1
|
Sharma R, Mishra A, Bhardwaj M, Singh G, Indira Harahap LV, Vanjani S, Pan CH, Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem 2025; 40:2489720. [PMID: 40256842 PMCID: PMC12013171 DOI: 10.1080/14756366.2025.2489720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
This review discusses the critical roles of Ataxia Telangiectasia Mutated Kinase (ATM), ATM and Rad3-related Kinase (ATR), and DNA-dependent protein kinase (DNA-PK) in the DNA damage response (DDR) and their implications in cancer. Emphasis is placed on the intricate interplay between these kinases, highlighting their collaborative and distinct roles in maintaining genomic integrity and promoting tumour development under dysregulated conditions. Furthermore, the review covers ongoing clinical trials, patent literature, and medicinal chemistry campaigns on ATM/ATR/DNA-PK inhibitors as antitumor agents. Notably, the medicinal chemistry campaigns employed robust drug design strategies and aimed at assembling new structural templates with amplified DDR kinase inhibitory ability, as well as outwitting the pharmacokinetic liabilities of the existing DDR kinase inhibitors. Given the success attained through such endeavours, the clinical pipeline of DNA repair kinase inhibitors is anticipated to be supplemented by a reasonable number of tractable entries (DDR kinase inhibitors) soon.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Monika Bhardwaj
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sakshi Vanjani
- Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Abuetabh Y, Wu HH, Al Yousef H, Persad S, Schlosser MP, Eisenstat DD, Sergi CM, Leng R. Deciphering UBE4B phosphorylation dynamics: a key mechanism in p53 accumulation and cancer cell response to DNA damage. Cell Death Discov 2025; 11:131. [PMID: 40175346 PMCID: PMC11965332 DOI: 10.1038/s41420-025-02441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The p53 tumor suppressor protein plays a crucial role in detecting and eliminating various oncogenic threats by promoting processes such as cell cycle arrest, DNA repair, senescence, and apoptosis. UBE4B is essential for negatively regulating p53 during normal conditions and following DNA damage. In previous studies, we demonstrated that UBE4B targets phosphorylated p53 for degradation in response to DNA damage. However, the regulation of UBE4B in relation to DNA damage in cancer is not well understood. In this study, we show that the UBE4B protein is regulated through a phosphorylation and dephosphorylation mechanism in response to DNA damage. Phosphorylation of UBE4B reduces its binding affinity to p53, leading to an accumulation of p53 in the cell. Wip1 plays a crucial role in the dephosphorylation of UBE4B, which stabilizes the activity of the UBE4B protein in response to DNA damage. UBE4B is primarily phosphorylated through ATR-mediated signaling, which reduces its binding affinity with p53, resulting in the accumulation and activation of p53. When Wip1 is inhibited, there is a significant increase in UBE4B phosphorylation, leading to more p53 accumulation and a reduction in cell growth. Therefore, understanding how UBE4B is regulated in cancer cells in response to DNA-damaging agents could help develop new therapeutic strategies to improve the prognosis for cancer patients.
Collapse
Affiliation(s)
- Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Habib Al Yousef
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Sujata Persad
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, AB, T6G 1C9, Canada
| | - Mary-Pat Schlosser
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, AB, T6G 1C9, Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, AB, T6G 1C9, Canada
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Consolato M Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
3
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
4
|
Hofstad M, Woods A, Parra K, Sychev ZE, Mazzagatti A, Huo X, Yu L, Gilbreath C, Chen WM, Davis AJ, Ly P, Drake JM, Kittler R. Dual inhibition of ATR and DNA-PKcs radiosensitizes ATM-mutant prostate cancer. Oncogene 2025:10.1038/s41388-025-03343-x. [PMID: 40119228 DOI: 10.1038/s41388-025-03343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/31/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated (ATM) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo, and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.
Collapse
Affiliation(s)
- Mia Hofstad
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Andrea Woods
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karla Parra
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zoi E Sychev
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Alice Mazzagatti
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofang Huo
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lan Yu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Collin Gilbreath
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Min Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Li T, Yu X, Wan X, Liu J, Zheng J, Sun Z, Zhao Y, Chen J, Chen H, Yang Y, Jiang B. Exploiting synthetic lethality in PDAC with antibody drug conjugates and ATR inhibition. Eur J Med Chem 2025; 286:117305. [PMID: 39874630 DOI: 10.1016/j.ejmech.2025.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/30/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy with poor prognosis. Antibody-drug conjugates (ADCs) and their combinations with various anti-tumor drugs have made great progress. Camptothecin, and its derivatives (Dxd, SN-38 or exatecan) targeted TOP1 are effective payloads due to their potent anti-tumor activity. ADCs offer a promising avenue, particularly when integrated with synthetic lethality strategies. In this study, the ADC SA-7-49 is engineered by conjugating exatecan to an anti-TROP2 antibody. The synthetic lethality between camptothecin and the ataxia telangiectasia-mutated and rad3-related (ATR) inhibitors in PDAC cells has been identified through a comprehensive screening of DNA damage response pathways. Drug interactions are quantified using Zero interaction potency (ZIP) scores. RNA sequencing is employed to elucidate the mechanisms driving synergistic effects. ATR inhibitors synergize with camptothecin by inducing apoptosis via ATR-Chk1 pathway inhibition. Knockdown of ATR enhances the sensitivity of PDAC cells to camptothecin and SA-7-49. SA-7-49 selectively targets and eradicates PDAC cells and xenografts without side effects, augmenting anti-tumor activity via synthetic lethality. Our findings reveal a novel therapeutic strategy by integrating ADC technology with synthetic lethality in PDAC.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xianqiang Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xinyao Wan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jie Zheng
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziyu Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiakang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Yifeng Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Bruciamacchie M, Garambois V, Vie N, Bessede T, Michaud HA, Chepeaux LA, Gros L, Bonnefoy N, Robin M, Brager D, Bigot K, Evrard A, Pourquier P, Colinge J, Mathonnet M, Belhabib I, Jean C, Bousquet C, Colombo PE, Jarlier M, Tosi D, Gongora C, Larbouret C. ATR inhibition potentiates FOLFIRINOX cytotoxic effect in models of pancreatic ductal adenocarcinoma by remodelling the tumour microenvironment. Br J Cancer 2025; 132:222-235. [PMID: 39613844 PMCID: PMC11746931 DOI: 10.1038/s41416-024-02904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND In pancreatic ductal adenocarcinoma (PDAC), the dense stroma rich in cancer-associated fibroblasts (CAFs) and the immunosuppressive microenvironment confer resistance to treatments. To overcome such resistance, we tested the combination of FOLFIRINOX (DNA damage-inducing chemotherapy drugs) with VE-822 (an ataxia-telangiectasia and RAD3-related inhibitor that targets DNA damage repair). METHODS PDAC spheroid models and organoids were used to assess the combination effects. Tumour growth and the immune and fibrotic microenvironment were evaluated by immunohistochemistry, single-cell analysis and spatial proteomics in patient-derived xenograft (PDX) and orthotopic immunocompetent KPC mouse models. RESULTS The FOLFIRINOX and VE-822 combination had a strong synergistic effect in several PDAC cell lines, whatever their BRCA1, BRCA2 and ATM mutation status and resistance to standard chemotherapy agents. This was associated with high DNA damage and inhibition of DNA repair signalling pathways, leading to increased apoptosis. In immunocompetent and PDX mouse models of PDAC, the combination inhibited tumour growth more effectively than FOLFIRINOX alone. This was associated with tumour microenvironment remodelling, particularly decreased proportion of fibroblast activated protein-positive CAFs and increased anti-tumorigenic immune cell infiltration and interaction. CONCLUSION The FOLFIRINOX and VE-822 combination is a promising strategy to improve FOLFIRINOX efficacy and overcome drug resistance in PDAC.
Collapse
Affiliation(s)
| | | | - Nadia Vie
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Thomas Bessede
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | | | - Laurent Gros
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | - Mathilde Robin
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Dorian Brager
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Kevin Bigot
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Alexandre Evrard
- IRCM, Univ Montpellier, Inserm, ICM, CHU Nimes, Montpellier, France
| | | | | | | | - Ismahane Belhabib
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | - Christine Jean
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | - Corinne Bousquet
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | | | - Marta Jarlier
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Diégo Tosi
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Céline Gongora
- IRCM, Univ Montpellier, Inserm, ICM, CNRS, Montpellier, France
| | | |
Collapse
|
7
|
Rose JC, Belk JA, Wong ITL, Luebeck J, Horn HT, Daniel B, Jones MG, Yost KE, Hung KL, Kolahi KS, Curtis EJ, Kuo CJ, Bafna V, Mischel PS, Chang HY. Disparate Pathways for Extrachromosomal DNA Biogenesis and Genomic DNA Repair. Cancer Discov 2025; 15:69-82. [PMID: 39109936 PMCID: PMC11726015 DOI: 10.1158/2159-8290.cd-23-1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 01/14/2025]
Abstract
SIGNIFICANCE Our study harnesses a CRISPR-based method to examine ecDNA biogenesis, uncovering efficient circularization between double-strand breaks. ecDNAs and their corresponding chromosomal scars can form via nonhomologous end joining or microhomology-mediated end joining, but the ecDNA and scar formation processes are distinct. Based on our findings, we establish a mechanistic model of excisional ecDNA formation.
Collapse
Affiliation(s)
- John C. Rose
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Jens Luebeck
- Department of Computer Science and Engineering, UC San Diego, La Jolla, California
| | - Hudson T. Horn
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Bence Daniel
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Matthew G. Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - Kathryn E. Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - King L. Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
| | - Kevin S. Kolahi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Ellis J. Curtis
- Sarafan ChEM-H, Stanford University, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Calvin J. Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Vineet Bafna
- Department of Computer Science and Engineering, UC San Diego, La Jolla, California
- Halicioglu Data Science Institute, UC San Diego, La Jolla, California
| | - Paul S. Mischel
- Sarafan ChEM-H, Stanford University, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Howard Hughes Medical Institute, Stanford, California
| |
Collapse
|
8
|
Griffin D, Carson R, Moss D, Sessler T, Lavin D, Tiwari VK, Karelia S, Kennedy R, Savage KI, McDade S, Carie A, Pankovich J, Bazett M, Van Schaeybroeck S. Ruthenium Drug BOLD-100 Regulates BRAFMT Colorectal Cancer Cell Apoptosis through AhR/ROS/ATR Signaling Axis Modulation. Mol Cancer Res 2024; 22:1088-1101. [PMID: 39083088 PMCID: PMC7616621 DOI: 10.1158/1541-7786.mcr-24-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024]
Abstract
Patients with class I V600EBRAF-mutant (MT) colorectal cancer exhibit a poor prognosis, and their response to combined anti-BRAF/EGFR inhibition remains limited. An unmet need exits for further understanding the biology of V600EBRAFMT colorectal cancer. We used differential gene expression of BRAFWT and MT colorectal cancer cells to identify pathways underpinning BRAFMT colorectal cancer. We tested a panel of molecularly/genetically subtyped colorectal cancer cells for their sensitivity to the unfolded protein response (UPR) activator BOLD-100. To identify novel combination strategies for BOLD-100, we performed RNA sequencing and high-throughput drug screening. Pathway enrichment analysis identified significant enrichment of the UPR and DNA repair pathways in BRAFMT colorectal cancer. We found that oncogenic BRAF plays a crucial role in mediating the response to BOLD-100. Using a systems biology approach, we identified V600EBRAFMT-dependent activation of the replication stress response kinase ataxia telangiectasia and Rad3-related (ATR) as a key mediator of resistance to BOLD-100. Further analysis identified acute increases in BRAFMT-dependent-reactive oxygen species levels following treatment with BOLD-100, which promoted ATR/CHK1 activation and apoptosis. Furthermore, activation of reactive oxygen species/ATR/CHK1 following BOLD-100 was mediated through the AhR transcription factor and CYP1A1. Importantly, pharmacological blockade of this resistance pathway with ATR inhibitors synergistically increased BOLD-100-induced apoptosis and growth inhibition in BRAFMT models. These results highlight a possible novel therapeutic opportunity for BRAFMT colorectal cancer. Implications: BOLD-100 induces BRAFMT-dependent replication stress, and targeted strategies against replication stress (e.g., by using ATR inhibitors) in combination with BOLD-100 may serve as a potential novel therapeutic strategy for clinically aggressive BRAFMT colorectal cancer.
Collapse
Affiliation(s)
- Daryl Griffin
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Robbie Carson
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Debbie Moss
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Tamas Sessler
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Deborah Lavin
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Vijay K. Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast, United Kingdom
| | - Shivaali Karelia
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Richard Kennedy
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Kienan I. Savage
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Simon McDade
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Adam Carie
- Bold Therapeutics Inc., Vancouver, British Columbia
| | | | - Mark Bazett
- Bold Therapeutics Inc., Vancouver, British Columbia
| | - Sandra Van Schaeybroeck
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry, and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Duque-Afonso J, Veratti P, Rehman UU, Herzog H, Mitschke J, Greve G, Eble J, Berberich B, Thomas J, Pantic M, Waterhouse M, Gentile G, Heidenreich O, Miething C, Lübbert M. Identification of epigenetic modifiers essential for growth and survival of AML1/ETO-positive leukemia. Int J Cancer 2024; 155:2068-2079. [PMID: 39146497 DOI: 10.1002/ijc.35134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024]
Abstract
Aberrant gene expression patterns in acute myeloid leukemia (AML) with balanced chromosomal translocations are often associated with dysregulation of epigenetic modifiers. The AML1/ETO (RUNX1/MTG8) fusion protein, caused by the translocation (8;21)(q22;q22), leads to the epigenetic repression of its target genes. We aimed in this work to identify critical epigenetic modifiers, on which AML1/ETO-positive AML cells depend on for proliferation and survival using shRNA library screens and global transcriptomics approaches. Using shRNA library screens, we identified 41 commonly depleted genes in two AML1/ETO-positive cell lines Kasumi-1 and SKNO-1. We validated, genetically and pharmacologically, DNMT1 and ATR using several AML1/ETO-positive and negative cell lines. We also demonstrated in vivo differentiation of myeloblasts after treatment with the DNMT1 inhibitor decitabine in a patient with an AML1/ETO-positive AML. Bioinformatic analysis of global transcriptomics after AML1/ETO induction in 9/14/18-U937 cells identified 973 differentially expressed genes (DEGs). Three genes (PARP2, PRKCD, and SMARCA4) were both downregulated after AML1/ETO induction, and identified in shRNA screens. In conclusion, using unbiased shRNA library screens and global transcriptomics, we have identified several driver epigenetic regulators for proliferation in AML1/ETO-positive AML. DNMT1 and ATR were validated and are susceptible to pharmacological inhibition by small molecules showing promising preclinical and clinical efficacy.
Collapse
MESH Headings
- Humans
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Epigenesis, Genetic
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Cell Proliferation/genetics
- Cell Line, Tumor
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Decitabine/pharmacology
- Gene Expression Regulation, Leukemic
- RNA, Small Interfering/genetics
- DNA Methylation
- Cell Survival/genetics
- Cell Differentiation/genetics
Collapse
Affiliation(s)
- Jesús Duque-Afonso
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Pia Veratti
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partnering Site Freiburg, Freiburg, Germany
| | - Usama-Ur Rehman
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Heike Herzog
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Jan Mitschke
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partnering Site Freiburg, Freiburg, Germany
| | - Gabriele Greve
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Julian Eble
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Bettina Berberich
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Johanna Thomas
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Milena Pantic
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Miguel Waterhouse
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Gaia Gentile
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cornelius Miething
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partnering Site Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partnering Site Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Henklewska M, Pawlak A, Obmińska-Mrukowicz B. Targeting ATR Kinase as a Strategy for Canine Lymphoma and Leukaemia Treatment. Vet Comp Oncol 2024; 22:602-612. [PMID: 39300906 DOI: 10.1111/vco.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase is one of the main regulators of cell response to DNA damage and replication stress. Effectiveness of ATR targeting in human cancers has been confirmed in preclinical studies and ATR inhibitors are currently developed clinically in human oncology. In the presented study, we tested the anticancer efficacy of ATR inhibitor berzosertib in an in vitro model of canine haematopoietic cancers. Using MTT assay and flow cytometry, we assessed the cytotoxicity of berzosertib in four established canine lymphoma and leukaemia cell lines and compared it with its activity against noncancerous canine cells. Further, we estimated the level of apoptosis in berzosertib-treated cells via flow cytometry and assessed H2AX phosphorylation as a marker of DNA damage using western blot technique. In flow-cytometric analysis, we also evaluated potential synergism between berzosertib and chlorambucil and assessed the influence of berzosertib on cell cycle disturbances induced by the drug. The results demonstrated that berzosertib, even without additional DNA damaging agent, can be effective against canine lymphoma and leukaemia cells at concentrations that were harmless for noncancerous cells, although sensitivity of individual cancer cell lines varied greatly. Cell death occurred through caspase-dependent apoptosis via induction of DNA damage. Berzosertib also acted synergistically with chlorambucil, probably by preventing DNA damage repair as a consequence of S-phase arrest abrogation. In conclusion, ATR inhibition may provide a new therapeutic option for the treatment of canine lymphomas and leukaemias, but further studies are required to determine potential biomarkers of their susceptibility.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
11
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Song G, Liu J, Tang X, Zhong J, Zeng Y, Zhang X, Zhou J, Zhou J, Cao L, Zhang Q, Li Y. Cell cycle checkpoint revolution: targeted therapies in the fight against malignant tumors. Front Pharmacol 2024; 15:1459057. [PMID: 39464635 PMCID: PMC11505109 DOI: 10.3389/fphar.2024.1459057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Malignant tumors are among the most important causes of death worldwide. The pathogenesis of a malignant tumor is complex and has not been fully elucidated. Studies have shown that such pathogenesis is related to abnormal cell cycle progression. The expression levels of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors as well as functions of the cell cycle checkpoints determine whether the cell cycle progression is smooth. Cell-cycle-targeting drugs have the advantages of high specificity, low toxicity, low side effects, and low drug resistance. Identifying drugs that target the cell cycle and applying them in clinical treatments are expected to promote chemotherapeutic developments against malignant tumors. This article aims to review drugs targeted against the cell cycle and their action mechanisms.
Collapse
Affiliation(s)
- Guangming Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jue Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, The affiliated Zhuzhou hospital Xiangya medical college, Central South University, Zhuzhou, Hunan, China
| | - Jie Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuhuan Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaodi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianbin Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lu Cao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, The affiliated Zhuzhou hospital Xiangya medical college, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
13
|
Bright SJ, Manandhar M, Flint DB, Kolachina R, Ben Kacem M, Martinus DK, Turner BX, Qureshi I, McFadden CH, Marinello PC, Shaitelman SF, Sawakuchi GO. ATR inhibition radiosensitizes cells through augmented DNA damage and G2 cell cycle arrest abrogation. JCI Insight 2024; 9:e179599. [PMID: 39235982 PMCID: PMC11466186 DOI: 10.1172/jci.insight.179599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Ataxia telangiectasia and Rad3-related protein (ATR) is a key DNA damage response protein that facilitates DNA damage repair and regulates cell cycle progression. As such, ATR is an important component of the cellular response to radiation, particularly in cancer cells, which show altered DNA damage response and aberrant cell cycle checkpoints. Therefore, ATR's pharmacological inhibition could be an effective radiosensitization strategy to improve radiotherapy. We assessed the ability of an ATR inhibitor, AZD6738, to sensitize cancer cell lines of various histologic types to photon and proton radiotherapy. We found that radiosensitization took place through persistent DNA damage and abrogated G2 cell cycle arrest. We also found that AZD6738 increased the number of micronuclei after exposure to radiotherapy. We found that combining radiation with AZD6738 led to tumor growth delay and prolonged survival relative to radiation alone in a breast cancer model. Combining AZD6738 with photons or protons also led to increased macrophage infiltration at the tumor microenvironment. These results provide a rationale for further investigation of ATR inhibition in combination with radiotherapy and with other agents such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Scott J. Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mandira Manandhar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B. Flint
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rishab Kolachina
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Mariam Ben Kacem
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David K.J. Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Broderick X. Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ilsa Qureshi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Conor H. McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Poliana C. Marinello
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simona F. Shaitelman
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriel O. Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
14
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
15
|
Zhao H, Li J, You Z, Lindsay HD, Yan S. Distinct regulation of ATM signaling by DNA single-strand breaks and APE1. Nat Commun 2024; 15:6517. [PMID: 39112456 PMCID: PMC11306256 DOI: 10.1038/s41467-024-50836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
In response to DNA double-strand breaks or oxidative stress, ATM-dependent DNA damage response (DDR) is activated to maintain genome integrity. However, it remains elusive whether and how DNA single-strand breaks (SSBs) activate ATM. Here, we provide direct evidence in Xenopus egg extracts that ATM-mediated DDR is activated by a defined SSB structure. Our mechanistic studies reveal that APE1 promotes the SSB-induced ATM DDR through APE1 exonuclease activity and ATM recruitment to SSB sites. APE1 protein can form oligomers to activate the ATM DDR in Xenopus egg extracts in the absence of DNA and can directly stimulate ATM kinase activity in vitro. Our findings reveal distinct mechanisms of the ATM-dependent DDR activation by SSBs in eukaryotic systems and identify APE1 as a direct activator of ATM kinase.
Collapse
Affiliation(s)
- Haichao Zhao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jia Li
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Howard D Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, USA.
| |
Collapse
|
16
|
Liu W, Feng W, Zhang Y, Lei T, Wang X, Qiao T, Chen Z, Song W. RP11-789C1.1 inhibits gastric cancer cell proliferation and accelerates apoptosis via the ATR/CHK1 signaling pathway. Chin Med J (Engl) 2024; 137:1835-1843. [PMID: 37882063 DOI: 10.1097/cm9.0000000000002869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) plays an important role in the progression of gastric cancer (GC). Their involvement ranges from genetic regulation to cancer progression. However, the mechanistic roles of RP11-789C1.1 in GC are not fully understood. METHODS We identified the expression of lncRNA RP11-789C1.1 in GC tissues and cell lines by real-time fluorescent quantitative polymerase chain reaction. A series of functional experiments revealed the effect of RP11-789C1.1 on the proliferation of GC cells. In vivo experiments verified the effect of RP11-789C1.1 on the biological behavior of a GC cell line. RNA pull-down unveiled RP11-789C1.1 interacting proteins. Western blot analysis indicated the downstream pathway changes of RP11-789C1.1, and an oxaliplatin dosing experiment disclosed the influence of RP11-789C1.1 on the drug sensitivity of oxaliplatin. RESULTS Our results demonstrated that RP11-789C1.1 inhibited the proliferation of GC cells and promoted the apoptosis of GC cells. Mechanistically, RP11-789C1.1 inhibited checkpoint kinase 1 (CHK1) phosphorylation by binding ataxia-telangiectasia mutated and Rad3 related (ATR), a serine/threonine-specific protein kinase, promoted GC apoptosis, and mediated oxaliplatin sensitivity. CONCLUSION In general, we discovered a tumor suppressor molecule RP11-789C1.1 and confirmed its mechanism of action, providing a theoretical basis for targeted GC therapy.
Collapse
Affiliation(s)
- Wenwei Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518000, China
| | - Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tang Qiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
17
|
Jadav R, Weiland F, Noordermeer SM, Carroll T, Gao Y, Wang J, Zhou H, Lamoliatte F, Toth R, Macartney T, Brown F, Hastie CJ, Alabert C, van Attikum H, Zenke F, Masson JY, Rouse J. Chemo-Phosphoproteomic Profiling with ATR Inhibitors Berzosertib and Gartisertib Uncovers New Biomarkers and DNA Damage Response Regulators. Mol Cell Proteomics 2024; 23:100802. [PMID: 38880245 PMCID: PMC11338954 DOI: 10.1016/j.mcpro.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.
Collapse
Affiliation(s)
- Rathan Jadav
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Florian Weiland
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Genetics, Oncode Institute, Utrecht, The Netherlands
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Yuandi Gao
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - Jianming Wang
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Zenke
- EMD Serono, Research Unit Oncology, Billerica, Massachusetts, USA
| | - Jean-Yves Masson
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK.
| |
Collapse
|
18
|
Deppas JJ, Kiesel BF, Guo J, Parise RA, Clump DA, D'Argenio DZ, Bakkenist CJ, Beumer JH. Non-linear IV pharmacokinetics of the ATR inhibitor berzosertib (M6620) in mice. Cancer Chemother Pharmacol 2024; 94:271-283. [PMID: 38743253 PMCID: PMC11390321 DOI: 10.1007/s00280-024-04675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The Ataxia Telangiectasia and Rad3-related (ATR) protein complex is an apical initiator of DNA damage response pathways. Several ATR inhibitors (ATRi) are in clinical development including berzosertib (formerly M6620, VX-970). Although clinical studies have examined plasma pharmacokinetics (PK) in humans, little is known regarding dose/exposure relationships and tissue distribution. To understand these concepts, we extensively characterized the PK of berzosertib in mouse plasma and tissues. METHODS A highly sensitive LC-MS/MS method was utilized to quantitate berzosertib in plasma and tissues. Dose proportionality was assessed in female BALB/c mice following single IV doses (2, 6, 20 or 60 mg/kg). A more extensive PK study was conducted in tumor-bearing mice following a single IV dose of 20 mg/kg to evaluate distribution to tissues. PK parameters were calculated by non-compartmental analysis (NCA). A compartmental model was developed to describe the PK behavior of berzosertib. Plasma protein binding was determined in vitro. RESULTS Increased doses of berzosertib were associated with less than proportional increases in early plasma concentrations and greater than proportional increase in tissue exposure, attributable to saturation of plasma protein binding. Berzosertib extensively distributed into bone marrow, tumor, thymus, and lymph nodes, however; brain and spinal cord exposure was less than plasma. CONCLUSION The nonlinear PK of berzosertib displayed here can be attributed to saturation of plasma protein binding and occurred at concentrations close to those observed in clinical trials. Our results will help to understand preclinical pharmacodynamic and toxicity data and to inform optimal dosing and deployment of berzosertib.
Collapse
Affiliation(s)
- Joshua J Deppas
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian F Kiesel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianxia Guo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Robert A Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - D Andy Clump
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Z D'Argenio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Ming S, Zhang S, Xing J, Yang G, Zeng L, Wang J, Chu B. Alphaherpesvirus manipulates retinoic acid metabolism for optimal replication. iScience 2024; 27:110144. [PMID: 38989466 PMCID: PMC11233922 DOI: 10.1016/j.isci.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Retinoic acid (RA), derived from retinol (ROL), is integral to cell growth, differentiation, and organogenesis. It is known that RA can inhibit herpes simplex virus (HSV) replication, but the interactions between alphaherpesviruses and RA metabolism are unclear. Our present study revealed that alphaherpesvirus (HSV-1 and Pseudorabies virus, PRV) infections suppressed RA synthesis from ROL by activating P53, which increased retinol reductase 3 (DHRS3) expression-an enzyme that converts retinaldehyde back to ROL. This process depended on the virus-triggered DNA damage response, the degradation of class I histone deacetylases, and the subsequent hyperacetylation of histones H3 and H4. Counteracting DHRS3 or P53 enabled higher RA synthesis and reduced viral growth. RA enhanced antiviral defenses by promoting ABCA1- and ABCG1-mediated lipid efflux. Treatment with the retinoic acid receptor (RAR) agonist palovarotene protected mice from HSV-1 infection, thus providing a potential therapeutic strategy against viral infections.
Collapse
Affiliation(s)
- Shengli Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Shijun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Jiayou Xing
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Guoyu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan Province, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan Province, China
| |
Collapse
|
20
|
Hofstad M, Woods A, Parra K, Sychev ZE, Mazzagatti A, Yu L, Gilbreath C, Ly P, Drake JM, Kittler R. Dual inhibition of ATR and DNA-PKcs radiosensitizes ATM-mutant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602941. [PMID: 39026771 PMCID: PMC11257504 DOI: 10.1101/2024.07.10.602941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated ( ATM ) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo , and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.
Collapse
|
21
|
Hu YM, Liu XC, Hu L, Dong ZW, Yao HY, Wang YJ, Zhao WJ, Xiang YK, Liu Y, Wang HB, Yin QK. Inhibition of the ATR-DNAPKcs-RB axis drives G1/S-phase transition and sensitizes triple-negative breast cancer (TNBC) to DNA holliday junctions. Biochem Pharmacol 2024; 225:116310. [PMID: 38788960 DOI: 10.1016/j.bcp.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Targeting the DNA damage response (DDR) is a promising strategy in oncotherapy, as most tumor cells are sensitive to excess damage due to their repair defects. Ataxia telangiectasia mutated and RAD3-related protein (ATR) is a damage response signal transduction sensor, and its therapeutic potential in tumor cells needs to be precisely investigated. Herein, we identified a new axis that could be targeted by ATR inhibitors to decrease the DNA-dependent protein kinase catalytic subunit (DNAPKcs), downregulate the expression of the retinoblastoma (RB), and drive G1/S-phase transition. Four-way DNA Holliday junctions (FJs) assembled in this process could trigger S-phase arrest and induce lethal chromosome damage in RB-positive triple-negative breast cancer (TNBC) cells. Furthermore, these unrepaired junctions also exerted toxic effects to RB-deficient TNBC cells when the homologous recombination repair (HRR) was inhibited. This study proposes a precise strategy for treating TNBC by targeting the DDR and extends our understanding of ATR and HJ in tumor treatment.
Collapse
Affiliation(s)
- Yue-Miao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Xue-Cun Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Lei Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Zhi-Wen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China; Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Hong-Ying Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Ying-Jie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Wen-Jing Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Yu-Ke Xiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Hong-Bo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China.
| | - Qi-Kun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China.
| |
Collapse
|
22
|
Yang ZX, Deng DH, Gao ZY, Zhang ZK, Fu YW, Wen W, Zhang F, Li X, Li HY, Zhang JP, Zhang XB. OliTag-seq enhances in cellulo detection of CRISPR-Cas9 off-targets. Commun Biol 2024; 7:696. [PMID: 38844522 PMCID: PMC11156888 DOI: 10.1038/s42003-024-06360-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
The potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events. OliTag-seq employs a stable oligonucleotide for precise break tagging and an innovative triple-priming amplification strategy, significantly improving the scope and accuracy of off-target site identification. This method surpasses traditional assays by providing comprehensive coverage across various sgRNAs and genomic targets. Our research particularly highlights the superior sensitivity of induced pluripotent stem cells (iPSCs) in detecting off-target mutations, advocating for using patient-derived iPSCs for refined off-target analysis in therapeutic gene editing. Furthermore, we provide evidence that prolonged Cas9 expression and transient HDAC inhibitor treatments enhance the assay's ability to uncover off-target events. OliTag-seq merges the high sensitivity typical of in vitro assays with the practical application of cellular contexts. This approach significantly improves the safety and efficacy profiles of CRISPR-Cas9 interventions in research and clinical environments, positioning it as an essential tool for the precise assessment and refinement of genome editing applications.
Collapse
Grants
- the National Key Research and Development Program of China (Grant Nos. 2019YFA0110803, 2019YFA0110204, and 2021YFA1100900), the National Natural Science Foundation of China (Grant Nos. 82070115 and 81890990), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) (Grant Nos. 2022-I2M-2-003, 2022-I2M-2-001, 2021-I2M-1-041, 2021-I2M-1-040, and 2021-I2M-1-001), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (Grant No. 2020-PT310-011), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (Grant No. TSBICIP-KJGG-017), the CAMS Fundamental Research Funds for Central Research Institutes (Grant No. 3332021093), the Haihe Laboratory of Cell Ecosystem Innovation Fund (Grant No. HH23KYZX0005 and HH22KYZX0022), the State Key Laboratory of Experimental Hematology Research Grant (Grant No. Z23-05), and the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20230081)
Collapse
Affiliation(s)
- Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Dong-Hao Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Zhu-Ying Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Zhi-Kang Zhang
- College of Computer Science and Technology, China University of Petroleum (East China), 266000, Qingdao, China
| | - Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Xiang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Hua-Yu Li
- College of Computer Science and Technology, China University of Petroleum (East China), 266000, Qingdao, China.
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| |
Collapse
|
23
|
Ding Y, Li L, Han D, Wang S, Chen X. Head and Neck Malignant Paragangliomas: Experience from a Single Institution. EAR, NOSE & THROAT JOURNAL 2024; 103:298-304. [PMID: 34654328 DOI: 10.1177/01455613211052338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives: To summarize the clinicopathological and genetic features of malignant paragangliomas in head and neck cancer and to explore the appropriate treatment options for this rare lesion. Methods: Six patients harboring head and neck malignant paraganglioma from Beijing Tongren Hospital were retrospectively reviewed. The clinicopathological characteristics, gene mutations, and prognosis of these patients were analyzed. Results: Of these 6 patients, 3 were male and 3 were female; 4 patients harbored malignant carotid body tumors, and two had malignant vagal paragangliomas. Three patients had cervical lymph node metastasis, two presented with lung and bone metastasis, and 1 had lung and liver metastasis. Of the 6 patients, four underwent surgical resection, and the other two patients denied surgery and instead received chemotherapy with paclitaxel, ifosfamide, and dacarbazine. These 2 patients with vagal paraganglioma received postoperative radiotherapy. All 6 patients are still alive at the present time, with a median follow-up time of 66 months. Positive Ki-67 expression in tumor tissue ranged from 1% to 40%. Genetic mutations in SDHD, SDHB, ATR, and MAP3K13 were identified in 4 patients. Conclusions: After comprehensive treatment, head and neck malignant paraganglioma can attain a favorable prognosis. Genetic mutations are commonly detected in patients with malignant paragangliomas. This study also identified mutations in ATR and MAP3K13 in these patients.
Collapse
Affiliation(s)
- Yiming Ding
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Lifeng Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Demin Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Shaozhong Wang
- Otolaryngology of Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Xiaohong Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Jabbour SK, Kumar R, Anderson B, Chino JP, Jethwa KR, McDowell L, Lo AC, Owen D, Pollom EL, Tree AC, Tsang DS, Yom SS. Combinatorial Approaches for Chemotherapies and Targeted Therapies With Radiation: United Efforts to Innovate in Patient Care. Int J Radiat Oncol Biol Phys 2024; 118:1240-1261. [PMID: 38216094 DOI: 10.1016/j.ijrobp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Combinatorial therapies consisting of radiation therapy (RT) with systemic therapies, particularly chemotherapy and targeted therapies, have moved the needle to augment disease control across nearly all disease sites for locally advanced disease. Evaluating these important combinations to incorporate more potent therapies with RT will aid our understanding of toxicity and efficacy for patients. This article discusses multiple disease sites and includes a compilation of contributions from expert Red Journal editors from each disease site. Leveraging improved systemic control with novel agents, we must continue efforts to study novel treatment combinations with RT.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey.
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey
| | - Bethany Anderson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Junzo P Chino
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lachlan McDowell
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrea C Lo
- Department of Radiation Oncology, BC Cancer Vancouver Centre, Vancouver, British Columbia, Canada
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Alison C Tree
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, California
| |
Collapse
|
25
|
Zhou H, Wang YX, Wu M, Lan X, Xiang D, Cai R, Ma Q, Miao J, Fang X, Wang J, Luo D, He Z, Cui Y, Liang P, Wang Y, Bian XW. FANCD2 deficiency sensitizes SHH medulloblastoma to radiotherapy via ferroptosis. J Pathol 2024; 262:427-440. [PMID: 38229567 DOI: 10.1002/path.6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hong Zhou
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Min Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dongfang Xiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Xuanyu Fang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Junjie Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dan Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| | - Xiu-Wu Bian
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| |
Collapse
|
26
|
Mihanfar A, Asghari F, Majidinia M. Ataxia telangiectasia and Rad3-related (ATR) inhibition by VE-822 potently reversed 5-flourouracil resistance in colorectal cancer cells through targeting DNA damage response. Mol Biol Rep 2024; 51:474. [PMID: 38553623 DOI: 10.1007/s11033-024-09431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND VE-822 is a novel inhibitor of ATR, a key kinase involved in the DNA damage response pathway. The role of ATR inhibition in reversing drug resistance in various cancer types has been investigated. Therefore, this study investigated the effects of ATR inhibition by VE-822 on reversing 5-fluorouracil (5-FU) resistance in colorectal cancer cell line (Caco-2). METHODS Caco-2 and 5-FU resistance Caco-2 (Caco-2/5-FU) cells were treated with 5-FU and VE-822, alone and in combination. Cell proliferation and viability were assessed by MTT assay and Trypan Blue staining. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) activities were measured by Rhodamine123 accumulation and uptake assay. The mRNA levels of P-gp, MRP-1, ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 1 (CHK1) were measured by qRT-PCR. Western blot was used to measure the protein levels of P-gp, MRP-1, γ-H2AX, ATR and CHK1 in cells. 8-Oxo-2'-deoxyguanosine (8-oxo-dG) levels were determined via ELISA. Apoptosis was evaluated by ELISA death assay, DAPI staining and lactate dehydrogenase (LDH) assay. RESULTS The Caco-2/5-FU cells showed lower levels of 5-FU mediated proliferation inhibition in comparison to Caco-2 cells. VE-822 decreased the IC50 value of 5-FU on resistant cells. In addition, the expression levels and activity of P-gp and MRP-1 were significantly decreased in resistant cells treated with VE-822 (P < 0.05). The combination of 5-FU and VE-822 increased apoptosis in Caco-2/5-FU cells by downregulating CHK1 and ATR and upregulating γ-H2AX and 8-oxo-dG. CONCLUSION The simultaneous treatment of resistant colorectal cancer cells with 5-FU and ATR inhibitor, VE-822, was demonstrated to be effective in reversing drug resistance and potentiating 5-FU mediated anticancer effects via targeting DNA damage.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Asghari
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
27
|
Javed SR, Lord S, El Badri S, Harman R, Holmes J, Kamzi F, Maughan T, McIntosh D, Mukherjee S, Ooms A, Radhakrishna G, Shaw P, Hawkins MA. CHARIOT: a phase I study of berzosertib with chemoradiotherapy in oesophageal and other solid cancers using time to event continual reassessment method. Br J Cancer 2024; 130:467-475. [PMID: 38129525 PMCID: PMC10844302 DOI: 10.1038/s41416-023-02542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Berzosertib (M6620) is a highly potent (IC50 = 19 nM) and selective, first-in-class ataxia telangiectasia-mutated and Rad3-related protein kinase (ATR) inhibitor. This trial assessed the safety, preliminary efficacy, and tolerance of berzosertib in oesophageal cancer (A1 cohort) with RT and advanced solid tumours (A2 cohort) with cisplatin and capecitabine. METHODS Single-arm, open-label dose-escalation (Time-to-Event Continual Reassessment Method) trial with 16 patients in A1 and 18 in A2. A1 tested six dose levels of berzosertib with RT (35 Gy over 15 fractions in 3 weeks). RESULTS No dose-limiting toxicities (DLTs) in A1. Eight grade 3 treatment-related AEs occurred in five patients, with rash being the most common. The highest dose (240 mg/m2) was determined as the recommended phase II dose (RP2D) for A1. Seven DLTs in two patients in A2. The RP2D of berzosertib was 140 mg/m2 once weekly. The most common grade ≥3 treatment-related AEs were neutropenia and thrombocytopenia. No treatment-related deaths were reported. CONCLUSIONS Berzosertib combined with RT is feasible and well tolerated in oesophageal cancer patients at high palliative doses. Berzosertib with cisplatin and capecitabine was well tolerated in advanced cancer. Further investigation is warranted in a phase 2 setting. CLINICAL TRIALS IDENTIFIER EU Clinical Trials Register (EudraCT) - 2015-003965-27 ClinicalTrials.gov - NCT03641547.
Collapse
Affiliation(s)
- S R Javed
- Department of Oncology, University of Oxford, Oxford, UK
| | - S Lord
- Department of Oncology, University of Oxford, Oxford, UK
| | - S El Badri
- Department of Oncology, University of Oxford, Oxford, UK
| | - R Harman
- Department of Oncology, University of Oxford, Oxford, UK
| | - J Holmes
- Primary Care Clinical Trials Unit, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - F Kamzi
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - T Maughan
- Department of Oncology, University of Oxford, Oxford, UK
| | - D McIntosh
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - S Mukherjee
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - A Ooms
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - P Shaw
- Velindre University NHS Trust, Cardiff, UK
| | - M A Hawkins
- UCL Medical Physics and Biomedical Engineering, University College London, London, UK.
| |
Collapse
|
28
|
Scheper J, Hildebrand LS, Faulhaber EM, Deloch L, Gaipl US, Symank J, Fietkau R, Distel LV, Hecht M, Jost T. Tumor-specific radiosensitizing effect of the ATM inhibitor AZD0156 in melanoma cells with low toxicity to healthy fibroblasts. Strahlenther Onkol 2023; 199:1128-1139. [PMID: 36229655 PMCID: PMC10673781 DOI: 10.1007/s00066-022-02009-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Despite new treatment options, melanoma continues to have an unfavorable prognosis. DNA damage response (DDR) inhibitors are a promising drug class, especially in combination with chemotherapy (CT) or radiotherapy (RT). Manipulating DNA damage repair during RT is an opportunity to exploit the genomic instability of cancer cells and may lead to radiosensitizing effects in tumors that could improve cancer therapy. METHODS A panel of melanoma-derived cell lines of different origin were used to investigate toxicity-related clonogenic survival, cell death, and cell cycle distribution after treatment with a kinase inhibitor (KI) against ATM (AZD0156) or ATR (VE-822, berzosertib), irradiation with 2 Gy, or a combination of KI plus ionizing radiation (IR). Two fibroblast cell lines generated from healthy skin tissue were used as controls. RESULTS Clonogenic survival indicated a clear radiosensitizing effect of the ATM inhibitor (ATMi) AZD0156 in all melanoma cells in a synergistic manner, but not in healthy tissue fibroblasts. In contrast, the ATR inhibitor (ATRi) VE-822 led to additive enhancement of IR-related toxicity in most of the melanoma cells. Both inhibitors mainly increased cell death induction in combination with IR. In healthy fibroblasts, VE-822 plus IR led to higher cell death rates compared to AZD0156. A significant G2/M block was particularly induced in cancer cells when combining AZD0156 with IR. CONCLUSION ATMi, in contrast to ATRi, resulted in synergistic radiosensitization regarding colony formation in melanoma cancer cells, while healthy tissue fibroblasts were merely affected with respect to cell death induction. In connection with an increased number of melanoma cells in the G2/M phase after ATMi plus IR treatment, ATMi seems to be superior to ATRi in melanoma cancer cell treatments when combined with RT.
Collapse
Affiliation(s)
- Julian Scheper
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Laura S Hildebrand
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Eva-Maria Faulhaber
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Julia Symank
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Tina Jost
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany.
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
29
|
Schnoell J, Sparr C, Al-Gboore S, Haas M, Brkic FF, Kadletz-Wanke L, Heiduschka G, Jank BJ. The ATR inhibitor berzosertib acts as a radio- and chemosensitizer in head and neck squamous cell carcinoma cell lines. Invest New Drugs 2023; 41:842-850. [PMID: 37934325 PMCID: PMC10663216 DOI: 10.1007/s10637-023-01408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Alterations in the DNA damage response play a crucial role in radio- and chemoresistance of neoplastic cells. Activation of the Ataxia telangiectasia and Rad3-related (ATR) pathway is an important DNA damage response mechanism in head and neck squamous cell carcinoma (HNSCC). Berzosertib, a selective ATR inhibitor, shows promising radio- and chemosensitizing effects in preclinical studies and is well tolerated in clinical studies. The aim of this study was to elucidate the effect of berzosertib treatment in combination with radiation and cisplatin in HNSCC. The HNSCC cell lines Cal-27 and FaDu were treated with berzosertib alone and in combination with radiation or cisplatin. Cell viability and clonogenic survival were evaluated. The effect of combination treatment was evaluated with the SynergyFinder or combination index. Apoptosis was assessed via measurement of caspase 3/7 activation and migration was evaluated using a wound healing assay. Berzosertib treatment decreased cell viability in a dose-dependent manner and increased apoptosis. The IC50 of berzosertib treatment after 72 h was 0.25-0.29 µM. Combination with irradiation treatment led to a synergistic increase in radiosensitivity and a synergistic or additive decrease in colony formation. The combination of berzosertib and cisplatin decreased cell viability in a synergistic manner. Additionally, berzosertib inhibited migration at high doses. Berzosertib displays a cytotoxic effect in HNSCC at clinically relevant doses. Further evaluation of combination treatment with irradiation and cisplatin is strongly recommended in HNSCC patients as it may hold the potential to overcome treatment resistance, reduce treatment doses and thus mitigate adverse events.
Collapse
Affiliation(s)
- Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Carmen Sparr
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sega Al-Gboore
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Haas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Faris F Brkic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Wang R, Sun Y, Li C, Xue Y, Ba X. Targeting the DNA Damage Response for Cancer Therapy. Int J Mol Sci 2023; 24:15907. [PMID: 37958890 PMCID: PMC10648182 DOI: 10.3390/ijms242115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Over the course of long-term evolution, cells have developed intricate defense mechanisms in response to DNA damage; these mechanisms play a pivotal role in maintaining genomic stability. Defects in the DNA damage response pathways can give rise to various diseases, including cancer. The DNA damage response (DDR) system is instrumental in safeguarding genomic stability. The accumulation of DNA damage and the weakening of DDR function both promote the initiation and progression of tumors. Simultaneously, they offer opportunities and targets for cancer therapeutics. This article primarily elucidates the DNA damage repair pathways and the progress made in targeting key proteins within these pathways for cancer treatment. Among them, poly (ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DDR, and inhibitors targeting PARP1 have garnered extensive attention in anticancer research. By delving into the realms of DNA damage and repair, we aspire to explore more precise and effective strategies for cancer therapy and to seek novel avenues for intervention.
Collapse
Affiliation(s)
- Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (Y.S.)
| | - Yating Sun
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (Y.S.)
| | - Chunshuang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| | - Yaoyao Xue
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| |
Collapse
|
31
|
Zhang S, Zhao Y, Wang X, Qi C, Tian J, Zou Z. Synergistic lethality between auranofin-induced oxidative DNA damage and ATR inhibition in cancer cells. Life Sci 2023; 332:122131. [PMID: 37778414 DOI: 10.1016/j.lfs.2023.122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
AIMS Studies in the past have shown that inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase sensitizes cancer cells to genotoxic anticancer treatments, however, clinical use of ATR inhibitors in combination with DNA damaging chemotherapy is limited due to toxicity in healthy tissues. In this study, we investigated the synergistic anticancer effect between ATR inhibition and oxidative DNA damage induced by the thioredoxin reductase inhibitor auranofin. MAIN METHODS Cytotoxicity was evaluated by cell viability assays. Western blot, comet assay, immunostaining and flow cytometry were performed to dissect the underlying mechanisms. In vivo efficacy was examined against tumor xenografts. KEY FINDINGS Nontoxic doses of auranofin alone increased the levels of reactive oxygen species (ROS) in cancer but not noncancerous cells, resulting in oxidative DNA damage and activation of the ATR DNA damage response pathway selectively in cancer cells. Inhibition of ATR in auranofin-treated cancer cells resulted in unscheduled firing of dormant DNA replication origins, abrogation of the S phase cell cycle checkpoint and extensive DNA breakage, leading to replication catastrophe and potent synergistic lethality. Both the antioxidant NAC and the DNA polymerase inhibitor aphidicolin reduced replication stress and synergistic cytotoxicity, implicating replication stress-driven catastrophic cell death resulted from collision between oxidative DNA damage and dysregulated DNA replication. In vivo, auranofin and VE822 coadministration enabled marked regressions of tumor xenografts, while each drug alone had no effect. SIGNIFICANCE As increased generation of ROS is a universal feature of tumors, our findings may open new routes to broaden the therapeutic potential of ATR inhibitors.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Zhao
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ce Qi
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialiang Tian
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zhihua Zou
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
32
|
Rose JC, Wong ITL, Daniel B, Jones MG, Yost KE, Hung KL, Curtis EJ, Mischel PS, Chang HY. Disparate pathways for extrachromosomal DNA biogenesis and genomic DNA repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563489. [PMID: 37961138 PMCID: PMC10634728 DOI: 10.1101/2023.10.22.563489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Oncogene amplification on extrachromosomal DNA (ecDNA) is a pervasive driver event in cancer, yet our understanding of how ecDNA forms is limited. Here, we couple a CRISPR-based method for induction of ecDNA with extensive characterization of newly formed ecDNA to examine ecDNA biogenesis. We find that DNA circularization is efficient, irrespective of 3D genome context, with formation of a 1 Mb and 1.8 Mb ecDNA both reaching 15%. We show non-homologous end joining and microhomology mediated end joining both contribute to ecDNA formation, while inhibition of DNA-PKcs and ATM have opposing impacts on ecDNA formation. EcDNA and the corresponding chromosomal excision scar form at significantly different rates and respond differently to DNA-PKcs and ATM inhibition. Taken together, our results support a model of ecDNA formation in which double strand break ends dissociate from their legitimate ligation partners prior to joining of illegitimate ends to form the ecDNA and excision scar.
Collapse
Affiliation(s)
- John C Rose
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bence Daniel
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew G Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Ellis J Curtis
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul S Mischel
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| |
Collapse
|
33
|
Ahmed-Seghir S, Jalan M, Grimsley HE, Sharma A, Twayana S, Kosiyatrakul ST, Thompson C, Schildkraut CL, Powell SN. A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells. eLife 2023; 12:RP87357. [PMID: 37647215 PMCID: PMC10468204 DOI: 10.7554/elife.87357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
When replication forks encounter DNA lesions that cause polymerase stalling, a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood. We utilized the Escherichia coli-based Tus-Ter system in human MCF7 cells and showed that the Tus protein binding to TerB sequences creates an efficient site-specific RFB. The single fork RFB was sufficient to activate a local, but not global, ATR-dependent checkpoint response that leads to phosphorylation and accumulation of DNA damage sensor protein γH2AX, confined locally to within a kilobase of the site of stalling. These data support a model of local management of fork stalling, which allows global replication at sites other than the RFB to continue to progress without delay.
Collapse
Affiliation(s)
- Sana Ahmed-Seghir
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Manisha Jalan
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Helen E Grimsley
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Aman Sharma
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Shyam Twayana
- Department of Cell Biology, Albert Einstein College of MedicineNew YorkUnited States
| | | | - Christopher Thompson
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of MedicineNew YorkUnited States
| | - Simon N Powell
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
34
|
Biswas H, Makinwa Y, Zou Y. Novel Cellular Functions of ATR for Therapeutic Targeting: Embryogenesis to Tumorigenesis. Int J Mol Sci 2023; 24:11684. [PMID: 37511442 PMCID: PMC10380702 DOI: 10.3390/ijms241411684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The DNA damage response (DDR) is recognized as having an important role in cancer growth and treatment. ATR (ataxia telangiectasia mutated and Rad3-related) kinase, a major regulator of DDR, has shown significant therapeutic potential in cancer treatment. ATR inhibitors have shown anti-tumor effectiveness, not just as monotherapies but also in enhancing the effects of standard chemotherapy, radiation, and immunotherapy. The biological basis of ATR is examined in this review, as well as its functional significance in the development and therapy of cancer, and the justification for inhibiting this target as a therapeutic approach, including an assessment of the progress and status of previous decades' development of effective and selective ATR inhibitors. The current applications of these inhibitors in preclinical and clinical investigations as single medicines or in combination with chemotherapy, radiation, and immunotherapy are also fully reviewed. This review concludes with some insights into the many concerns highlighted or identified with ATR inhibitors in both the preclinical and clinical contexts, as well as potential remedies proposed.
Collapse
Affiliation(s)
| | | | - Yue Zou
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (H.B.); (Y.M.)
| |
Collapse
|
35
|
Calheiros J, Corbo V, Saraiva L. Overcoming therapeutic resistance in pancreatic cancer: Emerging opportunities by targeting BRCAs and p53. Biochim Biophys Acta Rev Cancer 2023; 1878:188914. [PMID: 37201730 DOI: 10.1016/j.bbcan.2023.188914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pancreatic cancer (PC) is characterized by (epi)genetic and microenvironmental alterations that negatively impact the treatment outcomes. New targeted therapies have been pursued to counteract the therapeutic resistance in PC. Aiming to seek for new therapeutic options for PC, several attempts have been undertaken to exploit BRCA1/2 and TP53 deficiencies as promising actionable targets. The elucidation of the pathogenesis of PC highlighted the high prevalence of p53 mutations and their connection with the aggressiveness and therapeutic resistance of PC. Additionally, PC is associated with dysfunctions in several DNA repair-related genes, including BRCA1/2, which sensitize tumours to DNA-damaging agents. In this context, poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) were approved for mutant BRCA1/2 PC patients. However, acquired drug resistance has become a major drawback of PARPi. This review emphasizes the importance of targeting defective BRCAs and p53 pathways for advancing personalized PC therapy, with particular focus on how this approach may provide an opportunity to tackle PC resistance.
Collapse
Affiliation(s)
- Juliana Calheiros
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
36
|
Saldanha J, Rageul J, Patel JA, Kim H. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork. Int J Mol Sci 2023; 24:10488. [PMID: 37445667 PMCID: PMC10341514 DOI: 10.3390/ijms241310488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.
Collapse
Affiliation(s)
- Joanne Saldanha
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jinal A. Patel
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
37
|
Ahmed-Seghir S, Jalan M, Grimsley HE, Sharma A, Twayana S, Kosiyatrakul ST, Thompson C, Schildkraut CL, Powell SN. A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534293. [PMID: 36993263 PMCID: PMC10055377 DOI: 10.1101/2023.03.26.534293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
When replication forks encounter DNA lesions that cause polymerase stalling a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood. We utilized the E.coli -based Tus- Ter system in human MCF7 cells and showed that the Tus protein binding to TerB sequences creates an efficient site-specific RFB. The single fork RFB was sufficient to activate a local, but not global, ATR-dependent checkpoint response that leads to phosphorylation and accumulation of DNA damage sensor protein γH2AX, confined locally to within a kilobase of the site of stalling. These data support a model of local management of fork stalling, which allows global replication at sites other than the RFB to continue to progress without delay.
Collapse
|
38
|
Climova A, Pivovarova E, Szczesio M, Gobis K, Ziembicka D, Korga-Plewko A, Kubik J, Iwan M, Antos-Bielska M, Krzyżowska M, Czylkowska A. Anticancer and antimicrobial activity of new copper (II) complexes. J Inorg Biochem 2023; 240:112108. [PMID: 36592510 DOI: 10.1016/j.jinorgbio.2022.112108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this study, three new organic ligands N'-(benzylidene)-6-chloropyrazine-2-carbohydrazonamide (L1), 6-chloro-N'-(4-nitrobenzylidene)picolinohydrazonamide(L2), and N'-(benzylidene)-4-chloropicolinohydrazonamide (L3) and three copper coordination compounds (Cu(L1)Cl2, Cu(L2)Cl2 and Cu(L3)Cl2) based on them were synthesized. All obtained compounds were characterized using appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG-DTG), Fourier transform infrared spectroscopy (FTIR) and flame-atomic absorption spectrometry (F-AAS). These methods of physicochemical analyses helped to assume that the complexation in three cases proceeds in a bidentate manner. The X-ray investigation confirmed the synthesis pathway and molecular structures for L1 and L3 ligands. The antimicrobial activity of the obtained compounds was then comprehensively investigated, where Cu(L3)Cl2 showed the strongest antibacterial properties against all tested bacteria (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli). LN229 human glioma cells and BJ human normal fibroblasts cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The effect of complexing on antitumor activity has been investigated. The ligand L1 and its complex showed similar activity against normal cells while complexation increases toxicity against cancer cells in concentrations of 50 and 100 μM. For the one pair of ligand/complex compounds the apoptosis detection, cell cycle analysis and gene expression analysis (qRT-PCR) were performed. Cu(L1)Cl2 showed the stronger toxic effect in comparison with L1 due to the population of early apoptotic cells which revealed metabolic activity in MTT assay.
Collapse
Affiliation(s)
- Alina Climova
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Ekaterina Pivovarova
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Dagmara Ziembicka
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-093 Lublin, Poland.
| | - Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-093 Lublin, Poland.
| | - Magdalena Iwan
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland.
| | - Małgorzata Antos-Bielska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland.
| | - Małgorzata Krzyżowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
39
|
Qi Y, Wang K, Long B, Yue H, Wu Y, Yang D, Tong M, Shi X, Hou Y, Zhao Y. Discovery of novel 7,7-dimethyl-6,7-dihydro-5H-pyrrolo[3,4-d]pyrimidines as ATR inhibitors based on structure-based drug design. Eur J Med Chem 2023; 246:114945. [PMID: 36462444 DOI: 10.1016/j.ejmech.2022.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
ATR kinase is essential to the viability of replicating cells responding to the accumulation of single-strand breaks in DNA, which is an attractive anticancer drug target based on synthetic lethality. Herein we design, synthesize, and evaluate a novel series of fused pyrimidine derivatives as ATR inhibitors. As a result, compound 48f, with an IC50 value of 0.0030 μM against ATR, displayed strong monotherapy efficacy in ataxia-telangiectasia mutated (ATM) kinase-deficient tumor cells LoVo, SW620, OVCAR-3 cell lines with IC50 values of 0.040 μM, 0.095 μM, 0.098 μM, respectively. More importantly, the combination of 48f with AZD-1390, cisplatin, oxaliplatin, and olaparib respectively resulted in synergistic activity against HT-29, HCT116, A549, MCF-7, MDA-MB-231 cells. Moreover, 48f showed a favorable pharmacokinetic profile with a bioavailability of 30.0% in SD rats, acceptable PPB, high permeability (Papp A to B = 8.23 cm s-1 × 10-6), and low risk of drug-drug interactions. Collectively, compound 48f could be a promising compound for further investigation.
Collapse
Affiliation(s)
- Yinliang Qi
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Kun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Bin Long
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Hao Yue
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Yongshuo Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Dexiao Yang
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Minghui Tong
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Xuan Shi
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
40
|
Tjaden A, Knapp S, Müller S. Annotation of the Effect of Chemogenomic Compounds on Cell Health Using High-Content Microscopy in Live-Cell Mode. Methods Mol Biol 2023; 2706:59-73. [PMID: 37558941 DOI: 10.1007/978-1-0716-3397-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The characterization of chemogenomic libraries with respect to their general effect on cellular health represents essential data for the annotation of phenotypic responses. Here, we describe a multidimensional high-content live cell assay that allows to examine cell viability in different cell lines, based on their nuclear morphology as well as modulation of small molecules of tubulin structure, mitochondrial health, and membrane integrity. The protocol monitors cells during a time course of 48 h using osteosarcoma cells, human embryonic kidney cells, and untransformed human fibroblasts as an example. The described protocol can be easily established and it can be adapted to other cell lines or other parameters important for cellular health.
Collapse
Affiliation(s)
- Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
41
|
McQuaid K, Pipier A, Cardin C, Monchaud D. Interactions of small molecules with DNA junctions. Nucleic Acids Res 2022; 50:12636-12656. [PMID: 36382400 PMCID: PMC9825177 DOI: 10.1093/nar/gkac1043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
The four natural DNA bases (A, T, G and C) associate in base pairs (A=T and G≡C), allowing the attached DNA strands to assemble into the canonical double helix of DNA (or duplex-DNA, also known as B-DNA). The intrinsic supramolecular properties of nucleobases make other associations possible (such as base triplets or quartets), which thus translates into a diversity of DNA structures beyond B-DNA. To date, the alphabet of DNA structures is ripe with approximately 20 letters (from A- to Z-DNA); however, only a few of them are being considered as key players in cell biology and, by extension, valuable targets for chemical biology intervention. In the present review, we summarise what is known about alternative DNA structures (what are they? When, where and how do they fold?) and proceed to discuss further about those considered nowadays as valuable therapeutic targets. We discuss in more detail the molecular tools (ligands) that have been recently developed to target these structures, particularly the three- and four-way DNA junctions, in order to intervene in the biological processes where they are involved. This new and stimulating chemical biology playground allows for devising innovative strategies to fight against genetic diseases.
Collapse
Affiliation(s)
- Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Angélique Pipier
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
42
|
Li S, Wang T, Fei X, Zhang M. ATR Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235902. [PMID: 36497387 PMCID: PMC9740197 DOI: 10.3390/cancers14235902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Platinum-resistant ovarian cancer (PROC) is one of the deadliest types of epithelial ovarian cancer, and it is associated with a poor prognosis as the median overall survival (OS) is less than 12 months. Targeted therapy is a popular emerging treatment method. Several targeted therapies, including those using bevacizumab and poly (ADP-ribose) polymerase inhibitor (PARPi), have been used to treat PROC. Ataxia telangiectasia and RAD3-Related Protein Kinase inhibitors (ATRi) have attracted attention as a promising class of targeted drugs that can regulate the cell cycle and influence homologous recombination (HR) repair. In recent years, many preclinical and clinical studies have demonstrated the efficacy of ATRis in PROC. This review focuses on the anticancer mechanism of ATRis and the progress of research on ATRis for PROC.
Collapse
Affiliation(s)
- Siyu Li
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Tao Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Xichang Fei
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Mingjun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
- Correspondence:
| |
Collapse
|
43
|
DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232314672. [PMID: 36499000 PMCID: PMC9735783 DOI: 10.3390/ijms232314672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.
Collapse
|
44
|
Sivapalan L, Kocher HM, Ross-Adams H, Chelala C. The molecular landscape of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:925-936. [PMID: 35927150 DOI: 10.1016/j.pan.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer-related mortality within the next decade, with limited effective treatment options and a dismal long-term prognosis for patients. Surgical resection of early, localised disease provides the only chance for potentially curative treatment; however, most patients with PDAC present with advanced disease and are not suitable for surgery. Genomic analyses of PDAC tumour lesions have identified a small number of recurrent alterations that are detected across most tumours, and beyond that a large number that either occur at a low (<5%) prevalence or are patient-specific in nature. This molecular heterogeneity has presented a significant challenge for the characterisation of tumour subtypes and effective molecular biomarkers, which have not yet manifested clinical benefits for diagnosis, treatment or prognosis in PDAC. These challenges are compounded by the overall lack of tumour biopsies for sequencing, the invasive nature of tissue sampling and the confounding effects of low tumour cellularity in many PDAC biopsy specimens, which have limited the applications of molecular profiling in unresectable patients and for longitudinal tumour monitoring. Further investigation into alternative sources of tumour analytes that can be sampled using minimally invasive methods and used to complement molecular analyses from tissue sequencing are required.
Collapse
Affiliation(s)
- L Sivapalan
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, UK
| | - H M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - H Ross-Adams
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, UK.
| | - C Chelala
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, UK.
| |
Collapse
|
45
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
46
|
Tjaden A, Giessmann RT, Knapp S, Schröder M, Müller S. High-content live-cell multiplex screen for chemogenomic compound annotation based on nuclear morphology. STAR Protoc 2022; 3:101791. [PMID: 36317177 PMCID: PMC9617200 DOI: 10.1016/j.xpro.2022.101791] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Well-characterized small molecules enable the study of cell processes and facilitate target validation. Here, we describe a high-content multiplex screen to investigate cell viability over 48 h, which can be combined with investigating phenotypic features, such as tubulin binding and mitochondrial content, as initial cellular quality control of diverse compounds. The protocol is on a live-cell basis and easily adaptable and scalable. It details cell preparation, compound handling, plate layout configuration, image acquisition with the CQ1, and data analysis using the CellPathfinder software. For complete details on the use and execution of this protocol, please refer to Tjaden et al. (2022). A fast and flexible multiplex assay for compound annotation Evaluate cell properties in live-cell mode Machine learning techniques to optimize high-content data evaluation Easily adaptable and scalable for different phenotypic features
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.9, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Robert T Giessmann
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany; Institute for Globally Distributed Open Research and Education (IGDORE), Berlin, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.9, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Martin Schröder
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.9, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany.
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.9, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany.
| |
Collapse
|
47
|
Toulany M. Targeting K-Ras-mediated DNA damage response in radiation oncology: Current status, challenges and future perspectives. Clin Transl Radiat Oncol 2022; 38:6-14. [PMID: 36313934 PMCID: PMC9596599 DOI: 10.1016/j.ctro.2022.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Approximately 60% of cancer patients receive curative or palliative radiation. Despite the significant role of radiotherapy (RT) as a curative approach for many solid tumors, tumor recurrence occurs, partially because of intrinsic radioresistance. Accumulating evidence indicates that the success of RT is hampered by activation of the DNA damage response (DDR). The intensity of DDR signaling is affected by multiple parameters, e.g., loss-of-function mutations in tumor suppressor genes, gain-of-function mutations in protooncogenes as well as radiation-induced alterations in signal-transduction pathways. Therefore, the response to irradiation differs in tumors of different types, which makes the individualization of RT as a rational but challenging goal. One contributor to tumor cell radiation survival is signaling through the Ras pathway. Three RAS genes encode 4 Ras isoforms: K-Ras4A, K-Ras4B, H-Ras, and N-Ras. RAS family members are found to be mutated in approximately 19% of human cancers. Mutations in RAS lead to constitutive activation of the gene product and activation of multiple Ras-dependent signal-transduction cascades. Preclinical studies have shown that the expression of mutant KRAS affects DDR and increases cell survival after irradiation. Approximately 70% of RAS mutations occur in KRAS. Thus, applying targeted therapies directly against K-Ras as well as K-Ras upstream activators and downstream effectors might be a tumor-specific approach to overcome K-Ras-mediated RT resistance. In this review, the role of K-Ras in the activation of DDR signaling will be summarized. Recent progress in targeting DDR in KRAS-mutated tumors in combination with radiochemotherapy will be discussed.
Collapse
|
48
|
Saha S, Rundle S, Kotsopoulos IC, Begbie J, Howarth R, Pappworth IY, Mukhopadhyay A, Kucukmetin A, Marchbank KJ, Curtin N. Determining the Potential of DNA Damage Response (DDR) Inhibitors in Cervical Cancer Therapy. Cancers (Basel) 2022; 14:4288. [PMID: 36077823 PMCID: PMC9454916 DOI: 10.3390/cancers14174288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022] Open
Abstract
Cisplatin-based chemo-radiotherapy (CRT) is the standard treatment for advanced cervical cancer (CC) but the response rate is poor (46-72%) and cisplatin is nephrotoxic. Therefore, better treatment of CC is urgently needed. We have directly compared, for the first time, the cytotoxicity of four DDR inhibitors (rucaparib/PARPi, VE-821/ATRi, PF-477736/CHK1i and MK-1775/WEE1i) as single agents, and in combination with cisplatin and radiotherapy (RT) in a panel of CC cells. All inhibitors alone caused concentration-dependent cytotoxicity. Low ATM and DNA-PKcs levels were associated with greater VE-821 cytotoxicity. Cisplatin induced ATR, CHK1 and WEE1 activity in all of the cell lines. Cisplatin only activated PARP in S-phase cells, but RT activated PARP in the entire population. Rucaparib was the most potent radiosensitiser and VE-821 was the most potent chemosensitiser. VE-821, PF-47736 and MK-1775 attenuated cisplatin-induced S-phase arrest but tended to increase G2 phase accumulation. In mice, cisplatin-induced acute kidney injury was associated with oxidative stress and PARP activation and was prevented by rucaparib. Therefore, while all inhibitors investigated may increase the efficacy of CRT, the greatest clinical potential of rucaparib may be in limiting kidney damage, which is dose-limiting.
Collapse
Affiliation(s)
- Santu Saha
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK or
| | - Stuart Rundle
- The Northern Gynaecological Oncology Centre (NGOC), Queen Elizabeth Hospital, Gateshead NE9 6SX, UK
| | - Ioannis C. Kotsopoulos
- University College London Hospitals NHS Foundation Trust, 250 Euston Rd, London NW1 2PG, UK
| | | | - Rachel Howarth
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK or
| | - Isabel Y. Pappworth
- Translational and Clinical Research Institute, National Renal Complement Therapeutics Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Asima Mukhopadhyay
- Kolkata Gynecological Oncology Trials and Translational Research Group, Chittaranjan National Cancer Institute, Kolkata 700026, India
- Department of Gynaecological Oncology, James Cook University Hospital, Middlesbrough TS4 3BW, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ali Kucukmetin
- The Northern Gynaecological Oncology Centre (NGOC), Queen Elizabeth Hospital, Gateshead NE9 6SX, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, National Renal Complement Therapeutics Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicola Curtin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK or
| |
Collapse
|
49
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
50
|
McAleavey PG, Walls GM, Chalmers AJ. Radiotherapy-drug combinations in the treatment of glioblastoma: a brief review. CNS Oncol 2022; 11:CNS86. [PMID: 35603818 PMCID: PMC9134931 DOI: 10.2217/cns-2021-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) accounts for over 50% of gliomas and carries the worst prognosis of all solid tumors. Owing to the limited local control afforded by surgery alone, efficacious adjuvant treatments such as radiotherapy (RT) and chemotherapy are fundamental in achieving durable disease control. The best clinical outcomes are achieved with tri-modality treatment consisting of surgery, RT and systemic therapy. While RT-chemotherapy combination regimens are well established in oncology, this approach was largely unsuccessful in GBM until the introduction of temozolomide. The success of this combination has stimulated the search for other candidate drugs for concomitant use with RT in GBM. This review seeks to collate the current evidence for these agents and synthesize possible future directions for the field.
Collapse
Affiliation(s)
- Patrick G McAleavey
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, N. Ireland
| | - Gerard M Walls
- Cancer Centre Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, N. Ireland
- Patrick G Johnston Centre for Cancer Research, Jubilee Road, Belfast, BT9 7AE, N. Ireland
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1QH, Scotland
| |
Collapse
|