1
|
Ji W, Zhang Q, Sun Z, Cheng Y. LncRNA H19 Inhibits Keratinocyte Cell Proliferation and Migration by Targeting miR-17-5p/RUNX1 Axis in Chronic Wounds. J Burn Care Res 2024; 45:366-372. [PMID: 37742288 DOI: 10.1093/jbcr/irad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 09/26/2023]
Abstract
The migration and proliferation of keratinocytes are critical for re-epithelization during chronic wound healing. Runt-related transcription factor 1 (RUNX1) has been indicated to repress keratinocyte proliferation. Nonetheless, the potential molecular mechanism of RUNX1 in regulating keratinocyte proliferation and migration remains unclear. Cell counting kit-8 and wound-healing assays were implemented for examining keratinocyte viability and migration, respectively. Western blotting and real-time quantitative polymerase chain reaction were utilized for quantifying protein and RNA levels. Luciferase reporter assay was employed for verifying the interaction between RUNX1, miR-17-5p, and long noncoding RNA H19. The results showed that RUNX1 depletion promoted keratinocyte proliferation and migration and repressed extracellular matrix degradation. Mechanistically, H19 upregulated RUNX1 expression by competitively absorbing miR-17-5p. Rescue experiments revealed that overexpressing RUNX1 reversed H19 silencing-mediated effects on the phenotypes of keratinocytes. In conclusion, H19 knockdown promotes keratinocyte proliferation and migration and suppresses extracellular matrix degradation via the miR-17-5p/RUNX1 axis.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Qian Zhang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhibo Sun
- Department of Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanyang Cheng
- Department of Paediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
2
|
Ji W, Sun Z, Yang Y, Hu M, Zhang Q, Fu J, Chen J, Huang Y, Cheng Y. Downregulation of RUNX1-Activated Osteopontin Facilitates Burn Wound Healing by Activating the MAPK Pathways. J Burn Care Res 2023; 44:1371-1381. [PMID: 36913234 DOI: 10.1093/jbcr/irad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 03/14/2023]
Abstract
Burn wounds require intervention to ensure timely progression to reduce morbidity and mortality. The migrative and proliferative capabilities of keratinocytes are impaired in wounds. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix (ECM), allowing epithelial cells to migrate. As reported, osteopontin can regulate cell migration, cell adhesion, and ECM invasion in endothelial and epithelial cells, and its expression is significantly increased in chronic wounds. Therefore, this study investigates the biological functions of osteopontin and its related mechanisms involved in burn wounds. We established cellular and animal models of burn injury. Levels of osteopontin, RUNX1, MMPs, collagen I, CK19, PCNA, and pathway-associated proteins were measured by RT-qPCR, western blotting, and immunofluorescence staining. Cell viability and migration were examined by CCK-8 and wound scratch assays. Histological changes were analyzed by hematoxylin and eosin staining and Masson's trichrome staining. For in vitro analysis, osteopontin silencing facilitated the growth and migration of HaCaT cells and promoted ECM degradation in HaCaT cells. Mechanistically, RUNX1 bound to osteopontin promoter, and RUNX1 upregulation attenuated the promoting efficacy of osteopontin silencing on cell growth and migration and ECM degradation. Additionally, RUNX1-activated osteopontin inactivated the MAPK signaling pathway. For in vivo analysis, osteopontin depletion facilitated burn wound healing by promoting reepithelialization and ECM degradation. In conclusion, RUNX1 activates the osteopontin expression at the transcriptional level and osteopontin depletion facilitates the recovery of burn wounds by promoting the migration of keratinocytes and reepithelization and ECM degradation by activating the MAPK pathway.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhibo Sun
- Department of Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Yang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Meng Hu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Qian Zhang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Jie Fu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - JunWei Chen
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yan Huang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yanyang Cheng
- Department of Paediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
The RUNX Family Defines Trk Phenotype and Aggressiveness of Human Neuroblastoma through Regulation of p53 and MYCN. Cells 2023; 12:cells12040544. [PMID: 36831211 PMCID: PMC9954111 DOI: 10.3390/cells12040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The Runt-related transcription factor (RUNX) family, which is essential for the differentiation of cells of neural crest origin, also plays a potential role in neuroblastoma tumorigenesis. Consecutive studies in various tumor types have demonstrated that the RUNX family can play either pro-tumorigenic or anti-tumorigenic roles in a context-dependent manner, including in response to chemotherapeutic agents. However, in primary neuroblastomas, RUNX3 acts as a tumor-suppressor, whereas RUNX1 bifunctionally regulates cell proliferation according to the characterized genetic and epigenetic backgrounds, including MYCN oncogenesis. In this review, we first highlight the current knowledge regarding the mechanism through which the RUNX family regulates the neurotrophin receptors known as the tropomyosin-related kinase (Trk) family, which are significantly associated with neuroblastoma aggressiveness. We then focus on the possible involvement of the RUNX family in functional alterations of the p53 family members that execute either tumor-suppressive or dominant-negative functions in neuroblastoma tumorigenesis. By examining the tripartite relationship between the RUNX, Trk, and p53 families, in addition to the oncogene MYCN, we endeavor to elucidate the possible contribution of the RUNX family to neuroblastoma tumorigenesis for a better understanding of potential future molecular-based therapies.
Collapse
|
4
|
Safe and Effective Antioxidant: The Biological Mechanism and Potential Pathways of Ergothioneine in the Skin. Molecules 2023; 28:molecules28041648. [PMID: 36838636 PMCID: PMC9967237 DOI: 10.3390/molecules28041648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Ergothioneine, a sulfur-containing micromolecular histidine derivative, has attracted increasing attention from scholars since it was confirmed in the human body. In the human body, ergothioneine is transported and accumulated specifically through OCTN-1, especially in the mitochondria and nucleus, suggesting that it can target damaged cells and tissues as an antioxidant. It shows excellent antioxidant, anti-inflammatory effects, and anti-aging properties, and inhibits melanin production. It is a mega antioxidant that may participate in the antioxidant network system and promote the reducing glutathione regeneration cycle. This review summarizes studies on the antioxidant effects of ergothioneine on various free radicals in vitro to date and systematically introduces its biological activities and potential mechanisms, mostly in dermatology. Additionally, the application of ergothioneine in cosmetics is briefly summarized. Lastly, we propose some problems that require solutions to understand the mechanism of action of ergothioneine. We believe that ergothioneine has good prospects in the food and cosmetics industries, and can thus meet some needs of the health and beauty industry.
Collapse
|
5
|
Transcription Factors Runx1 and Runx3 Suppress Keratin Expression in Undifferentiated Keratinocytes. Int J Mol Sci 2022; 23:ijms231710039. [PMID: 36077435 PMCID: PMC9456233 DOI: 10.3390/ijms231710039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The Runt-related transcription factor (Runx) family has been suggested to play roles in stem cell regulation, tissue development, and oncogenesis in various tissues/organs. In this study, we investigated the possible functions of Runx1 and Runx3 in keratinocyte differentiation. Both Runx1 and Runx3 proteins were detected in primary cultures of mouse keratinocytes. Proteins were localized in the nuclei of undifferentiated keratinocytes but translocated to the cytoplasm of differentiated cells. The siRNA-mediated inhibition of Runx1 and Runx3 expression increased expression of keratin 1 and keratin 10, which are early differentiation markers of keratinocytes. In contrast, overexpression of Runx1 and Runx3 suppressed keratin 1 and keratin 10 expression. Endogenous Runx1 and Runx3 proteins were associated with the promoter sequences of keratin 1 and keratin 10 genes in undifferentiated but not differentiated keratinocytes. In mouse skin, the inhibition of Runx1 and Runx3 expression by keratinocyte-specific gene targeting increased the ratios of keratin 1- and keratin 10-positive cells in the basal layer of the epidermis. On the other hand, inhibition of Runx1 and Runx3 expression did not alter the proliferation capacity of cultured or epidermal keratinocytes. These results suggest that Runx1 and Runx3 likely function to directly inhibit differentiation-induced expression of keratin 1 and keratin 10 genes but are not involved in the regulation of keratinocyte proliferation.
Collapse
|
6
|
Nuclear IL-33 Plays an Important Role in IL-31‒Mediated Downregulation of FLG, Keratin 1, and Keratin 10 by Regulating Signal Transducer and Activator of Transcription 3 Activation in Human Keratinocytes. J Invest Dermatol 2021; 142:136-144.e3. [PMID: 34293350 DOI: 10.1016/j.jid.2021.05.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
IL-33, a chromatin-associated multifunctional cytokine, is implicated in the pathogenesis of atopic dermatitis (AD), an inflammatory skin disorder characterized by skin barrier dysfunction. IL-33 accumulates in the nuclei of epidermal keratinocytes (KCs) in AD lesions. However, it is unclear whether nuclear IL-33 directly contributes to the pathogenesis of AD. IL-31, a pruritogenic cytokine primarily produced by T helper type 2 cells, is elevated in AD lesions and promotes AD development by suppressing KC differentiation and inducing itching. In this study, we investigated the involvement of nuclear IL-33 in IL-31‒mediated suppression of KC differentiation. In monolayer cultures and living skin equivalent, IL-31 increased the expression of full-length IL-33 and the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in the nuclei of human KCs, which in turn downregulated the expression of differentiation markers. We found that IL-31 and IL-4/IL-13 use very similar mechanisms to inhibit KC differentiation: nuclear IL-33 combines with phosphorylated STAT3 and functions as a STAT3 transcription cofactor, promoting phosphorylated STAT3 binding to the FLG promoter to inhibit its transcription; moreover, the nuclear IL-33/phosphorylated STAT3 complex drives the downregulation of keratin 1 and keratin 10 by reducing the availability of the transcription factor RunX1. Therefore, nuclear IL-33 plays an important role in IL-31‒mediated differentiation suppression by regulating STAT3 activation in human KCs.
Collapse
|
7
|
Nuclear IL-33 Plays an Important Role in the Suppression of FLG, LOR, Keratin 1, and Keratin 10 by IL-4 and IL-13 in Human Keratinocytes. J Invest Dermatol 2021; 141:2646-2655.e6. [PMID: 33865911 DOI: 10.1016/j.jid.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
IL-33 is a chromatin-associated multifunctional cytokine implicated in the pathogenesis of atopic dermatitis (AD), an inflammatory skin disorder characterized by skin barrier dysfunction. The previous reports show that IL-33 is highly detected in the nucleus of epidermal keratinocytes in AD lesions compared with that in unaffected or normal skin. However, it is unclear whether intracellular IL-33 directly contributes to the pathogenesis of AD. T helper type 2 cytokines IL-4 and IL-13 that are elevated in AD lesions suppress keratinocyte differentiation to impair skin barrier function. We investigated whether intracellular IL-33 is involved in IL-4 and IL-13 function. In monolayer culture and living skin equivalent analyses, IL-4 and IL-13 increased the expression of full-length IL-33 in the nucleus of keratinocytes by activating the MAPK/extracellular signal‒regulated kinase kinase/extracellular signal‒regulated kinase signaling pathway, which is necessary for the inhibition of differentiation markers FLG, LOR, keratin 1, and keratin 10. The nuclear IL-33 functions as a transcription cofactor of signal transducer and activator of transcription 3, increasing the binding of phosphorylated signal transducer and activator of transcription 3 to FLG promoter, thereby inhibiting its transcription, and it inhibits the expression of transcription factor RUNX1 by signal transducer and activator of transcription 3 and signal transducer and activator of transcription 6, thereby downregulating LOR, keratin 1, and keratin 10. Thus, the elevated nuclear IL-33 in the epidermis of AD lesions may be involved in the pathogenesis of AD by inhibiting keratinocyte differentiation and skin barrier function.
Collapse
|
8
|
Fritz AJ, Hong D, Boyd J, Kost J, Finstaad KH, Fitzgerald MP, Hanna S, Abuarqoub AH, Malik M, Bushweller J, Tye C, Ghule P, Gordon J, Zaidi SK, Frietze S, Lian JB, Stein JL, Stein GS. RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. J Cell Physiol 2020; 235:7261-7272. [PMID: 32180230 PMCID: PMC7415511 DOI: 10.1002/jcp.29625] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24-/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFβ1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24-/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFβ for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jason Kost
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Kristiaan H. Finstaad
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Mark P. Fitzgerald
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Sebastian Hanna
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Alqassem H. Abuarqoub
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Miles Malik
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - John Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA
| | - Coralee Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Prachi Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jonathan Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| |
Collapse
|
9
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
10
|
El Kharbili M, Agaësse G, Barbollat-Boutrand L, Pommier RM, de la Fouchardière A, Larue L, Caramel J, Puisieux A, Berthier-Vergnes O, Masse I. Tspan8-β-catenin positive feedback loop promotes melanoma invasion. Oncogene 2019; 38:3781-3793. [PMID: 30679790 DOI: 10.1038/s41388-019-0691-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 01/14/2023]
Abstract
Due to its high proclivity to metastasize, and despite the recent development of targeted and immune therapy strategies, melanoma is still the deadliest form of skin cancer. Therefore, understanding the molecular mechanisms underlying melanoma invasion remains crucial. We previously characterized Tspan8 for its ability to prompt melanoma cell detachment from their microenvironment and trigger melanoma cell invasiveness, but the signaling events by which Tspan8 regulates the invasion process still remain unknown. Here, we demonstrated that β-catenin stabilization is a molecular signal subsequent to the onset of Tspan8 expression, and that, in turn, β-catenin triggers the direct transcriptional activation of Tspan8 expression, leading to melanoma invasion. Moreover, we showed that β-catenin activation systematically correlates with a high expression of Tspan8 protein in melanoma lesions from transgenic Nras; bcat* mice, as well as in deep penetrating naevi, a type of human pre-melanoma neoplasm characterized by a combined activation of β-catenin and MAP kinase signaling. Overall, our data suggest that β-catenin and Tspan8 are part of a positive feedback loop, which sustains a high Tspan8 expression level, conferring to melanoma cells the invasive properties required for tumor progression and dissemination.
Collapse
Affiliation(s)
- Manale El Kharbili
- Université de Lyon, F-69003, Lyon, France
- Université Lyon 1, Lyon, F-69003, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, F-69622, France
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Avenue, P18-8132, Aurora, CO, 80045, USA
| | - Gweltaz Agaësse
- Université de Lyon, F-69003, Lyon, France
- Université Lyon 1, Lyon, F-69003, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, F-69622, France
| | - Laetitia Barbollat-Boutrand
- Université de Lyon, F-69003, Lyon, France
- Université Lyon 1, Lyon, F-69003, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, F-69622, France
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Université Lyon 1, 69000, Lyon, France
| | - Roxane M Pommier
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Université Lyon 1, 69000, Lyon, France
| | - Arnaud de la Fouchardière
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Université Lyon 1, 69000, Lyon, France
- Département de Biopathologie, Centre Leon Bérard, Lyon, France
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Julie Caramel
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Université Lyon 1, 69000, Lyon, France
| | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Université Lyon 1, 69000, Lyon, France
| | - Odile Berthier-Vergnes
- Université de Lyon, F-69003, Lyon, France
- Université Lyon 1, Lyon, F-69003, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, F-69622, France
| | - Ingrid Masse
- Université de Lyon, F-69003, Lyon, France.
- Université Lyon 1, Lyon, F-69003, France.
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, F-69622, France.
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Université Lyon 1, 69000, Lyon, France.
| |
Collapse
|
11
|
Qu J, Tanis SE, Smits JP, Kouwenhoven EN, Oti M, van den Bogaard EH, Logie C, Stunnenberg HG, van Bokhoven H, Mulder KW, Zhou H. Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer Landscape. Cell Rep 2018; 25:3490-3503.e4. [DOI: 10.1016/j.celrep.2018.11.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/16/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
|
12
|
Sakaram S, Craig MP, Hill NT, Aljagthmi A, Garrido C, Paliy O, Bottomley M, Raymer M, Kadakia MP. Identification of novel ΔNp63α-regulated miRNAs using an optimized small RNA-Seq analysis pipeline. Sci Rep 2018; 8:10069. [PMID: 29968742 PMCID: PMC6030203 DOI: 10.1038/s41598-018-28168-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Advances in high-throughput sequencing have enabled profiling of microRNAs (miRNAs), however, a consensus pipeline for sequencing of small RNAs has not been established. We built and optimized an analysis pipeline using Partek Flow, circumventing the need for analyzing data via scripting languages. Our analysis assessed the effect of alignment reference, normalization method, and statistical model choice on biological data. The pipeline was evaluated using sequencing data from HaCaT cells transfected with either a non-silencing control or siRNA against ΔNp63α, a p53 family member protein which is highly expressed in non-melanoma skin cancer and shown to regulate a number of miRNAs. We posit that 1) alignment and quantification to the miRBase reference provides the most robust quantitation of miRNAs, 2) normalizing sample reads via Trimmed Mean of M-values is the most robust method for accurate downstream analyses, and 3) use of the lognormal with shrinkage statistical model effectively identifies differentially expressed miRNAs. Using our pipeline, we identified previously unrecognized regulation of miRs-149-5p, 18a-5p, 19b-1-5p, 20a-5p, 590-5p, 744-5p and 93-5p by ΔNp63α. Regulation of these miRNAs was validated by RT-qPCR, substantiating our small RNA-Seq pipeline. Further analysis of these miRNAs may provide insight into ΔNp63α's role in cancer progression. By defining the optimal alignment reference, normalization method, and statistical model for analysis of miRNA sequencing data, we have established an analysis pipeline that may be carried out in Partek Flow or at the command line. In this manner, our pipeline circumvents some of the major hurdles encountered during small RNA-Seq analysis.
Collapse
Affiliation(s)
- Suraj Sakaram
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Michael P Craig
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Natasha T Hill
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Amjad Aljagthmi
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Christian Garrido
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Oleg Paliy
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Michael Bottomley
- Math and Microbiology, Wright State University, Dayton, OH, 45435, USA
| | - Michael Raymer
- Computer Science and Engineering, Wright State University, Dayton, OH, 45435, USA
| | - Madhavi P Kadakia
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
13
|
Abstract
SIGNIFICANCE The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members. CRITICAL ISSUES In this article, we discuss the involvement of the p53 family in neurobiology and in pathological conditions affecting the CNS, including neuroinflammation. FUTURE DIRECTIONS Understanding the molecular mechanism(s) underlying the function of the p53 family could improve our general knowledge of the pathogenesis of brain disorders and potentially pave the road for new therapeutic intervention. Antioxid. Redox Signal. 29, 1-14.
Collapse
Affiliation(s)
- Massimiliano Agostini
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Gerry Melino
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Francesca Bernassola
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
14
|
Wang MJ, Xu YY, Huang RY, Chen XM, Chen HM, Han L, Yan YH, Lu CJ. Role of an imbalanced miRNAs axis in pathogenesis of psoriasis: novel perspectives based on review of the literature. Oncotarget 2018; 8:5498-5507. [PMID: 27729619 PMCID: PMC5354926 DOI: 10.18632/oncotarget.12534] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Specific profile of microRNAs (miRNAs, miR) expressed in psoriasis has been identified in the past few years, while the studies on roles and molecular mechanisms of these miRNAs are still on the way. In our previous study, four specific miRNAs (miR-31, miR-203, hsa-miR-99a and miR-125b) were found to be specifically altered in psoriatic lesions.We therefore conducted a systematic literature review in this study to reveal the role of these miRNAs in the pathogenesis of psoriasis in order to inform future research. METHODS The related articles indexed in PubMed (MEDLINE) database were searched and analyzed. We identified eligible studies related to the mechanism research of miR-31, miR-203, hsa-miR-99a and miR-125b in psoriasis or psoriatic lesional skin from inception up to July 2016. The experts in the field of miRNAs and Psoriasis were involved in analysis process. RESULT Both miR-31 and miR-203 are dramatically upregulated in psoriatic lesions. The former plays the pro-proliferative, pro-differentiative and pro-inflammatory roles and the latter holds the potentials for anti-proliferation, pro-inflammation and pro-differentiation in psoriatic keratinocytes. Conversely, both hsa-miR-99a and miR-125b are significantly downregulated in psoriatic skin. These two miRNAs are able to inhibit proliferation while promote differentiation of psoriatic keratinocytes, and miR-125b can also suppress inflammation in psoriatic lesions. By analyzing the contexts related to these miRNAs, we found that each of them does not act alone but rather work in concert with other miRNAs. The imbalance between miR-31/miR-203and hsa-miR-99a/miR-125b may contribute to the intense proliferation and abnormal differentiation of psoriatic keratinocytes, which is a characteristic of pathogenesis of psoriasis. CONCLUSION An imbalanced miRNAs axis was for the first time outlined. Apparently, upregulation of miR-31/miR-203 and downregulation of hsa-miR-99a/miR-125b work together in concert to facilitate the development of psoriasis pathogenesis. Further work in this field holds the potentials to open a new way to study psoriasis.
Collapse
Affiliation(s)
- Mao-Jie Wang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Yong-Yue Xu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Run-Yue Huang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.,Section of Metabolic Diseases Research, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Xiu-Min Chen
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hai-Ming Chen
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Ling Han
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Yu-Hong Yan
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Chuan-Jian Lu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
15
|
An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis. Aging (Albany NY) 2018; 9:2376-2396. [PMID: 29165315 PMCID: PMC5723692 DOI: 10.18632/aging.101326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/11/2017] [Indexed: 01/01/2023]
Abstract
The mechanisms affecting epidermal homeostasis during aging remain poorly understood. To identify age-related microRNAs, a class of non-coding RNAs known to play a key role in the regulation of epidermal homeostasis, an exhaustive miRNA expression screen was performed in human keratinocytes from young or elderly subjects. Many microRNAs modulated by aging were identified, including miR-30a, in which both strands were overexpressed in aged cells and epidermal tissue. Stable MiR-30a over-expression strongly impaired epidermal differentiation, inducing severe barrier function defects in an organotypic culture model. A significant increase was also observed in the level of apoptotic cells in epidermis over-expressing miR-30a. Several gene targets of miR-30a were identified in keratinocytes, including LOX (encoding lysyl oxidase, a regulator of the proliferation/differentiation balance of keratinocytes), IDH1 (encoding isocitrate dehydrogenase, an enzyme of cellular metabolism) and AVEN (encoding a caspase inhibitor). Direct regulation of LOX, IDH1 and AVEN by miR-30a was confirmed in human keratinocytes. They were, moreover, observed to be repressed in aged skin, suggesting a possible link between miR-30a induction and skin-aging phenotype. This study revealed a new miRNA actor and deciphered new molecular mechanisms to explain certain alterations observed in epidermis during aging and especially those concerning keratinocyte differentiation and apoptosis.
Collapse
|
16
|
Agaësse G, Barbollat-Boutrand L, El Kharbili M, Berthier-Vergnes O, Masse I. p53 targets TSPAN8 to prevent invasion in melanoma cells. Oncogenesis 2017; 6:e309. [PMID: 28368391 PMCID: PMC5520488 DOI: 10.1038/oncsis.2017.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/06/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a very deadly cancer because of its proclivity to metastasize. Despite the recent development of targeted and immune therapies, patient survival remains low. It is therefore crucial to enhance understanding of the molecular mechanisms underlying invasion. We previously identified tetraspanin 8 (TSPAN8) as an important modulator of melanoma invasiveness, and several of its transcriptional regulators, which affect TSPAN8 expression during melanoma progression toward an invasive stage. This study found that TSPAN8 promoter contains consensus-binding sites for p53 transcription factor. We demonstrated that p53 silencing was sufficient to turn on Tspan8 expression in non-invasive melanoma cells and that p53 acts as a direct transcriptional repressor of TSPAN8. We also showed that p53 modulated matrigel invasion in melanoma cells in a TSPAN8-dependent manner. In conclusion, this study reveals p53 as a negative regulator of Tspan8 expression. As TP53 gene is rarely mutated in melanoma, it was hitherto poorly studied but its role in apoptosis and growth suppression in melanoma is increasingly becoming clear. The study highlights the importance of p53 as a regulator of melanoma invasion and the concept that reactivating p53 could provide a strategy for modulating not only proliferative but also invasive capacity in melanoma treatment.
Collapse
Affiliation(s)
- G Agaësse
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - L Barbollat-Boutrand
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - M El Kharbili
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - O Berthier-Vergnes
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - I Masse
- Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| |
Collapse
|
17
|
Barbollat-Boutrand L, Joly-Tonetti N, Dos Santos M, Metral E, Boher A, Masse I, Berthier-Vergnes O, Bertolino P, Damour O, Lamartine J. MicroRNA-23b-3p regulates human keratinocyte differentiation through repression of TGIF1 and activation of the TGF-ß-SMAD2 signalling pathway. Exp Dermatol 2016; 26:51-57. [DOI: 10.1111/exd.13119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Laetitia Barbollat-Boutrand
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| | - Nicolas Joly-Tonetti
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| | | | - Elodie Metral
- Banque de Tissus et Cellules; Hospices Civiles de Lyon; Lyon France
| | | | - Ingrid Masse
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| | - Odile Berthier-Vergnes
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| | | | - Odile Damour
- Banque de Tissus et Cellules; Hospices Civiles de Lyon; Lyon France
| | - Jérôme Lamartine
- Université de Lyon; Lyon France
- Université Lyon 1; Lyon France
- CNRS; UMR5534; Centre de Génétique et de Physiologie Moléculaires et Cellulaires; Villeurbanne France
| |
Collapse
|
18
|
Identification of p53-target genes in Danio rerio. Sci Rep 2016; 6:32474. [PMID: 27581768 PMCID: PMC5007497 DOI: 10.1038/srep32474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022] Open
Abstract
To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species.
Collapse
|
19
|
Fang W, Guo J, Cao Y, Wang S, Pang C, Li M, Dou L, Man Y, Huang X, Shen T, Li J. MicroRNA-20a-5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression. J Cell Mol Med 2016; 20:1467-1480. [PMID: 27019188 PMCID: PMC4956936 DOI: 10.1111/jcmm.12835; epub 2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/14/2016] [Indexed: 08/31/2023] Open
Abstract
Recently, it is implicated that aberrant expression of microRNAs (miRs) is associated with insulin resistance. However, the role of miR-17 family in hepatic insulin resistance and its underlying mechanisms remain unknown. In this study, we provided mechanistic insight into the effects of miR-20a-5p, a member of miR-17 family, on the regulation of AKT/GSK pathway and glycogenesis in hepatocytes. MiR-20a-5p was down-regulated in the liver of db/db mice, and NCTC1469 cells and Hep1-6 cells treated with high glucose, accompanied by reduced glycogen content and impaired insulin signalling. Notably, inhibition of miR-20a-5p significantly reduced glycogen synthesis and AKT/GSK activation, whereas overexpression of miR-20a-5p led to elevated glycogenesis and activated AKT/GSK signalling pathway. In addition, miR-20a-5p mimic could reverse high glucose-induced impaired glycogenesis and AKT/GSK activation in NCTC1469 and Hep1-6 cells. P63 was identified as a target of miR-20a-5p by bioinformatics analysis and luciferase reporter assay. Knockdown of p63 in the NCTC1469 cells and the Hep1-6 cells by transfecting with siRNA targeting p63 could increase glycogen content and reverse miR-20a-5p inhibition-induced reduced glycogenesis and activation of AKT and GSK, suggesting that p63 participated in miR-20a-5p-mediated glycogenesis in hepatocytes. Moreover, our results indicate that p63 might directly bind to p53, thereby regulating PTEN expression and in turn participating in glycogenesis. In conclusion, we found novel evidence suggesting that as a member of miR-17 family, miR-20a-5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression.
Collapse
Affiliation(s)
- Weiwei Fang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Yuan Cao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Shuyue Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Cheng Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Meng Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Jian Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| |
Collapse
|
20
|
Fang W, Guo J, Cao Y, Wang S, Pang C, Li M, Dou L, Man Y, Huang X, Shen T, Li J. MicroRNA-20a-5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression. J Cell Mol Med 2016; 20:1467-80. [PMID: 27019188 PMCID: PMC4956936 DOI: 10.1111/jcmm.12835] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/14/2016] [Indexed: 12/15/2022] Open
Abstract
Recently, it is implicated that aberrant expression of microRNAs (miRs) is associated with insulin resistance. However, the role of miR‐17 family in hepatic insulin resistance and its underlying mechanisms remain unknown. In this study, we provided mechanistic insight into the effects of miR‐20a‐5p, a member of miR‐17 family, on the regulation of AKT/GSK pathway and glycogenesis in hepatocytes. MiR‐20a‐5p was down‐regulated in the liver of db/db mice, and NCTC1469 cells and Hep1‐6 cells treated with high glucose, accompanied by reduced glycogen content and impaired insulin signalling. Notably, inhibition of miR‐20a‐5p significantly reduced glycogen synthesis and AKT/GSK activation, whereas overexpression of miR‐20a‐5p led to elevated glycogenesis and activated AKT/GSK signalling pathway. In addition, miR‐20a‐5p mimic could reverse high glucose‐induced impaired glycogenesis and AKT/GSK activation in NCTC1469 and Hep1‐6 cells. P63 was identified as a target of miR‐20a‐5p by bioinformatics analysis and luciferase reporter assay. Knockdown of p63 in the NCTC1469 cells and the Hep1‐6 cells by transfecting with siRNA targeting p63 could increase glycogen content and reverse miR‐20a‐5p inhibition‐induced reduced glycogenesis and activation of AKT and GSK, suggesting that p63 participated in miR‐20a‐5p‐mediated glycogenesis in hepatocytes. Moreover, our results indicate that p63 might directly bind to p53, thereby regulating PTEN expression and in turn participating in glycogenesis. In conclusion, we found novel evidence suggesting that as a member of miR‐17 family, miR‐20a‐5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression.
Collapse
Affiliation(s)
- Weiwei Fang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Yuan Cao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Shuyue Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Cheng Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Meng Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| | - Jian Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics and Beijing Hospital, Ministry of Health, Beijing, China
| |
Collapse
|
21
|
The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth. Oncogene 2015; 35:3114-24. [PMID: 26522723 PMCID: PMC4853298 DOI: 10.1038/onc.2015.380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 01/06/2023]
Abstract
Epidermal homeostasis depends on the coordinated control of keratinocyte cell cycle. Differentiation and the alteration of this balance can result in neoplastic development. Here we report on a novel DLX3-dependent network that constrains epidermal hyperplasia and squamous tumorigenesis. By integrating genetic and transcriptomic approaches, we demonstrate that DLX3 operates through a p53-regulated network. DLX3 and p53 physically interact on the p21 promoter to enhance p21 expression. Elevating DLX3 in keratinocytes produces a G1-S blockade associated with p53 signature transcriptional profiles. In contrast, DLX3 loss promotes a mitogenic phenotype associated with constitutive activation of ERK. DLX3 expression is lost in human skin cancers and is extinguished during progression of experimentally induced mouse squamous cell carcinoma (SCC). Reinstatement of DLX3 function is sufficient to attenuate the migration of SCC cells, leading to decreased wound closure. Our data establish the DLX3-p53 interplay as a major regulatory axis in epidermal differentiation and suggest that DLX3 is a modulator of skin carcinogenesis.
Collapse
|
22
|
Melino S, Bellomaria A, Nepravishta R, Paci M, Melino G. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch. Cell Cycle 2015; 13:3207-17. [PMID: 25485500 DOI: 10.4161/15384101.2014.951285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition.
Collapse
Key Words
- CXCR4, chemokine receptor
- E3 ubiquitin ligases
- HECT, Homologous E6-AP Carboxyl Terminus
- IPTG, isopropyl-β-D-thiogalactoside
- Itch
- Pin1
- Ppep63, phosphorylated pep63
- RHS, Rapp-Hodgkin syndrome
- RP-HPLC, reverse phase high performance chromatography
- TFE, 2, 2, 2-trifluoroethanol
- TNF, tumor necrosis factor
- TRAF6, TNF receptor-associated factor 6
- cPpep63, cyclic phosphorylated pep63
- p53 family
- p63
- pep63, p63(534–551) peptide
- proline isomerization
- ubiquitynation
Collapse
Affiliation(s)
- Sonia Melino
- a Dipartimento di Scienze e Tecnologie Chimiche ; University of Rome "Tor Vergata" ; Rome , Italy
| | | | | | | | | |
Collapse
|
23
|
Niklison-Chirou MV, Killick R, Knight RA, Nicotera P, Melino G, Agostini M. How Does p73 Cause Neuronal Defects? Mol Neurobiol 2015; 53:4509-20. [PMID: 26266644 DOI: 10.1007/s12035-015-9381-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022]
Abstract
The p53-family member, p73, plays a key role in the development of the central nervous system (CNS), in senescence, and in tumor formation. The role of p73 in neuronal differentiation is complex and involves several downstream pathways. Indeed, in the last few years, we have learnt that TAp73 directly or indirectly regulates several genes involved in neural biology. In particular, TAp73 is involved in the maintenance of neural stem/progenitor cell self-renewal and differentiation throughout the regulation of SOX-2, Hey-2, TRIM32 and Notch. In addition, TAp73 is also implicated in the regulation of the differentiation and function of postmitotic neurons by regulating the expression of p75NTR and GLS2 (glutamine metabolism). Further still, the regulation of miR-34a by TAp73 indicates that microRNAs can also participate in this multifunctional role of p73 in adult brain physiology. However, contradictory results still exist in the relationship between p73 and brain disorders, and this remains an important area for further investigation.
Collapse
Affiliation(s)
- Maria Victoria Niklison-Chirou
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Richard Killick
- The Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Richard A Knight
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK
| | | | - Gerry Melino
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Massimiliano Agostini
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
24
|
Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2015; 5:7988-8013. [PMID: 25237759 PMCID: PMC4226663 DOI: 10.18632/oncotarget.2431] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides.
Collapse
Affiliation(s)
- Vivien Landré
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Sonia Melino
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, UK. Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
25
|
Kouwenhoven EN, Oti M, Niehues H, van Heeringen SJ, Schalkwijk J, Stunnenberg HG, van Bokhoven H, Zhou H. Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation. EMBO Rep 2015; 16:863-78. [PMID: 26034101 PMCID: PMC4515125 DOI: 10.15252/embr.201439941] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/20/2015] [Indexed: 12/19/2022] Open
Abstract
The transcription factor p63 plays a pivotal role in keratinocyte proliferation and differentiation in the epidermis. However, how p63 regulates epidermal genes during differentiation is not yet clear. Using epigenome profiling of differentiating human primary epidermal keratinocytes, we characterized a catalog of dynamically regulated genes and p63-bound regulatory elements that are relevant for epithelial development and related diseases. p63-bound regulatory elements occur as single or clustered enhancers, and remarkably, only a subset is active as defined by the co-presence of the active enhancer mark histone modification H3K27ac in epidermal keratinocytes. We show that the dynamics of gene expression correlates with the activity of p63-bound enhancers rather than with p63 binding itself. The activity of p63-bound enhancers is likely determined by other transcription factors that cooperate with p63. Our data show that inactive p63-bound enhancers in epidermal keratinocytes may be active during the development of other epithelial-related structures such as limbs and suggest that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates genes through temporal- and spatial-specific active enhancers.
Collapse
Affiliation(s)
- Evelyn N Kouwenhoven
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences Radboud University, Nijmegen, The Netherlands
| | - Martin Oti
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences Radboud University, Nijmegen, The Netherlands
| | - Hanna Niehues
- Department of Dermatology, Radboud Institute for Molecular Life Sciences Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences Radboud University, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences Radboud University, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun 2015; 6:6916. [PMID: 25903422 PMCID: PMC4423213 DOI: 10.1038/ncomms7916] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/13/2015] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations. Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here Yin et al. conduct a large trans-ethnic genome-wide meta-analysis and identify novel loci that contribute to population-specific susceptibility.
Collapse
|
27
|
Lin C, Li X, Zhang Y, Guo Y, Zhou J, Gao K, Dai J, Hu G, Lv L, Du J, Zhang Y. The microRNA feedback regulation of p63 in cancer progression. Oncotarget 2015; 6:8434-53. [PMID: 25726529 PMCID: PMC4496160 DOI: 10.18632/oncotarget.3020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/31/2014] [Indexed: 12/14/2022] Open
Abstract
The transcription factor p63 is a member of the p53 gene family that plays a complex role in cancer due to its involvement in epithelial differentiation, cell cycle arrest and apoptosis. MicroRNAs are a class of small, non-coding RNAs with an important regulatory role in various cellular processes, as well as in the development and progression of cancer. A number of microRNAs have been shown to function as transcriptional targets of p63. Conversely, microRNAs also can modulate the expression and activity of p63. However, the p63-microRNA regulatory circuit has not been addressed in depth so far. Here, computational genomic analysis was performed using miRtarBase, Targetscan, microRNA.ORG, DIANA-MICROT, RNA22-HSA and miRDB to analyze miRNA binding to the 3'UTR of p63. JASPAR (profile score threshold 80%) and TFSEARCH datasets were used to search transcriptional start sites for p53/p63 response elements. Remarkably, these data revealed 63 microRNAs that targeted p63. Furthermore, there were 39 microRNAs targeting p63 that were predicted to be regulated by p63. These analyses suggest a crosstalk between p63 and microRNAs. Here, we discuss the crosstalk between p63 and the microRNA network, and the role of their interactions in cancer.
Collapse
Affiliation(s)
- Changwei Lin
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaorong Li
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhang
- Department of General Surgery, The XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yihang Guo
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianyu Zhou
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Kai Gao
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jing Dai
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Gui Hu
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lv Lv
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Juan Du
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhang
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
28
|
Abstract
RUNX proteins belong to a family of metazoan transcription factors that serve as master regulators of development. They are frequently deregulated in human cancers, indicating a prominent and, at times, paradoxical role in cancer pathogenesis. The contextual cues that direct RUNX function represent a fast-growing field in cancer research and could provide insights that are applicable to early cancer detection and treatment. This Review describes how RUNX proteins communicate with key signalling pathways during the multistep progression to malignancy; in particular, we highlight the emerging partnership of RUNX with p53 in cancer suppression.
Collapse
Affiliation(s)
- Yoshiaki Ito
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| | - Suk-Chul Bae
- 1] Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, 361763, South Korea. [2]
| | - Linda Shyue Huey Chuang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| |
Collapse
|
29
|
Rajan N, Elliott RJ, Smith A, Sinclair N, Swift S, Lord CJ, Ashworth A. The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate notch signalling. Oncotarget 2014; 5:12126-40. [PMID: 25565632 PMCID: PMC4322962 DOI: 10.18632/oncotarget.2573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2014] [Indexed: 02/03/2023] Open
Abstract
CYLD, an ubiquitin hydrolase, has an expanding repertoire of regulatory roles in cell signalling and is dysregulated in a number of cancers. To dissect CYLD function we used a proteomics approach to identify CYLD interacting proteins and identified MIB2, an ubiquitin ligase enzyme involved in Notch signalling, as a protein which interacts with CYLD. Coexpression of CYLD and MIB2 resulted in stabilisation of MIB2 protein levels and was associated with reduced levels of JAG2, a ligand implicated in Notch signalling. Conversely, gene silencing of CYLD using siRNA, resulted in increased JAG2 expression and upregulation of Notch signalling. We investigated Notch pathway activity in skin tumours from patients with germline mutations in CYLD and found that JAG2 protein levels and Notch target genes were upregulated. In particular, RUNX1 was overexpressed in CYLD defective tumour cells. Finally, primary cell cultures of CYLD defective tumours demonstrated reduced viability when exposed to γ-secretase inhibitors that pharmacologically target Notch signalling. Taken together these data indicate an oncogenic dependency on Notch signalling and suggest potential novel therapeutic approaches for patients with CYLD defective tumours.
Collapse
Affiliation(s)
- Neil Rajan
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Richard J.R. Elliott
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alice Smith
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Naomi Sinclair
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sally Swift
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alan Ashworth
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
30
|
Candi E, Agostini M, Melino G, Bernassola F. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 2014; 35:702-14. [PMID: 24488880 DOI: 10.1002/humu.22523] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/12/2014] [Indexed: 12/23/2022]
Abstract
In mammals, the p53 family comprises two additional members, p63 and p73 (hereafter referred to as TP53, TP63, and TP73, respectively). The usage of two alternative promoters produces protein variants either with (transactivating [TA] isoforms) or without (ΔN isoforms) the N-terminal transactivation domain (TAD). In general, the TA proteins exert TP53-like tumor-suppressive activities through their ability to activate a common set of target genes. The ΔN proteins can act as dominant-negative inhibitors of the transcriptionally active family members. Additionally, they possess intrinsic-specific biological activities due to the presence of alternative TADs, and as a result of engaging a different set of regulators. This review summarizes the current understanding of upstream regulators and downstream effectors of the TP53 family proteins, with particular emphasis on those that are relevant for their role in tumorigenesis. Furthermore, we highlight the existence of networks and cross-talks among the TP53 family members, their modulators, as well as the transcriptional targets.
Collapse
Affiliation(s)
- Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00133, Italy
| | | | | | | |
Collapse
|
31
|
Murthy M, Bocking S, Verginelli F, Stifani S. Transcription factor Runx1 inhibits proliferation and promotes developmental maturation in a selected population of inner olfactory nerve layer olfactory ensheathing cells. Gene 2014; 540:191-200. [PMID: 24582971 DOI: 10.1016/j.gene.2014.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/30/2014] [Accepted: 02/21/2014] [Indexed: 11/18/2022]
Abstract
The olfactory system undergoes persistent regeneration throughout life. Olfactory ensheathing cells (OECs) are a specialized class of glia found exclusively in the olfactory system. OECs wrap olfactory sensory neuron axons and support their growth from the olfactory epithelium, and targeting to the olfactory bulb, during development and life-long regeneration. Because of this function and their ability to cross the boundary between central and peripheral nervous systems, OECs are attractive candidates for cell-based regenerative therapies to promote axonal repair in the injured nervous system. OECs are a molecularly, topologically and functionally heterogeneous group of cells and the mechanisms underlying the development and function of specific OEC subpopulations are poorly defined. This situation has affected the outcome and interpretation of OEC-based regenerative strategies. Here we show that the transcription factor Runx1 is selectively expressed in OECs of the inner olfactory nerve layer of the mouse olfactory bulb and in their precursors in the OEC migratory mass. Furthermore, we provide evidence that in vivo knockdown of mouse Runx1 increases the proliferation of the OECs in which Runx1 is expressed. Conversely, Runx1 overexpression in primary cultures of OECs reduces cell proliferation in vitro. Decreased Runx1 activity also leads to an increase in Runx1-expressing OEC precursors, with a parallel decrease in the number of more developmentally mature OECs. These results identify Runx1 as a useful new marker of a distinct OEC subpopulation and suggest that Runx1 is important for the development of this group of OECs. These observations provide an avenue for further exploration into the molecular mechanisms underlying the development and function of specific OEC subpopulations.
Collapse
Affiliation(s)
- Manjari Murthy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah Bocking
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Federica Verginelli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Masse I, Barbollat-Boutrand L, Kharbili ME, Berthier-Vergnes O, Aubert D, Lamartine J. GATA3 inhibits proliferation and induces expression of both early and late differentiation markers in keratinocytes of the human epidermis. Arch Dermatol Res 2013; 306:201-8. [PMID: 24346062 DOI: 10.1007/s00403-013-1435-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/18/2013] [Accepted: 12/06/2013] [Indexed: 12/18/2022]
Abstract
GATA3 belongs to the GATA transcription factor family and is a crucial regulator of lymphocyte differentiation. More recently, GATA3 was shown to be involved in skin cell lineage determination, in morphogenesis and maintenance of hair follicle keratinocytes as well as in epidermal barrier formation in mouse. In human, the potential role of GATA3 in the regulation of interfollicular epidermal homeostasis was still poorly explored. We thus investigated whether GATA3 could play a role in the regulation of proliferation and/or differentiation processes in human primary keratinocytes. We silenced the expression of GATA3 by small interfering RNA in either proliferating or differentiated human primary keratinocytes and analyzed the effect on cell proliferation and differentiation. We showed that GATA3 inhibition increased cell number, BrdU incorporation and expression of the proliferation markers PCNA and Ki67, demonstrating that GATA3 can inhibit keratinocyte proliferation. Moreover, GATA3 seems to be able to induce keratinocyte differentiation since its silencing leads to a decrease of both early and late differentiation markers such as Keratins 1 and 10, Involucrin and Loricrin. Our results demonstrate that GATA3 transcription factor inhibits proliferation and induces differentiation of primary keratinocytes, which suggest that it may regulate human interfollicular epidermal renewal.
Collapse
|
33
|
Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS, Tucci P, Agostini M, Mineo TC, Levine AJ, Melino G. p73 regulates serine biosynthesis in cancer. Oncogene 2013; 33:5039-46. [DOI: 10.1038/onc.2013.456] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
|
34
|
Janich P, Toufighi K, Solanas G, Luis NM, Minkwitz S, Serrano L, Lehner B, Benitah SA. Human epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell 2013; 13:745-53. [PMID: 24120744 DOI: 10.1016/j.stem.2013.09.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/03/2013] [Accepted: 09/14/2013] [Indexed: 12/15/2022]
Abstract
Human skin copes with harmful environmental factors that are circadian in nature, yet how circadian rhythms modulate the function of human epidermal stem cells is mostly unknown. Here we show that in human epidermal stem cells and their differentiated counterparts, core clock genes peak in a successive and phased manner, establishing distinct temporal intervals during the 24 hr day period. Each of these successive clock waves is associated with a peak in the expression of subsets of transcripts that temporally segregate the predisposition of epidermal stem cells to respond to cues that regulate their proliferation or differentiation, such as TGFβ and calcium. Accordingly, circadian arrhythmia profoundly affects stem cell function in culture and in vivo. We hypothesize that this intricate mechanism ensures homeostasis by providing epidermal stem cells with environmentally relevant temporal functional cues during the course of the day and that its perturbation may contribute to aging and carcinogenesis.
Collapse
Affiliation(s)
- Peggy Janich
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Molecular dynamics of the full-length p53 monomer. Cell Cycle 2013; 12:3098-108. [PMID: 23974096 DOI: 10.4161/cc.26162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.
Collapse
|
36
|
p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ 2013; 20:1415-24. [PMID: 23912709 DOI: 10.1038/cdd.2013.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 02/08/2023] Open
Abstract
p73, a member of the p53 tumor suppressor family, is involved in neurogenesis, sensory pathways, immunity, inflammation, and tumorigenesis. How p73 is able to participate in such a broad spectrum of different biological processes is still largely unknown. Here, we report a novel role of p73 in regulating lipid metabolism by direct transactivation of the promoter of autophagy-related protein 5 (ATG5), a gene whose product is required for autophagosome formation. Following nutrient deprivation, the livers of p73-deficient mice demonstrate a massive accumulation of lipid droplets, together with a low level of autophagy, suggesting that triglyceride hydrolysis into fatty acids is blocked owing to deficient autophagy (macrolipophagy). Compared with wild-type mice, mice functionally deficient in all the p73 isoforms exhibit decreased ATG5 expression and lower levels of autophagy in multiple organs. We further show that the TAp73α is the critical p73 isoform responsible for inducing ATG5 expression in a p53-independent manner and demonstrate that ATG5 gene transfer can correct autophagy and macrolipophagy defects in p73-deficient hepatocytes. These data strongly suggest that the p73-ATG5 axis represents a novel, key pathway for regulating lipid metabolism through autophagy. The identification of p73 as a major regulator of autophagy suggests that it may have an important role in preventing or delaying disease and aging by maintaining a homeostatic control.
Collapse
|
37
|
Xu J, Zhou X, Wang J, Li Z, Kong X, Qian J, Hu Y, Fang JY. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep 2013; 3:1526-38. [PMID: 23684608 DOI: 10.1016/j.celrep.2013.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 03/13/2013] [Accepted: 04/21/2013] [Indexed: 12/15/2022] Open
Abstract
Many Rho GTPase activation proteins (RhoGAPs) are deleted or downregulated in cancers, but the functional consequences are still unclear. Here, we show that the RhoGAP ArhGAP11A induces cell-cycle arrest and apoptosis by binding to the tumor suppressor p53. The RhoGAP domain of ArhGAP11A binds to the tetramerization domain of p53, but not to its family members p63 or p73. The interaction stabilizes the tetrameric conformation of p53 and enhances its DNA-binding activity, thereby inducing cell-cycle arrest and apoptosis. Upon DNA damage stress, ArhGAP11A accumulates in the nucleus and interacts with p53, whereas knockdown of ArhGAP11A partially blocks p53 transcriptional activity. These findings explain why RhoGAPs are frequently deleted in cancers and suggest that the RhoGAP family sits at the crossroads between the cell-migration and proliferation pathways.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute for Digestive Diseases, Shanghai Jiao-Tong University School of Medicine, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Delineating Molecular Mechanisms of Squamous Tissue Homeostasis and Neoplasia: Focus on p63. J Skin Cancer 2013; 2013:632028. [PMID: 23710361 PMCID: PMC3655637 DOI: 10.1155/2013/632028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
Mouse models have informed us that p63 is critical for normal epidermal development and homeostasis. The p53/p63/p73 family is expressed as multiple protein isoforms due to a combination of alternative promoter usage and C-terminal alternative splicing. These isoforms can mimic or interfere with one another, and their balance ultimately determines biological outcome in a context-dependent manner. While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly overexpressed in human squamous cell cancers. In vitro keratinocytes and murine transgenic and transplantation models have been invaluable in elucidating the contribution of altered p63 levels to cancer development, and studies have identified the roles for ΔNp63 isoforms in keratinocyte survival and malignant progression, likely due in part to their transcriptional regulatory function. These findings can be extended to human cancers; for example, the novel recognition of NFκB/c-Rel as a downstream effector of p63 has identified a role for NFκB/c-Rel in human squamous cell cancers. These models will be critical in enhancing the understanding of the specific molecular mechanisms of cancer development and progression.
Collapse
|
39
|
Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ, Feng Z, Agostini M, Zolla L, Agrò AF, Notterman DA, Melino G, Peschiaroli A. p63 regulates glutaminase 2 expression. Cell Cycle 2013; 12:1395-405. [PMID: 23574722 DOI: 10.4161/cc.24478] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transcription factor p63 is critical for many biological processes, including development and maintenance of epidermal tissues and tumorigenesis. Here, we report that the TAp63 isoforms regulate cell metabolism through the induction of the mitochondrial glutaminase 2 (GLS2) gene both in primary cells and tumor cell lines. By ChIP analysis and luciferase assay, we confirmed that TAp63 binds directly to the p53/p63 consensus DNA binding sequence within the GLS2 promoter region. Given the critical role of p63 in epidermal differentiation, we have investigated the regulation of GLS2 expression during this process. GLS2 and TAp63 expression increases during the in vitro differentiation of primary human keratinocytes, and depletion of GLS2 inhibits skin differentiation both at molecular and cellular levels. We found that GLS2 and TAp63 expression are concomitantly induced in cancer cells exposed to oxidative stresses. siRNA-mediated depletion of GLS2 sensitizes cells to ROS-induced apoptosis, suggesting that the TAp63/GLS2 axis can be functionally important as a cellular antioxidant pathway in the absence of p53. Accordingly, we found that GLS2 is upregulated in colon adenocarcinoma. Altogether, our findings demonstrate that GLS2 is a bona fide TAp63 target gene, and that the TAp63-dependent regulation of GLS2 is important for both physiological and pathological processes.
Collapse
Affiliation(s)
- Arianna Giacobbe
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The WWOX tumor suppressor is a WW domain-containing protein. Its function in the cell has been shown to be mediated, in part, by interacting with its partners through its first WW (WW1) domain. Here, we demonstrated that WWOX via WW1 domain interacts with p53 homolog, ΔNp63α. This protein–protein interaction stabilizes ΔNp63α, through antagonizing function of the E3 ubiquitin ligase ITCH, inhibits nuclear translocation of ΔNp63α into the nucleus and suppresses ΔNp63α transactivation function. Additionally, we found that this functional crosstalk reverses cancer cells resistance to cisplatin, mediated by ΔNp63α, and consequently renders these cells more sensitive to undergo apoptosis. These findings suggest a functional crosstalk between WWOX and ΔNp63α in tumorigenesis.
Collapse
|
41
|
Viticchiè G, Lena AM, Cianfarani F, Odorisio T, Annicchiarico-Petruzzelli M, Melino G, Candi E. MicroRNA-203 contributes to skin re-epithelialization. Cell Death Dis 2012; 3:e435. [PMID: 23190607 PMCID: PMC3542609 DOI: 10.1038/cddis.2012.174] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/27/2012] [Accepted: 10/05/2012] [Indexed: 12/23/2022]
Abstract
Keratinocyte proliferation and migration are crucial steps for the rapid closure of the epidermis during wound healing, but the molecular mechanisms involved in this cellular response remain to be completely elucidated. Here, by in situ hybridization we characterize the expression pattern of miR-203 after the induction of wound in mouse epidermis, showing that its expression is downregulated in the highly proliferating keratinocytes of the 'migrating tongue', whereas it is strongly expressed in the differentiating cells of the skin outside the wound. Furthermore, subcutaneous injections of antagomiR-203 in new born mice dorsal skin strengthened, in vivo, the inverse correlation between miR-203 expression and two new target mRNAs: RAN and RAPH1. Our data suggest that miR-203, by controlling the expression of target proteins that are responsible for both keratinocyte proliferation and migration, exerts a specific role in wound re-epithelialization and epidermal homeostasis re-establishment of injured skin.
Collapse
Affiliation(s)
- G Viticchiè
- Department of Experimental Medicine and Surgery, University of ‘Tor Vergata', Via Montpellier, 1, Rome 00133, Italy
| | - A M Lena
- Department of Experimental Medicine and Surgery, University of ‘Tor Vergata', Via Montpellier, 1, Rome 00133, Italy
| | - F Cianfarani
- Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Via Monti di Creta, 104, Rome 00166, Italy
| | - T Odorisio
- Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Via Monti di Creta, 104, Rome 00166, Italy
| | - M Annicchiarico-Petruzzelli
- Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Via Monti di Creta, 104, Rome 00166, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of ‘Tor Vergata', Via Montpellier, 1, Rome 00133, Italy
- Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Via Monti di Creta, 104, Rome 00166, Italy
| | - E Candi
- Department of Experimental Medicine and Surgery, University of ‘Tor Vergata', Via Montpellier, 1, Rome 00133, Italy
| |
Collapse
|