1
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
2
|
Mohallem R, Aryal UK. Nuclear Phosphoproteome Reveals Prolyl Isomerase PIN1 as a Modulator of Oncogene-Induced Senescence. Mol Cell Proteomics 2024; 23:100715. [PMID: 38216124 PMCID: PMC10864342 DOI: 10.1016/j.mcpro.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
3
|
Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. BIOLOGY 2023; 12:1511. [PMID: 38132337 PMCID: PMC10740672 DOI: 10.3390/biology12121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama, Fukushima 963-8611, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| |
Collapse
|
4
|
Lee YM, Teoh DEJ, Yeung K, Liou YC. The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1. Front Cell Dev Biol 2022; 10:956071. [PMID: 36111342 PMCID: PMC9468764 DOI: 10.3389/fcell.2022.956071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
More than 20 years since its discovery, our understanding of Pin1 function in various diseases continues to improve. Pin1 plays a crucial role in pathogenesis and has been implicated in metabolic disorders, cardiovascular diseases, inflammatory diseases, viral infection, cancer and neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease. In particular, the role of Pin1 in neurodegenerative diseases and cancer has been extensively studied. Our understanding of Pin1 in cancer also led to the development of cancer therapeutic drugs targeting Pin1, with some currently in clinical trial phases. However, identifying a Pin1-specific drug with good cancer therapeutic effect remains elusive, thus leading to the continued efforts in Pin1 research. The importance of Pin1 is highlighted by the presence of Pin1 orthologs across various species: from vertebrates to invertebrates and Kingdom Animalia to Plantae. Among these Pin1 orthologs, their sequence and structural similarity demonstrate the presence of conservation. Moreover, their similar functionality between species further highlights the conservancy of Pin1. As researchers continue to unlock the mysteries of Pin1 in various diseases, using different Pin1 models might shed light on how to better target Pin1 for disease therapeutics. This review aims to highlight the various Pin1 orthologs in numerous species and their divergent functional roles. We will examine their sequence and structural similarities and discuss their functional similarities and uniqueness to demonstrate the interconnectivity of Pin1 orthologs in multiple diseases.
Collapse
|
5
|
Xie C, Li K, Li Y, Peng X, Teng B, He K, Jin A, Wang W, Wei Z. CRISPR-based knockout screening identifies the loss of MIEF2 to enhance oxaliplatin resistance in colorectal cancer through inhibiting the mitochondrial apoptosis pathway. Front Oncol 2022; 12:881487. [PMID: 36106106 PMCID: PMC9465453 DOI: 10.3389/fonc.2022.881487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
The first-line anticancer agent oxaliplatin (OXL) is the preferred drug for treating colorectal cancer (CRC); however, the development of drug resistance is common in patients treated with OXL, which considerably reduces the efficacy of OXL-based regimens. By performing genome-wide CRISPR/Cas9 library knockdown screening, we found that mitochondrial elongation factor 2 (MIEF2) was among the top candidate genes. The OXL-resistant cell lines and organoids developed in the present study showed stable but low expression of MIEF2. Reduced MIEF2 expression may enhance CRC resistance to OXL by reducing mitochondrial stability and inhibiting apoptosis by decreasing cytochrome C release. In conclusion, among the different biomarkers of OXL resistance in CRC, MIEF2 may serve as a specific biomarker of OXL responsiveness and a potential target for the development of therapies to improve chemotherapeutic effectiveness.
Collapse
Affiliation(s)
- Chaozheng Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ya Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Biyun Teng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kuan He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Aishun Jin
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
- *Correspondence: Wang Wang, ; Zhengqiang Wei,
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Wang Wang, ; Zhengqiang Wei,
| |
Collapse
|
6
|
New Benzimidazoles Targeting Breast Cancer: Synthesis, Pin1 Inhibition, 2D NMR Binding, and Computational Studies. Molecules 2022; 27:molecules27165245. [PMID: 36014485 PMCID: PMC9414874 DOI: 10.3390/molecules27165245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Benzimidazole derivatives are known to be key players in the development of novel anticancer agents. Herein, we aimed to synthesize novel derivatives to target breast cancer. A new series of benzimidazole derivatives conjugated with either six- and five-membered heterocyclic ring or pyrazanobenzimidazoles and pyridobenzimidazole linkers were synthesized yielding compounds 5–8 and 10–14, respectively. Structure elucidation of the newly synthesized compounds was achieved through microanalytical analyses and different spectroscopic techniques (1H, 13C-APT and 1H–1H COSY and IR) in addition to mass spectrometry. A biological study for the newly synthesized compounds was performed against breast cancer cell lines (MCF-7), and the most active compounds were further subjected to normal Human lung fibroblast (WI38) which indicates their safety. It was found that most of them exhibit high cytotoxic activity against breast cancer (MCF-7) and low cytotoxic activity against normal (WI38) cell lines. Compounds 5, 8, and 12, which possess the highest anti-breast cancer activity against the MCF-7 cell line, were selected for Pin1 inhibition assay using tannic acid as a reference drug control. Compound 8 was examined for its effect on cell cycle progression and its ability to apoptosis induction. Mechanistic evaluation of apoptosis induction was demonstrated by triggering intrinsic apoptotic pathways via inducing ROS accumulation, increasing Bax, decreasing Bcl-2, and activation of caspases 6, 7, and 9. Binding to 15N-labeled Pin1 enzyme was performed using state-of-the-art 15N–1H HSQC NMR experiments to describe targeting breast cancer on a molecular level. In conclusion, the NMR results demonstrated chemical shift perturbation (peak shifting or peak disappearance) upon adding compound 12 indicating potential binding. Molecular docking using ‘Molecular Operating Environment’ software was extremely useful to elucidate the binding mode of active derivatives via hydrogen bonding.
Collapse
|
7
|
Relitti N, Saraswati AP, Carullo G, Papa A, Monti A, Benedetti R, Passaro E, Brogi S, Calderone V, Butini S, Gemma S, Altucci L, Campiani G, Doti N. Design and Synthesis of New Oligopeptidic Parvulin Inhibitors. ChemMedChem 2022; 17:e202200050. [PMID: 35357776 PMCID: PMC9321596 DOI: 10.1002/cmdc.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Indexed: 11/12/2022]
Abstract
Pin1 catalyzes the cis-trans isomerization of pThr-Pro or pSer-Pro amide bonds of different proteins involved in several physio/pathological processes. In this framework, recent research activity is directed towards the identification of new selective Pin1 inhibitors. Here, we developed a set ( 5a - p ) of peptide-based Pin1 inhibitors. Direct-binding experiments allowed the identification of the peptide-based inhibitor 5k as a potent ligand of Pin1. Notably, 5k binds Pin1 with a higher affinity compared to Pin4. The comparative analysis of molecular models of Pin1 and Pin4 with the selected compound, gave a rational explanation of the biochemical activity, and pinpointed the chemical elements that, if opportunely modified, may further improve inhibitory potency, pharmacological properties and selectivity of future peptide-based Parvulin inhibitors. Since 5k showed a limited cell penetration and no antiproliferative activity, it was conjugated to a polyarginine stretch, known to promote cell penetration of peptides, to obtain R8-5k derivative, which displayed an anti-proliferative effect on cancer cell lines compared to non-tumor cells. The effect of R8 on cell proliferation was also investigated. This work doubts the application of the R8 strategy for the development of cell penetrating antiproliferative peptides since it is not inert.
Collapse
Affiliation(s)
- Nicola Relitti
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | | | - Gabriele Carullo
- University of Siena: Universita degli Studi di Siena, DBCF, 2, Aldo Moro, 53100 Siena Italy, 53100, Siena, ITALY
| | - Alessandro Papa
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | | | - Rosaria Benedetti
- University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli, Medicine, ITALY
| | - Eugenia Passaro
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Simone Brogi
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Vincenzo Calderone
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Stefania Butini
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | - Sandra Gemma
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | - Lucia Altucci
- University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli, Medicine, ITALY
| | - Giuseppe Campiani
- Universita degli Studi di Siena, Dipartimento di Biotecnologie, Via Aldo Moro 2, 53100, Siena, ITALY
| | - Nunzianna Doti
- CNR: Consiglio Nazionale delle Ricerche, Bioimaging, ITALY
| |
Collapse
|
8
|
Barbier-Torres L, Murray B, Yang JW, Wang J, Matsuda M, Robinson A, Binek A, Fan W, Fernández-Ramos D, Lopitz-Otsoa F, Luque-Urbano M, Millet O, Mavila N, Peng H, Ramani K, Gottlieb R, Sun Z, Liangpunsakul S, Seki E, Van Eyk JE, Mato JM, Lu SC. Depletion of mitochondrial methionine adenosyltransferase α1 triggers mitochondrial dysfunction in alcohol-associated liver disease. Nat Commun 2022; 13:557. [PMID: 35091576 PMCID: PMC8799735 DOI: 10.1038/s41467-022-28201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
MATα1 catalyzes the synthesis of S-adenosylmethionine, the principal biological methyl donor. Lower MATα1 activity and mitochondrial dysfunction occur in alcohol-associated liver disease. Besides cytosol and nucleus, MATα1 also targets the mitochondria of hepatocytes to regulate their function. Here, we show that mitochondrial MATα1 is selectively depleted in alcohol-associated liver disease through a mechanism that involves the isomerase PIN1 and the kinase CK2. Alcohol activates CK2, which phosphorylates MATα1 at Ser114 facilitating interaction with PIN1, thereby inhibiting its mitochondrial localization. Blocking PIN1-MATα1 interaction increased mitochondrial MATα1 levels and protected against alcohol-induced mitochondrial dysfunction and fat accumulation. Normally, MATα1 interacts with mitochondrial proteins involved in TCA cycle, oxidative phosphorylation, and fatty acid β-oxidation. Preserving mitochondrial MATα1 content correlates with higher methylation and expression of mitochondrial proteins. Our study demonstrates a role of CK2 and PIN1 in reducing mitochondrial MATα1 content leading to mitochondrial dysfunction in alcohol-associated liver disease.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ben Murray
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jin Won Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- College of Pharmacy, Woosuk University, Wanju, South Korea
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Aaron Robinson
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Aleksandra Binek
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - David Fernández-Ramos
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Maria Luque-Urbano
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hui Peng
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Roberta Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Zhaoli Sun
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jose M Mato
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
9
|
Wang K, Liu W, Xu Q, Gu C, Hu D. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153553. [PMID: 33906076 DOI: 10.1016/j.phymed.2021.153553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most malignant tumors worldwide with poor prognosis and low survival rate. Since the clinical efficacy of the commonly used 5-fluorouracil (5-FU) based chemotherapy in CRC patients is limited because of its intolerable adverse effects, there is an urgent need to explore agents that can enhance the anti-cancer activity of 5-FU, reduce adverse effects and prevent resistance. PURPOSE This study aims to investigate Tenacissoside G (TG)'s synergistic potentiation with 5-FU in inhibitory activity to colorectal cancer cells. METHODS The anti-proliferation effect of TG on 5 colorectal cancer cell lines was assessed by CCK-8 assay. The isobologram analysis and combination index methods were used to detect the synergistic effect of TG and 5-FU by the CompuSyn software using the T.C. Chou Method. The effects of TG/5-FU combination on cell cycle distribution and apoptosis induction were detected by flow cytometry. DNA damage degrees of cells treated with TG, 5-FU and their combination were evaluated by the alkaline comet assay. Protein expression regulated by the TG/5-FU combination was investigated by western blotting. Furthermore, a xenograft mouse model was established to investigate the synergistic anti-tumor effect in vivo. RESULTS In this work, we observed a dose-dependent growth inhibitory activity and cell cycle arrest induction of TG, a monomeric substance originated from Marsdenia tenacissima (Roxb.) Wight et Arn, in colorectal cancer cells. It was found that TG potentiated the anticancer effects of 5-FU with a synergism for the first time. And the co-treatment effects were also validated by in vivo experiments. The underlying mechanisms involved in the synergistic effects were probably included: (1) increased activation of caspase cascade; (2) enhancement of DNA damage degree and (3) induction of p53 phosphorylation at Serine 46. CONCLUSION TG potentiated 5-FU's inhibitory activity to human colorectal cancer through arresting cell cycle progression and inducing p53-mediated apoptosis, which may present a novel strategy in CRC therapies and contribute to the optimizing clinical application of 5-FU.
Collapse
Affiliation(s)
- Kaichun Wang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Liu
- Department of Clinical Pharmacology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Qinfen Xu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao Gu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daode Hu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
10
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
11
|
Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis. Cancers (Basel) 2020; 12:cancers12113476. [PMID: 33266503 PMCID: PMC7700648 DOI: 10.3390/cancers12113476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53. The consequences of such a mechanism have serious implications for lysosomal-mediated apoptosis and have significant input into the design of therapeutics and their strategic use. In this review, we highlight the importance of extending such findings to other cathepsin family members and the need to assess the roles of p53 isoforms and mutants in furthering this mechanism. Abstract While viewed as the “guardian of the genome”, the importance of the tumor suppressor p53 protein has increasingly gained ever more recognition in modulating additional modes of action related to cell death. Slowly but surely, its importance has evolved from a mutated genetic locus heavily implicated in a wide array of cancer types to modulating lysosomal-mediated cell death either directly or indirectly through the transcriptional regulation of the key signal transduction pathway intermediates involved in this. As an important step in determining the fate of cells in response to cytotoxicity or during stress response, lysosomal-mediated cell death has also become strongly interwoven with the key components that give the lysosome functionality in the form of the cathepsin proteases. While a number of articles have been published highlighting the independent input of p53 or cathepsins to cellular homeostasis and disease progression, one key area that warrants further focus is the regulatory relationship that p53 and its isoforms share with such proteases in regulating lysosomal-mediated cell death. Herein, we review recent developments that have shaped this relationship and highlight key areas that need further exploration to aid novel therapeutic design and intervention strategies.
Collapse
Affiliation(s)
- Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Correspondence: (S.M.S.); (A.A.Z.J.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Paul A. Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (S.M.S.); (A.A.Z.J.)
| |
Collapse
|
12
|
Della-Fazia MA, Castelli M, Piobbico D, Pieroni S, Servillo G. HOPS and p53: thick as thieves in life and death. Cell Cycle 2020; 19:2996-3003. [PMID: 33112208 PMCID: PMC7714459 DOI: 10.1080/15384101.2020.1838772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/14/2023] Open
Abstract
The oncosuppressor protein p53 plays a major role in transcriptionally controlling the expression of a number of genes, which in turn regulates many functions in response to DNA damage, oncogene triggering, oxidative, and additional cell stresses. A developing area of interest in p53 is the studies related to its cytoplasmic function(s). Many investigations revealed the significant role of p53 in the cytoplasm, acting in a transcriptional-independent manner in important processes related to cell homeostasis such as; apoptosis, autophagy, metabolism control, drug, and oxidative stress response. The studies on cytoplasmic p53 have shown intricate mechanisms by which posttranslational modifications allow p53 to perform its cytoplasmic functions. A number of ubiquitins, deubiquitins, and small ubiquitin-like proteins, have a pivotal role in controlling cytoplasmic stability and localization. Recently, HOPS/TMUB1 a novel small ubiquitin-like protein has been described as a vital molecule stabilizing p53 half-life, directing it to the mitochondria and favoring p53-mediated apoptosis. Furthermore, HOPS/TMUB1 competing with importin-α lessens p53 nuclear localization, thereby increasing cytoplasmic concentration. HOPS/TMUB1 as p53 modifiers could be attractive candidates to elucidate apoptosis or other important transcriptional-independent functions which are key in cancer research in order to develop new therapeutic approaches.
Collapse
Affiliation(s)
| | - Marilena Castelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
14
|
Probing conformational transitions of PIN1 from L. major during chemical and thermal denaturation. Int J Biol Macromol 2020; 154:904-915. [PMID: 32209371 DOI: 10.1016/j.ijbiomac.2020.03.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023]
Abstract
PIN1 proteins are a class of peptidyl prolyl cis-trans isomerases (PPIases), which have been implicated in numerous cellular functions like cell cycle progression, transcriptional control, signal transduction, promotion of oncogenesis and host-parasite interactions. In this work, the unfolding mechanism of a single domain PIN1 from Leishmania major (LmPIN1) has been characterized during thermal and denaturant-induced unfolding by differential scanning calorimetry (DSC), fluorescence and circular dichroism. Further, MD simulations have been performed to structurally probe the possible stages of its unfolding process. Both the fluorescence and CD data confirm classical two-state unfolding transitions for urea and GdnHCl. The thermal unfolding of LmPIN1, characterized by DSC, could optimally be fitted to a non two-state transition curve exhibiting two Tm's (53 °C and 57 °C) suggesting the possibility of an intermediate. Thermal unfolding of the modeled LmPIN1 by MD simulation shows that the unfolding process is initiated by increased fluctuations (dynamics) spanning residues 70-80, followed by perturbations in the sheet system and disjuncture of helix-sheet packing. Importantly, simulation and fluorescence quenching studies clearly suggest the possibility of the presence of residual structures of LmPIN1 even after complete denaturation.
Collapse
|
15
|
Ho T, Tan BX, Lane D. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor. Int J Mol Sci 2019; 21:ijms21010013. [PMID: 31861395 PMCID: PMC6982169 DOI: 10.3390/ijms21010013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
It has been four decades since the discovery of p53, the designated ‘Guardian of the Genome’. P53 is primarily known as a master transcription factor and critical tumor suppressor, with countless studies detailing the mechanisms by which it regulates a host of gene targets and their consequent signaling pathways. However, transcription-independent functions of p53 also strongly define its tumor-suppressive capabilities and recent findings shed light on the molecular mechanisms hinted at by earlier efforts. This review highlights the transcription-independent mechanisms by which p53 influences the cellular response to genomic instability (in the form of replication stress, centrosome homeostasis, and transposition) and cell death. We also pinpoint areas for further investigation in order to better understand the context dependency of p53 transcription-independent functions and how these are perturbed when TP53 is mutated in human cancer.
Collapse
|
16
|
Liebl MC, Hofmann TG. Cell Fate Regulation upon DNA Damage: p53 Serine 46 Kinases Pave the Cell Death Road. Bioessays 2019; 41:e1900127. [PMID: 31621101 DOI: 10.1002/bies.201900127] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Mild and massive DNA damage are differentially integrated into the cellular signaling networks and, in consequence, provoke different cell fate decisions. After mild damage, the tumor suppressor p53 directs the cellular response to cell cycle arrest, DNA repair, and cell survival, whereas upon severe damage, p53 drives the cell death response. One posttranslational modification of p53, phosphorylation at Serine 46, selectively occurs after severe DNA damage and is envisioned as a marker of the cell death response. However, the molecular mechanism of action of the p53 Ser46 phospho-isomer, the molecular timing of this phosphorylation event, and its activating effects on apoptosis and ferroptosis still await exploration. In this essay, the current body of evidence on the molecular function of this deadly p53 mark, its evolutionary conservation, and the regulation of the key players of this response, the p53 Serine 46 kinases, are reviewed and dissected.
Collapse
Affiliation(s)
- Magdalena C Liebl
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg, University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg, University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| |
Collapse
|
17
|
Bianchi M, D'Oria V, Braghini MR, Petrini S, Manco M. Liraglutide Treatment Ameliorates Neurotoxicity Induced by Stable Silencing of Pin1. Int J Mol Sci 2019; 20:ijms20205064. [PMID: 31614723 PMCID: PMC6829573 DOI: 10.3390/ijms20205064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Post-translational modulation of peptidylprolyl isomerase Pin1 might link impaired glucose metabolism and neurodegeneration, being Pin1 effectors target for the glucagon-Like-Peptide1 analog liraglutide. We tested the hypotheses in Pin1 silenced cells (SH-SY5Y) treated with 2-deoxy-d-glucose (2DG) and methylglyoxal (MG), stressors causing altered glucose trafficking, glucotoxicity and protein glycation. Rescue by liraglutide was investigated. Pin1 silencing caused increased levels of reactive oxygen species, upregulated energy metabolism as suggested by raised levels of total ATP content and mRNA of SIRT1, PGC1α, NRF1; enhanced mitochondrial fission events as supported by raised protein expression of FIS1 and DRP1. 2DG and MG reduced significantly cell viability in all the cell lines. In Pin1 KD clones, 2DG exacerbated altered mitochondrial dynamics causing higher rate of fission events. Liraglutide influenced insulin signaling pathway (GSK3b/Akt); improved cell viability also in cells treated with 2DG; but it did not revert mitochondrial dysfunction in Pin1 KD model. In cells treated with MG, liraglutide enhanced cell viability, reduced ROS levels and cell death (AnnexinV/PI); and trended to reduce anti-apoptotic signals (BAX, BCL2, CASP3). Pin1 silencing mimics neuronal metabolic impairment of patients with impaired glucose metabolism and neurodegeneration. Liraglutide rescues to some extent cellular dysfunctions induced by Pin1 silencing.
Collapse
Affiliation(s)
- Marzia Bianchi
- Research Area for Multi-factorial Diseases, Obesity and Diabetes, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesu' Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Maria Rita Braghini
- Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesu' Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Melania Manco
- Research Area for Multi-factorial Diseases, Obesity and Diabetes, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
18
|
Barnoud T, Parris JLD, Murphy ME. Common genetic variants in the TP53 pathway and their impact on cancer. J Mol Cell Biol 2019; 11:578-585. [PMID: 31152665 PMCID: PMC6736421 DOI: 10.1093/jmcb/mjz052] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023] Open
Abstract
The TP53 gene is well known to be the most frequently mutated gene in human cancer. In addition to mutations, there are > 20 different coding region single-nucleotide polymorphisms (SNPs) in the TP53 gene, as well as SNPs in MDM2, the negative regulator of p53. Several of these SNPs are known to alter p53 pathway function. This makes p53 rather unique among cancer-critical genes, e.g. the coding regions of other cancer-critical genes like Ha-Ras, RB, and PI3KCA do not have non-synonymous coding region SNPs that alter their function in cancer. The next frontier in p53 biology will consist of probing which of these coding region SNPs are moderately or strongly pathogenic and whether they influence cancer risk and the efficacy of cancer therapy. The challenge after that will consist of determining whether we can tailor chemotherapy to correct the defects for each of these variants. Here we review the SNPs in TP53 and MDM2 that show the most significant impact on cancer and other diseases. We also propose avenues for how this information can be used to better inform personalized medicine approaches to cancer and other diseases.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| | - Joshua L D Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
19
|
Xian H, Liou YC. Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy. Autophagy 2019; 15:2107-2125. [PMID: 30894073 DOI: 10.1080/15548627.2019.1596494] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial dynamics is highly implicated in a plethora of cellular processes including apoptosis and mitophagy. However, little is known about the scope and precise functions of mitochondrial dynamics proteins for mitochondrial quality control and cellular homeostasis. Whether mitochondrial dynamics proteins serve in cellular processes reliant on mitochondrial fission-fusion is still not fully explored. MIEF1/MiD51 (mitochondrial elongation factor 1) is known to promote mitochondrial fission via the recruitment of GTPase protein DNM1L/DRP1 (dynamin 1 like), but the fundamental understandings of MIEF1 for mitochondrial-dependent cellular processes are largely elusive. Here, we report novel roles of MIEF1 in responding to apoptotic stimuli and mitochondrial damage. Given our result that staurosporine (STS) treatment induced the degradation of MIEF1 via the ubiquitin-proteasome system (UPS), we are motivated to explore the role of MIEF1 in apoptosis. MIEF1 loss triggered the imbalance of BCL2 family members on the mitochondria, consequently initiating the translocation of BAX onto the mitochondria, catalyzing the decrease of mitochondrial membrane potential and promoting the release of DIABLO/SMAC (diablo IAP-binding mitochondrial protein) and CYCS (cytochrome c, somatic). We further demonstrate that MIEF1 deficiency impaired mitochondrial respiration and induced mitochondrial oxidative stress, sensitizing cells to PINK1-PRKN-mediated mitophagy. The recruitment of PRKN to depolarized mitochondria modulated the UPS-dependent degradation of MFN2 (mitofusin 2) and FIS1 (fission, mitochondrial 1) specifically, to further promote mitophagy. Our findings uncover a bridging role of MIEF1 integrating cell death and mitophagy, unlikely dependent on mitochondrial dynamics, implying new insights to mechanisms determining cellular fate.Abbreviations: ActD: actinomycin D; BAX: BCL2 associated X, apoptosis regulator; BAK1: BCL2 antagonist/killer 1; BCL2L1: BCL2 like 1; BMH: 1,6-bismaleimidohexane; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CHX: cycloheximide; CQ: chloroquine; CYCS: cytochrome c, somatic; DIABLO: diablo IAP-binding mitochondrial protein; DKO: double knockout; DNM1L/DRP1: dynamin 1 like; FIS1: fission, mitochondrial 1; GFP: green fluorescent protein; IP: immunoprecipitation; MFN1: mitofusin 1; MFN2: mitofusin 2; MG132: carbobenzoxy-Leu-Leu-leucinal; MIEF1/MiD51: mitochondrial elongation factor 1; MIEF2/MiD49: mitochondrial elongation factor 2; MOMP: mitochondrial outer membrane permeabilization; MTR: MitoTracker Red; OA: oligomycin plus antimycin A; OCR: oxygen consumption rate; OMM: outer mitochondrial membrane; PARP: poly(ADP-ribose) polymerase; PI: propidium iodide; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SD: standard deviation; STS: staurosporine; TNF: tumor necrosis factor; UPS: ubiquitin-proteasome system; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Hongxu Xian
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Zannini A, Rustighi A, Campaner E, Del Sal G. Oncogenic Hijacking of the PIN1 Signaling Network. Front Oncol 2019; 9:94. [PMID: 30873382 PMCID: PMC6401644 DOI: 10.3389/fonc.2019.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular choices are determined by developmental and environmental stimuli through integrated signal transduction pathways. These critically depend on attainment of proper activation levels that in turn rely on post-translational modifications (PTMs) of single pathway members. Among these PTMs, post-phosphorylation prolyl-isomerization mediated by PIN1 represents a unique mechanism of spatial, temporal and quantitative control of signal transduction. Indeed PIN1 was shown to be crucial for determining activation levels of several pathways and biological outcomes downstream to a plethora of stimuli. Of note, studies performed in different model organisms and humans have shown that hormonal, nutrient, and oncogenic stimuli simultaneously affect both PIN1 activity and the pathways that depend on PIN1-mediated prolyl-isomerization, suggesting the existence of evolutionarily conserved molecular circuitries centered on this isomerase. This review focuses on molecular mechanisms and cellular processes like proliferation, metabolism, and stem cell fate, that are regulated by PIN1 in physiological conditions, discussing how these are subverted in and hijacked by cancer cells. Current status and open questions regarding the use of PIN1 as biomarker and target for cancer therapy as well as clinical development of PIN1 inhibitors are also addressed.
Collapse
Affiliation(s)
- Alessandro Zannini
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandra Rustighi
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Giannino Del Sal
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy.,IFOM - Istituto FIRC Oncologia Molecolare, Milan, Italy
| |
Collapse
|
21
|
Ser46 phosphorylation of p53 is an essential event in prolyl-isomerase Pin1-mediated p53-independent apoptosis in response to heat stress. Cell Death Dis 2019; 10:96. [PMID: 30718466 PMCID: PMC6362080 DOI: 10.1038/s41419-019-1316-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/02/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
Heat stroke has increased in frequency worldwide in recent years and continues to have a high morbidity and mortality. Identification of the mechanisms mediating heat stoke is important and necessary. Our preliminary study revealed heat stress (HS)-induced apoptosis of vascular endothelial cells was associated with reactive oxygen species (ROS)-induced p53 translocation into mitochondria. Previous studies have suggested the prolyl-isomerase Pin1 regulates p53 functioning through specific binding to p53 phosphorylation sites. Based on these studies, we presumed Pin1 is a key intermediate in regulation of mitochondrial p53 translocation through a HS-induced ROS-p53 transcription-independent apoptosis pathway. In this context, we revealed p53 had a crucial role in a HS-induced mitochondrial apoptotic pathway, where p53 protein rapidly translocated into mitochondria in endothelial cells both in vitro and in vivo. In particular, HS caused an increase in p53 phosphorylation at Ser46 that facilitated interactions with phosphorylation-dependent prolyl-isomerase Pin1, which has a key role in promoting HS-induced localization of p53 to mitochondria. Furthermore, we also found ROS production was a critical mediator in HS-induced Pin1/p53 signaling and was involved in regulating mitochondrial apoptosis pathway activation. Therefore, we have contributed to our profound understanding of the mechanism underlying HS-induced endothelial dysfunction in an effort to reduce the mortality and morbidity of heat stroke.
Collapse
|
22
|
Budina-Kolomets A, Barnoud T, Murphy ME. The transcription-independent mitochondrial cell death pathway is defective in non-transformed cells containing the Pro47Ser variant of p53. Cancer Biol Ther 2018; 19:1033-1038. [PMID: 30010463 DOI: 10.1080/15384047.2018.1472194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Approximately half of all human cancers contain mutations in the TP53 tumor suppressor. In addition to mutations, there are single nucleotide polymorphisms (SNPs) in TP53 that can dampen p53 function, and can increase cancer risk and decrease the efficacy of cancer therapy. Approximately 6% of Africans and 1% of African-Americans express a p53 allele with a serine instead of proline at position 47 (Pro47Ser, or S47). The S47 variant is associated with increased breast cancer risk in pre-menopausal African Americans, and in a mouse model for the S47 variant, mice are predisposed to spontaneous cancers. We recently showed that the S47 variant is impaired for p53-mediated apoptosis in response to radiation and some genotoxic agents, particularly cisplatin. Here we identify the mechanism for impaired apoptosis of S47 in response to cisplatin. We show that following cisplatin treatment, the S47 variant shows normal stabilization and serine 15 phosphorylation, but reduced ability to bind to the peptidyl prolyl isomerase PIN1, which controls the mitochondrial localization of p53. This is accompanied by impaired mitochondrial localization of S47, along with decreased induction of cleaved caspase-3. Interestingly, we show that this defect occurs only for cisplatin and not for camptothecin. These findings show that normal tissues may respond differently to genotoxic stress depending upon this TP53 genotype. These data suggest that toxicity to cisplatin may be decreased in S47 individuals, and that this compound may be a superior treatment option for these individuals.
Collapse
Affiliation(s)
- Anna Budina-Kolomets
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia PA 19104 , USA
| | - Thibaut Barnoud
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia PA 19104 , USA
| | - Maureen E Murphy
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia PA 19104 , USA
| |
Collapse
|
23
|
Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Cell Death Dis 2018; 9:883. [PMID: 30158600 PMCID: PMC6115400 DOI: 10.1038/s41419-018-0844-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
Pin1 is the only known peptidyl-prolyl cis–trans isomerase (PPIase) that specifically recognizes and isomerizes the phosphorylated Serine/Threonine-Proline (pSer/Thr-Pro) motif. The Pin1-mediated structural transformation posttranslationally regulates the biofunctions of multiple proteins. Pin1 is involved in many cellular processes, the aberrance of which lead to both degenerative and neoplastic diseases. Pin1 is highly expressed in the majority of cancers and its deficiency significantly suppresses cancer progression. According to the ground-breaking summaries by Hanahan D and Weinberg RA, the hallmarks of cancer comprise ten biological capabilities. Multiple researches illuminated that Pin1 contributes to these aberrant behaviors of cancer via promoting various cancer-driving pathways. This review summarized the detailed mechanisms of Pin1 in different cancer capabilities and certain Pin1-targeted small-molecule compounds that exhibit anticancer activities, expecting to facilitate anticancer therapies by targeting Pin1.
Collapse
|
24
|
Barnoud T, Budina-Kolomets A, Basu S, Leu JIJ, Good M, Kung CP, Liu J, Liu Q, Villanueva J, Zhang R, George DL, Murphy ME. Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 2018; 78:5694-5705. [PMID: 30115697 DOI: 10.1158/0008-5472.can-18-1327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in human cancer and serves to restrict tumor initiation and progression. Single-nucleotide polymorphisms (SNP) in TP53 and p53 pathway genes can have a marked impact on p53 tumor suppressor function, and some have been associated with increased cancer risk and impaired response to therapy. Approximately 6% of Africans and 1% of African Americans express a p53 allele with a serine instead of proline at position 47 (Pro47Ser). This SNP impairs p53-mediated apoptosis in response to radiation and genotoxic agents and is associated with increased cancer risk in humans and in a mouse model. In this study, we compared the ability of wild-type (WT) and S47 p53 to suppress tumor development and respond to therapy. Our goal was to find therapeutic compounds that are more, not less, efficacious in S47 tumors. We identified the superior efficacy of two agents, cisplatin and BET inhibitors, on S47 tumors compared with WT. Cisplatin caused dramatic decreases in the progression of S47 tumors by activating the p53/PIN1 axis to drive the mitochondrial cell death program. These findings serve as important proof of principle that chemotherapy can be tailored to p53 genotype.Significance: A rare African-derived radioresistant p53 SNP provides proof of principle that chemotherapy can be tailored to TP53 genotype. Cancer Res; 78(19); 5694-705. ©2018 AACR.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Che-Pei Kung
- ICCE Institute and Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Jingjing Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jessie Villanueva
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Donna L George
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Samanta SK, Lee J, Hahm ER, Singh SV. Peptidyl-prolyl cis/trans isomerase Pin1 regulates withaferin A-mediated cell cycle arrest in human breast cancer cells. Mol Carcinog 2018; 57:936-946. [PMID: 29603395 DOI: 10.1002/mc.22814] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
We have reported previously that withaferin A (WA) prevents breast cancer development in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice, but the mechanism is not fully understood. Unbiased proteomics of the mammary tumors from control- and WA-treated MMTV-neu mice revealed downregulation of peptidyl-prolyl cis/trans isomerase (Pin1) protein by WA administration. The present study extends these findings to elucidate the role of Pin1 in cancer chemopreventive mechanisms of WA. The mammary tumor level of Pin1 protein was lower by about 55% in WA-treated rats exposed to N-methyl-N-nitrosourea, compared to control. Exposure of MCF-7 and SK-BR-3 human breast cancer cells to WA resulted in downregulation of Pin1 protein. Ectopic expression of Pin1 attenuated G2 and/or mitotic arrest resulting from WA treatment in both MCF-7 and SK-BR-3 cells. WA-induced apoptosis was increased by Pin1 overexpression in MCF-7 cells but not in the SK-BR-3 cell line. In addition, molecular docking followed by mass spectrometry indicated covalent interaction of WA with cysteine 113 of Pin1. Overexpression of Pin1C113A mutant failed to attenuate WA-induced mitotic arrest or apoptosis in the MCF-7 cells. Furthermore, antibody array revealed upregulation of proapoptotic insulin-like growth factor binding proteins (IGFBPs), including IGFBP-3, IGFBP-4, IGFBP-5, and IGFBP-6, in Pin1 overexpressing MCF-7 cells following WA treatment when compared to empty vector transfected control cells. These data support a crucial role of the Pin1 for mitotic arrest and apoptosis signaling by WA at least in the MCF-7 cells.
Collapse
Affiliation(s)
- Suman K Samanta
- Life Science Division, Institute of Advance Study in Science and Technology, Guwahati, India
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju, South Korea
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Notch signaling and neuronal death in stroke. Prog Neurobiol 2018; 165-167:103-116. [PMID: 29574014 DOI: 10.1016/j.pneurobio.2018.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.
Collapse
|
27
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
28
|
miR-663 sustains NSCLC by inhibiting mitochondrial outer membrane permeabilization (MOMP) through PUMA/BBC3 and BTG2. Cell Death Dis 2018; 9:49. [PMID: 29352138 PMCID: PMC5833438 DOI: 10.1038/s41419-017-0080-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
Treatment of lung cancer is an unmet need as it accounts for the majority of cancer deaths worldwide. The development of new therapies urges the identification of potential targets. MicroRNAs' expression is often deregulated in cancer and their modulation has been proposed as a successful strategy to interfere with tumor cell growth and spread. We recently reported on an unbiased high-content approach to identify miRNAs regulating cell proliferation and tumorigenesis in non-small cell lung cancer (NSCLC). Here we studied the oncogenic role of miR-663 in NSCLC biology and analyzed the therapeutic potential of miR-663 targeting. We found that miR-663 regulates apoptosis by controlling mitochondrial outer membrane permeabilization (MOMP) through the expression of two novel direct targets PUMA/BBC3 and BTG2. Specifically, upon miR-663 knockdown the BH3-only protein PUMA/BBC3 directly activates mitochondrial depolarization and cell death, while BTG2 accumulation further enhances this effect by triggering p53 mitochondrial localization. Moreover, we show that miR-663 depletion is sufficient to elicit cell death in NSCLC cells and to impair tumor growth in vivo.
Collapse
|
29
|
D'Artista L, Bisso A, Piontini A, Doni M, Verrecchia A, Kress TR, Morelli MJ, Del Sal G, Amati B, Campaner S. Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc. Oncotarget 2017; 7:21786-98. [PMID: 26943576 PMCID: PMC5008323 DOI: 10.18632/oncotarget.7846] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/21/2016] [Indexed: 12/23/2022] Open
Abstract
The c-myc proto-oncogene is activated by translocation in Burkitt's lymphoma and substitutions in codon 58 stabilize the Myc protein or augment its oncogenic potential. In wild-type Myc, phosphorylation of Ser 62 and Thr 58 provides a landing pad for the peptidyl prolyl-isomerase Pin1, which in turn promotes Ser 62 dephosphorylation and Myc degradation. However, the role of Pin1 in Myc-induced lymphomagenesis remains unknown. We show here that genetic ablation of Pin1 reduces lymphomagenesis in Eμ-myc transgenic mice. In both Pin1-deficient B-cells and MEFs, the proliferative response to oncogenic Myc was selectively impaired, with no alterations in Myc-induced apoptosis or mitogen-induced cell cycle entry. This proliferative defect wasn't attributable to alterations in either Ser 62 phosphorylation or Myc-regulated transcription, but instead relied on the activity of the ARF-p53 pathway. Pin1 silencing in lymphomas retarded disease progression in mice, making Pin1 an attractive therapeutic target in Myc-driven tumors.
Collapse
Affiliation(s)
- Luana D'Artista
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Andrea Bisso
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Andrea Piontini
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Mirko Doni
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Alessandro Verrecchia
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| |
Collapse
|
30
|
Moritz MN, Rossa C, de Oliveira KT, Uliana MP, Perussi JR. Phototoxicity in a laryngeal cancer cell line enhanced by a targeting amphiphilic chlorin photosensitizer. Photodiagnosis Photodyn Ther 2017; 19:355-362. [DOI: 10.1016/j.pdpdt.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
|
31
|
Dynamic regulation of Pin1 expression and function during zebrafish development. PLoS One 2017; 12:e0175939. [PMID: 28426725 PMCID: PMC5398671 DOI: 10.1371/journal.pone.0175939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
The prolyl isomerase Pin1 plays a key role in the modulation of proline-directed phosphorylation signaling by inducing local conformational changes in phosphorylated protein substrates. Extensive studies showed different roles for Pin1 in physiological processes and pathological conditions such as cancer and neurodegenerative diseases. However, there are still several unanswered questions regarding its biological role. Notably, despite evidences from cultured cells showing that Pin1 expression and activity may be regulated by different mechanisms, little is known on their relevance in vivo. Using Danio rerio (zebrafish) as a vertebrate model organism we showed that pin1 expression is regulated during embryogenesis to achieve specific mRNA and protein distribution patterns. Moreover, we found different subcellular distribution in particular stages and cell types and we extended the study of Pin1 expression to the adult zebrafish brain. The analysis of Pin1 overexpression showed alterations on zebrafish development and the presence of p53-dependent apoptosis. Collectively, our results suggest that specific mechanisms are operated in different cell types to regulate Pin1 function.
Collapse
|
32
|
Simon HU, Friis R, Tait SWG, Ryan KM. Retrograde signaling from autophagy modulates stress responses. Sci Signal 2017; 10:eaag2791. [PMID: 28246201 DOI: 10.1126/scisignal.aag2791] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macroautophagy is a process in which cytoplasmic components, including whole organelles, are degraded within lysosomes. Basally, this process is essential for homeostasis and is constitutively functional in most cells, but it can also be implemented as part of stress responses. We discuss findings showing that autophagy proteins can modulate and amplify the activities of transcription factors involved in stress responses, such as those in the p53, FOXO, MiT/TFE, Nrf2, and NFκB/Rel families. Thus, transcription factors not only amplify stress responses and autophagy but are also subject to retrograde regulation by autophagy-related proteins. Physical interactions with autophagy-related proteins, competition for activating intermediates, and "signalphagy," which is the role autophagy plays in the degradation of specific signaling proteins, together provide powerful tools for implementing negative feedback or positive feed-forward loops on the transcription factors that regulate autophagy. We present examples illustrating how this network interacts to regulate metabolic and physiologic responses.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland.
| | - Robert Friis
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | | | - Kevin M Ryan
- Cancer Research U.K. Beatson Institute, Glasgow G61 1BD, U.K
| |
Collapse
|
33
|
Luo ZY, Jiang H, Xu L, Zhang XH. [Rita induce acute lymphoblostic leukemia cell apoptosis by activating P53 pathway]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:160-163. [PMID: 28279043 PMCID: PMC7354173 DOI: 10.3760/cma.j.issn.0253-2727.2017.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - H Jiang
- Department of Hematology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | | | | |
Collapse
|
34
|
Rustighi A, Zannini A, Campaner E, Ciani Y, Piazza S, Del Sal G. PIN1 in breast development and cancer: a clinical perspective. Cell Death Differ 2016; 24:200-211. [PMID: 27834957 DOI: 10.1038/cdd.2016.122] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Mammary gland development, various stages of mammary tumorigenesis and breast cancer progression have the peptidyl-prolyl cis/trans isomerase PIN1 at their centerpiece, in virtue of the ability of this unique enzyme to fine-tune the dynamic crosstalk between multiple molecular pathways. PIN1 exerts its action by inducing conformational and functional changes on key cellular proteins, following proline-directed phosphorylation. Through this post-phosphorylation signal transduction mechanism, PIN1 controls the extent and direction of the cellular response to a variety of inputs, in physiology and disease. This review discusses PIN1's roles in normal mammary development and cancerous progression, as well as the clinical impact of targeting this enzyme in breast cancer patients.
Collapse
Affiliation(s)
- Alessandra Rustighi
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Alessandro Zannini
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| | - Elena Campaner
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| | - Yari Ciani
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Silvano Piazza
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Bioinformatics Core Facility, Centre for Integrative Biology, CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| |
Collapse
|
35
|
Tai YL, Tung LH, Lin YC, Lu PJ, Chu PY, Wang MY, Huang WP, Chen KC, Lee H, Shen TL. Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression. PLoS One 2016; 11:e0163617. [PMID: 27658202 PMCID: PMC5033455 DOI: 10.1371/journal.pone.0163617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Growth factor receptor bound protein-7 (Grb7) is a multi-domain adaptor protein that is co-opted by numerous tyrosine kinases involved in various cellular signaling and functions. The molecular mechanisms underlying the regulation of Grb7 remain unclear. Here, we revealed a novel negative post-translational regulation of Grb7 by the peptidyl-prolyl cis/trans isomerase, Pin1. Our data show that phosphorylation of Grb7 protein on the Ser194-Pro motif by c-Jun N-terminal kinase facilitates its binding with the WW domain of Pin1. Subsequently, Grb7 is degraded by the ubiquitin- and proteasome-dependent proteolytic pathway. Indeed, we found that Pin1 exerts its peptidyl-prolyl cis/trans isomerase activity in the modulation of Grb7 protein stability in regulation of cell cycle progression at the G2-M phase. This study illustrates a novel regulatory mechanism in modulating Grb7-mediated signaling, which may take part in pathophysiological consequences.
Collapse
Affiliation(s)
- Yu-Ling Tai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Li-Hsuan Tung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yu Chu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, Connecticut, United States of America
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Pang Huang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Ko-Chien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hsinyu Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 2016; 73:2829-50. [PMID: 26791483 PMCID: PMC11108532 DOI: 10.1007/s00018-016-2130-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response.
Collapse
Affiliation(s)
- Sonja Matt
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas G Hofmann
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
37
|
Castrogiovanni C, Vandaudenard M, Waterschoot B, De Backer O, Dumont P. Decrease of mitochondrial p53 during late apoptosis is linked to its dephosphorylation on serine 20. Cancer Biol Ther 2016; 16:1296-307. [PMID: 26252178 DOI: 10.1080/15384047.2015.1070978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Following a genotoxic stress, the tumor suppressor p53 translocates to mitochondria to take part in direct induction of apoptosis, via interaction with BCL-2 family members such as BAK and BAX. We determined the kinetics of the mitochondrial translocation of p53 in HCT-116 and PA-1 cells exposed to different genotoxic stresses (doxorubicin, camptothecin, UVB). This analysis revealed an early escalation in the amount of mitochondrial p53, followed by a peak amount and a decrease of mitochondrial p53 at later time points. We show that the serine 20 phosphorylated form of p53 is present at the mitochondria and that the decrease of p53 mitochondrial level during late apoptosis correlates with a decrease of Ser-20 phosphorylation. Moreover, the S20A p53 mutant translocates well to mitochondria after a genotoxic stress but its mitochondrial localization is very low during late apoptosis when compared to wt p53. The S20A mutant also appears to be compromised for interaction with BAK. We propose here that the level of serine 20 phosphorylation is influential on p53 mitochondrial localization during late apoptosis. Additionally, we report the presence of a new ≃45 kDa caspase-cleaved fragment of p53 in the cytosolic and mitochondrial fractions of apoptotic cells.
Collapse
Affiliation(s)
- Cédric Castrogiovanni
- a Laboratory of Molecular and Cellular Biology; Institute of Life Sciences; Université Catholique de Louvain ; Louvain-la-Neuve , Belgium.,b URPHYM (Unité de Recherche en Physiologie Moléculaire); University of Namur ; Namur , Belgium
| | - Marie Vandaudenard
- a Laboratory of Molecular and Cellular Biology; Institute of Life Sciences; Université Catholique de Louvain ; Louvain-la-Neuve , Belgium
| | - Béranger Waterschoot
- c Earth and Life Institute / Biodiversity; Université Catholique de Louvain ; Louvain-la-Neuve , Belgium
| | - Olivier De Backer
- b URPHYM (Unité de Recherche en Physiologie Moléculaire); University of Namur ; Namur , Belgium
| | - Patrick Dumont
- a Laboratory of Molecular and Cellular Biology; Institute of Life Sciences; Université Catholique de Louvain ; Louvain-la-Neuve , Belgium
| |
Collapse
|
38
|
Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 2016; 6:20754-72. [PMID: 26246474 PMCID: PMC4673227 DOI: 10.18632/oncotarget.4537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context.
Collapse
|
39
|
Miciak J, Bunz F. Long story short: p53 mediates innate immunity. Biochim Biophys Acta Rev Cancer 2016; 1865:220-7. [PMID: 26951863 DOI: 10.1016/j.bbcan.2016.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022]
Abstract
The story of p53 and how we came to understand it is punctuated by fundamental insights into the essence of cancer. In the decades since its discovery, p53 has been shown to be centrally involved in most, if not all, of the cellular processes that maintain tissue homeostasis. Extensive functional analyses of p53 and its tumor-associated mutants have illuminated many of the common defects shared by most cancer cells. As the central character in a tale that continues to unfold, p53 has become increasingly familiar and yet remains surprisingly inscrutable. New relationships periodically come to light, and surprising, novel activities continue to emerge, thereby revealing new dimensions and aspects of its function. What lies at the very core of this complex protagonist? What is its prime motivation? As every avid reader knows, the elements of character are profoundly shaped by adversity--originating from within and without. And so it is with p53. This review will briefly recap the coordinated responses of p53 to viral infection, and outline a hypothetical model that would explain how an abundance of seemingly unrelated phenotypic attributes may in the end reflect a singular function. All stories eventually draw to a conclusion. This epic tale may eventually leave us with the realization that p53, most simply described, is a protein that evolved to mediate immune surveillance.
Collapse
Affiliation(s)
- Jessica Miciak
- Graduate Program in Cellular and Molecular Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| | - Fred Bunz
- Graduate Program in Cellular and Molecular Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| |
Collapse
|
40
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
41
|
Giorgi C, Bonora M, Missiroli S, Morganti C, Morciano G, Wieckowski MR, Pinton P. Alterations in Mitochondrial and Endoplasmic Reticulum Signaling by p53 Mutants. Front Oncol 2016; 6:42. [PMID: 26942128 PMCID: PMC4766755 DOI: 10.3389/fonc.2016.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 11/24/2022] Open
Abstract
The p53 protein is probably the most important tumor suppressor, acting as a nuclear transcription factor primarily through the modulation of cell death. However, currently, it is well accepted that p53 can also exert important transcription-independent pro-cell death actions. Indeed, cytosolic localization of endogenous wild-type or transactivation-deficient p53 is necessary and sufficient for the induction of apoptosis and autophagy. Here, we present the extra-nuclear activities of p53 associated with the mitochondria and the endoplasmic reticulum, highlighting the activities of the p53 mutants on these compartments. These two intracellular organelles play crucial roles in the regulation of cell death, and it is now well established that they also represent sites where p53 can accumulate.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Sonia Missiroli
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Claudia Morganti
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Giampaolo Morciano
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology , Warsaw , Poland
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
42
|
Targeting Peptidyl-Prolyl Isomerase Pin1 to Inhibit Tumor Cell Aggressiveness. TUMORI JOURNAL 2016; 102:144-9. [DOI: 10.5301/tj.5000471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/20/2022]
Abstract
Purpose Because the peptidyl-prolyl isomerase PIN1 interacts with multiple protein kinases and phosphoproteins into a network orchestrating the cellular response to various stimuli, there is an increasing interest in exploiting its potential as therapeutic target. In the present study, the effect of targeting PIN1 was investigated in 2 human cancer cell lines characterized by increased aggressive potential, high expression of erbB receptor family members, and defective p53. Methods PIN1 silencing was carried out in skin squamous cell carcinoma A431 cells displaying elevated EGFR/HER1 levels and in ovarian adenocarcinoma SKOV-3 cells displaying high levels of erbB2 (HER2). Nonoverlapping siRNA duplexes targeting different regions of PIN1 mRNA were transfected in tumor cells, which were analyzed using Western blotting for the expression of selected proteins. In vivo tumorigenicity studies were carried out in athymic nude mice. Results A431 and SKOV-3 cell systems were found to be a source of cells with increased aggressive potential, i.e., cancer stem cell-like cells, as defined by the capability to grow as spheres. A marked decrease of PIN1 levels and of sphere-forming capability was observed in PIN1-silenced cells. The expression of phospho-p38 decreased following PIN1 silencing in A431 and SKOV-3 cells, as well as phospho-EGFR levels in A431 - silenced cells. PIN1 inhibition prolonged latency and reduced tumor take and growth of SKOV-3 cells in nude mice. Conclusions Our results support that PIN1 may be a valuable target to hit in cancer cells characterized by increased aggressive potential, overexpression of erbB receptor family members, and defective p53.
Collapse
|
43
|
Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α. PLoS One 2016; 11:e0147038. [PMID: 26784107 PMCID: PMC4718546 DOI: 10.1371/journal.pone.0147038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
Abstract
Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.
Collapse
|
44
|
Prolyl isomerase Pin1 regulates cadmium-induced autophagy via ubiquitin-mediated post-translational stabilization of phospho-Ser GSK3αβ in human hepatocellular carcinoma cells. Biochem Pharmacol 2015; 98:511-21. [DOI: 10.1016/j.bcp.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022]
|
45
|
Giorgi C, Bonora M, Missiroli S, Poletti F, Ramirez FG, Morciano G, Morganti C, Pandolfi PP, Mammano F, Pinton P. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget 2015; 6:1435-45. [PMID: 25544762 PMCID: PMC4359305 DOI: 10.18632/oncotarget.2935] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022] Open
Abstract
One challenge in biology is signal transduction monitoring in a physiological context. Intravital imaging techniques are revolutionizing our understanding of tumor and host cell behaviors in the tumor environment. However, these deep tissue imaging techniques have not yet been adopted to investigate the second messenger calcium (Ca2+). In the present study, we established conditions that allow the in vivo detection of Ca2+ signaling in three-dimensional tumor masses in mouse models. By combining intravital imaging and a skinfold chamber technique, we determined the ability of photodynamic cancer therapy to induce an increase in intracellular Ca2+ concentrations and, consequently, an increase in cell death in a p53-dependent pathway.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Federica Poletti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Fabian Galindo Ramirez
- Department of Physics and Astronomy, University of Padua, and Venetian Institute of Molecular Medicine, Padua, Italy.,Instituto de fisiologia, Benemerita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Fabio Mammano
- Department of Physics and Astronomy, University of Padua, and Venetian Institute of Molecular Medicine, Padua, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
46
|
So KY, Ahn SG, Oh SH. Autophagy regulated by prolyl isomerase Pin1 and phospho-Ser-GSK3αβ involved in protection of oral squamous cell carcinoma against cadmium toxicity. Biochem Biophys Res Commun 2015; 466:541-6. [DOI: 10.1016/j.bbrc.2015.09.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
47
|
Antonov A, Agostini M, Morello M, Minieri M, Melino G, Amelio I. Bioinformatics analysis of the serine and glycine pathway in cancer cells. Oncotarget 2015; 5:11004-13. [PMID: 25436979 PMCID: PMC4294344 DOI: 10.18632/oncotarget.2668] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/22/2022] Open
Abstract
Serine and glycine are amino acids that provide the essential precursors for the synthesis of proteins, nucleic acids and lipids. Employing 3 subsequent enzymes, phosphoglycerate dehydrogenase (PHGDH), phosphoserine phosphatase (PSPH), phosphoserine aminotransferase 1 (PSAT1), 3-phosphoglycerate from glycolysis can be converted in serine, which in turn can by converted in glycine by serine methyl transferase (SHMT). Besides proving precursors for macromolecules, serine/glycine biosynthesis is also required for the maintenance of cellular redox state. Therefore, this metabolic pathway has a pivotal role in proliferating cells, including cancer cells. In the last few years an emerging literature provides genetic and functional evidences that hyperactivation of serine/glycine biosynthetic pathway drives tumorigenesis. Here, we extend these observations performing a bioinformatics analysis using public cancer datasets. Our analysis highlighted the relevance of PHGDH and SHMT2 expression as prognostic factor for breast cancer, revealing a substantial ability of these enzymes to predict patient survival outcome. However analyzing patient datasets of lung cancer our analysis reveled that some other enzymes of the pathways, rather than PHGDH, might be associated to prognosis. Although these observations require further investigations they might suggest a selective requirement of some enzymes in specific cancer types, recommending more cautions in the development of novel translational opportunities and biomarker identification of human cancers.
Collapse
Affiliation(s)
- Alexey Antonov
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK. Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Maria Morello
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Marilena Minieri
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK. Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome 00133, Italy. Biochemistry Laboratory IDI-IRCC, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| |
Collapse
|
48
|
Follis AV, Llambi F, Merritt P, Chipuk JE, Green DR, Kriwacki RW. Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis. Mol Cell 2015; 59:677-84. [PMID: 26236013 PMCID: PMC4546541 DOI: 10.1016/j.molcel.2015.06.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/15/2015] [Accepted: 06/22/2015] [Indexed: 12/31/2022]
Abstract
The cytosolic fraction of the tumor suppressor p53 activates the apoptotic effector protein BAX to trigger apoptosis. Here we report that p53 activates BAX through a mechanism different from that associated with activation by BH3 only proteins (BIM and BID). We observed that cis-trans isomerization of proline 47 (Pro47) within p53, an inherently rare molecular event, was required for BAX activation. The prolyl isomerase Pin1 enhanced p53-dependent BAX activation by catalyzing cis-trans interconversion of p53 Pro47. Our results reveal a signaling mechanism whereby proline cis-trans isomerization in one protein triggers conformational and functional changes in a downstream signaling partner. Activation of BAX through the concerted action of cytosolic p53 and Pin1 may integrate cell stress signals to induce a direct apoptotic response.
Collapse
Affiliation(s)
- Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Parker Merritt
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Dermatology, The Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, 920 Court Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
49
|
Heat stress induced apoptosis is triggered by transcription-independent p53, Ca(2+) dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci Rep 2015; 5:11497. [PMID: 26105784 PMCID: PMC4478470 DOI: 10.1038/srep11497] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/22/2015] [Indexed: 12/22/2022] Open
Abstract
In this study, We demonstrated that Bax mitochondrial translocation plays a vital role in the initiation of the mitochondrial signaling pathway upon activation by heat stress. In addition, both p53 mitochondrial translocation and Ca2+ signal mediated MPTP opening activate Bax mitochondrial translocation. Employing pifithrin-α (a p53 mitochondrial translocation inhibitor) and CsA (a permeability transition pore (MPTP) inhibitor), we found that heat stress induced Bax mitochondrial translocation was significantly inhibited in cells pretreated with both PFT and CsA. Furthermore, we demonstrated that generation of reactive oxygen species (ROS) is a critical mediator in heat stress induced apoptosis and that the antioxidant MnTBAP significantly decreased heat stress induced p53 mitochondrial translocation and Ca2+ signal mediated MPTP opening, as well as the subsequent Bax mitochondrial translocation and activation of the caspase cascade. Taken together, our results indicate that heat stress induces apoptosis through the mitochondrial pathway with ROS dependent mitochondrial p53 translocation and Ca2+ dyshomeostasis, and the ensuing intro Bax mitochondrial translocation as the upstream events involved in triggering the apoptotic process observed upon cellular exposure to heat stress.
Collapse
|
50
|
Sica GS, Fiorani C, Stolfi C, Monteleone G, Candi E, Amelio I, Catani V, Sibio S, Divizia A, Tema G, Iaculli E, Gaspari AL. Peritoneal expression of Matrilysin helps identify early post-operative recurrence of colorectal cancer. Oncotarget 2015; 6:13402-13415. [PMID: 25596746 PMCID: PMC4537023 DOI: 10.18632/oncotarget.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
Recurrence of colorectal cancer (CRC) following a potentially curative resection is a challenging clinical problem. Matrix metalloproteinase-7 (MMP-7) is over-expressed by CRC cells and supposed to play a major role in CRC cell diffusion and metastasis. MMP-7 RNA expression was assessed by real-time PCR using specific primers in peritoneal washing fluid obtained during surgical procedure. After surgery, patients underwent a regular follow up for assessing recurrence. transcripts for MMP-7 were detected in 31/57 samples (54%). Patients were followed-up (range 20-48 months) for recurrence prevention. Recurrence was diagnosed in 6 out of 55 patients (11%) and two patients eventually died because of this. Notably, all the six patients who had relapsed were positive for MMP-7. Sensitivity and specificity of the test were 100% and 49% respectively. Data from patients have also been corroborated by computational approaches. Public available coloncarcinoma datasets have been employed to confirm MMP7 clinical impact on the disease. Interestingly, MMP-7 expression appeared correlated to Tgfb-1, and correlation of the two factors represented a poor prognostic factor. This study proposes positivity of MMP-7 in peritoneal cavity as a novel biomarker for predicting disease recurrence in patients with CRC.
Collapse
Affiliation(s)
- Giuseppe S. Sica
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
- European Society Degenerative Disease (ESDD). www.esdd.it
| | - Cristina Fiorani
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Carmine Stolfi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Giovanni Monteleone
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Simone Sibio
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Andrea Divizia
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Giorgia Tema
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Edoardo Iaculli
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Achille L. Gaspari
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| |
Collapse
|