these proteins in HCC and the expression of UBE2C is particularly controlled by CD133 expression among those four proteins in HCC. Our results suggested that CPO may suppress stemness and malignancies in vivo and in vitro by decreasing CD133 and UBE2C expression in CD133+ HCC. Our study provides evidence that CPO could act as a novel therapeutic agent for the effective treatment of CD133+ HCC.
Collapse
|
30
|
Li X, Lei Y, Yu Y, Zhang Y, Zhang W, Shen H, Tao C, Wu F, Huang S, Shao H. Discovery and characterization of a novel splice variant of the p53 tumor suppressor gene in a human T cell leukemia cellline. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1121-1135. [PMID: 32509087 PMCID: PMC7270667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Alternative splicing produces multiple mRNA variants of TP53 which have diverse biologic functions. In this study, we identified a novel splice variant of TP53 lacking a 200 nt portion of exon 4 (p53ΔE4p) from a human leukemia T cell line. No protein product of p53ΔE4p was identifiable by western blot; however, forced expression of the variant in HEK-293T cells expressing wild-type p53 could inhibit cell proliferation and promote cell death. Interestingly, this novel variant also significantly enhances the expression of reporter genes. Moreover, transcriptome analysis showed that genes related to DNA binding and regulation of transcription by RNA polymerase II function were significantly upregulated following p53ΔE4p transfection, suggesting a role for this variant in the regulation of gene expression.
Collapse
Affiliation(s)
- Xiaomei Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yingshou Lei
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yang Yu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yaqian Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Wenfeng Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Han Shen
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Changli Tao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Fenglin Wu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Shulin Huang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
- Central Laboratory, Affiliated Dongguan People’s Hospital, Southern Medical UniversityDongguan, Guangdong Province, China
| | - Hongwei Shao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| |
Collapse
|
31
|
A bioinformatics approach revealed the transcription factors of Helicobacter pylori pathogenic genes and their regulatory network nodes. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Mármol-Sánchez E, Ramayo-Caldas Y, Quintanilla R, Cardoso TF, González-Prendes R, Tibau J, Amills M. Co-expression network analysis predicts a key role of microRNAs in the adaptation of the porcine skeletal muscle to nutrient supply. J Anim Sci Biotechnol 2020; 11:10. [PMID: 31969983 PMCID: PMC6966835 DOI: 10.1186/s40104-019-0412-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The role of non-coding RNAs in the porcine muscle metabolism is poorly understood, with few studies investigating their expression patterns in response to nutrient supply. Therefore, we aimed to investigate the changes in microRNAs (miRNAs), long intergenic non-coding RNAs (lincRNAs) and mRNAs muscle expression before and after food intake. RESULTS We measured the miRNA, lincRNA and mRNA expression levels in the gluteus medius muscle of 12 gilts in a fasting condition (AL-T0) and 24 gilts fed ad libitum during either 5 h. (AL-T1, N = 12) or 7 h. (AL-T2, N = 12) prior to slaughter. The small RNA fraction was extracted from muscle samples retrieved from the 36 gilts and sequenced, whereas lincRNA and mRNA expression data were already available. In terms of mean and variance, the expression profiles of miRNAs and lincRNAs in the porcine muscle were quite different than those of mRNAs. Food intake induced the differential expression of 149 (AL-T0/AL-T1) and 435 (AL-T0/AL-T2) mRNAs, 6 (AL-T0/AL-T1) and 28 (AL-T0/AL-T2) miRNAs and none lincRNAs, while the number of differentially dispersed genes was much lower. Among the set of differentially expressed miRNAs, we identified ssc-miR-148a-3p, ssc-miR-22-3p and ssc-miR-1, which play key roles in the regulation of glucose and lipid metabolism. Besides, co-expression network analyses revealed several miRNAs that putatively interact with mRNAs playing key metabolic roles and that also showed differential expression before and after feeding. One case example was represented by seven miRNAs (ssc-miR-148a-3p, ssc-miR-151-3p, ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-miR-493-5p and ssc-miR-503) which putatively interact with the PDK4 mRNA, one of the master regulators of glucose utilization and fatty acid oxidation. CONCLUSIONS As a whole, our results evidence that microRNAs are likely to play an important role in the porcine skeletal muscle metabolic adaptation to nutrient availability.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Tainã Figueiredo Cardoso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Present address: Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), São Carlos, SP 13560-970 Brazil
| | - Rayner González-Prendes
- Department of Animal Science, Universitat de Lleida - Agrotecnio Center, 25198 Lleida, Spain
| | - Joan Tibau
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
33
|
Abstract
Obesity is characterized by increased adipose tissue mass and has been associated with a strong predisposition towards metabolic diseases and cancer. Thus, it constitutes a public health issue of major proportion. The expansion of adipose depots can be driven either by the increase in adipocyte size (hypertrophy) or by the formation of new adipocytes from precursor differentiation in the process of adipogenesis (hyperplasia). Notably, adipocyte expansion through adipogenesis can offset the negative metabolic effects of obesity, and the mechanisms and regulators of this adaptive process are now emerging. Over the past several years, we have learned a considerable amount about how adipocyte fate is determined and how adipogenesis is regulated by signalling and systemic factors. We have also gained appreciation that the adipogenic niche can influence tissue adipogenic capability. Approaches aimed at increasing adipogenesis over adipocyte hypertrophy can now be explored as a means to treat metabolic diseases.
Collapse
|
34
|
Jeong JK, Lee JH, Kim SW, Hong JM, Seol JW, Park SY. Cellular prion protein regulates the differentiation and function of adipocytes through autophagy flux. Mol Cell Endocrinol 2019; 481:84-94. [PMID: 30513342 DOI: 10.1016/j.mce.2018.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
The role of autophagy modulation in adipogenic differentiation and the possible autophagy modulators targeting adipogenesis remain unclear. In this study, we investigated whether normal cellular prion protein (PrP<C>) is involved in the modulation of autophagy and affects adipogenic differentiation in vivo and in vitro. Surprisingly, autophagy flux signals were activated in the adipose tissue of prion protein-deficient mice and PrP<C>-deleted 3T3-L1 adipocytes. The activation of autophagy flux mediated by PrP<C> deletion was confirmed in the adipose tissue via transmission electron microscopy. Adipocyte differentiation factors were highly induced in prion protein-deficient adipose tissue and 3T3-L1 adipocytes. In addition, deletion of prion protein significantly increased visceral fat volume, body fat weight, adipocyte cell size, and body weight gain in Prnp-knockout mice and increased lipid accumulation in PrP<C> siRNA-transfected 3T3-L1 cells. However, the overexpression of prion protein using adenovirus inhibited the autophagic flux signals, lipid accumulation, and the PPAR-γ and C/EBP-α mRNA and protein expression levels in comparison to those in the control cells. Our results demonstrated that deletion of normal prion protein accelerated adipogenic differentiation and lipid accumulation mediated via autophagy flux activation.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sung-Wook Kim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
35
|
Muñoz M, García-Casco JM, Caraballo C, Fernández-Barroso MÁ, Sánchez-Esquiliche F, Gómez F, Rodríguez MDC, Silió L. Identification of Candidate Genes and Regulatory Factors Underlying Intramuscular Fat Content Through Longissimus Dorsi Transcriptome Analyses in Heavy Iberian Pigs. Front Genet 2018; 9:608. [PMID: 30564273 PMCID: PMC6288315 DOI: 10.3389/fgene.2018.00608] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most important determinants of meat quality is the intramuscular fat (IMF) content. The development of high-throughput techniques as RNA-seq allows identifying gene pathways and networks with a differential expression (DE) between groups of animals divergent for a particular trait. The Iberian pig is characterized by having an excellent meat quality and a high content of intramuscular fat. The objectives of the present study were to analyze the longissimus dorsi transcriptome of purebred Iberian pigs divergent for their IMF breeding value to identify differential expressed genes and regulatory factors affecting gene expression. RNA-seq allowed identifying ∼10,000 of the 25,878 annotated genes in the analyzed samples. In addition to this, 42.46% of the identified transcripts corresponded to newly predicted isoforms. Differential expression analyses revealed a total of 221 DE annotated genes and 116 DE new isoforms. Functional analyses identified an enrichment of overexpressed genes involved in lipid metabolism (FASN, SCD, ELOVL6, DGAT2, PLIN1, CIDEC, and ADIPOQ) in animals with a higher content of IMF and an enrichment of overexpressed genes related with myogenesis and adipogenesis (EGR1, EGR2, EGR3, JUNB, FOSB, and SEMA4D) in the animals with a lower content of IMF. In addition to this, potential regulatory elements of these DE genes were identified. Co-expression networks analyses revealed six long non-coding RNAs (lncRNAs) (ALDBSSCG0000002079, ALDBSSCG0000002093, ALDBSSCG0000003455, ALDBSSCG0000004244, ALDBSSCG0000005525, and ALDBSSCG0000006849) co-expressed with SEMA4D and FOSB genes and one (ALDBSSCG0000004790) with SCD, ELOVL6, DGAT2, PLIN1, and CIDEC. Analyses of the regulatory impact factors (RIFs) revealed 301 transcriptionally regulatory factors involved in expression differences, with five of them involved in adipogenesis (ARID5B, CREB1, VDR, ATF6, and SP1) and other three taking part of myogenesis and development of skeletal muscle (ATF3, KLF11, and MYF6). The results obtained provide relevant insights about the genetic mechanisms underlying IMF content in purebred Iberian pigs and a set of candidate genes and regulatory factors for further identification of polymorphisms susceptible of being incorporated in a selection program.
Collapse
Affiliation(s)
- María Muñoz
- Centro I+D en Cerdo Ibérico INIA-Zafra, Zafra, Spain.,Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Juan María García-Casco
- Centro I+D en Cerdo Ibérico INIA-Zafra, Zafra, Spain.,Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Carmen Caraballo
- Centro I+D en Cerdo Ibérico INIA-Zafra, Zafra, Spain.,Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Miguel Ángel Fernández-Barroso
- Centro I+D en Cerdo Ibérico INIA-Zafra, Zafra, Spain.,Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | | | - María Del Carmen Rodríguez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Luis Silió
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
36
|
Zhang Y, Federation AJ, Kim S, O'Keefe JP, Lun M, Xiang D, Brown JD, Steinhauser ML. Targeting nuclear receptor NR4A1-dependent adipocyte progenitor quiescence promotes metabolic adaptation to obesity. J Clin Invest 2018; 128:4898-4911. [PMID: 30277475 DOI: 10.1172/jci98353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
Adipocyte turnover in adulthood is low, suggesting that the cellular source of new adipocytes, the adipocyte progenitor (AP), resides in a state of relative quiescence. Yet the core transcriptional regulatory circuitry (CRC) responsible for establishing a quiescent state and the physiological significance of AP quiescence are incompletely understood. Here, we integrate transcriptomic data with maps of accessible chromatin in primary APs, implicating the orphan nuclear receptor NR4A1 in AP cell-state regulation. NR4A1 gain and loss of function in APs ex vivo decreased and enhanced adipogenesis, respectively. Adipose tissue of Nr4a1-/- mice demonstrated higher proliferative and adipogenic capacity compared with that of WT mice. Transplantation of Nr4a1-/- APs into the subcutaneous adipose tissue of WT obese recipients improved metrics of glucose homeostasis relative to administration of WT APs. Collectively, these data identify NR4A1 as a previously unrecognized constitutive regulator of AP quiescence and suggest that augmentation of adipose tissue plasticity may attenuate negative metabolic sequelae of obesity.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander J Federation
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA.,Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Soomin Kim
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - John P O'Keefe
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mingyue Lun
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Dongxi Xiang
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan D Brown
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew L Steinhauser
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
37
|
Kuri-Harcuch W, Velez-delValle C, Vazquez-Sandoval A, Hernández-Mosqueira C, Fernandez-Sanchez V. A cellular perspective of adipogenesis transcriptional regulation. J Cell Physiol 2018; 234:1111-1129. [PMID: 30146705 DOI: 10.1002/jcp.27060] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Adipose cells store lipids in the cytoplasm and signal systemically through secretion of adipokines and other molecules that regulate body energy metabolism. Differentiation of fat cells and its regulation has been the focus of extensive research since the early 1970s. In this review, we had attempted to examine the research bearing on the control of adipose cell differentiation, some of it dating back to the early days when Howard Green and his group described the preadipocyte cell lines 3T3-L1 and 3T3-F442A during 1974-1975. We also concentrated our attention on research published during the last few years, emphasizing data described on transcription factors that regulate adipose differentiation, outside of those that were reported earlier as part of the canonical adipogenic transcriptional cascade, which has been the subject of ample reviews by several groups of researchers. We focused on the studies carried out with the two preadipocyte cell culture models, the 3T3-L1 and 3T3-F442A cells that have provided essential data on adipose biology.
Collapse
Affiliation(s)
- Walid Kuri-Harcuch
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cristina Velez-delValle
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfredo Vazquez-Sandoval
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia Hernández-Mosqueira
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Veronica Fernandez-Sanchez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
38
|
Milet C, Bléher M, Allbright K, Orgeur M, Coulpier F, Duprez D, Havis E. Egr1 deficiency induces browning of inguinal subcutaneous white adipose tissue in mice. Sci Rep 2017; 7:16153. [PMID: 29170465 PMCID: PMC5701004 DOI: 10.1038/s41598-017-16543-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Beige adipocyte differentiation within white adipose tissue, referred to as browning, is seen as a possible mechanism for increasing energy expenditure. The molecular regulation underlying the thermogenic browning process has not been entirely elucidated. Here, we identify the zinc finger transcription factor EGR1 as a negative regulator of the beige fat program. Loss of Egr1 in mice promotes browning in the absence of external stimulation and leads to an increase of Ucp1 expression, which encodes the key thermogenic mitochondrial uncoupling protein-1. Moreover, EGR1 is recruited to the proximal region of the Ucp1 promoter in subcutaneous inguinal white adipose tissue. Transcriptomic analysis of subcutaneous inguinal white adipose tissue in the absence of Egr1 identifies the molecular signature of white adipocyte browning downstream of Egr1 deletion and highlights a concomitant increase of beige differentiation marker and a decrease in extracellular matrix gene expression. Conversely, Egr1 overexpression in mesenchymal stem cells decreases beige adipocyte differentiation, while increasing extracellular matrix production. These results reveal a role for Egr1 in blocking energy expenditure via direct Ucp1 transcription repression and highlight Egr1 as a therapeutic target for counteracting obesity.
Collapse
Affiliation(s)
- Cécile Milet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France
| | - Marianne Bléher
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France
| | | | - Mickael Orgeur
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France
| | - Fanny Coulpier
- École normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École normale supérieure (IBENS), Plateforme Génomique, 75005, Paris, France
| | - Delphine Duprez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France.
| | - Emmanuelle Havis
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France.
| |
Collapse
|
39
|
Wang Y, Ma C, Sun Y, Li Y, Kang L, Jiang Y. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs. BMC Genomics 2017; 18:780. [PMID: 29025412 PMCID: PMC5639760 DOI: 10.1186/s12864-017-4201-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/08/2017] [Indexed: 01/12/2023] Open
Abstract
Background The intramuscular fat content (IMF) refers to the amount of fat within muscles, including the sum of phospholipids mainly found in cell membranes, triglycerides and cholesterol, and is determined both by hyperplasia and hypertrophy of adipocyte during the development of pigs. The IMF content is an important economic trait that is genetically controlled by multiple genes. The Laiwu pig is an indigenous fatty pig breed distributed in North China, characterized by excessively higher level of IMF content (9%~12%), therefore, is suitable for the identification of genes controlling IMF variations. To identify genes underlying IMF deposition, we performed genome-wide transcriptome and methylome analyses on longissimus dorsi (LD) muscle in Laiwu pigs across four developmental stages. Results A total of 22,524 expressed genes were detected and 1158 differentially expressed genes (DEGs) were hierarchically clustered in the LD muscle over four developmental stages from 60 d to 400 d. These genes were significantly clustered into four temporal expression profiles, and genes participating in fat cell differentiation and lipid biosynthesis processes were identified. From 120 d to 240 d, the period with the maximum IMF deposition rate, the lipid biosynthesis related genes (FOSL1, FAM213B and G0S2), transcription factors (TFs) (EGR1, KLF5, SREBF2, TP53 and TWIST1) and enriched pathways (steroid biosynthesis and fatty acid biosynthesis) were revealed; and fat biosynthesis relevant genes showing differences in DNA methylation in gene body or intergenic region were detected, such as FASN, PVALB, ID2, SH3PXD2B and EGR1. Conclusions This study provides a comprehensive landscape of transcriptome of the LD muscle in Laiwu pigs ranging from 60 to 400 days old, and methylome of the LD muscle in 120 d and 240 d Laiwu pigs. A set of candidate genes and TFs involved in fat biosynthesis process were identified, which were probably responsible for IMF deposition. The results from this study would provide a reference for the identification of genes controlling IMF variation, and for exploring molecular mechanisms underlying IMF deposition in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4201-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuding Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Li
- Central Hospital of Taian, Taian, 271018, People's Republic of China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.
| |
Collapse
|
40
|
Kandror K. Mammalian target of rapamycin complex 1 and FoxO1 in the transcriptional control of lipolysis and de novo lipogenesis. Curr Opin Endocrinol Diabetes Obes 2017; 24:326-331. [PMID: 28841634 PMCID: PMC11210950 DOI: 10.1097/med.0000000000000352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Postprandial suppression of lipolysis in adipose tissue and stimulation of de novo lipogenesis (DNL) in the liver by insulin are essential for the metabolic homeostasis in the mammalian organism. The mechanism of coregulation of lipolysis and DNL is not clear. RECENT FINDINGS Insulin controls both lipolysis and DNL at the level of transcription via the same mammalian target of rapamycin complex 1 (mTORC1) and FoxO1-mediated signaling pathways. SUMMARY mTORC1 suppresses lipolysis in adipose tissue and activates DNL in the liver, whereas FoxO1 has the opposite effect. Individual inputs of either mTORC1 or FoxO1 in the regulation of lipid metabolism may be difficult to evaluate because of the cross talk between these pathways.
Collapse
Affiliation(s)
- K.V. Kandror
- Boston University School of Medicine, Department of Biochemistry, K123D, 715 Albany Street, Boston, MA 02118, USA. Phone: 617-638-5049
| |
Collapse
|
41
|
Impairment of the activin A autocrine loop by lopinavir reduces self-renewal of distinct human adipose progenitors. Sci Rep 2017; 7:2986. [PMID: 28592814 PMCID: PMC5462747 DOI: 10.1038/s41598-017-02807-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 01/15/2023] Open
Abstract
Maintenance of the adipose tissue requires a proper balance between self-renewal and differentiation of adipose progenitors (AP). Any deregulation leads either to fat overexpansion and obesity or fat loss and consequent lipodystrophies. Depending on the fat pad location, APs and adipocytes are heterogeneous. However, information on the pharmacological sensitivity of distinct APs to drugs known to alter the function of adipose tissue, especially HIV protease inhibitors (PIs) is scant. Here we show that PIs decreased proliferation and clonal expansion of APs, modifying their self-renewal potential. Lopinavir was the most potent PI tested. Decrease in self-renewal was accompanied by a reduced expression of the immediate early response gene IER3, a gene associated with tissue expansion. It was more pronounced in chin-derived APs than in knee-derived APs. Furthermore, lopinavir lowered the activin A–induced ERK1/2 phosphorylation. Expressions of the transcription factor EGR1 and its targets, including INHBA were subsequently altered. Therefore, activin A secretion was reduced leading to a dramatic impairment of APs self-renewal sustained by the activin A autocrine loop. All together, these observations highlight the activin A autocrine loop as a crucial effector to maintain APs self-renewal. Targeting this pathway by HIV-PIs may participate in the induction of unwanted side effects.
Collapse
|
42
|
Ambele MA, Pepper MS. Identification of transcription factors potentially involved in human adipogenesis in vitro. Mol Genet Genomic Med 2017; 5:210-222. [PMID: 28546992 PMCID: PMC5441431 DOI: 10.1002/mgg3.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/26/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increased adiposity in humans leads to obesity, which is a major risk factor for cardiovascular disease, type 2 diabetes, and cancer. We previously conducted an extensive unbiased in vitro transcriptomic analysis of adipogenesis, using human adipose-derived stromal cells (ASCs). Here, we have applied computational methods to these data to identify transcription factors (TFs) that constitute the upstream gene regulatory networks potentially, driving adipocyte formation in human ASCs. METHODS We used Affymetrix Transcription Analysis Console™ v3.0 for calculating differentially expressed genes. MATCH™ and F-MATCH™ algorithms for TF identification. STRING v10 to predict protein-protein interactions between TFs. RESULTS A number of TFs that were reported to have a significant role in adipogenesis, as well as novel TFs that have not previously been described in this context, were identified. Thus, 32 upstream TFs were identified, with most belonging to the C2H2-type zinc finger and HOX families, which are potentially involved in regulating most of the differentially expressed genes observed during adipocyte differentiation. Furthermore, 17 important upstream TFs were found to have increased regulatory effects on their downstream target genes and were consistently up-regulated during the differentiation process. A strong hypothetical functional interaction was observed among these TFs, which supports their common role in the downstream regulation of gene expression during adipogenesis. CONCLUSION Our results support several previous findings on TFs involved in adipogenesis and thereby validate the comprehensive and systematic in silico approach described in this study. In silico analysis also allowed for the identification of novel regulators of adipocyte differentiation.
Collapse
Affiliation(s)
- Melvin Anyasi Ambele
- Department of Immunology and Institute for Cellular and Molecular MedicineSAMRC Extramural Unit for Stem Cell Research and TherapyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael Sean Pepper
- Department of Immunology and Institute for Cellular and Molecular MedicineSAMRC Extramural Unit for Stem Cell Research and TherapyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
43
|
Hafner AL, Contet J, Ravaud C, Yao X, Villageois P, Suknuntha K, Annab K, Peraldi P, Binetruy B, Slukvin II, Ladoux A, Dani C. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity. Sci Rep 2016; 6:32490. [PMID: 27577850 PMCID: PMC5006163 DOI: 10.1038/srep32490] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity.
Collapse
Affiliation(s)
| | - Julian Contet
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Xi Yao
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Kran Suknuntha
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53715, USA
| | - Karima Annab
- Inserm U910, Faculty of Medicine La Timone, Marseille, France
| | | | | | - Igor I. Slukvin
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53715, USA
| | - Annie Ladoux
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | |
Collapse
|
44
|
van den Akker GGH, Surtel DAM, Cremers A, Hoes MFGA, Caron MM, Richardson SM, Rodrigues-Pinto R, van Rhijn LW, Hoyland JA, Welting TJM, Voncken JW. EGR1 controls divergent cellular responses of distinctive nucleus pulposus cell types. BMC Musculoskelet Disord 2016; 17:124. [PMID: 26975996 PMCID: PMC4791893 DOI: 10.1186/s12891-016-0979-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Background Immediate early genes (IEGs) encode transcription factors which serve as first line response modules to altered conditions and mediate appropriate cell responses. The immediate early response gene EGR1 is involved in physiological adaptation of numerous different cell types. We have previously shown a role for EGR1 in controlling processes supporting chondrogenic differentiation. We recently established a unique set of phenotypically distinct cell lines from the human nucleus pulposus (NP). Extensive characterization showed that these NP cellular subtypes represented progenitor-like cell types and more functionally mature cells. Methods To further understanding of cellular heterogeneity in the NP, we analyzed the response of these cell subtypes to anabolic and catabolic factors. Here, we test the hypothesis that physiological responses of distinct NP cell types are mediated by EGR1 and reflect specification of cell function using an RNA interference-based experimental approach. Results We show that distinct NP cell types rapidly induce EGR1 exposure to either growth factors or inflammatory cytokines. In addition, we show that mRNA profiles induced in response to anabolic or catabolic conditions are cell type specific: the more mature NP cell type produced a strong and more specialized transcriptional response to IL-1β than the NP progenitor cells and aspects of this response were controlled by EGR1. Conclusions Our current findings provide important substantiation of differential functionality among NP cellular subtypes. Additionally, the data shows that early transcriptional programming initiated by EGR1 is essentially restrained by the cells’ epigenome as it was determined during development and differentiation. These studies begin to define functional distinctions among cells of the NP and will ultimately contribute to defining functional phenotypes within the adult intervertebral disc. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-0979-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Current Address: Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Don A M Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn F G A Hoes
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein M Caron
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephen M Richardson
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK
| | - Ricardo Rodrigues-Pinto
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,Current Address: Department of Orthopaedics, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith A Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
45
|
de Toro-Martín J, Guénard F, Tchernof A, Deshaies Y, Pérusse L, Hould FS, Lebel S, Marceau P, Vohl MC. Methylation quantitative trait loci within the TOMM20 gene are associated with metabolic syndrome-related lipid alterations in severely obese subjects. Diabetol Metab Syndr 2016; 8:55. [PMID: 27478511 PMCID: PMC4966599 DOI: 10.1186/s13098-016-0171-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The TOMM20 gene was previously identified as differentially expressed and methylated between severely obese subjects with and without metabolic syndrome (MS). Since metabolic complications do not affect all obese patients to the same extent, the aim of this study was to identify methylation quantitative trait loci (meQTL) potentially associated with MS-related complications within the TOMM20 locus. METHODS Methylation profiling, SNP genotyping and meQTL association tests (general linear models) were performed in a population of 48 severely obese subjects. Genotyping was extended to a larger population of 1720 severely obese subjects with or without MS, where genotype- and diplotype-based association tests were assessed by logistic regression. In silico analyses were performed using TRAP. RESULTS Four SNPs were identified as significant meQTLs for the differentially methylated site cg16490124. Individuals carrying rare alleles of rs4567344 (A > G) (P = 4.9 × 10(-2)) and rs11301 (T > C) (P = 5.9 × 10(-3)) showed decreased methylation levels at this site, whereas those carrying rare alleles of rs4551650 (T > C) (P = 3.5 × 10(-15)) and rs17523127 (C > G) (P = 3.5 × 10(-15)) exhibited a significant increase in methylation. rs4567344 and rs11301 were associated with increased susceptibility to exhibit high plasma triglycerides (TG ≥ 1.69 mmol/L), while rare alleles of rs4551650 and rs17523127 were significantly more represented in the low plasma total-C group (total-C ≤ 6.2 mmol/L). Haplotype reconstruction with the four meQTLs (rs4567344, rs11301, rs4551650, rs17523127) led to the identification of ten different diplotypes, with H1/H2 (GCGG/ACGG) exhibiting a nearly absence of methylation at cg16490124, and showing the highest risk of elevated plasma TG levels [OR = 2.03 (1.59-3.59)], a novel association with elevated LDL-cholesterol [OR = 1.86 (1.06-3.27)] and the complete inversion of the protective effect on total-C levels [OR = 2.03 (1.59-3.59)], especially in men. In silico analyses revealed that rs17523127 overlapped the CpG site cg16490124 and encompassed the core binding sites of the transcription factors Egr 1, 2 and 3, located within the TOMM20 promoter region. CONCLUSION This study demonstrates that TOMM20 SNPs associated with MS-related lipid alterations are meQTLs potentially exerting their action through a CpG methylation-dependent effect. The strength of the diplotype-based associations may denote a novel meQTL additive action and point to this locus as particularly relevant in the inter-individual variability observed in the metabolic profiles of obese subjects.
Collapse
Affiliation(s)
- Juan de Toro-Martín
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC Canada
- School of Nutrition, Laval University, Québec, QC Canada
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC Canada
- School of Nutrition, Laval University, Québec, QC Canada
| | - André Tchernof
- School of Nutrition, Laval University, Québec, QC Canada
- Québec Heart and Lung Institute, Québec, QC Canada
| | - Yves Deshaies
- Québec Heart and Lung Institute, Québec, QC Canada
- Department of Medicine, Laval University, Québec, QC Canada
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC Canada
- Department of Kinesiology, Laval University, Québec, QC Canada
| | | | - Stéfane Lebel
- Department of Surgery, Laval University, Québec, QC Canada
| | - Picard Marceau
- Department of Surgery, Laval University, Québec, QC Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC Canada
- School of Nutrition, Laval University, Québec, QC Canada
| |
Collapse
|
46
|
Ayuso M, Fernández A, Núñez Y, Benítez R, Isabel B, Barragán C, Fernández AI, Rey AI, Medrano JF, Cánovas Á, González-Bulnes A, López-Bote C, Ovilo C. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism. PLoS One 2015; 10:e0145162. [PMID: 26695515 PMCID: PMC4687939 DOI: 10.1371/journal.pone.0145162] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits.
Collapse
Affiliation(s)
- Miriam Ayuso
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | - Ana Isabel Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Ángela Cánovas
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | | | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Ovilo
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Metabolic diseases, such as type 2 diabetes, cardiac dysfunction, hypertension, and hepatic steatosis, share one critical causative factor: abnormal lipid partitioning, that redistribution of triglycerides from adipocytes to nonadipose peripheral tissues. Lipid overload of these tissues causes a number of pathological effects collectively known as lipotoxicity. If we find the way to correct lipid partitioning, we will restrain metabolic diseases, improve life quality and life expectancy and radically reduce healthcare costs. RECENT FINDINGS Lipid partitioning in the body is maintained by tightly regulated and balanced rates of de novo lipogenesis, lipolysis, adipogenesis, and mitochondrial oxidation primarily in fat and liver. Recent studies highlighted in this review have established mTOR as a central regulator of lipid storage and metabolism. SUMMARY Increased activity of mTOR in obesity may compensate for the negative consequences of overnutrition, whereas dysregulation of mTOR may lead to abnormal lipid partitioning and metabolic disease.
Collapse
Affiliation(s)
- Partha Chakrabarti
- aDivision of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India bDepartment of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
48
|
Jeong JK, Moon MH, Park SY. Modulation of the expression of sphingosine 1-phosphate 2 receptors regulates the differentiation of pre-adipocytes. Mol Med Rep 2015; 12:7496-502. [PMID: 26459774 DOI: 10.3892/mmr.2015.4388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator that regulates multiple signals through S1P receptors responsible for biological responses. In particular, the S1P2 receptor has distinct roles in the S1P‑mediated differentiation of certain cell types. The present study was the first, to the best of our knowledge, to report the role of the S1P2 receptor in the adipocyte differentiation of 3T3‑L1 pre‑adipocytes. In order to investigate the influence of S1P2 receptors in the anti‑adipogenic effects of S1P, S1P2 receptor silencing and overexpression of were used. S1P2 overexpression with adenoviral vectors inhibited adipogenesis and inhibited the expression of peroxisome proliferator‑activated receptor γ (PPARγ), adiponectin and CCAAT/enhancer binding protein‑α, which were upregulated following incubation in differentiation media. Furthermore, S1P completely lost its ability to impair adipogenic differentiation following silencing of S1P2. Silencing of the S1P2 receptor additionally blocked the downregulation of PPARγ protein and phospho‑c‑Jun N‑terminal kinase protein induced by S1P treatment. In conclusion, the present study demonstrated that the S1P2 receptor is a key signaling molecule in the S1P‑dependent inhibition of adipogenic differentiation and additionally suggested that selective targeting of S1P2 receptors may have clinical applications for the treatment of obesity.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561‑756, Republic of Korea
| | - Myung-Hee Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561‑756, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561‑756, Republic of Korea
| |
Collapse
|
49
|
Jeong K, Kwon H, Lee J, Jang D, Pak Y. Insulin-response epigenetic activation of Egr-1 and JunB genes at the nuclear periphery by A-type lamin-associated pY19-Caveolin-2 in the inner nuclear membrane. Nucleic Acids Res 2015; 43:3114-3127. [PMID: 25753664 PMCID: PMC4381080 DOI: 10.1093/nar/gkv181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/15/2022] Open
Abstract
Insulin controls transcription to sustain its physiologic effects for the organism to adapt to environmental changes added to genetic predisposition. Nevertheless, insulin-induced transcriptional regulation by epigenetic factors and in defined nuclear territory remains elusive. Here we show that inner nuclear membrane (INM)-integrated caveolin-2 (Cav-2) regulates insulin-response epigenetic activation of Egr-1 and JunB genes at the nuclear periphery. INM-targeted pY19-Cav-2 in response to insulin associates specifically with the A-type lamin, disengages the repressed Egr-1 and JunB promoters from lamin A/C through disassembly of H3K9me3, and facilitates assembly of H3K9ac, H3K18ac and H3K27ac by recruitment of GCN5 and p300 and the subsequent enrichment of RNA polymerase II (Pol II) on the promoters at the nuclear periphery. Our findings show that Cav-2 is an epigenetic regulator of histone H3 modifications, and provide novel mechanisms of insulin-response epigenetic activation at the nuclear periphery.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| | - Hayeong Kwon
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| | - Jaewoong Lee
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| | - Donghwan Jang
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| | - Yunbae Pak
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
50
|
Singh M, Shin YK, Yang X, Zehr B, Chakrabarti P, Kandror KV. 4E-BPs Control Fat Storage by Regulating the Expression of Egr1 and ATGL. J Biol Chem 2015; 290:17331-8. [PMID: 25814662 DOI: 10.1074/jbc.m114.631895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 01/04/2023] Open
Abstract
Early growth response transcription factor Egr1 controls multiple aspects of cell physiology and metabolism. In particular, Egr1 suppresses lipolysis and promotes fat accumulation in adipocytes by inhibiting the expression of adipose triglyceride lipase. According to current dogma, regulation of the Egr1 expression takes place primarily at the level of transcription. Correspondingly, treatment of cultured adipocytes with insulin stimulates expression of Egr1 mRNA and protein. Unexpectedly, the MEK inhibitor PD98059 completely blocks insulin-stimulated increase in the Egr1 mRNA but has only a moderate effect on the Egr1 protein. At the same time, mTORC1 inhibitors rapamycin and PP242 suppress expression of the Egr1 protein and have an opposite effect on the Egr1 mRNA. Mouse embryonic fibroblasts with genetic ablations of TSC2 or 4E-BP1/2 express less Egr1 mRNA but more Egr1 protein than wild type controls. (35)S-labeling has confirmed that translation of the Egr1 mRNA is much more effective in 4E-BP1/2-null cells than in control. A selective agonist of the CB1 receptors, ACEA, up-regulates Egr1 mRNA, but does not activate mTORC1 and does not increase Egr1 protein in adipocytes. These data suggest that although insulin activates both the Erk and the mTORC1 signaling pathways in adipocytes, regulation of the Egr1 expression takes place predominantly via the mTORC1/4E-BP-mediated axis. In confirmation of this model, we show that 4E-BP1/2-null MEFs express less ATGL and accumulate more fat than control cells, while knock down of Egr1 in 4E-BP1/2-null MEFs increases ATGL expression and decreases fat storage.
Collapse
Affiliation(s)
- Maneet Singh
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | - Yu-Kyong Shin
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | - Xiaoqing Yang
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | - Brad Zehr
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | - Partha Chakrabarti
- From the Boston University School of Medicine, Boston, Massachusetts 02118
| | | |
Collapse
|