1
|
Rodríguez-Lorca R, Román R, Beteta-Göbel R, Torres M, Lladó V, Escribá PV, Fernández-García P. Targeting the Notch-Furin axis with 2-hydroxyoleic acid: a key mechanism in glioblastoma therapy. Cell Oncol (Dordr) 2025; 48:373-390. [PMID: 39400678 PMCID: PMC11996967 DOI: 10.1007/s13402-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
PURPOSE Glioblastomas (GBMs) are highly treatment-resistant and aggressive brain tumors. 2OHOA, which is currently running a phase IIB/III clinical trial for newly diagnosed GBM patients, was developed in the context of melitherapy. This therapy focuses on the regulation of the membrane's structure and organization with the consequent modulation of certain cell signals to revert the pathological state in several disorders. Notch signaling has been associated with tumorigenesis and cell survival, potentially driving the pathogenesis of GBM. The current study aims to determine whether 2OHOA modulates the Notch pathway as part of its antitumoral mechanism. METHODS 2OHOA's effect was evaluated on different components of the pathway by Western blot, Q-PCR, and confocal microscopy. Notch receptor processing was analyzed by subcellular fractionation and colocalization studies. Furin activity was evaluated under cleavage of its substrate by fluorescence assays and its binding affinity to 2OHOA was determined by surface plasmon resonance. RESULTS We found that 2OHOA inhibits Notch2 and Notch3 signaling by dual mechanism. Notch2 inhibition is unleashed by impairment of its processing through the inactivation of furin activity by physical association. Instead, Notch3 is transcriptionally downregulated leading to a lower activation of the pathway. Moreover, we also found that HES1 overexpression highlighted the relevance of this pathway in the 2OHOA pharmacological efficacy. CONCLUSION These findings report that the inhibition of Notch signaling by 2OHOA plays a role in its anti-tumoral activity, an effect that may be driven through direct inhibition of furin, characterizing a novel target of this bioactive lipid to treat GBM.
Collapse
Affiliation(s)
- Raquel Rodríguez-Lorca
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain.
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain.
| | - Ramón Román
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain
| | - Roberto Beteta-Göbel
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain
| | - Manuel Torres
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain
| | - Victoria Lladó
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain
| | - Pablo V Escribá
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain.
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain.
| | - Paula Fernández-García
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain
| |
Collapse
|
2
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 PMCID: PMC11863469 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Yang C, Wang R, Hardy P. The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity. Cells 2025; 14:132. [PMID: 39851559 PMCID: PMC11763446 DOI: 10.3390/cells14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells' biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems.
Collapse
Affiliation(s)
- Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Rui Wang
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
4
|
Wang S, Gu S, Chen J, Yuan Z, Liang P, Cui H. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy. Biomolecules 2024; 14:480. [PMID: 38672496 PMCID: PMC11048644 DOI: 10.3390/biom14040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shenghao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Zhiqiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
5
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
6
|
Capuz A, Osien S, Cardon T, Karnoub MA, Aboulouard S, Raffo-Romero A, Duhamel M, Cizkova D, Trerotola M, Devos D, Kobeissy F, Vanden Abeele F, Bonnefond A, Fournier I, Rodet F, Salzet M. Heimdall, an alternative protein issued from a ncRNA related to kappa light chain variable region of immunoglobulins from astrocytes: a new player in neural proteome. Cell Death Dis 2023; 14:526. [PMID: 37587118 PMCID: PMC10432539 DOI: 10.1038/s41419-023-06037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The dogma "One gene, one protein" is clearly obsolete since cells use alternative splicing and generate multiple transcripts which are translated into protein isoforms, but also use alternative translation initiation sites (TISs) and termination sites on a given transcript. Alternative open reading frames for individual transcripts give proteins originate from the 5'- and 3'-UTR mRNA regions, frameshifts of mRNA ORFs or from non-coding RNAs. Longtime considered as non-coding, recent in-silico translation prediction methods enriched the protein databases allowing the identification of new target structures that have not been identified previously. To gain insight into the role of these newly identified alternative proteins in the regulation of cellular functions, it is crucial to assess their dynamic modulation within a framework of altered physiological modifications such as experimental spinal cord injury (SCI). Here, we carried out a longitudinal proteomic study on rat SCI from 12 h to 10 days. Based on the alternative protein predictions, it was possible to identify a plethora of newly predicted protein hits. Among these proteins, some presented a special interest due to high homology with variable chain regions of immunoglobulins. We focus our interest on the one related to Kappa variable light chains which is similarly highly produced by B cells in the Bence jones disease, but here expressed in astrocytes. This protein, name Heimdall is an Intrinsically disordered protein which is secreted under inflammatory conditions. Immunoprecipitation experiments showed that the Heimdall interactome contained proteins related to astrocyte fate keepers such as "NOTCH1, EPHA3, IPO13" as well as membrane receptor protein including "CHRNA9; TGFBR, EPHB6, and TRAM". However, when Heimdall protein was neutralized utilizing a specific antibody or its gene knocked out by CRISPR-Cas9, sprouting elongations were observed in the corresponding astrocytes. Interestingly, depolarization assays and intracellular calcium measurements in Heimdall KO, established a depolarization effect on astrocyte membranes KO cells were more likely that the one found in neuroprogenitors. Proteomic analyses performed under injury conditions or under lipopolysaccharides (LPS) stimulation, revealed the expression of neuronal factors, stem cell proteins, proliferation, and neurogenesis of astrocyte convertor factors such as EPHA4, NOTCH2, SLIT3, SEMA3F, suggesting a role of Heimdall could regulate astrocytic fate. Taken together, Heimdall could be a novel member of the gatekeeping astrocyte-to-neuroprogenitor conversion factors.
Collapse
Affiliation(s)
- Alice Capuz
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Sylvain Osien
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Tristan Cardon
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Mélodie Anne Karnoub
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Antonella Raffo-Romero
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Marie Duhamel
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University 'G. d'Annunzio', Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio', Chieti, Italy
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, 1 place de Verdun, 59000, Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fabien Vanden Abeele
- Université de Lille, INSERM U1003, Laboratory of Cell Physiology, 59650, Villeneuve d'Ascq, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- Institut Universitaire de France, 75005, Paris, France
| | - Franck Rodet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
- Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
7
|
Capuz A, Osien S, Karnoub MA, Aboulouard S, Laurent E, Coyaud E, Raffo-Romero A, Duhamel M, Bonnefond A, Derhourhi M, Trerotola M, El Yazidi-Belkoura I, Devos D, Zilkova M, Kobeissy F, Vanden Abeele F, Fournier I, Cizkova D, Rodet F, Salzet M. Astrocytes express aberrant immunoglobulins as putative gatekeeper of astrocytes to neuronal progenitor conversion. Cell Death Dis 2023; 14:237. [PMID: 37015912 PMCID: PMC10073301 DOI: 10.1038/s41419-023-05737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Using multi-omics analyses including RNAseq, RT-PCR, RACE-PCR, and shotgun proteomic with enrichment strategies, we demonstrated that newborn rat astrocytes produce neural immunoglobulin constant and variable heavy chains as well as light chains. However, their edification is different from the ones found in B cells and they resemble aberrant immunoglobulins observed in several cancers. Moreover, the complete enzymatic V(D)J recombination complex has also been identified in astrocytes. In addition, the constant heavy chain is also present in adult rat astrocytes, whereas in primary astrocytes from human fetus we identified constant and variable kappa chains as well as the substitution lambda chains known to be involved in pre-B cells. To gather insights into the function of these neural IgGs, CRISPR-Cas9 of IgG2B constant heavy chain encoding gene (Igh6), IgG2B overexpression, proximal labeling of rat astrocytes IgG2B and targets identification through 2D gels were performed. In Igh6 KO astrocytes, overrepresentation of factors involved in hematopoietic cells, neural stem cells, and the regulation of neuritogenesis have been identified. Moreover, overexpression of IgG2B in astrocytes induces the CRTC1-CREB-BDNF signaling pathway known to be involved in gliogenesis, whereas Igh6 KO triggers the BMP/YAP1/TEAD3 pathway activated in astrocytes dedifferentiation into neural progenitors. Proximal labeling experiments revealed that IgG2B is N-glycosylated by the OST complex, addressed to vesicle membranes containing the ATPase complex, and behaves partially like CD98hc through its association with LAT1. These experiments also suggest that proximal IgG2B-LAT1 interaction occurs concomitantly with MACO-1 and C2CD2L, at the heart of a potentially novel cell signaling platform. Finally, we demonstrated that these chains are synthesized individually and associated to recognize specific targets. Indeed, intermediate filaments Eif4a2 and Pdia6 involved in astrocyte fate constitute targets for these neural IgGs. Taken together, we hypothese that neural aberrant IgG chains may act as gatekeepers of astrocytes' fate.
Collapse
Affiliation(s)
- Alice Capuz
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Sylvain Osien
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Mélodie Anne Karnoub
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Estelle Laurent
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Antonella Raffo-Romero
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Marie Duhamel
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Mehdi Derhourhi
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University 'G. D'Annunzio', Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, 1 place de Verdun, 59000, Lille, France
| | - Monika Zilkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovakia
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fabien Vanden Abeele
- Université de Lille, INSERM U1003, Laboratory of Cell Physiology, 59655, Villeneuve d'Ascq, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
- Institut Universitaire de France, 75005, Paris, France
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Franck Rodet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France.
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France.
- Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
8
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
9
|
Joung J, Ma S, Tay T, Geiger-Schuller KR, Kirchgatterer PC, Verdine VK, Guo B, Arias-Garcia MA, Allen WE, Singh A, Kuksenko O, Abudayyeh OO, Gootenberg JS, Fu Z, Macrae RK, Buenrostro JD, Regev A, Zhang F. A transcription factor atlas of directed differentiation. Cell 2023; 186:209-229.e26. [PMID: 36608654 PMCID: PMC10344468 DOI: 10.1016/j.cell.2022.11.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.
Collapse
Affiliation(s)
- Julia Joung
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Sai Ma
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn R Geiger-Schuller
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paul C Kirchgatterer
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Vanessa K Verdine
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Baolin Guo
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mario A Arias-Garcia
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William E Allen
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA; Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Ankita Singh
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Olena Kuksenko
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Omar O Abudayyeh
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Jonathan S Gootenberg
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Zhanyan Fu
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rhiannon K Macrae
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Feng Zhang
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Rowton M, Perez-Cervantes C, Hur S, Jacobs-Li J, Lu E, Deng N, Guzzetta A, Hoffmann AD, Stocker M, Steimle JD, Lazarevic S, Oubaha S, Yang XH, Kim C, Yu S, Eckart H, Koska M, Hanson E, Chan SSK, Garry DJ, Kyba M, Basu A, Ikegami K, Pott S, Moskowitz IP. Hedgehog signaling activates a mammalian heterochronic gene regulatory network controlling differentiation timing across lineages. Dev Cell 2022; 57:2181-2203.e9. [PMID: 36108627 PMCID: PMC10506397 DOI: 10.1016/j.devcel.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Many developmental signaling pathways have been implicated in lineage-specific differentiation; however, mechanisms that explicitly control differentiation timing remain poorly defined in mammals. We report that murine Hedgehog signaling is a heterochronic pathway that determines the timing of progenitor differentiation. Hedgehog activity was necessary to prevent premature differentiation of second heart field (SHF) cardiac progenitors in mouse embryos, and the Hedgehog transcription factor GLI1 was sufficient to delay differentiation of cardiac progenitors in vitro. GLI1 directly activated a de novo progenitor-specific network in vitro, akin to that of SHF progenitors in vivo, which prevented the onset of the cardiac differentiation program. A Hedgehog signaling-dependent active-to-repressive GLI transition functioned as a differentiation timer, restricting the progenitor network to the SHF. GLI1 expression was associated with progenitor status across germ layers, and it delayed the differentiation of neural progenitors in vitro, suggesting a broad role for Hedgehog signaling as a heterochronic pathway.
Collapse
Affiliation(s)
- Megan Rowton
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Suzy Hur
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jessica Jacobs-Li
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Emery Lu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Nikita Deng
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexander Guzzetta
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sophie Oubaha
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Xinan H Yang
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Shuhan Yu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Heather Eckart
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Mervenaz Koska
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sunny S K Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anindita Basu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Kabir SR, Dai Z, Nurujjaman M, Cui X, Asaduzzaman AKM, Sun B, Zhang X, Dai H, Zhao X. Biogenic silver/silver chloride nanoparticles inhibit human glioblastoma stem cells growth in vitro and Ehrlich ascites carcinoma cell growth in vivo. J Cell Mol Med 2020; 24:13223-13234. [PMID: 33047886 PMCID: PMC7701582 DOI: 10.1111/jcmm.15934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
The importance of biogenic silver/silver chloride nanoparticles has become increasing day by day. In the present study, silver/silver chloride nanoparticles (Ag/AgCl‐NPs) were synthesized from Kaempferia rotunda tuberous rhizome extract to evaluate the antiproliferative activity against human glioblastoma stem cells (GSCs) in vitro and Ehrlich ascites carcinoma (EAC) cells in vivo in mice. Synthesis of nanoparticles was confirmed by colour change and UV‐visible spectrum and characterized by TEM, XRD, TGA, AFM and FTIR. K rotunda and recently synthesized Zizyphus mauritiana fruit extract‐mediated Ag/AgCl‐NPs inhibited 77.2% and 71% of GSCs growth at 32 µg/mL concentration with the IC50 values of 6.8 and 10.4 µg/mL, respectively. Cell morphological studies and caspase‐3 immunofluorescence assay revealed that both biogenic nanoparticles induced apoptosis in GSCs. Expression levels of several genes were checked by real‐time PCR after treatment with K rotunda tuberous rhizome‐mediated Ag/AgCl‐NPs. PARP, EGFR, NOTCH2 and STAT3 gene expression were decreased with the increase of NFκB, TLR9, IL1, TNFα, IKK and p21 gene that would be the cause of induction of apoptosis in GSCs. The cell cycle arrest at G2/M phase was confirmed by flow cytometric assay. Both nanoparticles were injected intraperitoneally to rapidly growing EAC cells for 5 consecutive days. Approximately, 32.3% and 55% EAC cells growth were inhibited by K rotunda tuberous rhizome‐mediated Ag/AgCl‐NPs at 6 and 12 mg/kg/day doses, respectively while only 20% cell growth inhibition was monitored at 12 mg/kg/day dose of Z mauritiana‐mediated Ag/AgCl‐NPs. From the above results, it can be concluded that presently synthesized nanoparticles would be a potent anticancer agent.
Collapse
Affiliation(s)
- Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - M Nurujjaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Xiaoyue Cui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - A K M Asaduzzaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Bin Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Xianning Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Hongjuan Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
12
|
Gersey Z, Osiason AD, Bloom L, Shah S, Thompson JW, Bregy A, Agarwal N, Komotar RJ. Therapeutic Targeting of the Notch Pathway in Glioblastoma Multiforme. World Neurosurg 2019; 131:252-263.e2. [PMID: 31376551 DOI: 10.1016/j.wneu.2019.07.180] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and deadly form of brain tumor. After standard treatment of resection, radiotherapy, and chemotherapy, the 5-year survival is <5%. In recent years, research has uncovered several potential targets within the Notch signaling pathway, which may lead to improved patient outcomes. METHODS A literature search was performed for articles containing the terms "Glioblastoma" and "Receptors, Notch" between 2003 and July 2015. Of the 62 articles retrieved, 46 met our criteria and were included in our review. Nine articles were identified from other sources and were subsequently included, leaving 55 articles reviewed. RESULTS Of the 55 articles reviewed, 47 used established human GBM cell lines. Seventeen articles used human GBM surgical samples. Forty-five of 48 articles that assessed Notch activity showed increased expression in GBM cell lines. Targeting the Notch pathway was carried out through Notch knockdown and overexpression and targeting δ-like ligand, Jagged, γ-secretase, ADAM10, ADAM17, and Mastermindlike protein 1. Arsenic trioxide, microRNAs, and several other compounds were shown to have an effect on the Notch pathway in GBM. Notch activity in GBM was also shown to be associated with hypoxia and certain cancer-related molecular pathways such as PI3K/AKT/mTOR and ERK/MAPK. Most articles concluded that Notch activity amplifies malignant characteristics in GBM and targeting this pathway can bring about amelioration of these effects. CONCLUSIONS Recent literature suggests targeting the Notch pathway has great potential for future therapies for GBM.
Collapse
Affiliation(s)
- Zachary Gersey
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adam D Osiason
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Bloom
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sumedh Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - John W Thompson
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Amade Bregy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nitin Agarwal
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
13
|
Bazzoni R, Bentivegna A. Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers (Basel) 2019; 11:cancers11030292. [PMID: 30832246 PMCID: PMC6468848 DOI: 10.3390/cancers11030292] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that regulates important biological processes, such as cell proliferation, apoptosis, migration, self-renewal, and differentiation. In mammals, Notch signaling is composed of four receptors (Notch1–4) and five ligands (Dll1-3–4, Jagged1–2) that mainly contribute to the development and maintenance of the central nervous system (CNS). Neural stem cells (NSCs) are the starting point for neurogenesis and other neurological functions, representing an essential aspect for the homeostasis of the CNS. Therefore, genetic and functional alterations to NSCs can lead to the development of brain tumors, including glioblastoma. Glioblastoma remains an incurable disease, and the reason for the failure of current therapies and tumor relapse is the presence of a small subpopulation of tumor cells known as glioma stem cells (GSCs), characterized by their stem cell-like properties and aggressive phenotype. Growing evidence reveals that Notch signaling is highly active in GSCs, where it suppresses differentiation and maintains stem-like properties, contributing to Glioblastoma tumorigenesis and conventional-treatment resistance. In this review, we try to give a comprehensive view of the contribution of Notch signaling to Glioblastoma and its possible implication as a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, Italy.
- Program in Clinical and Experimental Biomedical Sciences, University of Verona, 37134 Verona, Italy.
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Angela Bentivegna
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
14
|
Tomé M, Tchorz J, Gassmann M, Bettler B. Constitutive activation of Notch2 signalling confers chemoresistance to neural stem cells via transactivation of fibroblast growth factor receptor-1. Stem Cell Res 2019; 35:101390. [PMID: 30763736 DOI: 10.1016/j.scr.2019.101390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/28/2018] [Accepted: 01/23/2019] [Indexed: 12/01/2022] Open
Abstract
Notch signalling regulates neural stem cell (NSC) proliferation, differentiation and survival for the correct development and functioning of the central nervous system. Overactive Notch2 signalling has been associated with poor prognosis of aggressive brain tumours, such as glioblastoma multiforme (GBM). We recently reported that constitutive expression of the Notch2 intracellular domain (N2ICD) enhances proliferation and gliogenesis in NSCs. Here, we investigated the mechanism by which Notch2 promotes resistance to apoptosis of NSCs to cytotoxic insults. We performed ex vivo studies using NSC cultures from transgenic mice constitutively expressing N2ICD. These NSCs expressed increased levels of pro-survival factors and lack an apoptotic response to the topoisomerase inhibitor etoposide, not showing neither mitochondrial damage nor caspase activation. Interestingly, Notch2 signalling also regulated chemoresistance of human GBM cells to etoposide. We also identified a signalling crosstalk with FGF signalling pathway involved in this resistance to apoptosis of NSCs. Aberrant Notch2 expression enhances fibroblast growth factor receptor-1 (FGFR1) activity to specifically target the AKT-GSK3 signalling pathway to block apoptosis. These results have implications for understanding molecular changes involved in both tumorigenesis and therapy resistance.
Collapse
Affiliation(s)
- Mercedes Tomé
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland.
| | - Jan Tchorz
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
15
|
Deng J, Liu AD, Hou GQ, Zhang X, Ren K, Chen XZ, Li SSC, Wu YS, Cao X. N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:2. [PMID: 30606241 PMCID: PMC6319015 DOI: 10.1186/s13046-018-1016-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glioblastomas multiforme (GBM) is the most devastating primary intracranial malignancy lacking effective clinical treatments. Notch2 has been established to be a prognostic marker and probably involved in GBM malignant progression. N-acetylcysteine (NAC), a precursor of intracellular glutathione (GSH), has been widely implicated in prevention and therapy of several cancers. However, the role of NAC in GBM remains unclear and the property of NAC independent of its antioxidation is largely unknown. METHODS The mRNA and protein levels of Notch family and other related factors were detected by RT-PCR and western blot, respectively. In addition, intracellular reactive oxygen species (ROS) was measured by flow cytometry-based DCFH-DA. Moreover, cell viability was assessed by CCK8 and cell cycle was analyzed by flow cytometry-based PI staining. The level of apoptosis was checked by flow cytometry-based Annexin V/PI. Cell migration and invasion were evaluated by wound healing and transwell invasion assays. At last, U87 Xenograft model was established to confirm whether NAC could restrain the growth of tumor. RESULTS Our data showed that NAC could decrease the protein level of Notch2. Meanwhile, NAC had a decreasing effect on the mRNA and protein levels of its downstream targets Hes1 and Hey1. These effects caused by NAC were independent of cellular GSH and ROS levels. The mechanism of NAC-mediated Notch2 reduction was elucidated by promoting Notch2 degradation through Itch-dependent lysosome pathway. Furthermore, NAC could prevent proliferation, migration, and invasion and might induce apoptosis in GBM cells via targeting Notch2. Significantly, NAC could suppress the growth of tumor in vivo. CONCLUSIONS NAC could facilitate Notch2 degradation through lysosomal pathway in an antioxidant-independent manner, thus attenuating Notch2 malignant signaling in GBM cells. The remarkable ability of NAC to inhibit cancer cell proliferation and tumor growth may implicate a novel application of NAC on GBM therapy.
Collapse
Affiliation(s)
- Jie Deng
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - An-Dong Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guo-Qing Hou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Zhang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Ren
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuan-Zuo Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shawn S C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Yao-Song Wu
- The Institute of Cancer Molecular Mechanisms & Drug Targets, School of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.
| |
Collapse
|
16
|
Bhagat R, Prajapati B, Narwal S, Agnihotri N, Adlakha YK, Sen J, Mani S, Seth P. Zika virus E protein alters the properties of human fetal neural stem cells by modulating microRNA circuitry. Cell Death Differ 2018; 25:1837-1854. [PMID: 30050059 PMCID: PMC6180120 DOI: 10.1038/s41418-018-0163-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023] Open
Abstract
Zika virus (ZV) infects neural stem cells (NSCs) and causes quiescence in NSCs, reducing the pool of brain cells, leading to microcephaly. Despite conscientious efforts, the molecular mechanisms for ZV-mediated effects on NSCs lack clarity. This study aimed to explore the underlying mechanisms for ZV-mediated induction of quiescence in the primary cultures of human fetal neural stem cells (fNSCs). We demonstrate that expression of ZV envelope (E) protein displays maximum quiescence in human fNSCs by accumulating cells in the G0/G1 phase of the cell cycle as compared to other non-structural proteins, viz. NS2A, NS4A and NS4B. E protein induces immature differentiation by induction of pro-neuronal genes in proliferating fNSCs, induces apoptosis in differentiating fNSCs 3 days post differentiation, and disrupts migration of cells from differentiating neurospheres. In utero electroporation of mouse brain with E protein shows drastic downregulation of proliferating cells in ventricular and subventricular zone regions. Global microRNA sequencing suggests that E protein modulates miRNA circuitry. Among differentially expressed miRNAs, we found 14 upregulated and 11 downregulated miRNAs. Mir-204-3p and mir-1273g-3p directly regulate NOTCH2 and PAX3 expression, respectively, by binding to their 3'UTR. Bioinformatic analysis using GO analysis for the targets of differentially expressed miRNAs revealed enrichment of cell cycle and developmental processes. Furthermore, WNT, CCKR, PDGF, EGF, p53, and NOTCH signaling pathways were among the top enriched pathways. Thus, our study provides evidence for the involvement of ZV E protein and novel insights into the molecular mechanism through identification of miRNA circuitry. Art work depicting the effect of Zika virus E protein on human fetal neural stem cells.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Bharat Prajapati
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sonia Narwal
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Nitin Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Yogita K Adlakha
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Shyamala Mani
- Curadev Pharma Pvt. Ltd, B87 Sector 83, Noida, Uttar Pradesh, India
- INSERM, U1141, Hôpital Robert Debré, Paris, France
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| |
Collapse
|
17
|
Yan D, Hao C, Xiao-Feng L, Yu-Chen L, Yu-Bin F, Lei Z. Molecular mechanism of Notch signaling with special emphasis on microRNAs: Implications for glioma. J Cell Physiol 2018; 234:158-170. [PMID: 30076599 DOI: 10.1002/jcp.26775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
Glioma is the most aggressive primary brain tumor and is notorious for resistance to chemoradiotherapy. Although its associated mechanisms are still not completely understood, Notch signaling, an evolutionarily conserved pathway, appears to be the key processes involved. Nevertheless, its mechanisms are sophisticated, due to a variety of targets and signal pathways, especially microRNA. MicroRNAs, which are small noncoding regulatory RNA molecules, have been proposed as one of the key mechanisms in glioma pathogenesis. Among the known glioma associated microRNA, microRNA-129, microRNA-34 family, and microRNA-326 have been shown to influence the progress of glioma through Notch signaling. Evidence also indicates that recurrence is due to development or persistence of the glioma stem-like cells and active angiogenesis, which are tightly regulated by a variety of factors, including Notch signaling. In this review, we summarize the recent progress regarding the functional roles of Notch signaling in glioma, including Notch ligand, microRNA, intracellular crosstalk, glioma stem-like cells and active angiogenesis and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for glioma.
Collapse
Affiliation(s)
- Du Yan
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Chen Hao
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Li Xiao-Feng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Lu Yu-Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Feng Yu-Bin
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Zhang Lei
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
18
|
Joshi R, Fuller B, Mosadegh B, Tavana H. Stem cell colony interspacing effect on differentiation to neural cells. J Tissue Eng Regen Med 2018; 12:2041-2054. [PMID: 30058271 DOI: 10.1002/term.2739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/20/2018] [Accepted: 07/11/2018] [Indexed: 01/30/2023]
Abstract
Efforts to enhance the efficiency of neural differentiation of stem cells are primarily focused on exogenous modulation of physical niche parameters such as surface topography and extracellular matrix proteins, or addition of certain growth factors or small molecules to culture media. We report a novel neurogenic niche to enhance the neural differentiation of embryonic stem cells (ESCs) without any external intervention by micropatterning ESCs into spatially organized colonies of controlled size and interspacing. Using an aqueous two-phase system cell microprinting technology, we generated pairs of uniformly sized isolated ESC colonies at defined interspacing distances over a layer of differentiation-inducing stromal cells. Our comprehensive analysis of temporal expression of neural genes and proteins of cells in colony pairs showed that interspacing two colonies at approximately 0.66 times the colony diameter (0.66D) significantly enhanced neural differentiation of ESCs. Cells in these colonies displayed higher expression of neural genes and proteins and formed thick neurite bundles between the two colonies. A computational model of spatial distribution of soluble factors of cells in interspaced colony pairs showed that the enhanced neural differentiation is due to the presence of stable concentration gradients of soluble signalling factors between the two colonies. Our results indicate that culturing ESCs in colony pairs with defined interspacing is a promising approach to efficiently derive neural cells. Additionally, this approach provides a platform for quantitative studies of molecular mechanisms that regulate neurogenesis of stem cells.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| | - Brendan Fuller
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| | - Bobak Mosadegh
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| |
Collapse
|
19
|
Khwaja SS, Cai C, Badiyan SN, Wang X, Huang J. The immune-related microRNA miR-146b is upregulated in glioblastoma recurrence. Oncotarget 2018; 9:29036-29046. [PMID: 30018734 PMCID: PMC6044384 DOI: 10.18632/oncotarget.25528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma (GBM) has a high rate of local recurrence despite chemoradiotherapy (CRT). Genome-wide expression profiling was performed on patient tumors before and after chemoradiotherapy to identify genes and gene pathways associated with recurrence. Results Median time to recurrence was 8.9 months with median time to second surgery of 9.6 months. The microRNA (miRNA) analysis identified 9 oncologic and immune-related miRNAs to be differentially expressed, including the hypoxia-related miR-210 and the immune-modulatory miR-146b. More than 1200 differentially-expressed genes were identified with RNA-sequencing (RNA-seq). Gene set enrichment analysis (GSEA) identified p53 signaling, Notch, Wnt, VEGF, and MEK gene sets enriched in recurrent GBM. Consistent with the miRNA profiling data, the miR-146b target gene set from GSEA analysis was also associated with recurrence. Methods Fourteen patients with GBM recurrence after CRT who had available tumor tissue from the initial diagnosis as well as recurrence were selected. Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) tumor specimens. Genome-wide expression profiling using RT-PCR for miRNA analysis and RNA-seq for messenger RNA (mRNA) analysis were conducted to identify differentially-expressed genes. GSEA was performed on the differential expression data. Conclusions Genome-wide expression profiling identifies multiple oncologic and immune-related gene sets associated with GBM recurrence. In particular, immune-related miR-146b is upregulated in recurrence and deserves further investigation.
Collapse
Affiliation(s)
- Shariq S Khwaja
- Department of Neurosurgery, UTHealth McGovern School of Medicine, Mischer Neuroscience Associates, Houston, TX, USA
| | - Chunyu Cai
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shahed N Badiyan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Opačak-Bernardi T, Ryu JS, Raucher D. Effects of cell penetrating Notch inhibitory peptide conjugated to elastin-like polypeptide on glioblastoma cells. J Drug Target 2017; 25:523-531. [PMID: 28140690 DOI: 10.1080/1061186x.2017.1289537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Notch pathway was found to be activated in most glioblastomas (GBMs), underlining the importance of Notch in formation and recurrence of GBM. In this study, a Notch inhibitory peptide, dominant negative MAML (dnMAML), was conjugated to elastin-like polypeptide (ELP) for tumor targeted delivery. ELP is a thermally responsive polypeptide that can be actively and passively targeted to the tumor site by localized application of hyperthermia. This complex was further modified with the addition of a cell penetrating peptide, SynB1, for improved cellular uptake and blood-brain barrier penetration. The SynB1-ELP1-dnMAML was examined for its cellular uptake, cytotoxicity, apoptosis, cell cycle inhibition and the inhibition of target genes' expression. SynB1-ELP1-dnMAML inhibited the growth of D54 and U251 cells by inducing apoptosis and cell cycle arrest, especially in the presence of hyperthermia. Hyperthermia increased overall uptake of the polypeptide by the cells and enhanced the resulting pharmacological effects of dnMAML, showing the inhibition of targets of Notch pathway such as Hes-1 and Hey-L. These results confirm that dnMAML is an effective Notch inhibitor and combination with ELP may allow thermal targeting of the SynB1-ELP1-dnMAML complex in cancer cells while avoiding the dangers of systemic Notch inhibition.
Collapse
Affiliation(s)
- Teuta Opačak-Bernardi
- a Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine , J.J. Strossmayer University of Osijek , Osijek , Croatia
| | - Jung Su Ryu
- b Department of Biochemistry , University of Mississippi Medical Center , Jackson , MS , USA
| | - Drazen Raucher
- b Department of Biochemistry , University of Mississippi Medical Center , Jackson , MS , USA
| |
Collapse
|
21
|
Joshi R, Buchanan JC, Paruchuri S, Morris N, Tavana H. Molecular Analysis of Stromal Cells-Induced Neural Differentiation of Mouse Embryonic Stem Cells. PLoS One 2016; 11:e0166316. [PMID: 27832161 PMCID: PMC5104328 DOI: 10.1371/journal.pone.0166316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/26/2016] [Indexed: 12/02/2022] Open
Abstract
Deriving specific neural cells from embryonic stem cells (ESCs) is a promising approach for cell replacement therapies of neurodegenerative diseases. When co-cultured with certain stromal cells, mouse ESCs (mESCs) differentiate efficiently to neural cells. In this study, a comprehensive gene and protein expression analysis of differentiating mESCs is performed over a two-week culture period to track temporal progression of cells from a pluripotent state to specific terminally-differentiated neural cells such as neurons, astrocytes, and oligodendrocytes. Expression levels of 26 genes consisting of marker genes for pluripotency, neural progenitors, and specific neuronal, astroglial, and oligodendrocytic cells are tracked using real time q-PCR. The time-course gene expression analysis of differentiating mESCs is combined with the hierarchal clustering and functional principal component analysis (FPCA) to elucidate the evolution of specific neural cells from mESCs at a molecular level. These statistical analyses identify three major gene clusters representing distinct phases of transition of stem cells from a pluripotent state to a terminally-differentiated neuronal or glial state. Temporal protein expression studies using immunohistochemistry demonstrate the generation of neural stem/progenitor cells and specific neural lineages and show a close agreement with the gene expression profiles of selected markers. Importantly, parallel gene and protein expression analysis elucidates long-term stability of certain proteins compared to those with a quick turnover. Describing the molecular regulation of neural cells commitment of mESCs due to stromal signaling will help identify major promoters of differentiation into specific cell types for use in cell replacement therapy applications.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States of America
| | - James Carlton Buchanan
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States of America
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States of America
| | - Nathan Morris
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, United States of America
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States of America
| |
Collapse
|
22
|
Roese-Koerner B, Stappert L, Berger T, Braun NC, Veltel M, Jungverdorben J, Evert BO, Peitz M, Borghese L, Brüstle O. Reciprocal Regulation between Bifunctional miR-9/9(∗) and its Transcriptional Modulator Notch in Human Neural Stem Cell Self-Renewal and Differentiation. Stem Cell Reports 2016; 7:207-19. [PMID: 27426040 PMCID: PMC4982985 DOI: 10.1016/j.stemcr.2016.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Tight regulation of the balance between self-renewal and differentiation of neural stem cells is crucial to assure proper neural development. In this context, Notch signaling is a well-known promoter of stemness. In contrast, the bifunctional brain-enriched microRNA miR-9/9∗ has been implicated in promoting neuronal differentiation. Therefore, we set out to explore the role of both regulators in human neural stem cells. We found that miR-9/9∗ decreases Notch activity by targeting NOTCH2 and HES1, resulting in an enhanced differentiation. Vice versa, expression levels of miR-9/9∗ depend on the activation status of Notch signaling. While Notch inhibits differentiation of neural stem cells, it also induces miR-9/9∗ via recruitment of the Notch intracellular domain (NICD)/RBPj transcriptional complex to the miR-9/9∗_2 genomic locus. Thus, our data reveal a mutual interaction between bifunctional miR-9/9∗ and the Notch signaling cascade, calibrating the delicate balance between self-renewal and differentiation of human neural stem cells. MiR-9/9∗ regulate Notch signaling by targeting NOTCH2 and HES1 Notch directly regulates transcription of the miR-9_2 genomic locus Notch-miR-9 reciprocal regulation calibrates NSC self-renewal and differentiation
Collapse
Affiliation(s)
- Beate Roese-Koerner
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Laura Stappert
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Thomas Berger
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Nils Christian Braun
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Monika Veltel
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Johannes Jungverdorben
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Lodovica Borghese
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, 53127 Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany.
| |
Collapse
|
23
|
Wang C, Li Q, Liu F, Chen X, Liu B, Nesa EU, Guan S, Han L, Tan B, Wang N, Wang X, Song Q, Jia Y, Wang J, Lu M, Cheng Y. Notch2 as a promising prognostic biomarker for oesophageal squamous cell carcinoma. Sci Rep 2016; 6:25722. [PMID: 27158037 PMCID: PMC4860585 DOI: 10.1038/srep25722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/21/2016] [Indexed: 12/28/2022] Open
Abstract
We aimed to examine Notch2 expression in oesophageal squamous cell carcinoma (ESCC) patients and to evaluate its prognostic potential. Immunohistochemical (IHC) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were utilized to investigate the Notch2 expression status and prognostic value. Furtherly, CCK8 and clonogenic assays were conducted to determine if Notch2 inhibition by shRNA could lead to a decrease in the proliferation and survival of ESCC cells. A notably higher Notch2 expression level was found in ESCC tissues at the mRNA (P < 0.0001) and protein levels (IHC: P = 0.004; western blot: P = 0.021). Log-rank analysis demonstrated that Notch2 overexpression was significantly associated with worse overall survival (OS) (29.1% vs. 49.1%; P = 0.013) and progression-free survival (PFS) (15.3% vs. 34.4%; P = 0.006) rates in ESCC patients. The multivariate analysis revealed Notch2 as an independent prognostic factor for OS and PFS (P = 0.002 and 0.006, resp.). Besides, in vitro assays showed that OD450 values and colony formations were significantly reduced in Notch2-shRNA group (all P < 0.0001). In conclusion, these results show that Notch2 is up-regulated in ESCC tissues and could serve as a promising biomarker for identifying individuals with poor prognostic potential.
Collapse
Affiliation(s)
- Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qingbao Li
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Fang Liu
- Department of Imaging, Shandong Medical College, Jinan, Shandong, 250002, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Nana Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xintong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, 250117, China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yibin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ming Lu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
24
|
Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1418309. [PMID: 27247607 PMCID: PMC4876217 DOI: 10.1155/2016/1418309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/30/2022]
Abstract
Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell cycle and NF-κB signaling pathway; however, the real antitumor mechanism of corilagin is not yet clear and requires further study.
Collapse
|
25
|
Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int 2016; 2016:5728438. [PMID: 26977157 PMCID: PMC4764748 DOI: 10.1155/2016/5728438] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas are aggressive brain tumors with limited therapeutic options, possibly because of highly tumorigenic subpopulations of glioma stem cells. These cells require specific microenvironments to maintain their “stemness,” described as perivascular and hypoxic niches. Each of those niches induces particular signatures in glioma stem cells (e.g., activation of Notch signaling, secretion of VEGF, bFGF, SDF1 for the vascular niche, activation of HIF2α, and metabolic reprogramming for hypoxic niche). Recently, accumulated knowledge on tumor-associated macrophages, possibly delineating a third niche, has underlined the role of immune cells in glioma progression, via specific chemoattractant factors and cytokines, such as macrophage-colony stimulation factor (M-CSF). The local or myeloid origin of this new component of glioma stem cells niche is yet to be determined. Such niches are being increasingly recognized as key regulators involved in multiple stages of disease progression, therapy resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. This review focuses on the microenvironment impact on the glioma stem cell biology, emphasizing GSCs cross talk with hypoxic, perivascular, and immune niches and their potential use as targeted therapy.
Collapse
|
26
|
ERKAN EP, VURGUN U, ERBAYRAKTAR RS, ERBAYRAKTAR Z. Glioblastoma stem cells: a therapeutic challenge. Turk J Biol 2016. [DOI: 10.3906/biy-1508-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
27
|
Liu Y, Guo Q, Zhang H, Li GH, Feng S, Yu XZ, Kong LS, Zhao L, Jin F. Effect of siRNA-Livin on drug resistance to chemotherapy in glioma U251 cells and CD133 + stem cells. Exp Ther Med 2015; 10:1317-1323. [PMID: 26622485 PMCID: PMC4578066 DOI: 10.3892/etm.2015.2675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/09/2015] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to observe the effect of siRNA-Livin on the expression of multidrug resistance-associated protein (MRP) genes in a U251 cell line and U251 stem cells. CD133+ cancer stem cells were identified and isolated from the U251 glioblastoma cells, and morphological observations were used to detect the cell survival conditions. In addition, quantitative polymerase chain reaction was used to detect the mRNA expression levels of Livin, MRP1 and MRP3. Following transfection with the lentivirus containing the siRNA-Livin, the expression of Livin was significantly inhibited in the U251 cells and stem cells (P<0.01). Following temozolomide intervention, the proliferation of the U251 cells and U251 stem cells was restrained, with a lot of cell debris present and the structure of the cell spheres destroyed. The inhibitory effect was more significant following transfection with siRNA-Livin. Prior to siRNA-Livin transfection, the expression of MRP1 presented an increasing trend in the U251 cells and U251 stem cells with increasing drug concentrations and intervention times (P<0.05). Following siRNA-Livin transfection, the expression of MRP1 decreased in the U251 cells and U251 stem cells under the same drug concentration and intervention time (P<0.05), while the expression of MRP3 increased in the U251 stem cells under the same intervention concentration and time (P<0.05). Therefore, siRNA-Livin was shown to decrease the expression of MRP1 in U251 cells and U251 stem cells, increase the expression of MRP3 in U251 stem cells and decrease the proliferation of U251 cells and U251 stem cells. Thus, Livin may be associated with the high expression of MRP1, and siRNA-Livin may be used to lower the expression of MRP1 in order to reduce the drug resistance to chemotherapy in cases of glioblastoma.
Collapse
Affiliation(s)
- Yang Liu
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qiang Guo
- Department of Neurosurgery, Neuro-oncology Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, Neuro-oncology Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Gen-Hua Li
- Department of Neurosurgery, Neuro-oncology Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Song Feng
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xi-Zhen Yu
- Department of Neurosurgery, Neuro-oncology Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Ling-Sheng Kong
- Department of Neurosurgery, Neuro-oncology Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Lei Zhao
- Department of Hepatology & Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Feng Jin
- Department of Neurosurgery, Neuro-oncology Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| |
Collapse
|
28
|
Valproic acid enhances neuronal differentiation of sympathoadrenal progenitor cells. Mol Psychiatry 2015; 20:941-50. [PMID: 25707399 DOI: 10.1038/mp.2015.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
The antiepileptic drug valproic acid (VPA) has been shown to influence the neural differentiation and neurite outgrowth of neural stem cells. Sympathoadrenal progenitor cells share properties with neural stem cells and are considered a potential cell source in the treatment of neurodegenerative diseases. The present study therefore aims at modulating the neural differentiation potential of these cells by treatment with the histone deacetylase inhibitor VPA. We studied the epigenetic effects of VPA in two culture conditions: suspension conditions aimed to expand adrenomedullary sympathoadrenal progenitors within free-floating chromospheres and adherent cell cultures optimized to derive neurons. Treatment of chromospheres with VPA may launch neuronal differentiation mechanisms and improve their neurogenic potential upon transplantation. However, also transplantation of differentiated functional neurons could be beneficial. Treating chromospheres for 7 days with clinically relevant concentrations of VPA (2 mm) revealed a decrease of neural progenitor markers Nestin, Notch2 and Sox10. Furthermore, VPA initiated catecholaminergic neuronal differentiation indicated by upregulation of the neuronal marker β-III-tubulin, the dopaminergic transcription factor Pitx3 and the catecholaminergic enzymes TH and GTPCH. In adherent neural differentiation conditions, VPA treatment improved the differentiation of sympathoadrenal progenitor cells into catecholaminergic neurons with significantly elevated levels of nor- and epinephrine. In conclusion, similar to neural stem cells, VPA launches differentiation mechanisms in sympathoadrenal progenitor cells that result in increased generation of functional neurons. Thus, data from this study will be relevant to the potential use of chromaffin progenitors in transplantation therapies of neurodegenerative diseases.
Collapse
|
29
|
Ertaylan G, Okawa S, Schwamborn JC, Del Sol A. Gene regulatory network analysis reveals differences in site-specific cell fate determination in mammalian brain. Front Cell Neurosci 2014; 8:437. [PMID: 25565969 PMCID: PMC4270183 DOI: 10.3389/fncel.2014.00437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023] Open
Abstract
Neurogenesis-the generation of new neurons-is an ongoing process that persists in the adult mammalian brain of several species, including humans. In this work we analyze two discrete brain regions: the subventricular zone (SVZ) lining the walls of the lateral ventricles; and the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus in mice and shed light on the SVZ and SGZ specific neurogenesis. We propose a computational model that relies on the construction and analysis of region specific gene regulatory networks (GRNs) from the publicly available data on these two regions. Using this model a number of putative factors involved in neuronal stem cell (NSC) identity and maintenance were identified. We also demonstrate potential gender and niche-derived differences based on cell surface and nuclear receptors via Ar, Hif1a, and Nr3c1. We have also conducted cell fate determinant analysis for SVZ NSC populations to Olfactory Bulb interneurons and SGZ NSC populations to the granule cells of the Granular Cell Layer. We report 31 candidate cell fate determinant gene pairs, ready to be validated. We focus on Ar-Pax6 in SVZ and Sox2-Ncor1 in SGZ. Both pairs are expressed and localized in the suggested anatomical structures as shown by in situ hybridization and found to physically interact. Finally, we conclude that there are fundamental differences between SGZ and SVZ neurogenesis. We argue that these regulatory mechanisms are linked to the observed differential neurogenic potential of these regions. The presence of nuclear and cell surface receptors in the region specific regulatory circuits indicate the significance of niche derived extracellular factors, hormones and region specific factors such as the oxygen sensitivity, dictating SGZ and SVZ specific neurogenesis.
Collapse
Affiliation(s)
- Gökhan Ertaylan
- Computational Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Satoshi Okawa
- Computational Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Antonio Del Sol
- Computational Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| |
Collapse
|
30
|
Tanase C, Albulescu R, Codrici E, Popescu ID, Mihai S, Enciu AM, Cruceru ML, Popa AC, Neagu AI, Necula LG, Mambet C, Neagu M. Circulating biomarker panels for targeted therapy in brain tumors. Future Oncol 2014; 11:511-524. [PMID: 25241806 DOI: 10.2217/fon.14.238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An important goal of oncology is the development of cancer risk-identifier biomarkers that aid early detection and target therapy. High-throughput profiling represents a major concern for cancer research, including brain tumors. A promising approach for efficacious monitoring of disease progression and therapy could be circulating biomarker panels using molecular proteomic patterns. Tailoring treatment by targeting specific protein-protein interactions and signaling networks, microRNA and cancer stem cell signaling in accordance with tumor phenotype or patient clustering based on biomarker panels represents the future of personalized medicine for brain tumors. Gathering current data regarding biomarker candidates, we address the major challenges surrounding the biomarker field of this devastating tumor type, exploring potential perspectives for the development of more effective predictive biomarker panels.
Collapse
Affiliation(s)
- Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, no 99-101 Splaiul Independentei, 050096 Sector 5 Bucharest, Romania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fan Y, Marcy G, Lee ESM, Rozen S, Mattar CNZ, Waddington SN, Goh ELK, Choolani M, Chan JKY. Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming. PLoS One 2014; 9:e105985. [PMID: 25181041 PMCID: PMC4152177 DOI: 10.1371/journal.pone.0105985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/30/2014] [Indexed: 01/30/2023] Open
Abstract
Neural stem/progenitor cells (NSC) have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ) of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS) when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6%) over other sources (range of 0%–27.5%, p<0.004). Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Guillaume Marcy
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eddy S. M. Lee
- Richard M. Lucas Center for Imaging, Radiology Department, Stanford University, Stanford, California, United States of America
| | - Steve Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Citra N. Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
- Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Eyleen L. K. Goh
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- * E-mail: (JKYC); (MC)
| | - Jerry K. Y. Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail: (JKYC); (MC)
| |
Collapse
|
32
|
Dell'albani P, Rodolico M, Pellitteri R, Tricarichi E, Torrisi SA, D'Antoni S, Zappia M, Albanese V, Caltabiano R, Platania N, Aronica E, Catania MV. Differential patterns of NOTCH1-4 receptor expression are markers of glioma cell differentiation. Neuro Oncol 2013; 16:204-16. [PMID: 24305720 DOI: 10.1093/neuonc/not168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Notch signaling is deregulated in human gliomas and may play a role in their malignancy. However, the role of each Notch receptor in glioma cell differentiation and progression is not clear. We examined the expression pattern of Notch receptors and compared it with differentiation markers in glioma cell lines, primary human cultures, and biopsies of different grades. Furthermore, the effects of a γ-secretase inhibitor (GSI) on cell survival were assessed. Methods Notch receptors and markers of cellular differentiation were analyzed by reverse transcriptase PCR, Western blotting, immunohistochemistry, and immunocytochemistry. GSI sensitivity was assessed in both cell lines and primary cultures grown as monolayers or tumorspheres, by MTT assay. Results In cell lines, Notch1 and Notch2/4 levels paralleled those of glial fibrillary acidic protein (GFAP) and vimentin, respectively. In human gliomas and primary cultures, Notch1 was moderate/strong in low-grade tumors but weak in glioblastoma multiforme (GBM). Conversely, Notch4 increased from astrocytoma grade II to GBM. Primary GBM cultures grown in serum (monolayer) showed moderate/high levels of CD133, nestin, vimentin, and Notch4 and very low levels of GFAP and Notch1, which were reduced in tumorspheres. This effect was drastic for Notch4. GSI reduced cell survival with stronger effect in serum, whilst human primary cultures showed different sensitivity. Conclusion Data from cell lines and human gliomas suggest a correlation between expression of Notch receptors and cell differentiation. Namely, Notch1 and Notch4 are markers of differentiated and less differentiated glioma cells, respectively. We propose Notch receptors as markers of glioma grading and possible prognostic factors.
Collapse
Affiliation(s)
- Paola Dell'albani
- Corresponding authors: Paola Dell'Albani, PhD, Institute of Neurological Sciences, CNR, Via P. Gaifami, 18-95126 Catania, Italy. ); Maria Vincenza Catania, MD, Institute of Neurological Sciences, CNR, Via P. Gaifami, 18-95126 Catania, Italy (
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alqudah MAY, Agarwal S, Al-Keilani MS, Sibenaller ZA, Ryken TC, Assem M. NOTCH3 is a prognostic factor that promotes glioma cell proliferation, migration and invasion via activation of CCND1 and EGFR. PLoS One 2013; 8:e77299. [PMID: 24143218 PMCID: PMC3797092 DOI: 10.1371/journal.pone.0077299] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/30/2013] [Indexed: 12/18/2022] Open
Abstract
Using a GWA analysis of a comprehensive glioma specimen population, we identified whole gain of chromosome 19 as one of the major chromosomal aberrations that correlates to patients' outcomes. Our analysis of significant loci revealed for the first time NOTCH3 as one of the most significant amplification. NOTCH3 amplification is associated with worse outcome compared to tumors with non-amplified locus. NOTCH receptors (NOTCH1-4) are key positive regulators of cell-cell interactions, angiogenesis, cell adhesion and stem cell niche development which have been shown to play critical roles in several human cancers. Our objective is to determine the molecular roles of NOTCH3 in glioma pathogenesis and aggressiveness. Here we show for the first time that NOTCH3 plays a major role in glioma cell proliferation, cell migration, invasion and apoptosis. Therefore, our study uncovers the prognostic value and the oncogenic function of NOTCH3 in gliomagenesis and supports NOTCH3 as a promising target of therapy in high grade glioma. Our studies allowed the identification of a subset of population that may benefit from GSI- or anti-NOTCH3- based therapies. This may lead to the design of novel strategies to improve therapeutic outcome of patients with glioma by establishing medical and scientific basis for personalized chemotherapies.
Collapse
Affiliation(s)
- Mohammad A. Y. Alqudah
- Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| | - Supreet Agarwal
- Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| | - Maha S. Al-Keilani
- Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| | - Zita A. Sibenaller
- Department of Neurosurgery and Radiation Oncology, University of Iowa, Iowa City, Iowa, United States of America
| | - Timothy C. Ryken
- Department of Neurosurgery and Radiation Oncology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurosurgery, Iowa Spine and Brain Institute, Waterloo, Iowa, United States of America
| | - Mahfoud Assem
- Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
34
|
Cruceru ML, Neagu M, Demoulin JB, Constantinescu SN. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms. J Cell Mol Med 2013; 17:1218-35. [PMID: 23998913 PMCID: PMC4159024 DOI: 10.1111/jcmm.12122] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022] Open
Abstract
Despite intense efforts to identify cancer-initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer-initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called ‘leukaemia of the brain’, given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer-initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation.
Collapse
Affiliation(s)
- Maria Linda Cruceru
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|
35
|
Natarajan S, Li Y, Miller EE, Shih DJ, Taylor MD, Stearns TM, Bronson RT, Ackerman SL, Yoon JK, Yun K. Notch1-induced brain tumor models the sonic hedgehog subgroup of human medulloblastoma. Cancer Res 2013; 73:5381-90. [PMID: 23852537 DOI: 10.1158/0008-5472.can-13-0033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While activation of the Notch pathway is observed in many human cancers, it is unknown whether elevated Notch1 expression is sufficient to initiate tumorigenesis in most tissues. To test the oncogenic potential of Notch1 in solid tumors, we expressed an activated form of Notch1 (N1ICD) in the developing mouse brain. N1ICD;hGFAP-cre mice were viable but developed severe ataxia and seizures, and died by weaning age. Analysis of transgenic embryo brains revealed that N1ICD expression induced p53-dependent apoptosis. When apoptosis was blocked by genetic deletion of p53, 30% to 40% of N1ICD;GFAP-cre;p53(+/-) and N1ICD;GFAP-cre;p53(-/-) mice developed spontaneous medulloblastomas. Interestingly, N1ICD-induced medulloblastomas most closely resembled the sonic hedgehog subgroup of human medulloblastoma at the molecular level. Surprisingly, N1ICD-induced tumors do not maintain high levels of the Notch pathway gene expression, except for Notch2, showing that initiating oncogenic events may not be decipherable by analyzing growing tumors in some cases. In summary, this study shows that Notch1 has an oncogenic potential in the brain when combined with other oncogenic hits, such as p53 loss, and provides a novel mouse model of medulloblastoma. Cancer Res; 73(17); 5381-90. ©2013 AACR.
Collapse
|
36
|
Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol Aspects Med 2013; 39:82-101. [PMID: 23831316 DOI: 10.1016/j.mam.2013.06.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM) is the most prevalent primary brain tumor and ranks among the most lethal of human cancers with conventional therapy offering only palliation. Great strides have been made in understanding brain cancer genetics and modeling these tumors with new targeted therapies being tested, but these advances have not translated into substantially improved patient outcomes. Multiple chemotherapeutic agents, including temozolomide, the first-line treatment for glioblastoma, have been developed to kill cancer cells. However, the response to temozolomide in GBM is modest. Radiation is also moderately effective but this approach is plagued by limitations due to collateral radiation damage to healthy brain tissue and development of radioresistance. Therapeutic resistance is attributed at least in part to a cell population within the tumor that possesses stem-like characteristics and tumor propagating capabilities, referred to as cancer stem cells. Within GBM, the intratumoral heterogeneity is derived from a combination of regional genetic variance and a cellular hierarchy often regulated by distinct cancer stem cell niches, most notably perivascular and hypoxic regions. With the recent emergence as a key player in tumor biology, cancer stem cells have symbiotic relationships with the tumor microenvironment, oncogenic signaling pathways, and epigenetic modifications. The origins of cancer stem cells and their contributions to brain tumor growth and therapeutic resistance are under active investigation with novel anti-cancer stem cell therapies offering potential new hope for this lethal disease.
Collapse
|
37
|
Dill MT, Tornillo L, Fritzius T, Terracciano L, Semela D, Bettler B, Heim MH, Tchorz JS. Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 2013; 57:1607-19. [PMID: 23175466 DOI: 10.1002/hep.26165] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCC) are the most common liver tumors and a leading cause for cancer-related death in men. Notch2 regulates cellular differentiation in the developing and adult liver. Although aberrant Notch signaling is implicated in various cancers, it is still unclear whether Notch2 regulates proliferation and differentiation in liver carcinogenesis and thereby contributes to HCC and CCC formation. Here, we investigated the oncogenic potential of constitutive Notch2 signaling in the liver. We show that liver-specific expression of the intracellular domain of Notch2 (N2ICD) in mice is sufficient to induce HCC formation and biliary hyperplasia. Specifically, constitutive N2ICD signaling in the liver leads to up-regulation of pro-proliferative genes and proliferation of hepatocytes and biliary epithelial cells (BECs). Using the diethylnitrosamine (DEN) HCC carcinogenesis model, we further show that constitutive Notch2 signaling accelerates DEN-induced HCC formation. DEN-induced HCCs with constitutive Notch2 signaling (DEN(N2ICD) HCCs) exhibit a marked increase in size, proliferation, and expression of pro-proliferative genes when compared with HCCs from DEN-induced control mice (DEN(ctrl) HCCs). Moreover, DEN(N2ICD) HCCs exhibit increased Sox9 messenger RNA (mRNA) levels and reduced Albumin and Alpha-fetoprotein mRNA levels, indicating that they are less differentiated than DEN(ctrl) HCCs. Additionally, DEN(N2ICD) mice develop large hepatic cysts, dysplasia of the biliary epithelium, and eventually CCC. CCC formation in patients and DEN(N2ICD) mice is accompanied by re-expression of hepatocyte nuclear factor 4α(HNF4α), possibly indicating dedifferentiation of BECs. CONCLUSION Our data establish an oncogenic role for constitutive Notch2 signaling in liver cancer development.
Collapse
Affiliation(s)
- Michael T Dill
- Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Glioma is a heterogeneous disease process with differential histology and treatment response. It was previously thought that the histological features of glial tumors indicated their cell of origin. However, the discovery of continuous neuro-gliogenesis in the normal adult brain and the identification of brain tumor stem cells within glioma have led to the hypothesis that these brain tumors originate from multipotent neural stem or progenitor cells, which primarily divide asymmetrically during the postnatal period. Asymmetric cell division allows these cell types to concurrently self-renew whilst also producing cells for the differentiation pathway. It has recently been shown that increased symmetrical cell division, favoring the self-renewal pathway, leads to oligodendroglioma formation from oligodendrocyte progenitor cells. In contrast, there is some evidence that asymmetric cell division maintenance in tumor stem-like cells within astrocytoma may lead to acquisition of treatment resistance. Therefore cell division mode in normal brain stem and progenitor cells may play a role in setting tumorigenic potential and the type of tumor formed. Moreover, heterogeneous tumor cell populations and their respective cell division mode may confer differential sensitivity to therapy. This review aims to shed light on the controllers of cell division mode which may be therapeutically targeted to prevent glioma formation and improve treatment response.
Collapse
|