1
|
Chen X, An H, He J, Guo J, Xu S, Wu C, Wu D, Ji X. Mitochondrial unfolded protein response (UPR mt) as novel therapeutic targets for neurological disorders. J Cereb Blood Flow Metab 2025:271678X251341293. [PMID: 40370320 DOI: 10.1177/0271678x251341293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Neurological disorders, including brain cancer, neurodegenerative diseases and ischemic/reperfusion injury, pose a significant threat to global human health. Due to the high metabolic demands of nerve cells, mitochondrial dysfunction is a critical feature of these disorders. The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved mitochondrial response, which is critical for maintaining mitochondrial and energetic homeostasis under stress. Previous studies have found that UPRmt participates in diverse physiological processes especially metabolism and immunity. Currently, increasing evidence suggest that targeted regulation of UPRmt can also effectively delay the progression of neurological diseases and improve patients' prognosis. This review provides a comprehensive overview of UPRmt in the context of neurological diseases, with a particular emphasis on its regulatory functions. Additionally, we summarize the mechanistic insights into UPRmt in neurological disorders as investigated in preclinical studies, as well as its potential as a therapeutic target in the clinical management of neurological tumors. By highlighting the importance of UPRmt in the complex processes underlying neurological disorders, this review aims to bridge current knowledge gaps and inspire novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hong An
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Zhao F, Cui Z, Wang P, Zhao Z, Zhu K, Bai Y, Jin X, Wang L, Lu L. GRP75-dependent mitochondria-ER contacts ensure cell survival during early mouse thymocyte development. Dev Cell 2024; 59:2643-2658.e7. [PMID: 38981469 DOI: 10.1016/j.devcel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Mitochondria and endoplasmic reticulum contacts (MERCs) control multiple cellular processes, including cell survival and differentiation. Based on the observations that MERCs were specifically enriched in the CD4-CD8- double-negative (DN) stage, we studied their role in early mouse thymocyte development. We found that T cell-specific knockout of Hspa9, which encodes GRP75, a protein that mediates MERC formation by assembling the IP3R-GRP75-VDAC complex, impaired DN3 thymocyte viability and resulted in thymocyte developmental arrest at the DN3-DN4 transition. Mechanistically, GRP75 deficiency induced mitochondrial stress, releasing mitochondrial DNA (mtDNA) into the cytosol and triggering the type I interferon (IFN-I) response. The IFN-I pathway contributed to both the impairment of cell survival and DN3-DN4 transition blockage, while increased lipid peroxidation (LPO) played a major role downstream of IFN-I. Thus, our study identifies the essential role of GRP75-dependent MERCs in early thymocyte development and the governing facts of cell survival and differentiation in the DN stage.
Collapse
Affiliation(s)
- Fan Zhao
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zejin Cui
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhishan Zhao
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kaixiang Zhu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yadan Bai
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lie Wang
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Bone Marrow Transplantation Center and Institute of Immunology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
3
|
Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells 2024; 13:1040. [PMID: 38920668 PMCID: PMC11202134 DOI: 10.3390/cells13121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer Coulman
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Liam Flatley
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miniat W. Adeshina
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Barbuti PA. A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson's Disease. Int J Mol Sci 2024; 25:6525. [PMID: 38928232 PMCID: PMC11203789 DOI: 10.3390/ijms25126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Thurakkal B, Hari K, Marwaha R, Karki S, Jolly MK, Das T. Collective heterogeneity of mitochondrial potential in contact inhibition of proliferation. Biophys J 2023; 122:3909-3923. [PMID: 37598292 PMCID: PMC10560682 DOI: 10.1016/j.bpj.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023] Open
Abstract
In the epithelium, cell density and cell proliferation are closely connected to each other through contact inhibition of proliferation (CIP). Depending on cell density, CIP proceeds through three distinct stages: the free-growing stage at low density, the pre-epithelial transition stage at medium density, and the post-epithelial transition stage at high density. Previous studies have elucidated how cell morphology, motion, and mechanics vary in these stages. However, it remains unknown whether cellular metabolism also has a density-dependent behavior. By measuring the mitochondrial membrane potential at different cell densities, here we reveal a heterogeneous landscape of metabolism in the epithelium, which appears qualitatively distinct in three stages of CIP and did not follow the trend of other CIP-associated parameters, which increases or decreases monotonically with increasing cell density. Importantly, epithelial cells established a collective metabolic heterogeneity exclusively in the pre-epithelial transition stage, where the multicellular clusters of high- and low-potential cells emerged. However, in the post-epithelial transition stage, the metabolic potential field became relatively homogeneous. Next, to study the underlying dynamics, we constructed a system biology model, which predicted the role of cell proliferation in metabolic potential toward establishing collective heterogeneity. Further experiments indeed revealed that the metabolic pattern spatially correlated with the proliferation capacity of cells, as measured by the nuclear localization of a pro-proliferation protein, YAP. Finally, experiments perturbing the actomyosin contractility revealed that, while metabolic heterogeneity was maintained in the absence of actomyosin contractility, its ab initio emergence depended on the latter. Taken together, our results revealed a density-dependent collective heterogeneity in the metabolic field of a pre-epithelial transition-stage epithelial monolayer, which may have significant implications for epithelial form and function.
Collapse
Affiliation(s)
- Basil Thurakkal
- Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rituraj Marwaha
- Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, India
| | - Sanjay Karki
- Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, India
| | - Mohit K Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, India.
| |
Collapse
|
6
|
Sutandy FXR, Gößner I, Tascher G, Münch C. A cytosolic surveillance mechanism activates the mitochondrial UPR. Nature 2023:10.1038/s41586-023-06142-0. [PMID: 37286597 DOI: 10.1038/s41586-023-06142-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
The mitochondrial unfolded protein response (UPRmt) is essential to safeguard mitochondria from proteotoxic damage by activating a dedicated transcriptional response in the nucleus to restore proteostasis1,2. Yet, it remains unclear how the information on mitochondria misfolding stress (MMS) is signalled to the nucleus as part of the human UPRmt (refs. 3,4). Here, we show that UPRmt signalling is driven by the release of two individual signals in the cytosol-mitochondrial reactive oxygen species (mtROS) and accumulation of mitochondrial protein precursors in the cytosol (c-mtProt). Combining proteomics and genetic approaches, we identified that MMS causes the release of mtROS into the cytosol. In parallel, MMS leads to mitochondrial protein import defects causing c-mtProt accumulation. Both signals integrate to activate the UPRmt; released mtROS oxidize the cytosolic HSP40 protein DNAJA1, which leads to enhanced recruitment of cytosolic HSP70 to c-mtProt. Consequently, HSP70 releases HSF1, which translocates to the nucleus and activates transcription of UPRmt genes. Together, we identify a highly controlled cytosolic surveillance mechanism that integrates independent mitochondrial stress signals to initiate the UPRmt. These observations reveal a link between mitochondrial and cytosolic proteostasis and provide molecular insight into UPRmt signalling in human cells.
Collapse
Affiliation(s)
- F X Reymond Sutandy
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ines Gößner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Bae JE, Jang S, Kim JB, Hyung H, Park NY, Kim YH, Kim SH, Kim SH, Ha JM, Oh GS, Park K, Jeong K, Jang JS, Jo DS, Kim P, Lee HS, Ryoo ZY, Cho DH. Enhanced primary ciliogenesis via mitochondrial oxidative stress activates AKT to prevent neurotoxicity in HSPA9/mortalin-depleted SH-SY5Y cells. Mol Brain 2023; 16:41. [PMID: 37170364 PMCID: PMC10176837 DOI: 10.1186/s13041-023-01029-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] Open
Abstract
The primary cilium, an antenna-like structure on the cell surface, acts as a mechanical and chemical sensory organelle. Primary cilia play critical roles in sensing the extracellular environment to coordinate various developmental and homeostatic signaling pathways. Here, we showed that the depletion of heat shock protein family A member 9 (HSPA9)/mortalin stimulates primary ciliogenesis in SH-SY5Y cells. The downregulation of HSPA9 enhances mitochondrial stress by increasing mitochondrial fragmentation and mitochondrial reactive oxygen species (mtROS) generation. Notably, the inhibition of either mtROS production or mitochondrial fission significantly suppressed the increase in primary ciliogenesis in HSPA9-depleted cells. In addition, enhanced primary ciliogenesis contributed to cell survival by activating AKT in SH-SY5Y cells. The abrogation of ciliogenesis through the depletion of IFT88 potentiated neurotoxicity in HSPA9-knockdown cells. Furthermore, both caspase-3 activation and cell death were increased by MK-2206, an AKT inhibitor, in HSPA9-depleted cells. Taken together, our results suggest that enhanced primary ciliogenesis plays an important role in preventing neurotoxicity caused by the loss of HSPA9 in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - So Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jin Min Ha
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gyeong Seok Oh
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyuhee Park
- Bio-center, Gyeonggido Business & Science Accelerator, Suwon, Gyeonggido, 16229, Republic of Korea
| | - Kwiwan Jeong
- Bio-center, Gyeonggido Business & Science Accelerator, Suwon, Gyeonggido, 16229, Republic of Korea
| | - Jae Seon Jang
- Department of Bio-Medical Analysis, Bio Campus of Korea Polytechnic, Nonsan, Chungcheongnamdo, 32943, Republic of Korea
| | - Doo Sin Jo
- ORGASIS Corp., Suwon, Gyeonggido, 16229, Republic of Korea
| | - Pansoo Kim
- ORGASIS Corp., Suwon, Gyeonggido, 16229, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- ORGASIS Corp., Suwon, Gyeonggido, 16229, Republic of Korea.
| |
Collapse
|
8
|
Liu Y, Zhang L, Zhang S, Liu J, Li X, Yang K, Yang D, Liu Y, Sun L, Liu F, Xiao L. ATF5 regulates tubulointerstitial injury in diabetic kidney disease via mitochondrial unfolded protein response. Mol Med 2023; 29:57. [PMID: 37095454 PMCID: PMC10127323 DOI: 10.1186/s10020-023-00651-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Mitochondrial quality control (MQC) plays a critical role in the progression of tubulointerstitial injury in diabetic kidney disease (DKD). The mitochondrial unfolded protein response (UPRmt), which is an important MQC process, is activated to maintain mitochondrial protein homeostasis in response to mitochondrial stress. Activating transcription factor 5 (ATF5) is critical in the mammalian UPRmt via mitochondria-nuclear translocation. However, the role of ATF5 and UPRmt in tubular injury under DKD conditions is unknown. METHODS ATF5 and UPRmt-related proteins including heat shock protein 60 (HSP60) and Lon peptidase 1 (LONP1), in DKD patients and db/db mice were examined by immunohistochemistry (IHC) and western blot analysis. Eight-week-old db/db mice were injected with ATF5-shRNA lentiviruses via the tail vein, and a negative lentivirus was used as a control. The mice were euthanized at 12 weeks, and dihydroethidium (DHE) and TdT-mediated dUTP nick end labeling (TUNEL) assays were performed to evaluate reactive oxygen species (ROS) production and apoptosis in kidney sections, respectively. In vitro, ATF5-siRNA, ATF5 overexpression plasmids or HSP60-siRNA were transfected into HK-2 cells to evaluate the effect of ATF5 and HSP60 on tubular injury under ambient hyperglycemic conditions. Mitochondrial superoxide (MitoSOX) staining was used to gauge mitochondrial oxidative stress levels, and the early stage of cell apoptosis was examined by Annexin V-FITC kits. RESULTS Increased ATF5, HSP60 and LONP1 expression was observed in the kidney tissue of DKD patients and db/db mice and was tightly correlated with tubular damage. The inhibition of HSP60 and LONP1, improvements in serum creatinine, tubulointerstitial fibrosis and apoptosis were observed in db/db mice treated with lentiviruses carrying ATF5 shRNA. In vitro, the expression of ATF5 was increased in HK-2 cells exposed to high glucose (HG) in a time-dependent manner, which was accompanied by the overexpression of HSP60, fibronectin (FN) and cleaved-caspase3 (C-CAS3). ATF5-siRNA transfection inhibited the expression of HSP60 and LONP1, which was accompanied by reduced oxidative stress and apoptosis in HK-2 cells exposed to sustained exogenous high glucose. ATF5 overexpression exacerbated these impairments. HSP60-siRNA transfection blocked the effect of ATF5 on HK-2 cells exposed to continuous HG treatment. Interestingly, ATF5 inhibition exacerbated mitochondrial ROS levels and apoptosis in HK-2 cells in the early period of HG intervention (6 h). CONCLUSIONS ATF5 could exert a protective effect in a very early stage but promoted tubulointerstitial injury by regulating HSP60 and the UPRmt pathway under DKD conditions, providing a potential target for the prevention of DKD progression.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lei Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shumin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jialu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaohui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Kexin Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Wang Y, Li J, Zhang Z, Wang R, Bo H, Zhang Y. Exercise Improves the Coordination of the Mitochondrial Unfolded Protein Response and Mitophagy in Aging Skeletal Muscle. Life (Basel) 2023; 13:life13041006. [PMID: 37109535 PMCID: PMC10142204 DOI: 10.3390/life13041006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) and mitophagy are two mitochondrial quality control (MQC) systems that work at the molecular and organelle levels, respectively, to maintain mitochondrial homeostasis. Under stress conditions, these two processes are simultaneously activated and compensate for each other when one process is insufficient, indicating mechanistic coordination between the UPRmt and mitophagy that is likely controlled by common upstream signals. This review focuses on the molecular signals regulating this coordination and presents evidence showing that this coordination mechanism is impaired during aging and promoted by exercise. Furthermore, the bidirectional regulation of reactive oxygen species (ROS) and AMPK in modulating this mechanism is discussed. The hierarchical surveillance network of MQC can be targeted by exercise-derived ROS to attenuate aging, which offers a molecular basis for potential therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- School of Physical Education, Guangdong Institute of Petrochemical Technology, Maoming 525000, China
| | - Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Runzi Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
10
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Hlatky D, Medzihradszky KF, Darula Z, Nyitrai G, Czurkó A, Juhász G, Kardos J, Kékesi KA. Chronic Cerebral Hypoperfusion-Induced Disturbed Proteostasis of Mitochondria and MAM Is Reflected in the CSF of Rats by Proteomic Analysis. Mol Neurobiol 2023; 60:3158-3174. [PMID: 36808604 PMCID: PMC10122630 DOI: 10.1007/s12035-023-03215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 02/23/2023]
Abstract
Declining cerebral blood flow leads to chronic cerebral hypoperfusion which can induce neurodegenerative disorders, such as vascular dementia. The reduced energy supply of the brain impairs mitochondrial functions that could trigger further damaging cellular processes. We carried out stepwise bilateral common carotid occlusions on rats and investigated long-term mitochondrial, mitochondria-associated membrane (MAM), and cerebrospinal fluid (CSF) proteome changes. Samples were studied by gel-based and mass spectrometry-based proteomic analyses. We found 19, 35, and 12 significantly altered proteins in the mitochondria, MAM, and CSF, respectively. Most of the changed proteins were involved in protein turnover and import in all three sample types. We confirmed decreased levels of proteins involved in protein folding and amino acid catabolism, such as P4hb and Hibadh in the mitochondria by western blot. We detected reduced levels of several components of protein synthesis and degradation in the CSF as well as in the subcellular fractions, implying that hypoperfusion-induced altered protein turnover of brain tissue can be detected in the CSF by proteomic analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Dávid Hlatky
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.,Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Gabriella Nyitrai
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - András Czurkó
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,InnoScience Ltd., Mátranovák, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary. .,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary. .,InnoScience Ltd., Mátranovák, Hungary. .,Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
11
|
Esfahanian N, Knoblich CD, Bowman GA, Rezvani K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front Cell Dev Biol 2023; 11:1028519. [PMID: 36819105 PMCID: PMC9932541 DOI: 10.3389/fcell.2023.1028519] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.
Collapse
|
12
|
Szelechowski M, Texier B, Prime M, Atamena D, Belenguer P. Mortalin/Hspa9 involvement and therapeutic perspective in Parkinson’s disease. Neural Regen Res 2023; 18:293-298. [PMID: 35900406 PMCID: PMC9396523 DOI: 10.4103/1673-5374.346487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intracellular calcium fluxes, Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity. However, its expression and stability are strongly modified in response to cellular stresses, in particular upon altered oxidative conditions during neurodegeneration. Here, we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson’s disease, as well as its therapeutic and prognostic potential in this still incurable pathology.
Collapse
|
13
|
Abstract
Mitochondria are crucial organelles that play a central role in various cell signaling and metabolic pathways. A healthy mitochondrial population is maintained through a series of quality control pathways and requires a fine-tuned balance between mitochondrial biogenesis and degradation. Defective targeting of dysfunctional mitochondria to lysosomes through mitophagy has been linked to several diseases, but the underlying mechanisms and the relative importance of distinct mitophagy pathways in vivo are largely unknown. In this Cell Science at a Glance and the accompanying poster, we describe our current understanding of how parts of, or whole, mitochondria are recognized by the autophagic machinery and targeted to lysosomes for degradation. We also discuss how this might be regulated under different physiological conditions to maintain mitochondrial and cellular health.
Collapse
Affiliation(s)
- Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| |
Collapse
|
14
|
Alov P, Stoimenov H, Lessigiarska I, Pencheva T, Tzvetkov NT, Pajeva I, Tsakovska I. In Silico Identification of Multi-Target Ligands as Promising Hit Compounds for Neurodegenerative Diseases Drug Development. Int J Mol Sci 2022; 23:13650. [PMID: 36362434 PMCID: PMC9655539 DOI: 10.3390/ijms232113650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
The conventional treatment of neurodegenerative diseases (NDDs) is based on the "one molecule-one target" paradigm. To combat the multifactorial nature of NDDs, the focus is now shifted toward the development of small-molecule-based compounds that can modulate more than one protein target, known as "multi-target-directed ligands" (MTDLs), while having low affinity for proteins that are irrelevant for the therapy. The in silico approaches have demonstrated a potential to be a suitable tool for the identification of MTDLs as promising drug candidates with reduction in cost and time for research and development. In this study more than 650,000 compounds were screened by a series of in silico approaches to identify drug-like compounds with predicted activity simultaneously towards three important proteins in the NDDs symptomatic treatment: acetylcholinesterase (AChE), histone deacetylase 2 (HDAC2), and monoamine oxidase B (MAO-B). The compounds with affinities below 5.0 µM for all studied targets were additionally filtered to remove known non-specifically binding or unstable compounds. The selected four hits underwent subsequent refinement through in silico blood-brain barrier penetration estimation, safety evaluation, and molecular dynamics simulations resulting in two hit compounds that constitute a rational basis for further development of multi-target active compounds against NDDs.
Collapse
Affiliation(s)
- Petko Alov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Hristo Stoimenov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Iglika Lessigiarska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
15
|
Zheng X, Xiang M. Mitochondrion-located peptides and their pleiotropic physiological functions. FEBS J 2022; 289:6919-6935. [PMID: 35599630 DOI: 10.1111/febs.16532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 01/13/2023]
Abstract
With the development of advanced technologies, many small open reading frames (sORFs) have been found to be translated into micropeptides. Interestingly, a considerable proportion of micropeptides are located in mitochondria, which are designated here as mitochondrion-located peptides (MLPs). These MLPs often contain a transmembrane domain and show a high degree of conservation across species. They usually act as co-factors of large proteins and play regulatory roles in mitochondria such as electron transport in the respiratory chain, reactive oxygen species (ROS) production, metabolic homeostasis, and so on. Deficiency of MLPs disturbs diverse physiological processes including immunity, differentiation, and metabolism both in vivo and in vitro. These findings reveal crucial functions for MLPs and provide fresh insights into diverse mitochondrion-associated biological processes and diseases.
Collapse
Affiliation(s)
- Xintong Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD. Acta Neuropathol 2022; 144:939-966. [PMID: 36121477 PMCID: PMC9547809 DOI: 10.1007/s00401-022-02494-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset.
Collapse
|
17
|
Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy. Nat Commun 2022; 13:5164. [PMID: 36056001 PMCID: PMC9440083 DOI: 10.1038/s41467-022-32564-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Mitophagy is essential to maintain mitochondrial function and prevent diseases. It activates upon mitochondria depolarization, which causes PINK1 stabilization on the mitochondrial outer membrane. Strikingly, a number of conditions, including mitochondrial protein misfolding, can induce mitophagy without a loss in membrane potential. The underlying molecular details remain unclear. Here, we report that a loss of mitochondrial protein import, mediated by the pre-sequence translocase-associated motor complex PAM, is sufficient to induce mitophagy in polarized mitochondria. A genome-wide CRISPR/Cas9 screen for mitophagy inducers identifies components of the PAM complex. Protein import defects are able to induce mitophagy without a need for depolarization. Upon mitochondrial protein misfolding, PAM dissociates from the import machinery resulting in decreased protein import and mitophagy induction. Our findings extend the current mitophagy model to explain mitophagy induction upon conditions that do not affect membrane polarization, such as mitochondrial protein misfolding. Mitophagy activation is mediated by mitochondrial depolarization. Here, the authors show that mitochondrial protein misfolding can activate mitophagy in a depolarization-independent manner mediated by a protein import reduction.
Collapse
|
18
|
Li C, Pan Y, Tan Y, Wang Y, Sun X. PINK1-Dependent Mitophagy Reduced Endothelial Hyperpermeability and Cell Migration Capacity Under Simulated Microgravity. Front Cell Dev Biol 2022; 10:896014. [PMID: 35874841 PMCID: PMC9300855 DOI: 10.3389/fcell.2022.896014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The effect of cardiovascular dysfunction including orthostatic intolerance and disability on physical exercise is one of the health problems induced by long-term spaceflight astronauts face. As an important part of vascular structure, the vascular endothelium, uniquely sensitive to mechanical force, plays a pivotal role in coordinating vascular functions. Our study found that simulated microgravity induced PINK1-dependent mitophagy in human umbilical vein endothelial cells (HUVECs). Here, we explored the underlying mechanism of mitophagy induction. The ER stress induced by proteostasis failure in HUVECs promoted the Ca2+ transfer from ER to mitochondria, resulting in mitochondria Ca2+ overload, decreased mitochondrial membrane potential, mitochondria fission, and accumulation of Parkin and p62 in mitochondria and mitophagy under simulated microgravity. Moreover, we assumed that mitophagy played a vital role in functional changes in endothelial cells under simulated microgravity. Using mdivi-1 and PINK1 knockdown, we found that NLRP3 inflammasome activation was enhanced after mitophagy was inhibited. The NLRP3 inflammasome contributed to endothelial hyperpermeability and cellular migration by releasing IL-1β. Thus, mitophagy inhibited cell migration ability and hyperpermeability in HUVECs exposed to clinostat-simulated microgravity. Collectively, we here clarify the mechanism of mitophagy induction by simulated microgravity in vitro and demonstrate the relationship between mitophagy and vascular endothelial functional changes including cellular migration and permeability. This study deepens the understanding of vascular functional changes under microgravity.
Collapse
Affiliation(s)
- Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yingjun Tan
- China Astronaut Research and Training Center, Beijing, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiqing Sun, , Yongchun Wang,
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiqing Sun, , Yongchun Wang,
| |
Collapse
|
19
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
20
|
Jishi A, Qi X. Altered Mitochondrial Protein Homeostasis and Proteinopathies. Front Mol Neurosci 2022; 15:867935. [PMID: 35571369 PMCID: PMC9095842 DOI: 10.3389/fnmol.2022.867935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence implicates mitochondrial dysfunction as key in the development and progression of various forms of neurodegeneration. The multitude of functions carried out by mitochondria necessitates a tight regulation of protein import, dynamics, and turnover; this regulation is achieved via several, often overlapping pathways that function at different levels. The development of several major neurodegenerative diseases is associated with dysregulation of these pathways, and growing evidence suggests direct interactions between some pathogenic proteins and mitochondria. When these pathways are compromised, so is mitochondrial function, and the resulting deficits in bioenergetics, trafficking, and mitophagy can exacerbate pathogenic processes. In this review, we provide an overview of the regulatory mechanisms employed by mitochondria to maintain protein homeostasis and discuss the failure of these mechanisms in the context of several major proteinopathies.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
21
|
Lima T, Li TY, Mottis A, Auwerx J. Pleiotropic effects of mitochondria in aging. NATURE AGING 2022; 2:199-213. [PMID: 37118378 DOI: 10.1038/s43587-022-00191-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2022] [Indexed: 04/30/2023]
Abstract
Aging is typified by a progressive decline in mitochondrial activity and stress resilience. Here, we review how mitochondrial stress pathways have pleiotropic effects on cellular and systemic homeostasis, which can comprise protective or detrimental responses during aging. We describe recent evidence arguing that defects in these conserved adaptive pathways contribute to aging and age-related diseases. Signaling pathways regulating the mitochondrial unfolded protein response, mitochondrial membrane dynamics, and mitophagy are discussed, emphasizing how their failure contributes to heteroplasmy and de-regulation of key metabolites. Our current understanding of how these processes are controlled and interconnected explains how mitochondria can widely impact fundamental aspects of aging.
Collapse
Affiliation(s)
- Tanes Lima
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
22
|
Hu D, Liu Z, Qi X. Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases? Front Neurosci 2021; 15:746873. [PMID: 34867159 PMCID: PMC8633545 DOI: 10.3389/fnins.2021.746873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Many lines of evidence have indicated the therapeutic potential of rescuing mitochondrial integrity by targeting specific mitochondrial quality control pathways in neurodegenerative diseases, such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. In addition to ATP synthesis, mitochondria are critical regulators of ROS production, lipid metabolism, calcium buffering, and cell death. The mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy are the three main quality control mechanisms responsible for maintaining mitochondrial proteostasis and bioenergetics. The proper functioning of these complex processes is necessary to surveil and restore mitochondrial homeostasis and the healthy pool of mitochondria in cells. Mitochondrial dysfunction occurs early and causally in disease pathogenesis. A significant accumulation of mitochondrial damage resulting from compromised quality control pathways leads to the development of neuropathology. Moreover, genetic or pharmaceutical manipulation targeting the mitochondrial quality control mechanisms can sufficiently rescue mitochondrial integrity and ameliorate disease progression. Thus, therapies that can improve mitochondrial quality control have great promise for the treatment of neurodegenerative diseases. In this review, we summarize recent progress in the field that underscores the essential role of impaired mitochondrial quality control pathways in the pathogenesis of neurodegenerative diseases. We also discuss the translational approaches targeting mitochondrial function, with a focus on the restoration of mitochondrial integrity, including mitochondrial dynamics, mitophagy, and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Zunren Liu
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
23
|
Zhu JY, Hannan SB, Dräger NM, Vereshchagina N, Krahl AC, Fu Y, Elliott CJ, Han Z, Jahn TR, Rasse TM. Autophagy inhibition rescues structural and functional defects caused by the loss of mitochondrial chaperone Hsc70-5 in Drosophila. Autophagy 2021; 17:3160-3174. [PMID: 33404278 PMCID: PMC8526020 DOI: 10.1080/15548627.2020.1871211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We investigated in larval and adult Drosophila models whether loss of the mitochondrial chaperone Hsc70-5 is sufficient to cause pathological alterations commonly observed in Parkinson disease. At affected larval neuromuscular junctions, no effects on terminal size, bouton size or number, synapse size, or number were observed, suggesting that we studied an early stage of pathogenesis. At this stage, we noted a loss of synaptic vesicle proteins and active zone components, delayed synapse maturation, reduced evoked and spontaneous excitatory junctional potentials, increased synaptic fatigue, and cytoskeleton rearrangements. The adult model displayed ATP depletion, altered body posture, and susceptibility to heat-induced paralysis. Adult phenotypes could be suppressed by knockdown of dj-1β, Lrrk, DCTN2-p50, DCTN1-p150, Atg1, Atg101, Atg5, Atg7, and Atg12. The knockdown of components of the macroautophagy/autophagy machinery or overexpression of human HSPA9 broadly rescued larval and adult phenotypes, while disease-associated HSPA9 variants did not. Overexpression of Pink1 or promotion of autophagy exacerbated defects.Abbreviations: AEL: after egg laying; AZ: active zone; brp: bruchpilot; Csp: cysteine string protein; dlg: discs large; eEJPs: evoked excitatory junctional potentials; GluR: glutamate receptor; H2O2: hydrogen peroxide; mEJP: miniature excitatory junctional potentials; MT: microtubule; NMJ: neuromuscular junction; PD: Parkinson disease; Pink1: PTEN-induced putative kinase 1; PSD: postsynaptic density; SSR: subsynaptic reticulum; SV: synaptic vesicle; VGlut: vesicular glutamate transporter.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | - Shabab B. Hannan
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Nina M. Dräger
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Natalia Vereshchagina
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ann-Christin Krahl
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yulong Fu
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | | | - Zhe Han
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | - Thomas R. Jahn
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Tobias M. Rasse
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany,Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,CONTACT Tobias Rasse Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
24
|
Berenguer-Escuder C, Grossmann D, Antony P, Arena G, Wasner K, Massart F, Jarazo J, Walter J, Schwamborn JC, Grünewald A, Krüger R. Impaired mitochondrial-endoplasmic reticulum interaction and mitophagy in Miro1-mutant neurons in Parkinson's disease. Hum Mol Genet 2021; 29:1353-1364. [PMID: 32280985 PMCID: PMC7254851 DOI: 10.1093/hmg/ddaa066] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial Rho GTPase 1 (Miro1) protein is a well-known adaptor for mitochondrial transport and also regulates mitochondrial quality control and function. Furthermore, Miro1 was associated with mitochondrial-endoplasmic reticulum (ER) contact sites (MERCs), which are key regulators of cellular calcium homeostasis and the initiation of autophagy. Impairments of these mechanisms were linked to neurodegeneration in Parkinson’s disease (PD). We recently revealed that PD fibroblasts harboring Miro1 mutations displayed dysregulations in MERC organization and abundance, affecting mitochondrial homeostasis and clearance. We hypothesize that mutant Miro1 impairs the function of MERCs and mitochondrial dynamics, altering neuronal homeostasis and integrity in PD. PD skin fibroblasts harboring the Miro1-R272Q mutation were differentiated into patient-derived neurons. Live-cell imaging and immunocytochemistry were used to study mitophagy and the organization and function of MERCs. Markers of autophagy or mitochondrial function were assessed by western blotting. Quantification of organelle juxtapositions revealed an increased number of MERCs in patient-derived neurons. Live-cell imaging results showed alterations of mitochondrial dynamics and increased sensitivity to calcium stress, as well as reduced mitochondrial clearance. Finally, western blot analysis indicated a blockage of the autophagy flux in Miro1-mutant neurons. Miro1-mutant neurons display altered ER-mitochondrial tethering compared with control neurons. This alteration likely interferes with proper MERC function, contributing to a defective autophagic flux and cytosolic calcium handling capacity. Moreover, mutant Miro1 affects mitochondrial dynamics in neurons, which may result in disrupted mitochondrial turnover and altered mitochondrial movement.
Collapse
Affiliation(s)
| | - Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg.,Section for Translational Neurodegeneration "Albrecht Kossel", Department of Neurology, Universitätsmedizin Rostock, Rostock, Germany
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Jonas Walter
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL) , Luxembourg City, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| |
Collapse
|
25
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
26
|
Brzoskwinia M, Pardyak L, Kaminska A, Tworzydlo W, Hejmej A, Marek S, Bilinski SM, Bilinska B. Flutamide treatment reveals a relationship between steroidogenic activity of Leydig cells and ultrastructure of their mitochondria. Sci Rep 2021; 11:13772. [PMID: 34215832 PMCID: PMC8253797 DOI: 10.1038/s41598-021-93292-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Our present knowledge on interrelation between morphology/ultrastructure of mitochondria of the Leydig cell and its steroidogenic function is far from satisfactory and needs additional studies. Here, we analyzed the effects of blockade of androgen receptor, triggered by exposure to flutamide, on the expression of steroidogenic proteins (1) and ultrastructure of Leydig cells' constituents (2). We demonstrated that increase in the expression level of steroidogenic (StAR, CYP11A1, 3β-HSD, and CYP19A1) proteins (and respective mRNAs) in rat testicular tissue as well as elevation of intratesticular sex steroid hormone (testosterone and estradiol) levels observed in treated animals correspond well to morphological alterations of the Leydig cell ultrastructure. Most importantly, up-regulation of steroidogenic proteins' expression apparently correlates with considerable multiplication of Leydig cell mitochondria and subsequent formation of local mitochondrial networks. Interestingly, we showed also that the above-mentioned processes were associated with elevated transcription of Drp1 and Mfn2 genes, encoding proteins implicated in mitochondrial dynamics. Collectively, our studies emphasize the importance of mitochondrial homeostasis to the steroidogenic function of Leydig cells.
Collapse
Affiliation(s)
- Malgorzata Brzoskwinia
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248, Kraków, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Wacław Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Anna Hejmej
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Sylwia Marek
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland.
| |
Collapse
|
27
|
Chen Z, Huang L, Tso A, Wang S, Fang X, Ouyang K, Han Z. Mitochondrial Chaperones and Proteases in Cardiomyocytes and Heart Failure. Front Mol Biosci 2021; 8:630332. [PMID: 33937324 PMCID: PMC8082175 DOI: 10.3389/fmolb.2021.630332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure is one of the leading causes of morbidity and mortality worldwide. In cardiomyocytes, mitochondria are not only essential organelles providing more than 90% of the ATP necessary for contraction, but they also play critical roles in regulating intracellular Ca2+ signaling, lipid metabolism, production of reactive oxygen species (ROS), and apoptosis. Because mitochondrial DNA only encodes 13 proteins, most mitochondrial proteins are nuclear DNA-encoded, synthesized, and transported from the cytoplasm, refolded in the matrix to function alone or as a part of a complex, and degraded if damaged or incorrectly folded. Mitochondria possess a set of endogenous chaperones and proteases to maintain mitochondrial protein homeostasis. Perturbation of mitochondrial protein homeostasis usually precedes disruption of the whole mitochondrial quality control system and is recognized as one of the hallmarks of cardiomyocyte dysfunction and death. In this review, we focus on mitochondrial chaperones and proteases and summarize recent advances in understanding how these proteins are involved in the initiation and progression of heart failure.
Collapse
Affiliation(s)
- Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Alexandria Tso
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shijia Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhen Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
28
|
Leal NS, Martins LM. Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020227. [PMID: 33672391 PMCID: PMC7926795 DOI: 10.3390/biomedicines9020227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The way organelles are viewed by cell biologists is quickly changing. For many years, these cellular entities were thought to be unique and singular structures that performed specific roles. However, in recent decades, researchers have discovered that organelles are dynamic and form physical contacts. In addition, organelle interactions modulate several vital biological functions, and the dysregulation of these contacts is involved in cell dysfunction and different pathologies, including neurodegenerative diseases. Mitochondria–ER contact sites (MERCS) are among the most extensively studied and understood juxtapositioned interorganelle structures. In this review, we summarise the major biological and ultrastructural dysfunctions of MERCS in neurodegeneration, with a particular focus on Alzheimer’s disease as well as Parkinson’s disease, amyotrophic lateral sclerosis and frontotemporal dementia. We also propose an updated version of the MERCS hypothesis in Alzheimer’s disease based on new findings. Finally, we discuss the possibility of MERCS being used as possible drug targets to halt cell death and neurodegeneration.
Collapse
|
29
|
Yeo AJ, Chong KL, Gatei M, Zou D, Stewart R, Withey S, Wolvetang E, Parton RG, Brown AD, Kastan MB, Coman D, Lavin MF. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. iScience 2021; 24:101972. [PMID: 33437944 PMCID: PMC7788243 DOI: 10.1016/j.isci.2020.101972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is evidence that ATM mutated in ataxia-telangiectasia (A-T) plays a key role in protecting against mitochondrial dysfunction, the mechanism for which remains unresolved. We demonstrate here that ATM-deficient cells are exquisitely sensitive to nutrient deprivation, which can be explained by defective cross talk between the endoplasmic reticulum (ER) and the mitochondrion. Tethering between these two organelles in response to stress was reduced in cells lacking ATM, and consistent with this, Ca2+ release and transfer between ER and mitochondria was reduced dramatically when compared with control cells. The impact of this on mitochondrial function was evident from an increase in oxygen consumption rates and a defect in mitophagy in ATM-deficient cells. Our findings reveal that ER-mitochondrial connectivity through IP3R1-GRP75-VDAC1, to maintain Ca2+ homeostasis, as well as an abnormality in mitochondrial fusion defective in response to nutrient stress, can account for at least part of the mitochondrial dysfunction observed in A-T cells.
Collapse
Affiliation(s)
- Abrey J. Yeo
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Kok L. Chong
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Magtouf Gatei
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Dongxiu Zou
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | | | - Sarah Withey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane, Australia
| | | | | | - David Coman
- Queensland Children's Hospital, Brisbane, Australia
| | - Martin F. Lavin
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| |
Collapse
|
30
|
De Miranda BR, Rocha EM, Castro SL, Greenamyre JT. Protection from α-Synuclein induced dopaminergic neurodegeneration by overexpression of the mitochondrial import receptor TOM20. NPJ Parkinsons Dis 2020; 6:38. [PMID: 33293540 PMCID: PMC7722884 DOI: 10.1038/s41531-020-00139-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Dopaminergic neurons of the substantia nigra are selectively vulnerable to mitochondrial dysfunction, which is hypothesized to be an early and fundamental pathogenic mechanism in Parkinson's disease (PD). Mitochondrial function depends on the successful import of nuclear-encoded proteins, many of which are transported through the TOM20-TOM22 outer mitochondrial membrane import receptor machinery. Recent data suggests that post-translational modifications of α-synuclein promote its interaction with TOM20 at the outer mitochondrial membrane and thereby inhibit normal protein import, leading to dysfunction, and death of dopaminergic neurons. As such, preservation of mitochondrial import in the face of α-synuclein accumulation might be a strategy to prevent dopaminergic neurodegeneration, however, this is difficult to assess using current in vivo models of PD. To this end, we established an exogenous co-expression system, utilizing AAV2 vectors to overexpress human α-synuclein and TOM20, individually or together, in the adult Lewis rat substantia nigra to assess whether TOM20 overexpression attenuates α-synuclein-induced dopaminergic neurodegeneration. Twelve weeks after viral injection, we observed that AAV2-TOM20 expression was sufficient to prevent loss of nigral dopaminergic neurons caused by AAV2-αSyn overexpression. The observed TOM20-mediated dopaminergic neuron preservation appeared to be due, in part, to the rescued expression (and presumed import) of nuclear-encoded mitochondrial electron transport chain proteins that were inhibited by α-synuclein overexpression. In addition, TOM20 overexpression rescued the expression of the chaperone protein GRP75/mtHSP70/mortalin, a stress-response protein involved in α-synuclein-induced injury. Collectively, these data indicate that TOM20 expression prevents α-synuclein-induced mitochondrial dysfunction, which is sufficient to rescue dopaminergic neurons in the adult rat brain.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Hanss Z, Larsen SB, Antony P, Mencke P, Massart F, Jarazo J, Schwamborn JC, Barbuti PA, Mellick GD, Krüger R. Mitochondrial and Clearance Impairment in p.D620N VPS35 Patient-Derived Neurons. Mov Disord 2020; 36:704-715. [PMID: 33142012 PMCID: PMC8048506 DOI: 10.1002/mds.28365] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background VPS35 is part of the retromer complex and is responsible for the trafficking and recycling of proteins implicated in autophagy and lysosomal degradation, but also takes part in the degradation of mitochondrial proteins via mitochondria‐derived vesicles. The p.D620N mutation of VPS35 causes an autosomal‐dominant form of Parkinson's disease (PD), clinically representing typical PD. Objective Most of the studies on p.D620N VPS35 were performed on human tumor cell lines, rodent models overexpressing mutant VPS35, or in patient‐derived fibroblasts. Here, based on identified target proteins, we investigated the implication of mutant VPS35 in autophagy, lysosomal degradation, and mitochondrial function in induced pluripotent stem cell‐derived neurons from a patient harboring the p.D620N mutation. Methods We reprogrammed fibroblasts from a PD patient carrying the p.D620N mutation in the VPS35 gene and from two healthy donors in induced pluripotent stem cells. These were subsequently differentiated into neuronal precursor cells to finally generate midbrain dopaminergic neurons. Results We observed a decreased autophagic flux and lysosomal mass associated with an accumulation of α‐synuclein in patient‐derived neurons compared to controls. Moreover, patient‐derived neurons presented a mitochondrial dysfunction with decreased membrane potential, impaired mitochondrial respiration, and increased production of reactive oxygen species associated with a defect in mitochondrial quality control via mitophagy. Conclusion We describe for the first time the impact of the p.D620N VPS35 mutation on autophago‐lysosome pathway and mitochondrial function in stem cell‐derived neurons from an affected p.D620N carrier and define neuronal phenotypes for future pharmacological interventions. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zoé Hanss
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone B Larsen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pauline Mencke
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Peter A Barbuti
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg
| |
Collapse
|
32
|
Kang M, Tang B, Li J, Zhou Z, Liu K, Wang R, Jiang Z, Bi F, Patrick D, Kim D, Mitra AK, Yang-Hartwich Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol Cancer 2020; 19:143. [PMID: 32928232 PMCID: PMC7489042 DOI: 10.1186/s12943-020-01248-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Very few proteins encoded by the presumed non-coding RNA transcripts have been identified. Their cellular functions remain largely unknown. This study identifies the tumor-suppressor function of a novel microprotein encoded by the precursor of miR-34a. It consists of 133 amino acid residues, thereby named as miPEP133 (pri-microRNA encoded peptide 133). METHODS We overexpressed miPEP133 in nasopharyngeal carcinoma (NPC), ovarian cancer and cervical cancer cell lines to determine its effects on cell growth, apoptosis, migration, or invasion. Its impact on tumor growth was evaluated in a xenograft NPC model. Its prognostic value was analyzed using NPC clinical samples. We also conducted western blot, immunoprecipitation, mass spectrometry, confocal microscopy and flow cytometry to determine the underlying mechanisms of miPEP133 function and regulation. RESULTS miPEP133 was expressed in normal human colon, stomach, ovary, uterus and pharynx. It was downregulated in cancer cell lines and tumors. miPEP133 overexpression induced apoptosis in cancer cells and inhibited their migration and invasion. miPEP133 inhibited tumor growth in vivo. Low miPEP133 expression was an unfavorable prognostic marker associated with advanced metastatic NPC. Wild-type p53 but not mutant p53 induced miPEP133 expression. miPEP133 enhanced p53 transcriptional activation and miR-34a expression. miPEP133 localized in the mitochondria to interact with mitochondrial heat shock protein 70kD (HSPA9) and prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial membrane potential and mitochondrial mass. CONCLUSION miPEP133 is a tumor suppressor localized in the mitochondria. It is a potential prognostic marker and therapeutic target for multiple types of cancers.
Collapse
Affiliation(s)
- Min Kang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Bo Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Jixi Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Ziyan Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Kang Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- The first affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- Sheng Jing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - David Patrick
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences College of Pharmacy, University of Oklahoma, Oklahoma City, OK, 73117, USA
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Cancer Center, New Haven, CT, 06510, USA.
| |
Collapse
|
33
|
Cai Y, Shen H, Weng H, Wang Y, Cai G, Chen X, Ye Q. Overexpression of PGC-1α influences the mitochondrial unfolded protein response (mtUPR) induced by MPP + in human SH-SY5Y neuroblastoma cells. Sci Rep 2020; 10:10444. [PMID: 32591623 PMCID: PMC7320005 DOI: 10.1038/s41598-020-67229-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a common dyskinesia disease, the mitochondrial unfolded protein response (mtUPR) may be directly or indirectly involved in the occurrence and development of PD, although the exact mechanism is unclear. We established a dopaminergic neuronal-like cell model of PD, by overexpression of PGC-1α to detect evaluate the expression of proteases and molecular chaperones of involved in the mtUPR, as well as the expression of PGC-1α and LRPPRC, illustrated the distribution of LRPPRC. Remarkably, the mtUPR activation reached maximal at 24 h after MPP+ treatment in SH-SY5Y cells, which the protein and transcription levels of the proteases and molecular chaperones reached maximal. The proteases and molecular chaperones were significantly increased when overexpressed PGC-1α, which indicated that PGC-1α overexpression activated the mtUPR, and PGC-1α had a protective effect on SH-SY5Y cells. The expression levels of PGC-1α and LRPPRC were significantly improved in the PGC-1α overexpression groups. LRPPRC was markedly reduced in the nucleus, suggesting that PGC-1α overexpression may play a protective role to the mitochondria through LRPPRC. Our finding indicates that overexpression of PGC-1α may activate mtUPR, reducing the oxidative stress injury induced by MPP+ through LRPPRC signaling, thus maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Yousheng Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Department of Neurology, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli Road, Zhangzhou, 363000, China
| | - Hui Shen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Huidan Weng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yingqing Wang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China. .,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
34
|
Molecular Regulation in Dopaminergic Neuron Development. Cues to Unveil Molecular Pathogenesis and Pharmacological Targets of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21113995. [PMID: 32503161 PMCID: PMC7312927 DOI: 10.3390/ijms21113995] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The relatively few dopaminergic neurons in the mammalian brain are mostly located in the midbrain and regulate many important neural functions, including motor integration, cognition, emotive behaviors and reward. Therefore, alteration of their function or degeneration leads to severe neurological and neuropsychiatric diseases. Unraveling the mechanisms of midbrain dopaminergic (mDA) phenotype induction and maturation and elucidating the role of the gene network involved in the development and maintenance of these neurons is of pivotal importance to rescue or substitute these cells in order to restore dopaminergic functions. Recently, in addition to morphogens and transcription factors, microRNAs have been identified as critical players to confer mDA identity. The elucidation of the gene network involved in mDA neuron development and function will be crucial to identify early changes of mDA neurons that occur in pre-symptomatic pathological conditions, such as Parkinson’s disease. In addition, it can help to identify targets for new therapies and for cell reprogramming into mDA neurons. In this essay, we review the cascade of transcriptional and posttranscriptional regulation that confers mDA identity and regulates their functions. Additionally, we highlight certain mechanisms that offer important clues to unveil molecular pathogenesis of mDA neuron dysfunction and potential pharmacological targets for the treatment of mDA neuron dysfunction.
Collapse
|
35
|
Mou Z, Yuan YH, Zhang Z, Song LK, Chen NH. Endoplasmic reticulum stress, an important factor in the development of Parkinson’s disease. Toxicol Lett 2020; 324:20-29. [DOI: 10.1016/j.toxlet.2020.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
|
36
|
Upregulation of vitamin D-binding protein is associated with changes in insulin production in pancreatic beta-cells exposed to p,p'-DDT and p,p'-DDE. Sci Rep 2019; 9:18026. [PMID: 31792309 PMCID: PMC6889289 DOI: 10.1038/s41598-019-54579-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
Persistent organochlorine pollutants (POPs) gradually accumulate in the human organism due to their presence in the environment. Some studies have described a correlation between the level of POPs in the human body and the incidence of diabetes, but we know little about the direct effect of POPs on pancreatic beta-cells. We exposed pancreatic beta-cells INS1E to non-lethal concentrations of p,p′-DDT (1,1′-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene)) and p,p′-DDE (1,1′-(2,2-dichloroethene-1,1-diyl)bis(4-chlorobenzene)) for 1 month, and assessed changes in protein expression and the intracellular insulin level. 2-D electrophoresis revealed 6 proteins with changed expression in cells exposed to p,p′-DDT or p,p′-DDE. One of the detected proteins – vitamin D-binding protein (VDBP) – was upregulated in both cells exposed to p,p′-DDT, and cells exposed to p,p′-DDE. Both exposures to pollutants reduced the intracellular level of insulin mRNA, proinsulin, and insulin monomer; p,p′-DDT also slightly reduced the level of hexameric insulin. Overexpression of VDBP caused by the stable transfection of beta-cells with the gene for VDBP decreased both the proinsulin and hexameric insulin level in beta-cells similarly to the reduction detected in cells exposed to p,p′-DDT. Our data suggest that in the cells exposed to p,p′-DDT and p,p′-DDE, the increased VDBP protein level decreased the proinsulin expression in an unknown mechanism.
Collapse
|
37
|
Gordaliza‐Alaguero I, Cantó C, Zorzano A. Metabolic implications of organelle-mitochondria communication. EMBO Rep 2019; 20:e47928. [PMID: 31418169 PMCID: PMC6726909 DOI: 10.15252/embr.201947928] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular organelles are not static but show dynamism-a property that is likely relevant for their function. In addition, they interact with other organelles in a highly dynamic manner. In this review, we analyze the proteins involved in the interaction between mitochondria and other cellular organelles, especially the endoplasmic reticulum, lipid droplets, and lysosomes. Recent results indicate that, on one hand, metabolic alterations perturb the interaction between mitochondria and other organelles, and, on the other hand, that deficiency in proteins involved in the tethering between mitochondria and the ER or in specific functions of the interaction leads to metabolic alterations in a variety of tissues. The interaction between organelles is an emerging field that will permit to identify key proteins, to delineate novel modulation pathways, and to elucidate their implications in human disease.
Collapse
Affiliation(s)
- Isabel Gordaliza‐Alaguero
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Carlos Cantó
- Nestle Institute of Health Sciences (NIHS)LausanneSwitzerland
- School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
38
|
Begum HM, Ta HP, Zhou H, Ando Y, Kang D, Nemes K, Mariano CF, Hao J, Yu M, Shen K. Spatial Regulation of Mitochondrial Heterogeneity by Stromal Confinement in Micropatterned Tumor Models. Sci Rep 2019; 9:11187. [PMID: 31371796 PMCID: PMC6671984 DOI: 10.1038/s41598-019-47593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/19/2019] [Indexed: 01/16/2023] Open
Abstract
Heterogeneity of mitochondrial activities in cancer cells exists across different disease stages and even in the same patient, with increased mitochondrial activities associated with invasive cancer phenotypes and circulating tumor cells. Here, we use a micropatterned tumor-stromal assay (μTSA) comprised of MCF-7 breast cancer cells and bone marrow stromal cells (BMSCs) as a model to investigate the role of stromal constraints in altering the mitochondrial activities of cancer cells within the tumor microenvironment (TME). Using microdissection and RNA sequencing, we revealed a differentially regulated pattern of gene expression related to mitochondrial activities and metastatic potential at the tumor-stromal interface. Gene expression was confirmed by immunostaining of mitochondrial mass, and live microscopic imaging of mitochondrial membrane potential (ΔΨm) and optical redox ratio. We demonstrated that physical constraints by the stromal cells play a major role in ΔΨm heterogeneity, which was positively associated with nuclear translocation of the YAP/TAZ transcriptional co-activators. Importantly, inhibiting actin polymerization and Rho-associated protein kinase disrupted the differential ΔΨm pattern. In addition, we showed a positive correlation between ΔΨm level and metastatic burden in vivo in mice injected with MDA-MB-231 breast cancer cells. This study supports a new regulatory role for the TME in mitochondrial heterogeneity and metastatic potential.
Collapse
Affiliation(s)
- Hydari Masuma Begum
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hoang P Ta
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Diane Kang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kristen Nemes
- Mork Family Department of Chemical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jia Hao
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
39
|
Abstract
The maintenance of a healthy and functional mitochondrial network is critical during development as well as throughout life in the response to physiological adaptations and stress conditions. Owing to their role in energy production, mitochondria are exposed to high levels of reactive oxygen species, making them particularly vulnerable to mitochondrial DNA mutations and protein misfolding. Given that mitochondria are formed from proteins encoded by both nuclear and mitochondrial genomes, an additional layer of complexity is inherent in the coordination of protein synthesis and the mitochondrial import of nuclear-encoded proteins. For these reasons, mitochondria have evolved multiple systems of quality control to ensure that the requisite number of functional mitochondria are present to meet the demands of the cell. These pathways work to eliminate damaged mitochondrial proteins or parts of the mitochondrial network by mitophagy and renew components by adding protein and lipids through biogenesis, collectively resulting in mitochondrial turnover. Mitochondrial quality control mechanisms are multi-tiered, operating at the protein, organelle and cell levels. Herein, we discuss mitophagy in different physiological contexts and then relate it to other quality control pathways, including the unfolded protein response, shedding of vesicles, proteolysis, and degradation by the ubiquitin-proteasome system. Understanding how these pathways contribute to the maintenance of mitochondrial homeostasis could provide insights into the development of targeted treatments when these systems fail in disease.
Collapse
|
40
|
Dong YN, McMillan E, Clark EM, Lin H, Lynch DR. GRP75 overexpression rescues frataxin deficiency and mitochondrial phenotypes in Friedreich ataxia cellular models. Hum Mol Genet 2019; 28:1594-1607. [PMID: 30590615 PMCID: PMC6494971 DOI: 10.1093/hmg/ddy448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein crucial for iron-sulfur cluster biogenesis and adenosine triphosphate (ATP) production. Currently, there is no therapy to slow down the progression of FRDA. Recent evidence indicates that posttranslational regulation of residual frataxin levels can rescue some of the functional deficit of FRDA, raising the possibility of enhancing levels of residual frataxin as a treatment for FRDA. Here, we present evidence that mitochondrial molecular chaperone GRP75, also known as mortalin/mthsp70/PBP74, directly interacts with frataxin both in vivo in mouse cortex and in vitro in cortical neurons. Overexpressing GRP75 increases the levels of both wild-type frataxin and clinically relevant missense frataxin variants in human embryonic kidney 293 cells, while clinical GRP75 variants such as R126W, A476T and P509S impair the binding of GRP75 with frataxin and the effect of GRP75 on frataxin levels. In addition, GRP75 overexpression rescues frataxin deficiency and abnormal cellular phenotypes such as the abnormal mitochondrial network and decreased ATP levels in FRDA patient-derived cells. The effect of GRP75 on frataxin might be in part mediated by the physical interaction between GRP75 and mitochondrial processing peptidase (MPP), which makes frataxin more accessible to MPP. As GRP75 levels are decreased in multiple cell types of FRDA patients, restoring GRP75 might be effective in treating both typical FRDA patients with two guanine-adenine-adenine repeat expansions and compound heterozygous patients with point mutations.
Collapse
Affiliation(s)
- Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily McMillan
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisia M Clark
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Lin
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Mueller AJ, Proikas-Cezanne T. Automated Detection of Autophagy Response Using Single Cell-Based Microscopy Assays. Methods Mol Biol 2019; 1880:429-445. [PMID: 30610713 DOI: 10.1007/978-1-4939-8873-0_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fluorescence microscopy-based detection of intracellular LC3, p62, and/or WIPI punctate structures is a robust tool to monitor and assess macroautophagy/autophagy in single cells. This method was established for automated high-throughput/content analysis to reliably detect narrow differences in autophagy activity/capacity and to provide screening opportunities for biological and chemical libraries.
Collapse
Affiliation(s)
- Amelie J Mueller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Tübingen, Germany
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tübingen, Germany. .,International Max Planck Research School "From Molecules to Organisms", Tübingen, Germany.
| |
Collapse
|
42
|
Issitt T, Bosseboeuf E, De Winter N, Dufton N, Gestri G, Senatore V, Chikh A, Randi AM, Raimondi C. Neuropilin-1 Controls Endothelial Homeostasis by Regulating Mitochondrial Function and Iron-Dependent Oxidative Stress. iScience 2018; 11:205-223. [PMID: 30623799 PMCID: PMC6327076 DOI: 10.1016/j.isci.2018.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 01/13/2023] Open
Abstract
The transmembrane protein neuropilin-1 (NRP1) promotes vascular endothelial growth factor (VEGF) and extracellular matrix signaling in endothelial cells (ECs). Although it is established that NRP1 is essential for angiogenesis, little is known about its role in EC homeostasis. Here, we report that NRP1 promotes mitochondrial function in ECs by preventing iron accumulation and iron-induced oxidative stress through a VEGF-independent mechanism in non-angiogenic ECs. Furthermore, NRP1-deficient ECs have reduced growth and show the hallmarks of cellular senescence. We show that a subcellular pool of NRP1 localizes in mitochondria and interacts with the mitochondrial transporter ATP-binding cassette B8 (ABCB8). NRP1 loss reduces ABCB8 levels, resulting in iron accumulation, iron-induced mitochondrial superoxide production, and iron-dependent EC senescence. Treatment of NRP1-deficient ECs with the mitochondria-targeted antioxidant compound mitoTEMPO or with the iron chelator deferoxamine restores mitochondrial activity, inhibits superoxide production, and protects from cellular senescence. This finding identifies an unexpected role of NRP1 in EC homeostasis. A subcellular pool of NRP1 localizes in the mitochondria of endothelial cells (ECs) NRP1 regulates mitochondrial function via ABCB8 transporter NRP1 loss induces iron accumulation and iron-dependent oxidative stress in ECs NRP1 protects ECs from iron-dependent premature cellular senescence
Collapse
Affiliation(s)
- Theo Issitt
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Emy Bosseboeuf
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Natasha De Winter
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Neil Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Gaia Gestri
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Valentina Senatore
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Anissa Chikh
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Claudio Raimondi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
43
|
Huang J, Ren Y, Xu Y, Chen T, Xia TC, Li Z, Zhao J, Hua F, Sheng S, Xia Y. The delta-opioid receptor and Parkinson's disease. CNS Neurosci Ther 2018; 24:1089-1099. [PMID: 30076686 PMCID: PMC6489828 DOI: 10.1111/cns.13045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative neurological disease leading to a series of familial, medical, and social problems. Although it is known that the major characteristics of PD pathophysiology are the dysfunction of basal ganglia due to injury/loss of dopaminergic neurons in the substantia nigra pars compacta dopaminergic and exhaustion of corpus striatum dopamine, therapeutic modalities for PD are limited in clinical settings up to date. It is of utmost importance to better understand PD pathophysiology and explore new solutions for this serious neurodegenerative disorder. Our recent work and those of others suggest that the delta-opioid receptor (DOR) is neuroprotective and serves an antiparkinsonism role in the brain. This review summarizes recent progress in this field and explores potential mechanisms for DOR-mediated antiparkinsonism.
Collapse
Affiliation(s)
- Jin‐Zhong Huang
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yi Ren
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yuan Xu
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Tao Chen
- Hainan General HospitalHaikouHainanChina
| | | | - Zhuo‐Ri Li
- Hainan General HospitalHaikouHainanChina
| | | | - Fei Hua
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Shi‐Ying Sheng
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint FunctionFudan UniversityShanghaiChina
- Department of Aeronautics and AstronauticsFudan UniversityShanghaiChina
| |
Collapse
|
44
|
Ayaub EA, Tandon K, Padwal M, Imani J, Patel H, Dubey A, Mekhael O, Upagupta C, Ayoub A, Dvorkin-Gheva A, Murphy J, Kolb PS, Lhotak S, Dickhout JG, Austin RC, Kolb MRJ, Richards CD, Ask K. IL-6 mediates ER expansion during hyperpolarization of alternatively activated macrophages. Immunol Cell Biol 2018; 97:203-217. [PMID: 30298952 PMCID: PMC7379543 DOI: 10.1111/imcb.12212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Although recent evidence has shown that IL-6 is involved in enhanced alternative activation of macrophages toward a profibrotic phenotype, the mechanisms leading to their increased secretory capacity are not fully understood. Here, we investigated the effect of IL-6 on endoplasmic reticulum (ER) expansion and alternative activation of macrophages in vitro. An essential mediator in this ER expansion process is the IRE1 pathway, which possesses a kinase and endoribonuclease domain to cleave XBP1 into a spliced bioactive molecule. To investigate the IRE1-XBP1 expansion pathway, IL-4/IL-13 and IL-4/IL-13/IL-6-mediated alternative programming of murine bone marrow-derived and human THP1 macrophages were assessed by arginase activity in cell lysates, CD206 and arginase-1 expression by flow cytometry, and secreted CCL18 by ELISA, respectively. Ultrastructural intracellular morphology and ER biogenesis were examined by transmission electron microscopy and immunofluorescence. Transcription profiling of 128 genes were assessed by NanoString and Pharmacological inhibition of the IRE1-XBP1 arm was achieved using STF-083010 and was verified by RT-PCR. The addition of IL-6 to the conventional alternative programming cocktail IL-4/IL-13 resulted in increased ER and mitochondrial expansion, profibrotic profiles and unfolded protein response-mediated induction of molecular chaperones. IRE1-XBP1 inhibition substantially reduced the IL-6-mediated hyperpolarization and normalized the above effects. In conclusion, the addition of IL-6 enhances ER expansion and the profibrotic capacity of IL-4/IL-13-mediated activation of macrophages. Therapeutic strategies targeting IL-6 or the IRE1-XBP1 axis may be beneficial to prevent the profibrotic capacity of macrophages.
Collapse
Affiliation(s)
- Ehab A Ayaub
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karun Tandon
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Manreet Padwal
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jewel Imani
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Hemisha Patel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anisha Dubey
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Olivia Mekhael
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Chandak Upagupta
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anmar Ayoub
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - James Murphy
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Philipp S Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sarka Lhotak
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Jeffrey G Dickhout
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Rick C Austin
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada
| | - Carl D Richards
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
45
|
Akkaya B, Roesler AS, Miozzo P, Theall BP, Al Souz J, Smelkinson MG, Kabat J, Traba J, Sack MN, Brzostowski JA, Pena M, Dorward DW, Pierce SK, Akkaya M. Increased Mitochondrial Biogenesis and Reactive Oxygen Species Production Accompany Prolonged CD4 + T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2018; 201:3294-3306. [PMID: 30373851 DOI: 10.4049/jimmunol.1800753] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/25/2018] [Indexed: 01/13/2023]
Abstract
Activation of CD4+ T cells to proliferate drives cells toward aerobic glycolysis for energy production while using mitochondria primarily for macromolecular synthesis. In addition, the mitochondria of activated T cells increase production of reactive oxygen species, providing an important second messenger for intracellular signaling pathways. To better understand the critical changes in mitochondria that accompany prolonged T cell activation, we carried out an extensive analysis of mitochondrial remodeling using a combination of conventional strategies and a novel high-resolution imaging method. We show that for 4 d following activation, mouse CD4+ T cells sustained their commitment to glycolysis facilitated by increased glucose uptake through increased expression of GLUT transporters. Despite their limited contribution to energy production, mitochondria were active and showed increased reactive oxygen species production. Moreover, prolonged activation of CD4+ T cells led to increases in mitochondrial content and volume, in the number of mitochondria per cell and in mitochondrial biogenesis. Thus, during prolonged activation, CD4+ T cells continue to obtain energy predominantly from glycolysis but also undergo extensive mitochondrial remodeling, resulting in increased mitochondrial activity.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander S Roesler
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Pietro Miozzo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Brandon P Theall
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Jafar Al Souz
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Margery G Smelkinson
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Javier Traba
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Michael N Sack
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Joseph A Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - David W Dorward
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
46
|
Sane S, Hafner A, Srinivasan R, Masood D, Slunecka JL, Noldner CJ, Hanson AD, Kruisselbrink T, Wang X, Wang Y, Yin J, Rezvani K. UBXN2A enhances CHIP-mediated proteasomal degradation of oncoprotein mortalin-2 in cancer cells. Mol Oncol 2018; 12:1753-1777. [PMID: 30107089 PMCID: PMC6166003 DOI: 10.1002/1878-0261.12372] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Overexpression of oncoproteins is a major cause of treatment failure using current chemotherapeutic drugs. Drug-induced degradation of oncoproteins is feasible and can improve clinical outcomes in diverse types of cancers. Mortalin-2 (mot-2) is a dominant oncoprotein in several tumors, including colorectal cancer (CRC). In addition to inactivating the p53 tumor suppressor protein, mot-2 enhances tumor cell invasion and migration. Thus, mot-2 is considered a potential therapeutic target in several cancer types. The current study investigated the biological role of a ubiquitin-like protein called UBXN2A in the regulation of mot-2 turnover. An orthogonal ubiquitin transfer technology followed by immunoprecipitation, in vitro ubiquitination, and Magnetic Beads TUBE2 pull-down experiments revealed that UBXN2A promotes carboxyl terminus of the HSP70-interacting protein (CHIP)-dependent ubiquitination of mot-2. We subsequently showed that UBXN2A increases proteasomal degradation of mot-2. A subcellular compartmentalization experiment revealed that induced UBXN2A decreases the level of mot-2 and its chaperone partner, HSP60. Pharmacological upregulation of UBXN2A using a small molecule, veratridine (VTD), decreases the level of mot-2 in cancer cells. Consistent with the in vitro results, UBXN2A+/- mice exhibited selective elevation of mot-2 in colon tissues. An in vitro Anti-K48 TUBE isolation approach showed that recombinant UBXN2A enhances proteasomal degradation of mot-2 in mouse colon tissues. Finally, we observed enhanced association of CHIP with the UBXN2A-mot-2 complex in tumors in an azoxymethane/dextran sulfate sodium-induced mouse CRC model. The existence of a multiprotein complex containing UBXN2A, CHIP, and mot-2 suggests a synergistic tumor suppressor activity of UBXN2A and CHIP in mot-2-enriched tumors. This finding validates the UBXN2A-CHIP axis as a novel and potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Sanam Sane
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Andre Hafner
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Rekha Srinivasan
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Daniall Masood
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - John l. Slunecka
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Collin J. Noldner
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Alex D. Hanson
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Taylor Kruisselbrink
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Xuejun Wang
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Yiyang Wang
- Department of ChemistryCenter for Diagnostics & TherapeuticsGeorgia State UniversityAtlantaGAUSA
| | - Jun Yin
- Department of ChemistryCenter for Diagnostics & TherapeuticsGeorgia State UniversityAtlantaGAUSA
| | - Khosrow Rezvani
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| |
Collapse
|
47
|
Lizama BN, Palubinsky AM, McLaughlin B. Alterations in the E3 ligases Parkin and CHIP result in unique metabolic signaling defects and mitochondrial quality control issues. Neurochem Int 2018; 117:139-155. [PMID: 28851515 PMCID: PMC5826822 DOI: 10.1016/j.neuint.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023]
Abstract
E3 ligases are essential scaffold proteins, facilitating the transfer of ubiquitin from E2 enzymes to lysine residues of client proteins via isopeptide bonds. The specificity of substrate binding and the expression and localization of E3 ligases can, however, endow these proteins with unique features with variable effects on mitochondrial, metabolic and CNS function. By comparing and contrasting two E3 ligases, Parkin and C-terminus of HSC70-Interacting protein (CHIP) we seek to highlight the biophysical properties that may promote mitochondrial dysfunction, acute stress signaling and critical developmental periods to cease in response to mutations in these genes. Encoded by over 600 human genes, RING-finger proteins are the largest class of E3 ligases. Parkin contains three RING finger domains, with R1 and R2 separated by an in-between region (IBR) domain. Loss-of-function mutations in Parkin were identified in patients with early onset Parkinson's disease. CHIP is a member of the Ubox family of E3 ligases. It contains an N-terminal TPR domain and forms unique asymmetric homodimers. While CHIP can substitute for mutated Parkin and enhance survival, CHIP also has unique functions. The differences between these proteins are underscored by the observation that unlike Parkin-deficient animals, CHIP-null animals age prematurely and have significantly impaired motor function. These properties make these E3 ligases appealing targets for clinical intervention. In this work, we discuss how biophysical and metabolic properties of these E3 ligases have driven rapid progress in identifying roles for E3 ligases in development, proteostasis, mitochondrial biology, and cell health, as well as new data about how these proteins alter the CNS proteome.
Collapse
Affiliation(s)
- Britney N Lizama
- Neuroscience Graduate Group, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States.
| | - Amy M Palubinsky
- Neuroscience Graduate Group, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States
| | - BethAnn McLaughlin
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Department of Pharmacology, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States
| |
Collapse
|
48
|
Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell Tissue Res 2018; 373:21-37. [PMID: 29372317 PMCID: PMC6015629 DOI: 10.1007/s00441-017-2768-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial impairment is a well-established pathological pathway implicated in Parkinson's disease (PD). Defects of the complex I of the mitochondrial respiratory chain have been found in post-mortem brains from sporadic PD patients. Furthermore, several disease-related genes are linked to mitochondrial pathways, such as PRKN, PINK1, DJ-1 and HTRA2 and are associated with mitochondrial impairment. This phenotype can be caused by the dysfunction of mitochondrial quality control machinery at different levels: molecular, organellar or cellular. Mitochondrial unfolded protein response represents the molecular level and implicates various chaperones and proteases. If the molecular level of quality control is not sufficient, the organellar level is required and involves mitophagy and mitochondrial-derived vesicles to sequester whole dysfunctional organelle or parts of it. Only when the impairment is too severe, does it lead to cell death via apoptosis, which defines the cellular level of quality control. Here, we review how currently known PD-linked genetic variants interfere with different levels of mitochondrial quality control. We discuss the graded risk concept of the most recently identified PARK loci (PARK 17-23) and some susceptibility variants in GBA, LRRK2 and SNCA. Finally, the emerging concept of rare genetic variants in candidates genes for PD, such as HSPA9, TRAP1 and RHOT1, complete the picture of the complex genetic architecture of PD that will direct future precision medicine approaches.
Collapse
Affiliation(s)
- S B Larsen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Z Hanss
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - R Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg City, Luxembourg
| |
Collapse
|
49
|
Markaki M, Palikaras K, Tavernarakis N. Novel Insights Into the Anti-aging Role of Mitophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:169-208. [PMID: 30072091 DOI: 10.1016/bs.ircmb.2018.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is a complex biological process affecting almost all living organisms. Although its detrimental effects on animals' physiology have been extensively documented, several aspects of the biology of aging are insufficiently understood. Mitochondria, the central energy producers of the cell, play vital roles in a wide range of cellular processes, including regulation of bioenergetics, calcium signaling, metabolic responses, and cell death, among others. Thus, proper mitochondrial function is a prerequisite for the maintenance of cellular and organismal homeostasis. Several mitochondrial quality control mechanisms have evolved to allow adaptation to different metabolic conditions, thereby preserving cellular homeostasis and survival. A tight coordination between mitochondrial biogenesis and mitochondrial selective autophagy, known as mitophagy, is a common characteristic of healthy biological systems. The balanced interplay between these two opposing cellular processes dictates stress resistance, healthspan, and lifespan extension. Mitochondrial biogenesis and mitophagy efficiency decline with age, leading to progressive accumulation of damaged and/or unwanted mitochondria, deterioration of cellular function, and ultimately death. Several regulatory factors that contribute to energy homeostasis have been implicated in the development and progression of many pathological conditions, such as neurodegenerative, metabolic, and cardiovascular disorders, among others. Therefore, mitophagy modulation may serve as a novel potential therapeutic approach to tackle age-associated pathologies. Here, we review the molecular signaling pathways that regulate and coordinate mitophagy with mitochondrial biogenesis, highlighting critical factors that hold promise for the development of pharmacological interventions toward enhancing human health and quality of life throughout aging.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas; Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
50
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|