1
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Zhang M, Ma Z, Cui H, Miao Y, Yin Y, Wen Q, Liu Z, Huang X, Xing C, Liu K, Peng H, Song L. Involvement of circadian clock protein PER2 in controlling sleep deprivation induced HMGB1 up-regulation by targeting p300 in the cortex. Sci Rep 2025; 15:12253. [PMID: 40210902 PMCID: PMC11985928 DOI: 10.1038/s41598-025-96931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Lack of sleep is a common problem in current society, which can induce various brain dysfunctions. Neuroinflammation is a typical reaction caused by sleep deficit and is considered as a common basis for various neurological disorders and cognitive impairments, but the related mechanisms have not been fully clarified. The circadian clock protein plays a critical role in maintaining physiological homeostasis, including sleep/wake cycles. Circadian disorders induced by sleep deficit might contribute to the development of neuroinflammation. In the current study, we observed that sleep deprivation (SD) induced elevated expression of High-mobility group box 1 (HMGB1), one of the most important mediators of neuroinflammation, in the cortical microglia and cerebrospinal fluids. Moreover, acetylation-dependent nuclear export of HMGB1 was involved in up-regulation and secretion of HMGB1 after sleep deprivation. Further studies indicated that sleep deprivation induced an increase in the expression of acetyltransferase p300 and a decrease in the expression of deacetylase SIRT1, which synergistically enhanced the acetylation level of HMGB1 in the cortical microglial cells, thereby triggered the nuclear export and secretion of HMGB1. Most importantly, circadian clock protein PER2 constitutively interacted with p300 and inhibited its expression in the microglial cells, which can be interrupted by PER2 downregulation upon sleep deprivation, leading to the increased expression of p300 and acetylation and secretion of HMGB1. The truncated PER2 mutant without p300 binding ability lost its ability to regulate p300 expression, indicating that PER2 functioned as a co-suppressor of p300 in regulating acetylation and expression of HMGB1. Taken together, data in this study reveal a new mechanism by which PER2 is involved in controlling HMGB1 dependent neuroinflammation induced by sleep deprivation. Maintaining PER2 levels or blocking HMGB1 acetylation in the cortex might be prospective for preventing sleep deprivation-induced neuroinflammation and the related adverse reactions in the brain.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhuoyao Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haoran Cui
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yumeng Miao
- Beijing Institute of Basic Medical Sciences, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Yu Yin
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Wen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhihui Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Kun Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Peng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, China.
- Anhui Medical University, Hefei, China.
- College of Life Science, Henan Normal University, Xinxiang, China.
- School of Pharmacy, Jiamusi University, Jiamusi, China.
| |
Collapse
|
3
|
Jia Z, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. The critical role of Sirt1 in ischemic stroke. Front Pharmacol 2025; 16:1425560. [PMID: 40160465 PMCID: PMC11949987 DOI: 10.3389/fphar.2025.1425560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Ischemic stroke, the most prevalent form of stroke, is responsible for the highest disability rates globally and ranks as the primary cause of mortality worldwide. Sirt1, extensively investigated in neurodegenerative disorders, is the most well-known and earliest member of the sirtuins family. However, its mechanism of action during ischemic stroke remains ambiguous. The literature examination revealed the intricate involvement of Sirt1 in regulating both physiological and pathological mechanisms during ischemic stroke. Sirt1 demonstrates deacetylation effects on PGC-1α, HMGB1, FOXOs, and p53. It hinders the activation of NLRP3 inflammasome and NF-κB while also engaging with AMPK. It regulates inflammatory response, oxidative stress, mitochondrial dysfunction, autophagy, pro-death, and necrotic apoptosis. Therefore, the potential of Sirt1 as a therapeutic target for the management of ischemic stroke is promising.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The Fourth Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Qi S, Wu Q, Xiang P, Hou C, Kang Z, Chen M, Yi C, Bai X, Li T, Li Z, Xie W. HMGB1 in Septic Muscle Atrophy: Roles and Therapeutic Potential for Muscle Atrophy and Regeneration. J Cachexia Sarcopenia Muscle 2025; 16:e13711. [PMID: 39963819 PMCID: PMC11833301 DOI: 10.1002/jcsm.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Abstract
Currently, the treatment of septic myopathy presents significant challenges with implications for increased mortality rates and prolonged hospitalizations. Effective therapeutic strategies for septic myopathy remain elusive, highlighting an urgent need for novel therapeutic approaches. High-mobility group box 1 (HMGB1) is a conserved nonhistone nuclear protein that is released passively from deceased cells or actively secreted by activated immune cells, influencing both infectious and noninfectious inflammatory responses. Studies have indicated that HMGB1 likely plays a pivotal role in the pathogenesis of septic myopathy by crucial pathways associated with muscle atrophy and contributing to muscle regeneration under certain conditions. This review aims to summarize the possible mechanisms of HMGB1 in muscle atrophy and its potential in muscle regeneration, providing a theoretical basis for HMGB1 treatment of septic myopathy. Research shows that the dual role of HMGB1 is related to its specific forms, which are influenced to varying degrees by environmental factors. HMGB1 is a key participant in septic muscle atrophy, whereas HMGB1 shows therapeutic potential in muscle regeneration. One key mechanism by which HMGB1 contributes to septic muscle atrophy is through the exacerbation of inflammation. HMGB1 can amplify the inflammatory response by promoting the release of pro-inflammatory cytokines, which further damages muscle tissue. HMGB1 is also involved in promoting cell death in sepsis, which contributes to muscle degradation. Another important mechanism is the regulation of protein degradation systems. HMGB1 can activate the ubiquitin-proteasome system and autophagy-lysosome pathway, both of which are crucial for the breakdown of muscle proteins during atrophy. Conversely, targeting HMGB1 has shown the potential to ameliorate muscle atrophy in various diseases. For instance, HMGB1 has been shown to promote muscle vascular regeneration, modify stem cell status and enhance stem cell migration and differentiation, all of which are beneficial for muscle repair and recovery. Pharmacological inhibition of HMGB1 has been explored, with several drugs demonstrating efficacy in reducing inflammation and muscle degradation in sepsis models. These findings suggest that HMGB1 inhibition could be a viable therapeutic approach for septic myopathy. However, the function of promoting muscle regeneration in septic myopathy needs further research. HMGB1 emerges as a promising therapeutic target for the treatment of muscle atrophy in sepsis. This review focuses on identifying the correlation between HMGB1 and septic myopathy, analysing the possible role of HMGB1 in disease development and examining the feasibility of HMGB1 as a therapeutic target.
Collapse
Affiliation(s)
- Si‐Yuan Qi
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiqi Wu
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Peng‐Hui Xiang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chao‐Yao Hou
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhaofeng Kang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Meng‐Qi Chen
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Chengla Yi
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangjun Bai
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tianyu Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhanfei Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei‐Ming Xie
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Trauma CenterPeking University People's HospitalBeijingChina
- Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University)Ministry of EducationBeijingChina
- National Center for Trauma Medicine of ChinaBeijingChina
| |
Collapse
|
5
|
Fu Q, Nguyen T, Kumar B, Azadi P, Zheng YG. Identification of the Regulatory Elements and Protein Substrates of Lysine Acetoacetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621296. [PMID: 39554048 PMCID: PMC11565915 DOI: 10.1101/2024.10.31.621296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Short chain fatty acylations establish connections between cell metabolism and regulatory pathways. Lysine acetoacetylation (Kacac) was recently identified as a new histone mark. However, regulatory elements, substrate proteins, and epigenetic functions of Kacac remain unknown, hindering further in-depth understanding of acetoacetate modulated (patho)physiological processes. Here, we created a chemo-immunological approach for reliable detection of Kacac, and demonstrated that acetoacetate serves as the primary precursor for histone Kacac. We report the enzymatic addition of the Kacac mark by the acyltransferases GCN5, p300, and PCAF, and its removal by deacetylase HDAC3. Furthermore, we establish acetoacetyl-CoA synthetase (AACS) as a key regulator of cellular Kacac levels. A comprehensive proteomic analysis has identified 139 Kacac sites on 85 human proteins. Bioinformatics analysis of Kacac substrates and RNA-seq data reveal the broad impacts of Kacac on multifaceted cellular processes. These findings unveil pivotal regulatory mechanisms for the acetoacetate-mediated Kacac pathway, opening a new avenue for further investigation into ketone body functions in various pathophysiological states.
Collapse
Affiliation(s)
- Qianyun Fu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Tan Z, Dong F, Wu L, Xu G, Zhang F. Transcutaneous electrical acupoint stimulation attenuated neuroinflammation and oxidative stress by activating SIRT1-induced signaling pathway in MCAO/R rat models. Exp Neurol 2024; 373:114658. [PMID: 38141805 DOI: 10.1016/j.expneurol.2023.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Silent information regulator 1 (SIRT1) plays a beneficial role in cerebral ischemic injury. Previous reports have demonstrated that transcutaneous electrical acupoint stimulation (TEAS) exerts a beneficial effect on ischemic stroke; however, whether SIRT1 participates in the underlying mechanism for the neuroprotective effects of TEAS against ischemic brain damage has not been confirmed. METHODS The rat models of middle cerebral artery occlusion/reperfusion (MCAO/R) were utilized in the current experiment. After MCAO/R surgery, rats in TEAS, EC and EX group received TEAS intervention with or without the injection of EX527, the SIRT1 inhibitor. Neurological deficit scores, infarct volume, hematoxylin eosin (HE) staining and apoptotic cell number were measured. The results of RNA sequencing were analyzed to determine the differential expression changes of genes among sham, MCAO and TEAS groups, in order to investigate the possible pathological processes involved in cerebral ischemia and explore the protective mechanisms of TEAS. Moreover, oxidative stress markers including MDA, SOD, GSH and GSH-Px were measured with assay kits. The levels of the proinflammatory cytokines, such as IL-6, IL-1β and TNF-α, were detected by ELISA assay, and Iba-1 (the microglia marker protein) positive cells was measured by immunofluorescence (IF). Western blot and IF were utilized to examine the levels of key molecules in SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways. RESULTS TEAS significantly decreased brain infarcted size and apoptotic neuronal number, and alleviated neurological deficit scores and morphological injury by activating SIRT1. The results of RNA-seq and bioinformatic analysis revealed that oxidative stress and inflammation were the key pathological mechanisms, and TEAS alleviated oxidative injury and inflammatory reactions following ischemic stroke. Then, further investigation indicated that TEAS notably attenuated neuronal apoptosis, neuroinflammation and oxidative stress damage in the hippocampus of rats with MCAO/R surgery. Moreover, TEAS intervention in the MCAO/R model significantly elevated the expressions of SIRT1, FOXO3a, CAT, BRCC3, NLRP3 in the hippocampus. Furthermore, EX527, as the inhibitor of SIRT1, obviously abolished the anti-oxidative stress and anti-neuroinflammatory roles of TEAS, as well as reversed the TEAS-mediated elevation of SIRT1, FOXO3a, CAT and reduction of BRCC3 and NLRP3 mediated by following MCAO/R surgery. CONCLUSIONS In summary, these findings clearly suggested that TEAS attenuated brain damage by suppressing apoptosis, oxidative stress and neuroinflammation through modulating SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways following ischemic stroke, which can be a promising treatment for stroke patients.
Collapse
Affiliation(s)
- Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 05005, PR China
| | - Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
7
|
Liao J, Fu L, Tai S, Xu Y, Wang S, Guo L, Guo D, Du Y, He J, Yang H, Hu X, Tao L, Shen X. Essential oil from Fructus Alpiniae zerumbet ameliorates vascular endothelial cell senescence in diabetes by regulating PPAR-γ signalling: A 4D label-free quantitative proteomics and network pharmacology study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117550. [PMID: 38065350 DOI: 10.1016/j.jep.2023.117550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vascular endothelial cell senescence is associated with cardiovascular complications in diabetes. Essential oil from Fructus Alpiniae zerumbet (Pers.) B.L.Burtt & R.M.Sm. (EOFAZ) has potentially beneficial and promising diabetes-related vascular endothelial cell senescence-mitigating effects; however, the underlying molecular mechanisms remain unclear. AIM OF THE STUDY To investigate the molecular effects of EOFAZ on vascular endothelial cell senescence in diabetes. MATERIALS AND METHODS A diabetes mouse model was developed using a high-fat and high-glucose diet (HFD) combined with intraperitoneal injection of low-dose streptozotocin (STZ, 30 mg/kg) and oral treatment with EOFAZ. 4D label-free quantitative proteomics, network pharmacology, and molecular docking techniques were employed to explore the molecular mechanisms via which EOFAZ alleviates diabetes-related vascular endothelial cell senescence. A human aortic endothelial cells (HAECs) senescence model was developed using high palmitic acid and high glucose (PA/HG) concentrations in vitro. Western blotting, immunofluorescence, SA-β-galactosidase staining, cell cycle, reactive oxygen species (ROS), cell migration, and enzyme linked immunosorbent assays were performed to determine the protective role of EOFAZ against vascular endothelial cell senescence in diabetes. Moreover, the PPAR-γ agonist rosiglitazone, inhibitor GW9662, and siRNA were used to verify the underlying mechanism by which EOFAZ combats vascular endothelial cell senescence in diabetes. RESULTS EOFAZ treatment ameliorated abnormal lipid metabolism, vascular histopathological damage, and vascular endothelial aging in diabetic mice. Proteomics and network pharmacology analysis revealed that the differentially expressed proteins (DEPs) and drug-disease targets were associated with the peroxisome proliferator-activated receptor gamma (PPAR-γ) signalling pathway, a key player in vascular endothelial cell senescence. Molecular docking indicated that the small-molecule compounds in EOFAZ had a high affinity for the PPAR-γ protein. Western blotting and immunofluorescence analyses confirmed the significance of DEPs and the involvement of the PPAR-γ signalling pathway. In vitro, EOFAZ and rosiglitazone treatment reversed the effects of PA/HG on the number of senescent endothelial cells, expression of senescence-related proteins, the proportion of cells in the G0/G1 phase, ROS levels, cell migration rate, and expression of pro-inflammatory factors. The protective effects of EOFAZ against vascular endothelial cell senescence in diabetes were aborted following treatment with GW9662 or PPAR-γ siRNA. CONCLUSIONS EOFAZ ameliorates vascular endothelial cell senescence in diabetes by activating PPAR-γ signalling. The results of the present study highlight the potential beneficial and promising therapeutic effects of EOFAZ and provide a basis for its clinical application in diabetes-related vascular endothelial cell senescence.
Collapse
Affiliation(s)
- Jiajia Liao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Lingyun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Shidie Tai
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Linlin Guo
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Die Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Youqi Du
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Jinggang He
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Hong Yang
- Department of Pharmacy, Guiyang Maternal and Child Health Care Hospital, Guiyang, 550003, Guizhou, China.
| | - Xiaoxia Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, 550004, Guiyang, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, 550004, Guiyang, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, 550004, Guiyang, China.
| |
Collapse
|
8
|
Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J, Zhai J. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal 2023; 21:185. [PMID: 37507744 PMCID: PMC10375653 DOI: 10.1186/s12964-023-01177-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The silent information regulator 2 homolog 1-NACHT, LRR and PYD domains-containing protein 3 (SIRT1-NLRP3) pathway has a crucial role in regulation of the inflammatory response, and is closely related to the occurrence and development of several inflammation-related diseases. NLRP3 is activated to produce the NLRP3 inflammasome, which leads to activation of caspase-1 and cleavage of pro-interleukin (IL)-1β and pro-IL-18 to their active forms: IL-1β and IL-18, respectively. They are proinflammatory cytokines which then cause an inflammatory response.SIRT1 can inhibit this inflammatory response through nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B pathways. This review article focuses mainly on how the SIRT1-NLRP3 pathway influences the inflammatory response and its relationship with melatonin, traumatic brain injury, neuroinflammation, depression, atherosclerosis, and liver damage. Video Abstract.
Collapse
Affiliation(s)
- Huiyue Chen
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
| | - Jiayu Deng
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Yanqing Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jingmeng Sun
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China.
| |
Collapse
|
9
|
Huang Q, Weng D, Yao S, Shen H, Gao S, Zhang Y, Huang W, Wang Y, Wang H, Xu W. Progranulin deficiency suppresses allergic asthma and enhances efferocytosis via PPAR-γ/MFG-E8 regulation in macrophages. Immun Inflamm Dis 2023; 11:e779. [PMID: 36840485 PMCID: PMC9910167 DOI: 10.1002/iid3.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Efferocytosis can resolve airway inflammation and enhance airway tolerance in allergic asthma. While previous work has reported that progranulin (PGRN) regulated macrophage efferocytosis, but it is unclear whether PGRN-mediated efferocytosis is associated with asthma. Here, we found that in an ovalbumin (OVA)-induced allergic asthma model, the airway inflammation was suppressed and the apoptosis in lung tissues was ameliorated in PGRN-deficient mice. In contrast, PGRN knockdown in human bronchial epithelial cells increased apoptosis in vitro. Furthermore, PGRN-deficient macrophages had significantly stronger efferocytosis ability than wild type (WT) macrophages both in vitro and in vivo. PGRN-deficient peritoneal macrophages (PMs) exhibited increased expression of genes associated with efferocytosis including milk fat globule-epidermal growth factor 8 (MFG-E8), peroxisome proliferator-activated receptor gamma (PPAR-γ) and sirtuin1 (SIRT1) and increased capacity to produce the anti-inflammatory mediator interleukin (IL)-10 during efferocytosis. GW9662, the inhibitor of PPAR-γ, abolished increased efferocytosis and MFG-E8 expression in PGRN-deficient PMs suggesting that PGRN deficiency enhanced MFG-E8-mediated efferocytosis through PPAR-γ. Correspondingly, efferocytosis genes were increased in the lungs of OVA-induced PGRN-deficient mice. GW9662 treatment reduced MFG-E8 expression but did not significantly affect airway inflammation. Our results demonstrated that PGRN deficiency enhanced efferocytosis via the PPAR-γ/MFG-E8 pathway and this may be one of the reasons PGRN deficiency results in inhibition of airway inflammation in allergic asthma.
Collapse
Affiliation(s)
- Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory MedicineChongqing Medical UniversityChongqingPeople's Republic of China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory MedicineChongqing Medical UniversityChongqingPeople's Republic of China
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory MedicineChongqing Medical UniversityChongqingPeople's Republic of China
| | - Hailan Shen
- Department of laboratory medicineThe first affiliated hospital of Chongqing medical universityChongqingPeople's Republic of China
| | - Song Gao
- Department of Laboratory Medicine, School of Laboratory Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi Medical UniversityZunyiPeople's Republic of China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory MedicineChongqing Medical UniversityChongqingPeople's Republic of China
| | - Wenjie Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory MedicineChongqing Medical UniversityChongqingPeople's Republic of China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory MedicineChongqing Medical UniversityChongqingPeople's Republic of China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory MedicineChongqing Medical UniversityChongqingPeople's Republic of China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory MedicineChongqing Medical UniversityChongqingPeople's Republic of China
| |
Collapse
|
10
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
11
|
Ross AG, Chaqour B, McDougald DS, Dine KE, Duong TT, Shindler RE, Yue J, Liu T, Shindler KS. Selective Upregulation of SIRT1 Expression in Retinal Ganglion Cells by AAV-Mediated Gene Delivery Increases Neuronal Cell Survival and Alleviates Axon Demyelination Associated with Optic Neuritis. Biomolecules 2022; 12:830. [PMID: 35740955 PMCID: PMC9221096 DOI: 10.3390/biom12060830] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Optic neuritis (ON), the most common ocular manifestation of multiple sclerosis, is an autoimmune inflammatory demyelinating disease also characterized by degeneration of retinal ganglion cells (RGCs) and their axons, which commonly leads to visual impairment despite attempted treatments. Although ON disease etiology is not known, changes in the redox system and exacerbated optic nerve inflammation play a major role in the pathogenesis of the disease. Silent information regulator 1 (sirtuin-1/SIRT1) is a ubiquitously expressed NAD+-dependent deacetylase, which functions to reduce/prevent both oxidative stress and inflammation in various tissues. Non-specific upregulation of SIRT1 by pharmacologic and genetic approaches attenuates RGC loss in experimental ON. Herein, we hypothesized that targeted expression of SIRT1 selectively in RGCs using an adeno-associated virus (AAV) vector as a delivery vehicle is an effective approach to reducing neurodegeneration and preserving vision in ON. We tested this hypothesis through intravitreal injection of AAV7m8.SNCG.SIRT1, an AAV2-derived vector optimized for highly efficient SIRT1 transgene transfer and protein expression into RGCs in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis that recapitulates optic neuritis RGC loss and axon demyelination. Our data show that EAE mice injected with a control vehicle exhibit progressive alteration of visual function reflected by decreasing optokinetic response (OKR) scores, whereas comparatively, AAV7m8.SNCG.SIRT1-injected EAE mice maintain higher OKR scores, suggesting that SIRT1 reduces the visual deficit imparted by EAE. Consistent with this, RGC survival determined by immunolabeling is increased and axon demyelination is decreased in the AAV7m8.SNCG.SIRT1 RGC-injected group of EAE mice compared to the mouse EAE counterpart injected with a vehicle or with control vector AAV7m8.SNCG.eGFP. However, immune cell infiltration of the optic nerve is not significantly different among all EAE groups of mice injected with either vehicle or AAV7m8.SNCG.SIRT1. We conclude that despite minimally affecting the inflammatory response in the optic nerve, AAV7m8-mediated SIRT1 transfer into RGCs has a neuroprotective potential against RGC loss, axon demyelination and vison deficits associated with EAE. Together, these data suggest that SIRT1 exerts direct effects on RGC survival and function.
Collapse
Affiliation(s)
- Ahmara G. Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Devin S. McDougald
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kimberly E. Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Thu T. Duong
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ryan E. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jipeng Yue
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tehui Liu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenneth S. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021; 12:763417. [PMID: 34899389 PMCID: PMC8652059 DOI: 10.3389/fphys.2021.763417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Increased sirtuin deacylase activity is correlated with increased lifespan and healthspan in eukaryotes. Conversely, decreased sirtuin deacylase activity is correlated with increased susceptibility to aging-related diseases. However, the mechanisms leading to decreased sirtuin activity during aging are poorly understood. Recent work has shown that oxidative post-translational modification by reactive oxygen (ROS) or nitrogen (RNS) species results in inhibition of sirtuin deacylase activity through cysteine nitrosation, glutathionylation, sulfenylation, and sulfhydration as well as tyrosine nitration. The prevalence of ROS/RNS (e.g., nitric oxide, S-nitrosoglutathione, hydrogen peroxide, oxidized glutathione, and peroxynitrite) is increased during inflammation and as a result of electron transport chain dysfunction. With age, cellular production of ROS/RNS increases; thus, cellular oxidants may serve as a causal link between loss of sirtuin activity and aging-related disease development. Therefore, the prevention of inhibitory oxidative modification may represent a novel means to increase sirtuin activity during aging. In this review, we explore the role of cellular oxidants in inhibiting individual sirtuin human isoform deacylase activity and clarify the relevance of ROS/RNS as regulatory molecules of sirtuin deacylase activity in the context of health and disease.
Collapse
Affiliation(s)
- Kelsey S Kalous
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Hwang JS, Kim E, Lee HG, Lee WJ, Won JP, Hur J, Fujii J, Seo HG. Peroxisome proliferator-activated receptor δ rescues xCT-deficient cells from ferroptosis by targeting peroxisomes. Biomed Pharmacother 2021; 143:112223. [PMID: 34649350 DOI: 10.1016/j.biopha.2021.112223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is a recently recognized process of cell death characterized by accumulation of iron-dependent lipid peroxides. Herein, we demonstrate that peroxisome proliferator-activated receptor δ (PPARδ) inhibits ferroptosis of mouse embryonic fibroblasts (MEFs) derived from cysteine/glutamate transporter (xCT)-knockout mice. Activation of PPARδ by the specific ligand GW501516 led to a dose-dependent decrease in ferroptotic cell death triggered by xCT deficiency, along with decreased levels of intracellular iron accumulation and lipid peroxidation. These effects of GW501516 were abolished by PPARδ-targeting small interfering RNA (siRNA) and the PPARδ inhibitor GSK0660, indicating that PPARδ inhibits xCT deficiency-induced ferroptosis. In addition, GW501516-activated PPARδ time- and dose-dependently upregulated catalase expression at both the mRNA and protein levels. This PPARδ-mediated upregulation of catalase was markedly attenuated in cells treated with PPARδ-targeting siRNA and GSK0660, indicating that expression of catalase is dependent on PPARδ. Consistently, the effects of GW501516 on ferroptosis of xCT-deficient MEFs were counteracted in the presence of 3-amino-1,2,4-triazole, a specific inhibitor of catalase, suggesting that catalase is essential for the effect of PPARδ on ferroptosis triggered by xCT deficiency. GW501516-activated PPARδ stabilized peroxisomes through catalase upregulation by targeting peroxisomal hydrogen peroxide-mediated lysosomal rupture, which led to ferroptosis of xCT-deficient MEFs. Collectively, these results demonstrate that PPARδ modulates ferroptotic signals in xCT-deficient MEFs by regulating catalase expression.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
Busato S, Bionaz M. When Two plus Two Is More than Four: Evidence for a Synergistic Effect of Fatty Acids on Peroxisome Proliferator-Activated Receptor Activity in a Bovine Hepatic Model. Genes (Basel) 2021; 12:genes12081283. [PMID: 34440457 PMCID: PMC8393910 DOI: 10.3390/genes12081283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
The inclusion of fat in livestock diets represents a valuable and cost-effective way to increase the animal’s caloric intake. Beyond their caloric value, fatty acids can be understood in terms of their bioactivity, via the modulation of the ligand-dependent nuclear peroxisome proliferator-activated receptors (PPAR). Isotypes of PPAR regulate important metabolic processes in both monogastric and ruminant animals, including the metabolism of fatty acids (FA), the production of milk fat, and the immune response; however, information on the modulation of bovine PPAR by fatty acids is limited. The objective of this study was to expand our understanding on modulation of bovine PPAR by FA, both when used individually and in combination, in an immortalized cell culture model of bovine liver. Of the 10 FA included in the study, the greatest activation of the PPAR reporter was detected with saturated FA C12:0, C16:0, and C18:0, as well as phytanic acid, and the unsaturated FA C16:1 and C18:1. When supplemented in mixtures of 2 FA, the most effective combination was C12:0 + C16:0, while in mixtures of 3 FA, the greatest activation was caused by combinations of C12:0 with C16:0 and either C18:0, C16:1, or C18:1. Some mixtures display a synergistic effect that leads to PPAR activation greater than the sum of their parts, which may be explained by structural dynamics within the PPAR ligand-binding pocket. Our results provide fundamental information for the development of tailored dietary plans that focus on the use of FA mixtures for nutrigenomic purposes.
Collapse
|
15
|
Hwang JS, Hur J, Lee WJ, Won JP, Lee HG, Lim DS, Kim E, Seo HG. Catalase Mediates the Inhibitory Actions of PPARδ against Angiotensin II-Triggered Hypertrophy in H9c2 Cardiomyocytes. Antioxidants (Basel) 2021; 10:antiox10081223. [PMID: 34439471 PMCID: PMC8388952 DOI: 10.3390/antiox10081223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
Hypertrophy of myocytes has been implicated in cardiac dysfunctions affecting wall stress and patterns of gene expression. However, molecular targets potentially preventing cardiac hypertrophy have not been fully elucidated. In the present study, we demonstrate that upregulation of catalase by peroxisome proliferator-activated receptor δ (PPARδ) is involved in the anti-hypertrophic activity of PPARδ in angiotensin II (Ang II)-treated H9c2 cardiomyocytes. Activation of PPARδ by a specific ligand GW501516 significantly inhibited Ang II-induced hypertrophy and the generation of reactive oxygen species (ROS) in H9c2 cardiomyocytes. These effects of GW501516 were almost completely abolished in cells stably expressing small hairpin (sh)RNA targeting PPARδ, indicating that PPARδ mediates these effects. Significant concentration and time-dependent increases in catalase at both mRNA and protein levels were observed in GW501516-treated H9c2 cardiomyocytes. In addition, GW501516-activated PPARδ significantly enhanced catalase promoter activity and protein expression, even in the presence of Ang II. GW501516-activated PPARδ also inhibited the expression of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which are both marker proteins for hypertrophy. The effects of GW501516 on the expression of ANP and BNP were reversed by 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor. Inhibition or downregulation of catalase by 3-AT or small interfering (si)RNA, respectively, abrogated the effects of PPARδ on Ang II-induced hypertrophy and ROS generation, indicating that these effects of PPARδ are mediated through catalase induction. Furthermore, GW501516-activated PPARδ exerted catalase-dependent inhibitory effects on Ang II-induced hypertrophy by blocking p38 mitogen-activated protein kinase. Taken together, these results indicate that the anti-hypertrophic activity of PPARδ may be achieved, at least in part, by sequestering ROS through fine-tuning the expression of catalase in cardiomyocytes.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, 355 Pangyo-ro, Bundang-gu, Seongnam 13488, Korea;
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.S.H.); (J.H.); (W.J.L.); (J.P.W.); (H.G.L.); (E.K.)
- Correspondence: ; Tel.: +82-2-450-0428; Fax: +82-2-455-1044
| |
Collapse
|
16
|
Hur J, Lee HG, Kim E, Won JP, Cho Y, Choi MJ, Lee H, Seo HG. Ginseng leaf extract ameliorates the survival of endotoxemic mice by inhibiting the release of high mobility group box 1. J Food Biochem 2021; 45:e13805. [PMID: 34096077 DOI: 10.1111/jfbc.13805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
High mobility group box 1 (HMGB1) is a well-defined mediator involved in the pathophysiologic response to endotoxemia and sepsis. However, the mechanisms and therapeutic agents that could prevent its release are not fully elucidated. Here, the present study demonstrates that the ginseng leaf extract (GLE) regulates lipopolysaccharide (LPS)-triggered release of HMGB1 in macrophages and endotoxemic animal model. Treatment of RAW264.7 macrophages with GLE significantly inhibited the release of HMGB1 stimulated by LPS. GLE also suppressed the generation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of GLE were accompanied by inhibition of HMGB1 release stimulated by LPS, indicating a potential mechanism by which GLE regulates HMGB1 release through NO signaling. Furthermore, induction of suppressor of cytokine signaling 1 by GLE-mediated GLE-dependent suppression of HMGB1 release and NO/iNOS induction by inhibiting Janus kinase 2/signal transducer and activator of transcription 1 signal in RAW 264.7 cells exposed to LPS. Finally, administration of the GLE ameliorated the survival rate of LPS-injected endotoxemic mice in a NO-dependent manner. Thus, GLE may block the LPS-stimulated release of HMGB1 by regulating cellular signal networks, thereby providing a therapeutic strategy for endotoxemia as a functional food. PRACTICAL APPLICATIONS: High mobility group box 1 (HMGB1) is released into the extracellular milieu when immune cells are exposed to pathogen-related molecules such as lipopolysaccharide (LPS), in which it acts as a critical mediator of lethality in sepsis and endotoxemia. The extract of ginseng leaf, which is a part that can be easily thrown away, ameliorated the survival rate of endotoxemic mice by inhibiting HMGB1 secretion in a NO-dependent manner. Thus, this study suggests that ginseng leaf can be used as a functional food by resolving the immune responses in the pathology of endotoxemia.
Collapse
Affiliation(s)
- Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunsu Kim
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jun Pil Won
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Youngjae Cho
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hwan Lee
- Health Balance R&D Center, Seoul, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Liu X, Lu B, Fu J, Zhu X, Song E, Song Y. Amorphous silica nanoparticles induce inflammation via activation of NLRP3 inflammasome and HMGB1/TLR4/MYD88/NF-kb signaling pathway in HUVEC cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124050. [PMID: 33053467 DOI: 10.1016/j.jhazmat.2020.124050] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 05/15/2023]
Abstract
Silica nanoparticles (SiO2 NPs) are extensively applied in various field, which increased their health risks to humans. SiO2 NPs were reported to enter into blood through inhalation and meanwhile, the potential use of SiO2 NPs as drug carriers in vivo allows them to present in blood circulation to induce inflammation of vascular endothelial cells which can be closely related with cardiovascular diseases, whilst the intrinsic mechanism has not been well understood. In this study, we found a regulation of signal axis induced by amorphous SiO2 NPs that triggers pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs). HUVECs exposed with SiO2 NPs generate excess amount of reactive oxygen species (ROS) and lactate dehydrogenase (LDH), together with the up-regulation of cell inflammatory factors [interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α)] and cell adhesion molecules [intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1)]. In addition, SiO2 NPs were found to promote the translocation and release of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm, which was demonstrated to be regulated by ROS and NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Subsequently, toll-like receptor 4 (TLR4) could bind with HMGB1, up-regulate the expression of myeloid differentiation factor 88 (MyD88) and then activate nuclear factor kappa-B (NF-κB) signaling pathway, ultimately induced the inflammatory response of HUVECs. Overall, out results revealed the related signaling pathways of cell inflammation induced by amorphous SiO2 NPs, which provided new insights in understanding SiO2 NPs-induced cytotoxicity and offered safety guidance for further nanomaterial application.
Collapse
Affiliation(s)
- Xuting Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Bin Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Juanli Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
18
|
Wang Z, Guo W, Yi F, Zhou T, Li X, Feng Y, Guo Q, Xu H, Song X, Cao L. The Regulatory Effect of SIRT1 on Extracellular Microenvironment Remodeling. Int J Biol Sci 2021; 17:89-96. [PMID: 33390835 PMCID: PMC7757024 DOI: 10.7150/ijbs.52619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Wendong Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Fei Yi
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Tingting Zhou
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoman Li
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Yanling Feng
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Hongde Xu
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| |
Collapse
|
19
|
Ding Y, Kang J, Liu S, Xu Y, Shao B. The Protective Effects of Peroxisome Proliferator-Activated Receptor Gamma in Cerebral Ischemia-Reperfusion Injury. Front Neurol 2020; 11:588516. [PMID: 33281727 PMCID: PMC7705069 DOI: 10.3389/fneur.2020.588516] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is a complex pathological process that often occurs secondary to trauma, surgery, and shock. Peroxisome proliferator activated receptor gamma (PPARγ) is a subunit of the PPAR and is a ligand-activated nuclear transcription factor. After being activated by its ligand, PPARγ can combine with specific DNA response elements to regulate the transcription and expression of genes. It has a wide range of biological functions, such as regulating lipid metabolism, improving insulin sensitivity, modulating anti-tumor mechanisms, and inhibiting inflammation. In recent years, some studies have shown that PPARγ exerts a protective effect during CI/RI. This article aims to summarize the research progress of studies that have investigated the protective effects of PPARγ in CI/RI and the cellular and molecular mechanisms through which these effects are modulated, including inhibition of excitatory amino acid toxicity, reduced Ca2+ overload, anti-oxidative stress, anti-inflammation, inhibition of microglial activation, maintain the BBB, promotion of angiogenesis, and neurogenesis and anti-apoptotic processes.
Collapse
Affiliation(s)
- Yanping Ding
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jie Kang
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Shuning Liu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Yuqin Xu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Baoping Shao
- College of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Baicalin Ameliorates Cognitive Impairment and Protects Microglia from LPS-Induced Neuroinflammation via the SIRT1/HMGB1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4751349. [PMID: 33029280 PMCID: PMC7527898 DOI: 10.1155/2020/4751349] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Systemic inflammation often induces neuroinflammation and disrupts neural functions, ultimately causing cognitive impairment. Furthermore, neuronal inflammation is the key cause of many neurological conditions. It is particularly important to develop effective neuroprotectants to prevent and control inflammatory brain diseases. Baicalin (BAI) has a wide variety of potent neuroprotective and cognitive enhancement properties in various models of neuronal injury through antioxidation, anti-inflammation, anti-apoptosis, and stimulating neurogenesis. Nevertheless, it remains unclear whether BAI can resolve neuroinflammation and cognitive decline triggered by systemic or distant inflammatory processes. In the present study, intraperitoneal lipopolysaccharide (LPS) administration was used to establish neuroinflammation to evaluate the potential neuroprotective and anti-inflammatory effects of BAI. Here, we report that BAI activated silent information regulator 1 (SIRT1) to deacetylate high-mobility group box 1 (HMGB1) protein in response to acute LPS-induced neuroinflammation and cognitive deficits. Furthermore, we demonstrated the anti-inflammatory and cognitive enhancement effects and the underlying molecular mechanisms of BAI in modulating microglial activation and systemic cytokine production, including tumor necrosis factor- (TNF-) α and interleukin- (IL-) 1β, after LPS exposure in mice and in the microglial cell line, BV2. In the hippocampus, BAI not only reduced reactive microglia and inflammatory cytokine production but also modulated SIRT1/HMGB1 signaling in microglia. Interestingly, pretreatment with SIRT1 inhibitor EX-527 abolished the beneficial effects of BAI against LPS exposure. Specifically, BAI treatment inhibited HMGB1 release via the SIRT1/HMGB1 pathway and reduced the nuclear translocation of HMGB1 in LPS-induced BV2 cells. These effects were reversed in BV2 cells by silencing endogenous SIRT1. Taken together, these findings indicated that BAI reduced microglia-associated neuroinflammation and improved acute neurocognitive deficits in LPS-induced mice via SIRT1-dependent downregulation of HMGB1, suggesting a possible novel protection against acute neurobehavioral deficits, such as delayed neurocognitive recovery after anesthesia and surgery challenges.
Collapse
|
21
|
Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. J Autoimmun 2020; 113:102510. [PMID: 32622513 PMCID: PMC7327470 DOI: 10.1016/j.jaut.2020.102510] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/10/2023]
Abstract
Autoimmune diseases are common diseases of the immune system that are characterized by the loss of self-tolerance and the production of autoantibodies; the breakdown of immune tolerance and the prolonged inflammatory reaction are undisputedly core steps in the initiation and maintenance of autoimmunity. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that belong to the nuclear hormone receptor family and act as ligand-activated transcription factors. There are three different isotypes of PPARs: PPARα, PPARγ, and PPARβ/δ. PPARγ is an established regulator of glucose homeostasis and lipid metabolism. Recent studies have demonstrated that PPARγ exhibits anti-inflammatory and anti-fibrotic effects in multiple disease models. PPARγ can also modulate the activation and polarization of macrophages, regulate the function of dendritic cells and mediate T cell survival, activation, and differentiation. In this review, we summarize the signaling pathways and biological functions of PPARγ and focus on how PPARγ and its agonists play protective roles in autoimmune diseases, including autoimmune thyroid diseases, multiple sclerosis, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, primary Sjogren syndrome and primary biliary cirrhosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Jiayu Wang
- Xiangya Medical School, Central South University, #176 Tongzipo Rd, Changsha, Hunan, 410013, PR China
| | - Shuangyan Luo
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Yi Zhan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
22
|
Hwang JS, Kim E, Hur J, Yoon TJ, Seo HG. Ring finger protein 219 regulates inflammatory responses by stabilizing sirtuin 1. Br J Pharmacol 2020; 177:4601-4614. [PMID: 32220064 DOI: 10.1111/bph.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Ring finger protein 219 (RNF219), a protein containing the C3 HC4 -type RING-HC motif, has been identified as a binding partner of the histone deacetylase sirtuin 1 (SIRT1). To explore the functions of RNF219, we examined its possible roles in the cellular responses to inflammation. EXPERIMENTAL APPROACH Effects of RNF219 on SIRT1 were studied in vitro using RAW264.7 cells and in male BALB/c mice, treated with LPS or IFN-γ. Western blots, RT-PCR, co-immunoprecipitation and ubiquitination assays were used, along with LC-MS/MS analysis. In vivo, survival and serum cytokines and tissue levels of RNF219 and SIRT1 were measured. KEY RESULTS Binding of RNF219 to SIRT1 inhibited degradation of SIRT1 by preventing its ubiquitination, thereby prolonging SIRT1-mediated anti-inflammatory signalling. LPS caused RNF219 deacetylation, leading to instability of RNF219 and preventing its association with SIRT1. Accordingly, the acetylation status of RNF219 is a critical determinant in its interaction with SIRT1, affecting the response to inflammatory stimuli. The deacetylase inhibitor trichostatin A, increased acetylation and stability of RNF219 and survival of mice injected with LPS, through the interaction of RNF219 with SIRT1. CONCLUSION AND IMPLICATIONS RNF219 is involved in a novel mechanism to stabilize SIRT1 protein by protein-protein interaction, leading to the resolution of cellular inflammation. These observations provide new insights into the function of RNF219 in modulation of cellular inflammation, and may aid and encourage the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Taek Joon Yoon
- Department of Food Science and Nutrition, Yuhan University, Bucheon-si, Republic of Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Kang ES, Hur J, Jo Y, Kim HJ, Han SG, Seo HG. Comparative effects of nanoemulsions loaded with duck oil and lard oil on palmitate-induced lipotoxicity. J Food Biochem 2019; 44:e13117. [PMID: 31823402 DOI: 10.1111/jfbc.13117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/31/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022]
Abstract
The effects of duck oil and lard oil on lipotoxicity induced by saturated long-chain fatty acids were evaluated in HepG2 cells. Lipotoxicity triggered by palmitate, a saturated fatty acid, was inhibited more by duck oil-loaded nanoemulsion (DO-NE) than by lard oil-loaded nanoemulsion (LO-NE) and control nanoemulsion (NE) in HepG2 cells. Accumulation of reactive oxygen species and lipid vacuoles in HepG2 cells induced by palmitate treatment was inhibited by DO-NE but not by LO-NE. Consistently, treatment of HepG2 cells with DO-NE, but not with NE or LO-NE, significantly reduced the expression levels of peroxisome proliferator-activated receptor-γ2 and sterol regulatory element-binding protein-1, which are key regulatory proteins in hepatic lipid accumulation. In addition, the cleavage of poly (ADP-ribose) polymerase and caspase-3 were reduced more by DO-NE than by LO-NE, indicating that DO-NE directly attenuates cellular damage induced by palmitate. Collectively, these results imply that the biological activity of duck oil against palmitate-induced cellular damage is more potent than that of lard oil. PRACTICAL APPLICATIONS: Accumulated lipids in nonadipose tissues, especially the liver, cause lipotoxicity, a pathologic feature of hepatic disorders, by inducing oxidative stress. A nanoemulsion loaded with duck oil, which is a functional food widely consumed by Korean people, inhibited lipotoxicity by suppressing lipid accumulation in HepG2 cells exposed to palmitate, which mimic nonalcoholic fatty liver disease. Thus, we propose that duck oil can be used as a functional food to improve lipid-induced hepatic disorders.
Collapse
Affiliation(s)
- Eun Sil Kang
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, Seoul, Korea
| | - Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, Seoul, Korea
| | - Yoenji Jo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, Seoul, Korea
| | - Hyo Juong Kim
- Taekyung Food and Processing R&D Center, Seoul, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, Seoul, Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, Seoul, Korea
| |
Collapse
|
24
|
Choi S, Shin S, Lee H, Sohn K, Yoon SY, Kim JW. 1‐Palmitoyl‐2‐linoleoyl‐3‐acetyl‐rac‐glycerol ameliorates chemoradiation‐induced oral mucositis. Oral Dis 2019; 26:111-121. [DOI: 10.1111/odi.13224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Solji Choi
- Division of Systems Biology and Bioengineering Cell Factory Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
- Department of Functional Genomics University of Science and Technology Daejeon Korea
| | - Su‐Hyun Shin
- Division of Systems Biology and Bioengineering Cell Factory Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
- Department of Functional Genomics University of Science and Technology Daejeon Korea
| | | | | | | | - Jae Wha Kim
- Division of Systems Biology and Bioengineering Cell Factory Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
- Department of Functional Genomics University of Science and Technology Daejeon Korea
| |
Collapse
|
25
|
Xu B, Lang LM, Lian S, Guo JR, Wang JF, Liu J, Yang HM, Li SZ. Neuroinflammation induced by secretion of acetylated HMGB1 from activated microglia in hippocampi of mice following chronic cold exposure. Brain Res 2019; 1726:146495. [PMID: 31586627 DOI: 10.1016/j.brainres.2019.146495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
Abstract
Stress is a nonspecific response to adverse circumstances and chronic stress can destroy homeostasis, leading to various primary diseases. Although chronic cold stress is becoming increasingly important for individuals living or working in extreme environments, the risk of associated disorders of the central nervous system remains unstudied. Here, male C57BL/6 mice were exposed to a temperature of 4 °C, for three hours each day for one, two or three weeks. Glial cell activation, neuronal structure, and neuroinflammation were then evaluated by western blotting, immunofluorescence, Nissl staining and co-immunoprecipitation. Microglial activation, accompanied by activation of the NF-κB signaling pathway, release of pro-inflammatory cytokines and loss of Nissl bodies, was observed in mouse hippocampal tissue following cold exposure. We speculate that these phenomena are mediated by the HMGB1/TLR4/NF-κB pathway and closely associated with acetylation of HMGB1 in the hippocampus. These findings provide new insights into the mechanisms of the cold stress response, which should inform the development of new strategies to combat the effects of hypothermia.
Collapse
Affiliation(s)
- Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li-Min Lang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jian-Fa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
26
|
Xu S, Zeng Z, Zhao M, Huang Q, Gao Y, Dai X, Lu J, Huang W, Zhao K. Evidence for SIRT1 Mediated HMGB1 Release From Kidney Cells in the Early Stages of Hemorrhagic Shock. Front Physiol 2019; 10:854. [PMID: 31333497 PMCID: PMC6625367 DOI: 10.3389/fphys.2019.00854] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background This study is to explore the effect of SIRT1 deacetylating inactivation on organ-derived high mobility group box 1 (HMGB1) during the development of severe hemorrhagic shock (HS). Methods Hemorrhagic shock model was reproduced in rats by blood shedding and mimicked in HK-2 cells by hypoxia-reoxygenation (H/R) treatment. The level and acetylation of HMGB1 and the expression and activity of SIRT1 were detected in tissue, serum and cultured cells and supernatant. The deacetylated sites of HMGB1 was determined by Co-IP. Results Serum HMGB1 in HS rats was increased but were reduced in multiple organs, especially in kidney tissue, with enhanced HMGB1 acetylation, and reduced deacetylase SIRT1 activity in isolated RTECs. HMGB1 in suspension of H/R-treated HK-2 cells was increased, accompanying with enhanced HMGB1 acetylation, and nuclear-plasma translocation. SIRT1 down-regulated by siRNA aggravated acetylation of HMGB1 and nucleus-to-cytoplasm translocation and resulted in increased HMGB1 in cultured HK-2 suspension. Immunoprecipitation data suggested that SIRT1-indcuced deacetylated sites of HMGB1 were K90 and K177 following H/R. SIRT1 overexpression inhibited the acetylation of HMGB1 and reduced the content of extracellular HMGB1 in H/R-treated HK-2 cells. Inhibiting mutation of SIRT1 restored the acetylation of HMGB1 and HMGB1 content in extracellular suspension. In HS rat model, the neutralization of HMGB1 with antibody could reduce serum HMGB1 and pro-inflammatory cytokine contents, but had no effect on SIRT1 protein expression and activity. Polydatin (PD), a potential SIRT1 agonist, up-regulated SIRT1 activity and inhibited nucleus-to-cytoplasm translocation of HMGB1 in RTECs. Moreover, PD also attenuated RTEC apoptosis, protected renal function, and prolonged survival in HS rats. These beneficial effect of PD is largely blocked by specific inhibition of SIRT1 with Ex527. Conclusion The acetylation of HMGB1 in K99 and K177 is enhanced during HS due to the downregulation of SIRT1. The nucleus-to-cytoplasm translocation and the release of acetylated HMGB1 from RTECs of kidney might exacerbate the pro-inflammatory effects of HMGB1 during the development of HS.
Collapse
Affiliation(s)
- Siqi Xu
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Qingdao Municipal Hospital (Group), Qingdao, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Youguang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xingui Dai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Institute of Translational Medicine, Chenzhou, China
| | - Jiayin Lu
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiqing Huang
- Department of Pathology, Qingdao Municipal Hospital (Group), Qingdao, China
| | - Keseng Zhao
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
28
|
Bai L, Chen Y, Duan ZP, Zheng SJ. A new perspective on acute-on-chronic liver failure: Liver fibrosis and injury resistance. Shijie Huaren Xiaohua Zazhi 2019; 27:139-145. [DOI: 10.11569/wcjd.v27.i3.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Li Bai
- Difficult Liver Disease and Artificial Liver Center, Beijing You'an Hospital Affiliated to Capital Medical University (Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research), Beijing 100069, China
| | - Yu Chen
- Difficult Liver Disease and Artificial Liver Center, Beijing You'an Hospital Affiliated to Capital Medical University (Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research), Beijing 100069, China
| | - Zhong-Ping Duan
- Difficult Liver Disease and Artificial Liver Center, Beijing You'an Hospital Affiliated to Capital Medical University (Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research), Beijing 100069, China
| | - Su-Jun Zheng
- Difficult Liver Disease and Artificial Liver Center, Beijing You'an Hospital Affiliated to Capital Medical University (Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research), Beijing 100069, China
| |
Collapse
|
29
|
Wang A, Zhou F, Li D, Lu JJ, Wang Y, Lin L. γ-Mangostin alleviates liver fibrosis through Sirtuin 3-superoxide-high mobility group box 1 signaling axis. Toxicol Appl Pharmacol 2018; 363:142-153. [PMID: 30502394 DOI: 10.1016/j.taap.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
The activation of hepatic stellate cells (HSCs) plays a critical role in liver fibrosis. In the current study, γ-mangostin (γ-man), one of the major xanthones from mangosteen (Garcinia mangostana), was found to alleviate fibrogenesis in human immortalized HSCs (LX-2 cells) and in liver from chronic carbon tetrachloride (CCl4) injured mice. γ-Man suppressed the expression levels of collagen I and α-smooth muscle actin (α-SMA) in LX-2 cells in both dose and time dependent manners. Furthermore, γ-man inhibited NAD(P)H oxidase activity through induction of sirtuin 3 (SIRT3), resulting in reduced intracellular oxidative stress in LX-2 cells. Moreover, γ-man stimulated the expression of histone deacetylase 1, which in turn decreased the acetylation and cytoplasmic shuttling of high mobility group box 1 (HMGB1), to impair autocrine HMGB1-induced HSC activation. In CCl4-injured mice, γ-man enhanced the expression of SIRT3 and decreased the expression of HMGB1, resulting in decreased accumulation of collagen I and α-SMA in liver. Consequently, γ-man might be a potent candidate to treat oxidative stress induced liver fibrosis.
Collapse
Affiliation(s)
- Anqi Wang
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong 519031, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Fayang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Dan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
30
|
Lee EJ, Hwang JS, Kang ES, Lee SB, Hur J, Lee WJ, Choi MJ, Kim JT, Seo HG. Nanoemulsions improve the efficacy of turmeric in palmitate- and high fat diet-induced cellular and animal models. Biomed Pharmacother 2018; 110:181-189. [PMID: 30469082 DOI: 10.1016/j.biopha.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 02/09/2023] Open
Abstract
Turmeric is a well-known functional food exhibiting multiple biological activities in health and disease. However, low aqueous solubility and poor bioavailability limit its therapeutic potential. Herein, we investigated the utility of nanoemulsions as a carrier to improve the efficacy of turmeric. Compared with turmeric extract (TE), 5% TE-loaded nanoemulsion (TE-NE), which contains 20-fold lower curcumin content than TE, achieved similar inhibition of palmitate-induced lipotoxicity in HepG2 cells. Exposure of HepG2 cells to 5% TE-NE also suppressed the palmitate-induced accumulation of lipid vacuoles and reactive oxygen species comparably with TE, and was accompanied by decreased levels of sterol regulatory element-binding protein (SREBP)-1, peroxisome proliferator-activated receptor-γ2 (PPAR-γ2), cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP). Consistent with these effects in HepG2 cells, oral administration of 5% TE-NE to mice fed a high fat diet (HFD) markedly suppressed lipid accumulation in liver, leading to a significant reduction in body weight and adipose tissue weight, equivalent to the effects observed with TE. Compared with TE, 5% TE-NE also equivalently inhibited the levels of SREBP-1, PPAR-γ2, cleaved caspase-3, and PARP in the liver of mice fed a HFD. Furthermore, TE and 5% TE-NE significantly improved serum lipid profiles in a similar manner. These observations indicate that nanoemulsions can improve the efficacy of turmeric, thereby eliciting more potent biological efficacy against palmitate- and high fat diet (HFD)-induced cellular damage.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung Seok Hwang
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun Sil Kang
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Su Bi Lee
- Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Won Jin Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Tae Kim
- Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
31
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Wang B, Lian YJ, Su WJ, Peng W, Dong X, Liu LL, Gong H, Zhang T, Jiang CL, Wang YX. HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway. Brain Behav Immun 2018; 72:51-60. [PMID: 29195782 DOI: 10.1016/j.bbi.2017.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Our previous study has reported that the proactive secretion and role of central high mobility group box 1 (HMGB1) in lipopolysaccharide-induced depressive behavior. Here, the potential mechanism of HMGB1 mediating chronic-stress-induced depression through the kynurenine pathway (KP) was further explored both in vivo and in vitro. Depression model was established with the 4-week chronic unpredictable mild stress (CUMS). Sucrose preference and Barnes maze test were performed to reflect depressive behaviors. The ratio of kynurenine (KYN)/tryptophan (Trp) represented the enzyme activity of indoleamine-2,3-dioxygenase (IDO). Gene transcription and protein expression were assayed by real-time RT-PCR and western-blot or ELISA kit respectively. Along with depressive behaviors, HMGB1 concentrations in the hippocampus and serum substantially increased post 4-week CUMS exposure. Concurrent with the upregulated HMGB1 protein, the regulator of translocation of HMGB1, sirtuin 1 (SIRT1) concentration in the hippocampus remarkably increased. In addition to HMGB1 and SIRT1, IDO, the rate limiting enzyme of KP, was upregulated at the level of mRNA expression and enzyme activity in stressed hippocampi and LPS/HMGB1-treated hippocampal slices. The gene transcription of kynurenine monooxygenase (KMO) and kynureninase (KYNU) in the downstream of KP also increased both in vivo and in vitro. Mice treated with ethyl pyruvate (EP), the inhibitor of HMGB1 releasing, were observed with lower tendency of developing depressive behaviors and reduced activation of enzymes in KP. All of these experiments demonstrate that the role of HMGB1 on the induction of depressive behavior is mediated by KP activation.
Collapse
Affiliation(s)
- Bo Wang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yong-Jie Lian
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Wen-Jun Su
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Wei Peng
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China; Department of Psychiatry, The 92nd Hospital of PLA, Nanping 353000, PR China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Lin-Lin Liu
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China; Department of Nursing, The 474th Hospital of PLA, Urumqi 830012, PR China
| | - Hong Gong
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Ting Zhang
- Department of Navy Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Chun-Lei Jiang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yun-Xia Wang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
33
|
Wang K, Li YF, Lv Q, Li XM, Dai Y, Wei ZF. Bergenin, Acting as an Agonist of PPARγ, Ameliorates Experimental Colitis in Mice through Improving Expression of SIRT1, and Therefore Inhibiting NF-κB-Mediated Macrophage Activation. Front Pharmacol 2018; 8:981. [PMID: 29375382 PMCID: PMC5770370 DOI: 10.3389/fphar.2017.00981] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Bergenin, isolated from the herb of Saxifraga stolonifera Curt. (Hu-Er-Cao), has anti-inflammatory, antitussive and wound healing activities. The aim of the present study was to identify the effect of bergenin on experimental colitis, and explored the related mechanisms. Our results showed that oral administration of bergenin remarkably alleviated disease symptoms of mice with dextran sulfate sodium (DSS)-induced colitis, evidenced by reduced DAI scores, shortening of colon length, MPO activity and pathologic abnormalities in colons. Bergenin obviously inhibited the mRNA and protein expressions of IL-6 and TNF-α in colon tissues, but not that of mucosal barrier-associated proteins occludin, E-cadherin and MUC-2. In vitro, bergenin significantly inhibited the expressions of IL-6 and TNF-α as well as nuclear translocation and DNA binding activity of NF-κB-p65 in lipopolysaccharide (LPS)-stimulated peritoneal macrophages and RAW264.7 cells, which was almost reversed by addition of PPARγ antagonist GW9662 and siPPARγ. Subsequently, bergenin was identified as a PPARγ agonist. It could enter into macrophages, bind with PPARγ, promote nuclear translocation and transcriptional activity of PPARγ, and increase mRNA expressions of CD36, LPL and ap2. In addition, bergenin significantly up-regulated expression of SIRT1, inhibited acetylation of NF-κB-p65 and increased association NF-κB-p65 and IκBα. Finally, the correlation between activation of PPARγ and attenuation of colitis, inhibition of IL-6 and TNF-α expressions, NF-κB-p65 acetylation and nuclear translocation, and up-regulation of SIRT1 expression by bergenin was validated in mice with DSS-induced colitis and/or LPS-stimulated macrophages. In summary, bergenin could ameliorate colitis in mice through inhibiting the activation of macrophages via regulating PPARγ/SIRT1/NF-κB-p65 pathway. The findings can provide evidence for the further development of bergenin as an anti-UC drug, and offer a paradigm for the recognization of anti-UC mechanisms of compound with similar structure occurring in traditional Chinese medicines.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yun-Fan Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Qi Lv
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Xi-Ming Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Zhi-Feng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
34
|
Hwang JS, Kang ES, Han SG, Lim DS, Paek KS, Lee CH, Seo HG. Formononetin inhibits lipopolysaccharide-induced release of high mobility group box 1 by upregulating SIRT1 in a PPARδ-dependent manner. PeerJ 2018; 6:e4208. [PMID: 29312829 PMCID: PMC5756453 DOI: 10.7717/peerj.4208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background The release of high mobility group box 1 (HMGB1) induced by inflammatory signals acts as a cellular alarmin to trigger a chain of inflammatory responses. Although the inflammatory actions of HMGB1 are well studied, less is known about the therapeutic agents that can impede its release. This study investigated whether the isoflavonoid formononetin can modulate HMGB1 release in cellular inflammatory responses. Methods RAW264.7 murine macrophages were exposed to lipopolysaccharide (LPS) in the presence or absence of formononetin. The levels of HMGB1 release, sirtuin 1 (SIRT1) expression, and HMGB1 acetylation were analyzed by immunoblotting and real-time polymerase chain reaction. The effects of resveratrol and sirtinol, an activator and inhibitor of SIRT1, respectively, on LPS-induced HMGB1 release were also evaluated. Results Formononetin modulated cellular inflammatory responses by suppressing the release of HMGB1 by macrophages exposed to LPS. In RAW264.7 cells, formononetin significantly attenuated LPS-induced release of HMGB1 into the extracellular environment, which was accompanied by a reduction in its translocation from the nucleus to the cytoplasm. In addition, formononetin significantly induced mRNA and protein expression of SIRT1 in a peroxisome proliferator-activated receptor δ (PPARδ)-dependent manner. These effects of formononetin were dramatically attenuated in cells treated with small interfering RNA (siRNA) against PPARδ or with GSK0660, a specific inhibitor of PPARδ, indicating that PPARδ is involved in formononetin-mediated SIRT1 expression. In line with these effects, formononetin-mediated inhibition of HMGB1 release in LPS-treated cells was reversed by treatment with SIRT1-targeting siRNA or sirtinol, a SIRT1 inhibitor. By contrast, resveratrol, a SIRT1 activator, further potentiated the inhibitory effect of formononetin on LPS-induced HMGB1 release, revealing a possible mechanism by which formononetin regulates HMGB1 release through SIRT1. Furthermore, modulation of SIRT1 expression by transfection of SIRT1- or PPARδ-targeting siRNA significantly counteracted the inhibitory effects of formononetin on LPS-induced HMGB1 acetylation, which was responsible for HMGB1 release. Discussion This study shows for the first time that formononetin inhibits HMGB1 release by decreasing HMGB1 acetylation via upregulating SIRT1 in a PPARδ-dependent manner. Formononetin consequently exhibits anti-inflammatory activity. Identification of agents, such as formononetin, which can block HMGB1 release, may help to treat inflammation-related disorders.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Eun Sil Kang
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Korea
| | | | - Chi-Ho Lee
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
35
|
Passali D, Cappello C, Passali GC, Cingi C, Sarafoleanu C, Bellussi LM. Nasal Muco-ciliary transport time alteration: efficacy of 18 B Glycyrrhetinic acid. Multidiscip Respir Med 2017; 12:29. [PMID: 29209499 PMCID: PMC5706351 DOI: 10.1186/s40248-017-0110-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mucociliary clearance is the main self-clearing system of the nasal cavity and paranasal sinuses.This is a very important means of non specific defence against continuous organic and inorganic contamination conveyed by air. It works by trapping particles and microorganisms in the mucus and then by transporting the mucous film to the pharynx where it is eliminated with a cough or swallowed. Its congenital or acquired abnormalities are involved in the occurrence of widespread infectious and often severe nose and paranasal sinuses diseases; generally concerning the rhinopharyngealtubal district.Restoring mucociliary clearance of the nasal epithelium when altered thus represents a key therapeutic tool against rhinosinus chronic diseases.This study evaluates the clinical efficacy of the inhalation of a natural compound (Narivent® nasal spray) in chronic vasomotor rhinitis. METHODS The study involved 79 patients suffering from chronic vasomotor rhinitis presenting an increased mucociliary clearance time. Patients were randomized into 2 groups: a first group of 49 subjects and a second group of 30 subjects.The first group was treated with a nasal spray (Narivent® nasal spray) (2 sprays per nostril twice a day) for 30 days.The second group was treated with a nasal spray containing isotonic solution in the same way and for the same period of the first group.Nasal Mucociliary transport time was measured in the patients of both groups before treatment, after 15 days of treatment, and at the end of the 30 days treatment. RESULTS The study shows how one of the treatments carried out determines a major objective reduction of the mucociliary clearance time in the patients under examination, using the method which involves the use of an insoluble coloured tracer (vegetable carbon), bringing the values back within normal range. At the end of the study we objectivated an increase in the rate of mucociliary transport in 97.9% percentage of patients we enrolled. CONCLUSIONS This study shows the effectiveness of treatment with natural extracts with nasal mucosa restoring function in the treatment of chronic vasomotor rhinitis, a nasal inflammatory disease characterized by morphological and functional alteration of the normal nasal mucosa.
Collapse
Affiliation(s)
| | | | | | - Cemal Cingi
- ENT Department, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Codrut Sarafoleanu
- ENT Dept, Santa Maria Hospital University of Medicine and Pharmacy, Bucharest, Romania
| | | |
Collapse
|
36
|
Mariani S, Di Rocco G, Toietta G, Russo MA, Petrangeli E, Salvatori L. Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia. Endocrine 2017; 57:455-463. [PMID: 27844208 DOI: 10.1007/s12020-016-1170-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 11/03/2016] [Indexed: 01/14/2023]
Abstract
The sirtuin family comprises seven NAD+-dependent deacetylases which control the overall health of organisms through the regulation of pleiotropic metabolic pathways. Sirtuins are important modulators of adipose tissue metabolism and their expression is higher in lean than obese subjects. At present, the role of sirtuins in adipose-derived stem cells has not been investigated yet. Therefore, in this study, we evaluated the expression of the complete panel of sirtuins in adipose-derived stem cells isolated from both subcutaneous and visceral fat of non-obese and obese subjects. We aimed at investigating the influence of obesity on sirtuins' levels, their role in obesity-associated inflammation, and the relationship with the peroxisome proliferator-activated receptor delta, which also plays functions in adipose tissue metabolism. The mRNA levels in the four types of adipose-derived stem cells were evaluated by quantitative polymerase chain reaction, in untreated cells and also after 8 h of hypoxia exposure. Correlations among sirtuins' expression and clinical and molecular parameters were also analyzed. We found that sirtuin1-6 exhibited significant higher mRNA expression in visceral adipose-derived stem cells compared to subcutaneous adipose-derived stem cells of non-obese subjects. Sirtuin1-6 levels were markedly reduced in visceral adipose-derived stem cells of obese patients. Sirtuins' expression in visceral adipose-derived stem cells correlated negatively with body mass index and C-reactive protein and positively with peroxisome proliferator-activated receptor delta. Finally, only in the visceral adipose-derived stem cells of obese patients hypoxia-induced mRNA expression of all of the sirtuins. Our results highlight that sirtuins' levels in adipose-derived stem cells are consistent with protective effects against visceral obesity and inflammation, and suggest a transcriptional mechanism through which acute hypoxia up-regulates sirtuins in the visceral adipose-derived stem cells of obese patients.
Collapse
Affiliation(s)
- Stefania Mariani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo A Russo
- Consorzio MEBIC, San Raffaele University, Laboratory of Molecular and Cellular Pathology, Rome, Italy
| | - Elisa Petrangeli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Salvatori
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy.
| |
Collapse
|
37
|
Ahn MY, Hwang JS, Ham SA, Hur J, Jo Y, Lee S, Choi MJ, Han SG, Seo HG. Subcritical water-hydrolyzed fish collagen ameliorates survival of endotoxemic mice by inhibiting HMGB1 release in a HO-1-dependent manner. Biomed Pharmacother 2017; 93:923-930. [PMID: 28715873 DOI: 10.1016/j.biopha.2017.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023] Open
Abstract
To investigate potential mechanisms underlying the bioactivity of hydrolyzed fish collagen, we examined the anti-inflammatory actions of subcritical water-hydrolyzed fish collagen (SWFC) in lipopolysaccharide (LPS)-triggered inflammation and endotoxemia. SWFC markedly inhibited LPS-stimulated release of high mobility group box 1 (HMGB1) in murine RAW264.7 macrophages, along with decreased cytosolic translocation of HMGB1. Both the protein and mRNA levels of heme oxygenase-1 (HO-1) were significantly upregulated in SWFC-treated RAW 264.7 cells in an Nrf2-dependent manner. In line with these effects of SWFC, both HO-1 siRNA and ZnPPIX (zinc protoporphyrin IX) actually attenuated the effects of SWFC on HMGB1 release stimulated by LPS, indicating a possible mechanism by which SWFC modulates HMGB1 release through HO-1 signaling. Notably, administration of SWFC improved the survival rates of LPS-injected endotoxemic mice, in which the serum level of HMGB1 was significantly reduced. Taken together, these results indicate that the anti-inflammatory activities of SWFC are achieved by inhibiting HMGB1 release induced by LPS in a HO-1-sensitive manner.
Collapse
Affiliation(s)
- Min Young Ahn
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung Seok Hwang
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sun Ah Ham
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonji Jo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - SangYoon Lee
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
38
|
Yu L, Li Z, Fang M, Xu Y. Acetylation of MKL1 by PCAF regulates pro-inflammatory transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:839-847. [PMID: 28571745 DOI: 10.1016/j.bbagrm.2017.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/08/2017] [Accepted: 05/28/2017] [Indexed: 01/14/2023]
Abstract
Inflammation is considered a fundamental host defense mechanism and, when aberrantly activated, contributes to a host of human diseases. Previously we have reported that the transcriptional regulator megakaryocytic leukemia 1 (MKL1) plays a role programming cellular inflammatory response by modulating NF-κB activity. Here we report that MKL1 was acetylated in vivo and pro-inflammatory stimuli (TNF-α and LPS) augmented MKL1 acetylation accompanying increased MKL1 binding to NF-κB target promoters. Further analysis revealed that the lysine acetyltransferase PCAF mediated MKL1 acetylation: TNF-α and LPS promoted the interaction between MKL1 and PCAF whereas depletion of PCAF abrogated the induction of MKL1 acetylation by TNF-α and LPS. Acetylation of MKL1 was necessary for MKL1 to activate the transcription of pro-inflammatory genes because mutation of four conserved lysine residues in MKL1 attenuated its capacity as a trans-activator of NF-κB target genes. Mechanistically, MKL1 acetylation served to promote MKL1 nuclear enrichment, to enhance the MKL1-NF-κB interaction, and to stabilize the binding of MKL1 on target promoters. In conclusion, our data unveil an important pathway that contributes to the transcriptional regulation of inflammatory response.
Collapse
Affiliation(s)
- Liming Yu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Zilong Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Department of Nursing, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Zheng QF, Bai L, Duan ZP, Han YP, Zheng SJ, Chen Y, Li JS. M2-like Kupffer cells in fibrotic liver may protect against acute insult. World J Gastroenterol 2017; 23:3655-3663. [PMID: 28611518 PMCID: PMC5449422 DOI: 10.3748/wjg.v23.i20.3655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/21/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanism of hepatoprotection conferred by liver fibrosis through evaluating the activation phenotype of kupffer cells. METHODS Control and fibrotic mice were challenged with a lethal dose of D-GalN/lipopolysaccharide (LPS), and hepatic damage was assessed by histology, serum alanine transferase (ALT) levels, and hepatic expression of HMGB1, a potent pro-inflammatory mediator. The localization of F4/80 (a surrogate marker of KCs), HMGB1, and type I collagen (Col-1) was determined by immunofluorescence staining. The phenotype of KCs was characterized by real-time PCR. KCs isolated from control or fibrotic mice were challenged with LPS or HMGB1 peptide, and HMGB1 translocation was analyzed. RESULTS Liver fibrosis protected mice against D-GalN/LPS challenge, as shown by improved hepatic histology and reduced elevation of ALT compared with the normal mice treated in the same way. This hepatoprotection was also accompanied by inhibition of HMGB1 expression in the liver. Co-localization of F4/80, HMGB1, and Col-1 was found in fibrotic livers, indicating the close relationship between KCs, HMGB1 and liver fibrosis. KCs isolated from fibrotic mice predominantly exhibited an M2-like phenotype. In vitro experiments showed that HMGB1 was localized in the nucleus of the majority of M2-like KCs and that the translocation of HMGB1 was inhibited following stimulation with LPS or HMGB1 peptide, while both LPS and HMGB1 peptide elicited translocation of intranuclear HMGB1 in KCs isolated from the control mice. CONCLUSION M2-like Kupffer cells in fibrotic liver may exert a protective effect against acute insult by inhibiting the translocation of HMGB1.
Collapse
|
40
|
Choi HS, Park JA, Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Shin HC, Lee CH, Seo HG. A Dalbergia odorifera extract improves the survival of endotoxemia model mice by inhibiting HMGB1 release. Altern Ther Health Med 2017; 17:212. [PMID: 28403838 PMCID: PMC5389052 DOI: 10.1186/s12906-017-1725-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/05/2017] [Indexed: 01/14/2023]
Abstract
Background Dalbergia odorifera T. Chen (Leguminosae) is an indigenous medicinal herb that is widely used as a popular remedy in northern and eastern Asia. However, the cellular mechanisms underlying the biological activity of D. odorifera are not fully elucidated. Methods Anti-inflammatory effect of D. odorifera extract (DOE) was determined through intraperitoneal injection in a mouse model of endotoxemia induced by lipopolysaccharide (LPS). RAW 264.7 cells, a murine macrophage, were also treated with LPS to generate a cellular model of inflammation, and investigated the anti-inflammatory activity and underlying mechanisms of DOE and its constituent isoliquiritigenin. Results DOE dose-dependently inhibited LPS-induced release of high mobility group box 1 (HMGB1), a late proinflammatory cytokine, and decreased cytosolic translocation of HMGB1 in RAW264.7 cells. This inhibitory effect of DOE on HMGB1 release was observed in cells treated with DOE before or after LPS treatment, suggesting that DOE is effective for both treatment and prevention. In addition, DOE significantly inhibited LPS-induced formation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of DOE were accompanied by suppression of HMGB1 release triggered by LPS, suggesting a possible mechanism by which DOE modulates HMGB1 release through NO signaling. Isoriquiritigenin, a constituent of DOE, also attenuated LPS-triggered NO formation and HMGB1 release in RAW264.7 cells, indicating that isoriquiritigenin is an indexing molecule for the anti-inflammatory properties of DOE. Furthermore, c-Jun N-terminal kinase, but not extracellular signal-regulated kinase and p38, mediated DOE-dependent inhibition of HMGB1 release and NO/iNOS induction in RAW 264.7 cells exposed to LPS. Notably, administration of DOE ameliorated survival rates in a mouse model of endotoxemia induced by LPS, where decreased level of circulating HMGB1 was observed. Conclusion These results suggest that DOE confers resistance to LPS-triggered inflammation through NO-mediated inhibitory effects on HMGB1 release.
Collapse
|
41
|
Shanshiashvili L, Tsitsilashvili E, Dabrundashvili N, Kalandadze I, Mikeladze D. Metabotropic glutamate receptor 5 may be involved in macrophage plasticity. Biol Res 2017; 50:4. [PMID: 28196513 PMCID: PMC5310073 DOI: 10.1186/s40659-017-0110-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background Macrophages are a functionally heterogeneous cell population and depending on microenvironments they polarize in two main groups: M1 and M2. Glutamic acid and glutamate receptors may participate in the regulation of macrophage plasticity. To investigate the role of glutamatergic systems in macrophages physiology, we performed the transfection of mGluR5 cDNAs into RAW-264.7 cells. Results Comparative analysis of modified (RAW-mGluR5 macrophages) and non-modified macrophages (RAW-macrophages) has shown that the RAW-mGluR5 macrophages absorbed more glutamate than control cells and the amount of intracellular glutamate correlated with the expression of excitatory amino acid transporters -2 (EAAT-2). Besides, our results have shown that RAW-mGluR5 macrophages expressed a higher level of peroxisome proliferator-activated receptor γ (PPAR-γ) and secreted more IL-10, high mobility group box 1 proteins (HMGB1) and Galectin-3 than control RAW-macrophages. Conclusions We propose that elevation of intracellular glutamate and expression of mGluR5 may initiate the metabolic rearrangement in macrophages that could contribute to the formation of an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Lali Shanshiashvili
- Ilia State University, Tbilisi, Georgia. .,I.Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
| | | | - Nino Dabrundashvili
- Institute of Medical Biotechnology, Tbilisi State University, Tbilisi, Georgia
| | - Irine Kalandadze
- I.Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - David Mikeladze
- Ilia State University, Tbilisi, Georgia.,I.Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
42
|
Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Kim JH, Lee CH, Seo HG. Upregulation of MKP-7 in response to rosiglitazone treatment ameliorates lipopolysaccharide-induced destabilization of SIRT1 by inactivating JNK. Pharmacol Res 2016; 114:47-55. [DOI: 10.1016/j.phrs.2016.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/26/2023]
|
43
|
Wang K, Li W, Yu Q, Guo B, Yang B, Zhang C, Li M, Li J, Hu S, Zheng Q, Song Z. High Mobility Group Box 1 Mediates Interferon-γ-Induced Phenotypic Modulation of Vascular Smooth Muscle Cells. J Cell Biochem 2016; 118:518-529. [PMID: 27579780 DOI: 10.1002/jcb.25682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
The phenotypic modulation of VSMCs is a key cellular event driving neointimal formation and vascular remodeling. As a multifaceted cytokine of cell-mediated immunity, IFN-γ has been shown to play a critical role in the pathogenesis of vascular proliferative diseases. Although the important function of IFN-γ on regulating VSMC activation is well established, the molecular mechanisms by which elicits VSMC responses are poorly defined. Recent studies have identified HMGB1 as a principal effector to mediate IFN-γ-dependent biological functions in multiple cell types. Moreover, SIRT1 has emerged as a critical regulator of cellular processes through deacetylating multiple substrates, including HMGB1. Thus, we examined the role of IFN-γ on HMGB1 release, SIRT1 expression, and VSMC phenotypic modulation as well as the underlying molecular mechanisms. We show that IFN-γ dose-dependently induces HMGB1 cytoplasmic accumulation and its active release from VSMCs, resulting in enhanced HMGB1 in the medium. Conversely, IFN-γ treatment led to a dramatic decrease in SIRT1 expression. Additionally, pretreatment with resveratrol, a selective SIRT1 activator, abrogated IFN-γ-induced HMGB1 translocation and its release. Moreover, IFN-γ stimulates VSMC phenotypic modulation to an activated synthetic state characterized by the repression of SMC differentiation markers such as SM22α and calponin and the increase in cell motility. In contrast, blocking HMGB1 release or activity by resveratrol and HMGB1-neutralizing antibody prevents IFN-γ-induced phenotypic modulation of VSMCs. Overall, this study provides the first evidence showing that HMGB1 plays a critical role in regulating VSMC phenotypic modulation, suggesting that HMGB1 may be a potential therapeutic target to prevent vascular occlusive diseases. J. Cell. Biochem. 118: 518-529, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kun Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qihong Yu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Guo
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, Rochester, New York
| | - Bin Yang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Lee CH, Seo HG. Sirtuin 1 Mediates the Actions of Peroxisome Proliferator-Activated Receptor δ on the Oxidized Low-Density Lipoprotein-Triggered Migration and Proliferation of Vascular Smooth Muscle Cells. Mol Pharmacol 2016; 90:522-529. [PMID: 27573670 DOI: 10.1124/mol.116.104679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) has been implicated in vascular pathophysiology. However, its functions in atherogenic changes of the vascular wall have not been fully elucidated. PPARδ activated by GW501516 (2-[2-methyl-4-[[4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl]methylsulfanyl]phenoxy]acetic acid) significantly inhibited the migration and proliferation of vascular smooth muscle cells (VSMCs) triggered by oxidized low-density lipoprotein (oxLDL). These GW501516-mediated effects were significantly reversed by PPARδ-targeting small-interfering RNA (siRNA), indicating that PPARδ is involved in the action of GW501516. The antiproliferative effect of GW501516 was directly linked to cell cycle arrest at the G0/G1 to S phase transition, which was followed by the down-regulation of cyclin-dependent kinase 4 along with increased levels of p21 and p53. In VSMCs treated with GW501516, the expression of sirtuin 1 (SIRT1) mRNA and protein was time-dependently increased. This GW501516-mediated up-regulation of SIRT1 expression was also demonstrated even in the presence of oxLDL. In addition, GW501516-dependent inhibition of oxLDL-triggered migration and proliferation of VSMCs was almost completely abolished in the presence of SIRT1-targeting siRNA. These effects of GW501516 on oxLDL-triggered phenotypic changes of VSMCs were also demonstrated via activation or inhibition of SIRT1 activity by resveratrol or sirtinol, respectively. Finally, gain or loss of SIRT1 function imitated the action of PPARδ on oxLDL-triggered migration and proliferation of VSMCs. Taken together, these observations indicate that PPARδ-dependent up-regulation of SIRT1 contributes to the antiatherogenic activities of PPARδ by suppressing the migration and proliferation of VSMCs linked to vascular diseases such as restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Sun Ah Ham
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Taesik Yoo
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Won Jin Lee
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Kyung Shin Paek
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Chi-Ho Lee
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Han Geuk Seo
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| |
Collapse
|
45
|
PPAR Ligands Function as Suppressors That Target Biological Actions of HMGB1. PPAR Res 2016; 2016:2612743. [PMID: 27563308 PMCID: PMC4985574 DOI: 10.1155/2016/2612743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
High mobility group box 1 (HMGB1), which has become one of the most intriguing molecules in inflammatory disorders and cancers and with which ligand-activated peroxisome proliferator-activated receptors (PPARs) are highly associated, is considered as a therapeutic target. Of particular interest is the fact that certain PPAR ligands have demonstrated their potent anti-inflammatory activities and potential anticancer effects. In this review article we summarize recent experimental evidence that PPAR ligands function as suppressors that target biological actions of HMGB1, including intracellular expression, receptor signaling cascades, and extracellular secretion of HMGB1 in cell lines and/or animal models. We also propose the possible mechanisms underlying PPAR involvement in inflammatory disorders and discuss the future therapeutic value of PPAR ligands targeting HMGB1 molecule for cancer prevention and treatment.
Collapse
|
46
|
Fu J, Shi Q, Song X, Liu Z, Wang Y, Wang Y, Song E, Song Y. From the Cover: Tetrachlorobenzoquinone Exerts Neurological Proinflammatory Activity by Promoting HMGB1 Release, Which Induces TLR4 Clustering within the Lipid Raft. Toxicol Sci 2016; 153:303-15. [DOI: 10.1093/toxsci/kfw124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Yuan Z, Luo G, Li X, Chen J, Wu J, Peng Y. PPARγ inhibits HMGB1 expression through upregulation of miR-142-3p in vitro and in vivo. Cell Signal 2015; 28:158-164. [PMID: 26721185 DOI: 10.1016/j.cellsig.2015.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 02/09/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to the nuclear receptor superfamily and it has received much attention because of its anti-inflammatory activity. However, the underlying molecular mechanism is not completely understood. In the present study, we demonstrated that the level of PPARγ is inversely correlated with that of high mobility group box 1 (HMGB1, a late proinflammatory mediator) in patients with sepsis. Activation of PPARγ inhibits the basal and LPS-induced expression of HMGB1. The PPARγ-mediated inhibition of HMGB1 is associated with the upregulation of miR-142-3p, which can target the 3'-UTR of HMGB1, by directly binding to the PPRE in the miR-142-3p promoter region. Functional experiments reveal that the PPARγ-induced miR-142-3p suppresses inflammatory response in vivo. These results suggest that PPARγ-mediated upregulation of miR-142-3p inhibits the HMGB1 expression, which, in turn, is a novel anti-inflammatory mechanism of PPARγ and has an important role in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhiqiang Yuan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xiaolu Li
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jing Chen
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jun Wu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
48
|
Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Nomoto M, Miyashita S, Suzuki K, Nakamura M, Ueno K, Watanabe K. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression. Cytokine 2015; 76:206-213. [DOI: 10.1016/j.cyto.2015.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 01/12/2023]
|
49
|
Hwang JS, Choi HS, Ham SA, Yoo T, Lee WJ, Paek KS, Seo HG. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia. Sci Rep 2015; 5:15971. [PMID: 26522327 PMCID: PMC4629154 DOI: 10.1038/srep15971] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/07/2015] [Indexed: 02/08/2023] Open
Abstract
Inflammatory signal-mediated release of high-mobility group box 1 (HMGB1) is a damage-associated molecular pattern or alarmin. The inflammatory functions of HMGB1 have been extensively investigated; however, less is known about the mechanisms controlling HMGB1 release. We show that SIRT1, the human homolog of the Saccharomyces cerevisiae protein silent information regulator 2, which is involved in cellular senescence and possibly the response to inflammation, forms a stable complex with HMGB1 in murine macrophage RAW264.7 cells. SIRT1 directly interacted with HMGB1 via its N-terminal lysine residues (28–30), and thereby inhibited HMGB1 release to improve survival in an experimental model of sepsis. By contrast, inflammatory stimuli such as lipopolysaccharide (LPS) and tumor necrosis factor-α promoted HMGB1 release by provoking its dissociation from SIRT1 dependent on acetylation, thereby increasing the association between HMGB1 and chromosome region maintenance 1, leading to HMGB1 translocation. In vivo infection with wild-type SIRT1 and HMGB1K282930R, a hypo-acetylation mutant, improved survival (85.7%) during endotoxemia more than infection with wild-type SIRT1 and HMGB1-expressing adenovirus, indicating that the acetylation-dependent interaction between HMGB1 and SIRT1 is critical for LPS-induced lethality. Taken together, we propose that SIRT1 forms an anti-inflammatory complex with HMGB1, allowing cells to bypass the response to inflammation.
Collapse
Affiliation(s)
- Jung Seok Hwang
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Hyuk Soo Choi
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Sun Ah Ham
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Taesik Yoo
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Won Jin Lee
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Kyung Shin Paek
- The Department of Nursing, Semyung University, Jechon, Korea
| | - Han Geuk Seo
- From the Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
50
|
Dipotassium glycyrrhizate via HMGB1 or AMPK signaling suppresses oxidative stress during intestinal inflammation. Biochem Pharmacol 2015; 97:292-9. [DOI: 10.1016/j.bcp.2015.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/29/2015] [Indexed: 12/17/2022]
|