1
|
Jia W, Wang G, Sun S, Chen X, Xiang S, Zhang B, Huang Z. PA2G4 in health and disease: An underestimated multifunctional regulator. J Adv Res 2025:S2090-1232(25)00074-8. [PMID: 39923993 DOI: 10.1016/j.jare.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Proliferation-associated protein 2G4 (PA2G4), also known as ErbB3-binding protein 1 (EBP1), is an evolutionarily conserved, ubiquitously expressed, multifunctional factor in health and disease. In recent decades, its role as a sophisticated regulator in a broad range of biological processes has drawn widespread attention from researchers. AIM OF REVIEW We introduce the molecular structure, functional modules, and post-translational modifications of PA2G4. We further elaborate on its role and function in immune microenvironment modulation, cell growth, neural homeostasis and embryonic development. In particular, we summarize its relevance to tumorigenesis and cancer progression and describe its molecular mechanisms in regulating the hallmarks of cancers. This review aims to provide a comprehensive blueprint of PA2G4 functions and to inspire further basic and translational studies. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to its versatile domains and motifs, PA2G4 regulates a variety of molecular processes, including transcription, translation, proteostasis and epigenetic modulation, suggesting its critical roles in maintaining homeostasis. There are two isoforms of the PA2G4 protein: PA2G4-p42 and PA2G4-p48. While both isoforms regulate cellular activities, they often exert distinct or even contradictory effects. Dysfunction and aberrant expression of PA2G4 isoforms lead to the occurrence and progression of various diseases, indicating their role as predictive markers or therapeutic targets.
Collapse
Affiliation(s)
- Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocheng Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Department of Pharmacy, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Wang Y, Xing J, Liang Y, Liang H, Liang N, Li J, Yin G, Li X, Zhang K. The structure and function of multifunctional protein ErbB3 binding protein 1 (Ebp1) and its role in diseases. Cell Biol Int 2024; 48:1069-1079. [PMID: 38884348 DOI: 10.1002/cbin.12196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.
Collapse
Affiliation(s)
- Ying Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Nannan Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Meng H, Cao S, Tian S, Huo J, Li X, Xu D, Liu L. EBP1 promotes the malignant biological behaviors of kidney renal clear cell carcinoma through activation of p38/HIF-1α signaling pathway. Cancer Cell Int 2024; 24:261. [PMID: 39049021 PMCID: PMC11267812 DOI: 10.1186/s12935-024-03442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Kidney Renal Clear Cell Carcinoma (KIRC) is a common malignant tumor of the urinary system, and its incidence is increasing. ERBB3 binding protein (EBP1) is upregulated in various cancers. However, the connection between EBP1 and KIRC has not been reported. METHODS The expression of EBP1 in normal kidney tissue and KIRC tissue was analyzed through database and tissue microarray. EBP1 was knocked down in KIRC cell lines, and its impact on KIRC proliferation was assessed through CCK-8, soft agar assay, and flow cytometry. Scratch and transwell assays were used to evaluate the influence of EBP1 on KIRC invasion and migration. Nude mice tumor experiment were conducted to examine the effect of EBP1 on tumor tissue. Database analysis explored potential pathways involving EBP1, and validation was performed through Western blot experiments and p38 inhibitor. RESULTS EBP1 is upregulated in KIRC and significantly correlates with clinical staging, pathological grading, and lymph node metastasis in patients. The mechanism research showed that knocking down EBP1 inhibited KIRC proliferation, invasion, and migration and inhibited p38 phosphorylation and the expression of hypoxia-inducible factor-1α (HIF-1α) in KIRC. p-38 inhibitor (SB203580) inhibits p38 phosphorylation and HIF-1α expression and suppresses cell viability in a concentration-dependent manner, but has no effect on EBP1 expression. HEK 293T cells overexpressing EBP1 showed increased expression of phosphorylated p38 and HIF-1α and enhanced cell viability, however, SB203580 inhibited this effect of EBP1. CONCLUSION EBP1 may promote the occurrence and development of KIRC by regulating the expression of p38/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Huan Meng
- Center of Morphological Experiment, Yanbian University, Yanji, 133002, Jilin, China
| | - Shuxia Cao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, 133002, Jilin, China
| | - Shengri Tian
- Center of Morphological Experiment, Yanbian University, Yanji, 133002, Jilin, China
| | - Jiaqi Huo
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, 133002, Jilin, China
| | - Xiangdan Li
- Center of Morphological Experiment, Yanbian University, Yanji, 133002, Jilin, China
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, 133002, Jilin, China.
| | - Lan Liu
- Department of Pathology, Yanbian University Hospital, Yanji, 133000, Jilin, China.
| |
Collapse
|
5
|
Li G, Xiao K, Li Y, Gao J, He S, Li T. CHIP promotes CAD ubiquitination and degradation to suppress the proliferation and colony formation of glioblastoma cells. Cell Oncol (Dordr) 2024; 47:851-865. [PMID: 37982961 DOI: 10.1007/s13402-023-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/21/2023] Open
Abstract
PURPOSE Cancer cells are characterized as the uncontrolled proliferation, which demands high levels of nucleotides that are building blocks for DNA synthesis and replication. CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase) is a trifunctional enzyme that initiates the de novo pyrimidine synthesis, which is normally enhanced in cancer cells to preserve the pyrimidine pool for cell division. Glioma, representing most brain cancer, is highly addicted to nucleotides like pyrimidine to sustain the abnormal growth and proliferation of cells. CAD is previously reported to be dysregulated in glioma, but the underlying mechanism remains unclear. METHODS The expression of CAD and CHIP (carboxyl terminus of Hsc70-interacting protein) protein in normal brain cells and three glioblastoma (GBM) cell lines were measured by immunoblots. Lentiviruses-mediated expression of target proteins or shRNAs were used to specifically overexpress or knock down CAD and CHIP. Cell counting, colony formation, apoptosis and cell cycle assays were used to assess the roles of CAD and CHIP in GBM cell proliferation and survival. Co-immunoprecipitation and ubiquitination assays were used to examine the interaction of CHIP with CAD and the ubiquitination of CAD. The correlation of CAD and CHIP expression with GBM patients' survival was obtained by analyzing the GlioVis database. RESULTS In this study, we showed that the expression of CAD was upregulated in glioma, which was positively correlated with the tumor grade and survival of glioma patients. Knockdown of CAD robustly inhibited the cell proliferation and colony formation of GBM cells, indicating the essential role of CAD in the pathogenesis of GBM. Mechanistically, we firstly identified that CAD was modified by the K29-linked polyubiquitination, which was mediated by the E3 ubiquitin ligase CHIP. By interacting with and ubiquitinating CAD, CHIP enhanced its proteasomal and lysosomal degradation, which accounted for the anti-proliferative role of CHIP in GBM cells. To sustain the expression of CAD, CHIP is significantly downregulated, which is correlated with the poor prognosis and survival of GBM patients. Notably, the low level of CHIP and high level of CAD overall predict the short survival of GBM patients. CONCLUSION Altogether, these results illustrated the essential role of CAD in GBM and revealed a novel therapeutic strategy for CAD-positive and CHIP-negative cancer.
Collapse
Affiliation(s)
- Guanya Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Kai Xiao
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinan Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianfang Gao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Tingting Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Zhang C, Yu M, Hepperla AJ, Zhang Z, Raj R, Zhong H, Zhou J, Hu L, Fang J, Liu H, Liang Q, Jia L, Liao C, Xi S, Simon JM, Xu K, Liu Z, Nam Y, Kapur P, Zhang Q. Von Hippel Lindau tumor suppressor controls m6A-dependent gene expression in renal tumorigenesis. J Clin Invest 2024; 134:e175703. [PMID: 38618952 PMCID: PMC11014668 DOI: 10.1172/jci175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Miaomiao Yu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, Neuroscience Center and
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, UNC, Chapel Hill, North Carolina, USA
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rishi Raj
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center and
| | - Hua Zhong
- Department of Pathology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hongyi Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liwei Jia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, Neuroscience Center and
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, UNC, Chapel Hill, North Carolina, USA
| | - Kexin Xu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yunsun Nam
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center and
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, Department of Urology
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Hwang I, Kim BS, Lee HY, Cho SW, Lee SE, Ahn JY. PA2G4/EBP1 ubiquitination by PRKN/PARKIN promotes mitophagy protecting neuron death in cerebral ischemia. Autophagy 2024; 20:365-379. [PMID: 37712850 PMCID: PMC10813645 DOI: 10.1080/15548627.2023.2259215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebral ischemia induces massive mitochondrial damage, leading to neuronal death. The elimination of damaged mitochondria via mitophagy is critical for neuroprotection. Here we show that the level of PA2G4/EBP1 (proliferation-associated 2G4) was notably increased early during transient middle cerebral artery occlusion and prevented neuronal death by eliciting cerebral ischemia-reperfusion (IR)-induced mitophagy. Neuron-specific knockout of Pa2g4 increased infarct volume and aggravated neuron loss with impaired mitophagy and was rescued by introduction of adeno-associated virus serotype 2 expressing PA2G4/EBP1. We determined that PA2G4/EBP1 is ubiquitinated on lysine 376 by PRKN/PARKIN on the damaged mitochondria and interacts with receptor protein SQSTM1/p62 for mitophagy induction. Thus, our study suggests that PA2G4/EBP1 ubiquitination following cerebral IR-injury promotes mitophagy induction, which may be implicated in neuroprotection.Abbreviations: AAV: adeno-associated virus; ACTB: actin beta; BNIP3L/NIX: BCL2 interacting protein 3 like; CA1: Cornu Ammonis 1; CASP3: caspase 3; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; PA2G4/EBP1: proliferation-associated 2G4; FUNDC1: FUN14 domain containing 1; IB: immunoblotting; ICC: immunocytochemistry; IHC: immunohistochemistry; IP: immunoprecipitation; MCAO: middle cerebral artery occlusion; MEF: mouse embryonic fibroblast; OGD: oxygen-glucose deprivation; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced kinase 1; RBFOX3/NeuN: RNA binding fox-1 homolog 3; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I; WT: wild-type.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Byeong-Seong Kim
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, Seongbuk-gu, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
8
|
Tsay A, Wang JC. The Role of PIK3R1 in Metabolic Function and Insulin Sensitivity. Int J Mol Sci 2023; 24:12665. [PMID: 37628845 PMCID: PMC10454413 DOI: 10.3390/ijms241612665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
PIK3R1 (also known as p85α) is a regulatory subunit of phosphoinositide 3-kinases (PI3Ks). PI3K, a heterodimer of a regulatory subunit and a catalytic subunit, phosphorylates phosphatidylinositol into secondary signaling molecules involved in regulating metabolic homeostasis. PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3), which recruits protein kinase AKT to the inner leaflet of the cell membrane to be activated and to participate in various metabolic functions. PIK3R1 stabilizes and inhibits p110 catalytic activity and serves as an adaptor to interact with insulin receptor substrate (IRS) proteins and growth factor receptors. Thus, mutations in PIK3R1 or altered expression of PIK3R1 could modulate the activity of PI3K and result in significant metabolic outcomes. Interestingly, recent studies also found PI3K-independent functions of PIK3R1. Overall, in this article, we will provide an updated review of the metabolic functions of PIK3R1 that includes studies of PIK3R1 in various metabolic tissues using animal models, the mechanisms modulating PIK3R1 activity, and studies on the mutations of human PIK3R1 gene.
Collapse
Affiliation(s)
- Ariel Tsay
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA;
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jen-Chywan Wang
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA;
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
10
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Ha DP, Huang B, Wang H, Rangel DF, Van Krieken R, Liu Z, Samanta S, Neamati N, Lee AS. Targeting GRP78 suppresses oncogenic KRAS protein expression and reduces viability of cancer cells bearing various KRAS mutations. Neoplasia 2022; 33:100837. [PMID: 36162331 PMCID: PMC9516447 DOI: 10.1016/j.neo.2022.100837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
KRAS is the most commonly mutated oncogene in human cancers with limited therapeutic options, thus there is a critical need to identify novel targets and inhibiting agents. The 78-kDa glucose-regulated protein GRP78, which is upregulated in KRAS cancers, is an essential chaperone and the master regulator of the unfolded protein response (UPR). Following up on our recent discoveries that GRP78 haploinsufficiency suppresses both KRASG12D-driven pancreatic and lung tumorigenesis, we seek to determine the underlying mechanisms. Here, we report that knockdown of GRP78 via siRNA reduced oncogenic KRAS protein level in human lung, colon, and pancreatic cancer cells bearing various KRAS mutations. This effect was at the post-transcriptional level and is independent of proteasomal degradation or autophagy. Moreover, targeting GRP78 via small molecule inhibitors such as HA15 and YUM70 with anti-cancer activities while sparing normal cells significantly suppressed oncogenic KRAS expression in vitro and in vivo, associating with onset of apoptosis and loss of viability in cancer cells bearing various KRAS mutations. Collectively, our studies reveal that GRP78 is a previously unidentified regulator of oncogenic KRAS expression, and, as such, augments the other anti-cancer activities of GRP78 small molecule inhibitors to potentially achieve general, long-term suppression of mutant KRAS-driven tumorigenesis.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA; USC Norris Comprehensive Cancer Center
| | - Bo Huang
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA; USC Norris Comprehensive Cancer Center
| | - Han Wang
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA; USC Norris Comprehensive Cancer Center
| | - Daisy Flores Rangel
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA; USC Norris Comprehensive Cancer Center
| | - Richard Van Krieken
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA; USC Norris Comprehensive Cancer Center
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA; USC Norris Comprehensive Cancer Center
| | - Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA; USC Norris Comprehensive Cancer Center.
| |
Collapse
|
12
|
Hwang I, Kim BS, Ko HR, Cho S, Lee HY, Cho SW, Ryu D, Shim S, Ahn JY. Cerebellar dysfunction and schizophrenia-like behavior in Ebp1-deficient mice. Mol Psychiatry 2022; 27:2030-2041. [PMID: 35165395 DOI: 10.1038/s41380-022-01458-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Cerebellar deficits with Purkinje cell (PCs) loss are observed in several neurologic disorders. However, the underlying mechanisms as to how the cerebellum is affected during development remain unclear. Here we demonstrated that specific inactivation of murine Ebp1 in the central nervous system causes a profound neuropathology characterized by reduced cerebellar volume and PCs loss with abnormal dendritic development, leading to phenotypes including motor defects and schizophrenia (SZ)-like behaviors. Loss of Ebp1 leads to untimely gene expression of Fbxw7, an E3 ubiquitin ligase, resulting in aberrant protein degradation of PTF1A, thereby eliciting cerebellar defects. Reinstatement of Ebp1, but not the Ebp1-E183Ter mutant found in SZ patients, reconstituted cerebellar architecture with increased PCs numbers and improved behavioral phenotypes. Thus, our findings indicate a crucial role for EBP1 in cerebellar development, and define a molecular basis for the cerebellar contribution to neurologic disorders such as SZ.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Byeong-Seong Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Seongbong Cho
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul, 05505, South Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju, South Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea. .,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
13
|
Kim BS, Ko HR, Hwang I, Cho SW, Ahn JY. EBP1 regulates Suv39H1 stability via the ubiquitin-proteasome system in neural development. BMB Rep 2021. [PMID: 33691908 PMCID: PMC8411044 DOI: 10.5483/bmbrep.2021.54.8.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
ErbB3-binding protein 1 (EBP1) is a multifunctional protein associated with neural development. Loss of Ebp1 leads to upregulation of the gene silencing unit suppressor of variegation 3-9 homolog 1 (Suv39H1)/DNA (cytosine 5)-methyltransferase (DNMT1). EBP1 directly binds to the promoter region of DNMT1, repressing DNA methylation, and hence, promoting neural development. In the current study, we showed that EBP1 suppresses histone methyltransferase activity of Suv39H1 by promoting ubiquitin-proteasome system (UPS)-dependent degradation of Suv39H1. In addition, we showed that EBP1 directly interacts with Suv39H1, and this interaction is required for recruiting the E3 ligase MDM2 for Suv39H1 degradation. Thus, our findings suggest that EBP1 regulates UPS-dependent degradation of Suv39H1 to govern proper heterochromatin assembly during neural development.
Collapse
Affiliation(s)
- Byeong-Seong Kim
- Department of Molecular Cell Biology, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul 05505, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
14
|
Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021; 58:3252-3269. [PMID: 33665742 PMCID: PMC8260465 DOI: 10.1007/s12035-021-02339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
15
|
Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem Soc Trans 2021; 48:1397-1417. [PMID: 32677674 PMCID: PMC7458397 DOI: 10.1042/bst20190845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is a critical regulator of many cellular processes including cell survival, growth, proliferation and motility. Not surprisingly therefore, the PI3K pathway is one of the most frequently mutated pathways in human cancers. In addition to their canonical role as part of the PI3K holoenzyme, the class IA PI3K regulatory subunits undertake critical functions independent of PI3K. The PI3K regulatory subunits exist in excess over the p110 catalytic subunits and therefore free in the cell. p110-independent p85 is unstable and exists in a monomer-dimer equilibrium. Two conformations of dimeric p85 have been reported that are mediated by N-terminal and C-terminal protein domain interactions, respectively. The role of p110-independent p85 is under investigation and it has been found to perform critical adaptor functions, sequestering or influencing compartmentalisation of key signalling proteins. Free p85 has roles in glucose homeostasis, cellular stress pathways, receptor trafficking and cell migration. As a regulator of fundamental pathways, the amount of p110-independent p85 in the cell is critical. Factors that influence the monomer-dimer equilibrium of p110-independent p85 offer additional control over this system, disruption to which likely results in disease. Here we review the current knowledge of the structure and functions of p110-independent class IA PI3K regulatory subunits.
Collapse
|
16
|
Bao Y, Suvesh M, Li X, Bai X, Li H, Li X, Xu D, Liu L. Ebp1 p48 promotes oncogenic properties in hepatocellular carcinoma through p38 MAPK/HIF1α activation and p53 downregulation. Mol Carcinog 2021; 60:252-264. [PMID: 33634940 DOI: 10.1002/mc.23288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
The ErbB3 binding protein 1 (Ebp1) has been reported in several cancers, in which it can act as either a pro-oncogenic regulator or a tumor suppressor. However, the biological function and molecular mechanism of Ebp1 p48 in hepatocellular carcinoma (HCC) remain unclear. Here, we report that the long isoform of Ebp1, p48, is highly expressed in HCC tissues compared with normal tissues. Ebp1 p48 expression was correlated with the tumor size in HCC patients. Silencing Ebp1 p48 by transduction with lentiviral shEbp1 dramatically reduced the proliferation rate, soft agar colony generation, and tumor formation in vivo. We further demonstrated that Ebp1 p48 knockdown resulted in decreased p38 phosphorylation, which subsequently reduced hypoxia-inducible factor 1α (HIF1α) expression. Moreover, Ebp1 p48 knockdown led to an upregulation of p53 expression through MDM2 downregulation. Taken together, these results suggest that the Ebp1/p38/HIF1α signaling pathway and the Ebp1-mediated downregulation of p53 are involved in hepatocarcinogenesis. Therefore, Ebp1 and its downstream signaling pathways may be promising therapeutic targets of HCC.
Collapse
Affiliation(s)
- Yanqiu Bao
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China
| | - Munakarmi Suvesh
- Division of GI and Hepatology, Departments of Internal Medicine, The Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Xiaobo Li
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China
| | - Xin Bai
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China
| | - Hua Li
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China.,Division of GI and Hepatology, Departments of Internal Medicine, The Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Jilin, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China
| |
Collapse
|
17
|
The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res Rev 2020; 64:101203. [PMID: 33130248 DOI: 10.1016/j.arr.2020.101203] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Dysregulated proteostasis is one of the hallmarks of ageing. Damaged proteins may impair cellular function and their accumulation may lead to tissue dysfunction and disease. This is why protective mechanisms to safeguard the cell proteome have evolved. These mechanisms consist of cellular machineries involved in protein quality control, including regulators of protein translation, folding, trafficking and degradation. In eukaryotic cells, protein degradation occurs via two main pathways: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. Although distinct pathways, they are not isolated systems and have a complementary nature, as evidenced by recent studies. These findings raise the question of how autophagy and the proteasome crosstalk. In this review we address how the two degradation pathways impact each other, thereby adding a new layer of regulation to protein degradation. We also analyze the implications of the UPS and autophagy in ageing.
Collapse
|
18
|
Kwok A, Zvetkova I, Virtue S, Luijten I, Huang-Doran I, Tomlinson P, Bulger DA, West J, Murfitt S, Griffin J, Alam R, Hart D, Knox R, Voshol P, Vidal-Puig A, Jensen J, O'Rahilly S, Semple RK. Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure. Mol Metab 2020; 40:101020. [PMID: 32439336 PMCID: PMC7385515 DOI: 10.1016/j.molmet.2020.101020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Insulin signalling via phosphoinositide 3-kinase (PI3K) requires PIK3R1-encoded regulatory subunits. C-terminal PIK3R1 mutations cause SHORT syndrome, as well as lipodystrophy and insulin resistance (IR), surprisingly without fatty liver or metabolic dyslipidaemia. We sought to investigate this discordance. METHODS The human pathogenic Pik3r1 Y657∗ mutation was knocked into mice by homologous recombination. Growth, body composition, bioenergetic and metabolic profiles were investigated on chow and high-fat diet (HFD). We examined adipose and liver histology, and assessed liver responses to fasting and refeeding transcriptomically. RESULTS Like humans with SHORT syndrome, Pik3r1WT/Y657∗ mice were small with severe IR, and adipose expansion on HFD was markedly reduced. Also as in humans, plasma lipid concentrations were low, and insulin-stimulated hepatic lipogenesis was not increased despite hyperinsulinemia. At odds with lipodystrophy, however, no adipocyte hypertrophy nor adipose inflammation was found. Liver lipogenic gene expression was not significantly altered, and unbiased transcriptomics showed only minor changes, including evidence of reduced endoplasmic reticulum stress in the fed state and diminished Rictor-dependent transcription on fasting. Increased energy expenditure, which was not explained by hyperglycaemia nor intestinal malabsorption, provided an alternative explanation for the uncoupling of IR from dyslipidaemia. CONCLUSIONS Pik3r1 dysfunction in mice phenocopies the IR and reduced adiposity without lipotoxicity of human SHORT syndrome. Decreased adiposity may not reflect bona fide lipodystrophy, but rather, increased energy expenditure, and we suggest that further study of brown adipose tissue in both humans and mice is warranted.
Collapse
Affiliation(s)
- Albert Kwok
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Ilona Zvetkova
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Sam Virtue
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Isabel Huang-Doran
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Patsy Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - David A Bulger
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - James West
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Steven Murfitt
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Julian Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Medicine, Imperial College London, The Sir Alexander Fleming Building, London, UK
| | - Rafeah Alam
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Daniel Hart
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Rachel Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Peter Voshol
- Louis Bolk Institute, Kosterijland 3-5, NL-3981 AJ, Bunnik, the Netherlands
| | - Antonio Vidal-Puig
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014, Ulleval Stadion, 0806 Oslo, Norway
| | - Stephen O'Rahilly
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK; The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.
| |
Collapse
|
19
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
20
|
Stevenson BW, Gorman MA, Koach J, Cheung BB, Marshall GM, Parker MW, Holien JK. A structural view of PA2G4 isoforms with opposing functions in cancer. J Biol Chem 2020; 295:16100-16112. [PMID: 32952126 DOI: 10.1074/jbc.rev120.014293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
The role of proliferation-associated protein 2G4 (PA2G4), alternatively known as ErbB3-binding protein 1 (EBP1), in cancer has become apparent over the past 20 years. PA2G4 expression levels are correlated with prognosis in a range of human cancers, including neuroblastoma, cervical, brain, breast, prostate, pancreatic, hepatocellular, and other tumors. There are two PA2G4 isoforms, PA2G4-p42 and PA2G4-p48, and although both isoforms of PA2G4 regulate cellular growth and differentiation, these isoforms often have opposing roles depending on the context. Therefore, PA2G4 can function either as a contextual tumor suppressor or as an oncogene, depending on the tissue being studied. However, it is unclear how distinct structural features of the two PA2G4 isoforms translate into different functional outcomes. In this review, we examine published structures to identify important structural and functional components of PA2G4 and consider how they may explain its crucial role in the malignant phenotype. We will highlight the lysine-rich regions, protein-protein interaction sites, and post-translational modifications of the two PA2G4 isoforms and relate these to the functional cellular role of PA2G4. These data will enable a better understanding of the function and structure relationship of the two PA2G4 isoforms and highlight the care that will need to be undertaken for those who wish to conduct isoform-specific structure-based drug design campaigns.
Collapse
Affiliation(s)
| | - Michael A Gorman
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Koach
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia; School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Glenn M Marshall
- School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Michael W Parker
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica K Holien
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Surgery, University of Melbourne, Parkville, Victoria, Australia; School of Science, College of Science, Engineering, and Health, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
The roles of multifunctional protein ErbB3 binding protein 1 (EBP1) isoforms from development to disease. Exp Mol Med 2020; 52:1039-1047. [PMID: 32719408 PMCID: PMC8080562 DOI: 10.1038/s12276-020-0476-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The roles of the two isoforms of ErbB3-binding protein 1 (Ebp1) in cellular function and its regulation in disease and development is a stimulating area in current fields of biology, such as neuroscience, cancer biology, and structural biology. Over the last two decades, a growing body of studies suggests have suggested different functions for the EBP1 isoforms in various cancers, along with their specific binding partners in the ubiquitin-proteasome system. Owing to the specific cellular context or spatial/temporal expression of the EBP1 isoforms, either transcriptional repression or the activation function of EBP1 has been proposed, and epigenetic regulation by p48 EBP1 has also been observed during in the embryo development, including in brain development and neurologic disorders, such as schizophrenia, in using an Ebp1 knockout mouse model. Here, we review recent findings that have shaped our current understanding of the emerging function of EBP1 isoforms in cellular events and gene expression, from development to disease. A pair of proteins that originate from a common gene exert strikingly different effects on embryonic development as well as tumor growth and progression. RNA transcripts generated from the PA2G4 gene can undergo enzymatic processing to yield two different protein products, p42 EB1 and p48 EB1. These proteins differ by the presence or absence of 54 amino acids at one end, and Jee-Yin Ahn at the Sungkyunkwan University School of Medicine, Suwon, South Korea, and colleagues have reviewed current insights into the functional consequences of this difference. The two proteins bind to distinct sets of molecular partners. The p48 form appears to regulate a host of genes involved in brain development, but also appears to drive cancerous growth in various tumors. In contrast, p42 is scarcer during development, and appears to inhibit tumor formation.
Collapse
|
22
|
Dysregulation of Epigenetic Control Contributes to Schizophrenia-Like Behavior in Ebp1 +/- Mice. Int J Mol Sci 2020; 21:ijms21072609. [PMID: 32283721 PMCID: PMC7178112 DOI: 10.3390/ijms21072609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/17/2022] Open
Abstract
Dysregulation of epigenetic machinery can cause a variety of neurological disorders associated with cognitive abnormalities. In the hippocampus of postmortem Schizophrenia (SZ) patients, the most notable finding is the deregulation of GAD67 along with differential regulation of epigenetic factors associated with glutamate decarboxylase 67 (GAD67) expression. As we previously reported, ErbB3-binding protein 1 (EBP1) is a potent epigenetic regulator. EBP1 can induce repression of Dnmt1, a well-studied transcriptional repressor of GAD67. In this study, we investigated whether EBP1 contributes to the regulation of GAD67 expression in the hippocampus, controlling epigenetic machinery. In accordance with SZ-like behaviors in Ebp1(+/−) mice, heterozygous deletion of EBP1 led to a dramatic reduction of GAD67 expression, reflecting an abnormally high level of Dnmt1. Moreover, we found that EBP1 binds to the promoter region of HDAC1, which leads to histone deacetylation of GAD67, and suppresses histone deacetylase 1 (HDAC1) expression, inversely mirroring an unusually high level of HDAC1 in Ebp1(+/−) mice. However, EBP1 mutant (p.Glu 183 Ter) found in SZ patients did not elevate the expression of GAD67, failing to suppress Dnmt1 and/or HDAC1 expression. Therefore, this data supports the hypothesis that a reduced amount of EBP1 may contribute to an etiology of SZ due to a loss of transcriptional inhibition of epigenetic repressors, leading to a decreased expression of GAD67.
Collapse
|
23
|
Roles of ErbB3-binding protein 1 (EBP1) in embryonic development and gene-silencing control. Proc Natl Acad Sci U S A 2019; 116:24852-24860. [PMID: 31748268 DOI: 10.1073/pnas.1916306116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
ErbB3-binding protein 1 (EBP1) is implicated in diverse cellular functions, including apoptosis, cell proliferation, and differentiation. Here, by generating genetic inactivation of Ebp1 mice, we identified the physiological roles of EBP1 in vivo. Loss of Ebp1 in mice caused aberrant organogenesis, including brain malformation, and death between E13.5 and 15.5 owing to severe hemorrhages, with massive apoptosis and cessation of cell proliferation. Specific ablation of Ebp1 in neurons caused structural abnormalities of brain with neuron loss in [Nestin-Cre; Ebp1 flox/flox ] mice. Notably, global methylation increased with high levels of the gene-silencing unit Suv39H1/DNMT1 in Ebp1-deficient mice. EBP1 repressed the transcription of Dnmt1 by binding to its promoter region and interrupted DNMT1-mediated methylation at its target gene, Survivin promoter region. Reinstatement of EBP1 into embryo brain relived gene repression and rescued neuron death. Our findings uncover an essential role for EBP1 in embryonic development and implicate its function in transcriptional regulation.
Collapse
|
24
|
Koach J, Holien JK, Massudi H, Carter DR, Ciampa OC, Herath M, Lim T, Seneviratne JA, Milazzo G, Murray JE, McCarroll JA, Liu B, Mayoh C, Keenan B, Stevenson BW, Gorman MA, Bell JL, Doughty L, Hüttelmaier S, Oberthuer A, Fischer M, Gifford AJ, Liu T, Zhang X, Zhu S, Gustafson WC, Haber M, Norris MD, Fletcher JI, Perini G, Parker MW, Cheung BB, Marshall GM. Drugging MYCN Oncogenic Signaling through the MYCN-PA2G4 Binding Interface. Cancer Res 2019; 79:5652-5667. [PMID: 31501192 DOI: 10.1158/0008-5472.can-19-1112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
Abstract
MYCN is a major driver for the childhood cancer, neuroblastoma, however, there are no inhibitors of this target. Enhanced MYCN protein stability is a key component of MYCN oncogenesis and is maintained by multiple feedforward expression loops involving MYCN transactivation target genes. Here, we reveal the oncogenic role of a novel MYCN target and binding protein, proliferation-associated 2AG4 (PA2G4). Chromatin immunoprecipitation studies demonstrated that MYCN occupies the PA2G4 gene promoter, stimulating transcription. Direct binding of PA2G4 to MYCN protein blocked proteolysis of MYCN and enhanced colony formation in a MYCN-dependent manner. Using molecular modeling, surface plasmon resonance, and mutagenesis studies, we mapped the MYCN-PA2G4 interaction site to a 14 amino acid MYCN sequence and a surface crevice of PA2G4. Competitive chemical inhibition of the MYCN-PA2G4 protein-protein interface had potent inhibitory effects on neuroblastoma tumorigenesis in vivo. Treated tumors showed reduced levels of both MYCN and PA2G4. Our findings demonstrate a critical role for PA2G4 as a cofactor in MYCN-driven neuroblastoma and highlight competitive inhibition of the PA2G4-MYCN protein binding as a novel therapeutic strategy in the disease. SIGNIFICANCE: Competitive chemical inhibition of the PA2G4-MYCN protein interface provides a basis for drug design of small molecules targeting MYC and MYCN-binding partners in malignancies driven by MYC family oncoproteins.
Collapse
Affiliation(s)
- Jessica Koach
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia.,Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jessica K Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Hassina Massudi
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia.,School of Women's & Children's Health, UNSW Sydney, Randwick New South Wales, Australia.,School of Biomedical Engineering, University of Technology Sydney, Australia
| | - Olivia C Ciampa
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Mika Herath
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Taylor Lim
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jayne E Murray
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia.,Australian Centre for NanoMedicine, ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, UNSW, Australia
| | - Bing Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Bryce Keenan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Brendan W Stevenson
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica L Bell
- The Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University of Halle, Halle, Germany
| | - Larissa Doughty
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stefan Hüttelmaier
- The Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University of Halle, Halle, Germany
| | - Andre Oberthuer
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany.,Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Andrew J Gifford
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia.,Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Xiaoling Zhang
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - W Clay Gustafson
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia. .,School of Women's & Children's Health, UNSW Sydney, Randwick New South Wales, Australia.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia. .,School of Women's & Children's Health, UNSW Sydney, Randwick New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
25
|
Shin YJ, Sa JK, Lee Y, Kim D, Chang N, Cho HJ, Son M, Oh MYT, Shin K, Lee JK, Park J, Jo YK, Kim M, Paddison PJ, Tergaonkar V, Lee J, Nam DH. PIP4K2A as a negative regulator of PI3K in PTEN -deficient glioblastoma. J Exp Med 2019; 216:1120-1134. [PMID: 30898893 PMCID: PMC6504209 DOI: 10.1084/jem.20172170] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/20/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor with profound genomic alterations. Tumor suppressor genes regulate multiple signaling networks that restrict cellular proliferation and present barriers to malignant transformation. While bona fide tumor suppressors such as PTEN and TP53 often undergo inactivation due to mutations, there are several genes for which genomic deletion is the primary route for tumor progression. To functionally identify putative tumor suppressors in GBM, we employed in vivo RNAi screening using patient-derived xenograft models. Here, we identified PIP4K2A, whose functional role and clinical relevance remain unexplored in GBM. We discovered that PIP4K2A negatively regulates phosphoinositide 3-kinase (PI3K) signaling via p85/p110 component degradation in PTEN-deficient GBMs and specifically targets p85 for proteasome-mediated degradation. Overexpression of PIP4K2A suppressed cellular and clonogenic growth in vitro and impeded tumor growth in vivo. Our results unravel a novel tumor-suppressive role of PIP4K2A for the first time and support the feasibility of combining oncogenomics with in vivo RNAi screen.
Collapse
Affiliation(s)
- Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Donggeon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | | | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Miseol Son
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Division of Cancer Cell Signaling, Institute of Molecular and Cell Biology, Singapore
| | - Michael Y T Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Kayoung Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Jin-Ku Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jiwon Park
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Yoon Kyung Jo
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Misuk Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Vinay Tergaonkar
- Division of Cancer Cell Signaling, Institute of Molecular and Cell Biology, Singapore
- Department of Pathology, National University of Singapore, Singapore
| | - Jeongwu Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
26
|
Jiang Y, Su S, Zhang Y, Qian J, Liu P. Control of mTOR signaling by ubiquitin. Oncogene 2019; 38:3989-4001. [PMID: 30705402 PMCID: PMC6621562 DOI: 10.1038/s41388-019-0713-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
The evolutionarily conserved mTOR signaling pathway plays essential roles in cell growth, proliferation, metabolism and responses to cellular stresses. Hyperactivation of the mTOR signaling is observed in virtually all solid tumors and has been an attractive drug target. In addition to changes at genetic levels, aberrant activation of the mTOR signaling is also a result from dysregulated posttranslational modifications on key pathway members, such as phosphorylation that has been extensively studied. Emerging evidence also supports a critical role for ubiquitin-mediated modifications in dynamically regulating the mTOR signaling pathway, while a comprehensive review for relevant studies is missing. In this review, we will summarize characterized ubiquitination events on major mTOR signaling components, their modifying E3 ubiquitin ligases, deubiquitinases and corresponding pathophysiological functions. We will also reveal methodologies that have been used to identify E3 ligases or DUBs to facilitate the search for yet-to-be discovered ubiquitin-mediated regulatory mechanisms in mTOR signaling. We hope that our review and perspectives provide rationales and strategies to target ubiquitination for inhibiting mTOR signaling to treat human diseases.
Collapse
Affiliation(s)
- Yao Jiang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yanqiong Zhang
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiayi Qian
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
Modeling the Bistable Dynamics of the Innate Immune System. Bull Math Biol 2018; 81:256-276. [PMID: 30387078 DOI: 10.1007/s11538-018-0527-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
The size of primary challenge with lipopolysaccharide induces changes in the innate immune cells phenotype between pro-inflammatory and pro-tolerant states when facing a secondary lipopolysaccharide challenge. To determine the molecular mechanisms governing this differential response, we propose a mathematical model for the interaction between three proteins involved in the immune cell decision making: IRAK-1, PI3K, and RelB. The mutual inhibition of IRAK-1 and PI3K in the model leads to bistable dynamics. By using the levels of RelB as indicative of strength of the immune responses, we connect the size of different primary lipopolysaccharide doses to the differential phenotypical outcomes following a secondary challenge. We further predict under what circumstances the primary LPS dose does not influence the response to a secondary challenge. Our results can be used to guide treatments for patients with either autoimmune disease or compromised immune system.
Collapse
|
28
|
Zhang J, Wang Q, Abdul-Aziz D, Mattiacio J, Edge ASB, White PM. ERBB2 signaling drives supporting cell proliferation in vitro and apparent supernumerary hair cell formation in vivo in the neonatal mouse cochlea. Eur J Neurosci 2018; 48:3299-3316. [PMID: 30270571 DOI: 10.1111/ejn.14183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022]
Abstract
In mammals, cochlear hair cells are not regenerated once they are lost, leading to permanent hearing deficits. In other vertebrates, the adjacent supporting cells act as a stem cell compartment, in that they both proliferate and differentiate into de novo auditory hair cells. Although there is evidence that mammalian cochlear supporting cells can differentiate into new hair cells, the signals that regulate this process are poorly characterized. We hypothesize that signaling from the epidermal growth factor receptor (EGFR) family may play a role in cochlear regeneration. We focus on one such member, ERBB2, and report the effects of expressing a constitutively active ERBB2 receptor in neonatal mouse cochlear supporting cells, using viruses and transgenic expression. Lineage tracing with fluorescent reporter proteins was used to determine the relationships between cells with active ERBB2 signaling and cells that divided or differentiated into hair cells. In vitro, individual supporting cells harbouring a constitutively active ERBB2 receptor appeared to signal to their neighbouring supporting cells, inducing them to down-regulate a supporting cell marker and to proliferate. In vivo, we found supernumerary hair cell-like cells near supporting cells that expressed ERBB2 receptors. Both supporting cell proliferation and hair cell differentiation were largely reproduced in vitro using small molecules that we show also activate ERBB2. Our data suggest that signaling from the receptor tyrosine kinase ERBB2 can drive the activation of secondary signaling pathways to regulate regeneration, suggesting a new model where an interplay of cell signaling regulates regeneration by endogenous stem-like cells.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Biology, School of Arts and Sciences, University of Rochester, Rochester, New York
| | - Quan Wang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Dunia Abdul-Aziz
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Jonelle Mattiacio
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, New York
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Patricia M White
- Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
29
|
Hwang I, Cho SW, Ahn JY. Chaperone-E3 Ligase Complex HSP70-CHIP Mediates Ubiquitination of Ribosomal Protein S3. Int J Mol Sci 2018; 19:ijms19092723. [PMID: 30213050 PMCID: PMC6163665 DOI: 10.3390/ijms19092723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
In addition to its role in ribosome biogenesis, ribosomal protein S3 (RPS3), a component of the 40S ribosomal subunit, has been suggested to possess several extraribosomal functions, including an apoptotic function. In this study, we demonstrated that in the mouse brain, the protein levels of RPS3 were altered by the degree of nutritional starvation and correlated with neuronal apoptosis. After endurable short-term starvation, the apoptotic function of RPS3 was suppressed by Akt activation and Akt-mediated T70 phosphorylation, whereas after prolonged starvation, the protein levels of RPS3 notably increased, and abundant neuronal death occurred. These events coincided with ubiquitination and subsequent degradation of RPS3, controlled by HSP70 and the cochaperone E3 ligase: carboxy terminus of heat shock protein 70-interacting protein (CHIP). Thus, our study points to an extraribosomal role of RPS3 in balancing neuronal survival or death depending on the degree of starvation through CHIP-mediated polyubiquitination and degradation.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul 05505, Korea.
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea.
| |
Collapse
|
30
|
Xie JJ, Jiang YY, Jiang Y, Li CQ, Lim MC, An O, Mayakonda A, Ding LW, Long L, Sun C, Lin LH, Chen L, Wu JY, Wu ZY, Cao Q, Fang WK, Yang W, Soukiasian H, Meltzer SJ, Yang H, Fullwood M, Xu LY, Li EM, Lin DC, Koeffler HP. Super-Enhancer-Driven Long Non-Coding RNA LINC01503, Regulated by TP63, Is Over-Expressed and Oncogenic in Squamous Cell Carcinoma. Gastroenterology 2018; 154:2137-2151.e1. [PMID: 29454790 DOI: 10.1053/j.gastro.2018.02.018] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Long non-coding RNAs (lncRNAs) are expressed in tissue-specific pattern, but it is not clear how these are regulated. We aimed to identify squamous cell carcinoma (SCC)-specific lncRNAs and investigate mechanisms that control their expression and function. METHODS We studied expression patterns and functions of 4 SCC-specific lncRNAs. We obtained 113 esophageal SCC (ESCC) and matched non-tumor esophageal tissues from a hospital in Shantou City, China, and performed quantitative reverse transcription polymerase chain reaction assays to measure expression levels of LINC01503. We collected clinical data from patients and compared expression levels with survival times. LINC01503 was knocked down using small interfering RNAs and oligonucleotides in TE7, TE5, and KYSE510 cell lines and overexpressed in KYSE30 cells. Cells were analyzed by chromatin immunoprecipitation sequencing, luciferase reporter assays, colony formation, migration and invasion, and mass spectrometry analyses. Cells were injected into nude mice and growth of xenograft tumors was measured. LINC01503 interaction with proteins was studied using fluorescence in situ hybridization, RNA pulldown, and RNA immunoprecipitation analyses. RESULTS We identified a lncRNA, LINC01503, which is regulated by a super enhancer and is expressed at significantly higher levels in esophageal and head and neck SCCs than in non-tumor tissues. High levels in SCCs correlated with shorter survival times of patients. The transcription factor TP63 bound to the super enhancer at the LINC01503 locus and activated its transcription. Expression of LINC01503 in ESCC cell lines increased their proliferation, colony formation, migration, and invasion. Knockdown of LINC01503 in SCC cells reduced their proliferation, colony formation, migration, and invasion, and the growth of xenograft tumors in nude mice. Expression of LINC01503 in ESCC cell lines reduced ERK2 dephosphorylation by DUSP6, leading to activation of ERK signaling via MAPK. LINC01503 disrupted the interaction between EBP1 and the p85 subunit of PI3K, increasing AKT signaling. CONCLUSIONS We identified an lncRNA, LINC01503, which is increased in SCC cells compared with non-tumor cells. Increased expression of LINC01503 promotes ESCC cell proliferation, migration, invasion, and growth of xenograft tumors. It might be developed as a biomarker of aggressive SCCs in patients.
Collapse
Affiliation(s)
- Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yuan Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Chun-Quan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Mei-Chee Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Chun Sun
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Le-Hang Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Li Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jian-Yi Wu
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Zhi-Yong Wu
- Department of Oncologic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, China
| | - Qi Cao
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Harmik Soukiasian
- Division of Thoracic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J Meltzer
- Departments of Medicine and Oncology, the Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Melissa Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China.
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Cancer Science Institute of Singapore, National University of Singapore, Singapore; National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
31
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
32
|
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868:456-483. [PMID: 28923280 DOI: 10.1016/j.bbcan.2017.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Azad Saei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | | | | | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
33
|
Hamidi A, Song J, Thakur N, Itoh S, Marcusson A, Bergh A, Heldin CH, Landström M. TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α. Sci Signal 2017; 10:10/486/eaal4186. [PMID: 28676490 DOI: 10.1126/scisignal.aal4186] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transforming growth factor-β (TGF-β) is a pluripotent cytokine that regulates cell fate and plasticity in normal tissues and tumors. The multifunctional cellular responses evoked by TGF-β are mediated by the canonical SMAD pathway and by noncanonical pathways, including mitogen-activated protein kinase (MAPK) pathways and the phosphatidylinositol 3'-kinase (PI3K)-protein kinase B (AKT) pathway. We found that TGF-β activated PI3K in a manner dependent on the activity of the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6). TRAF6 polyubiquitylated the PI3K regulatory subunit p85α and promoted the formation of a complex between the TGF-β type I receptor (TβRI) and p85α, which led to the activation of PI3K and AKT. Lys63-linked polyubiquitylation of p85α on Lys513 and Lys519 in the iSH2 (inter-Src homology 2) domain was required for TGF-β-induced activation of PI3K-AKT signaling and cell motility in prostate cancer cells and activated macrophages. Unlike the activation of SMAD pathways, the TRAF6-mediated activation of PI3K and AKT was not dependent on the kinase activity of TβRI. In situ proximity ligation assays revealed that polyubiquitylation of p85α was evident in aggressive prostate cancer tissues. Thus, our data reveal a molecular mechanism by which TGF-β activates the PI3K-AKT pathway to drive cell migration.
Collapse
Affiliation(s)
- Anahita Hamidi
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden
| | - Jie Song
- Unit of Pathology, Department of Medical Biosciences, Umeå University, Umeå SE 901 85, Sweden
| | - Noopur Thakur
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Anders Marcusson
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden
| | - Anders Bergh
- Unit of Pathology, Department of Medical Biosciences, Umeå University, Umeå SE 901 85, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden.
| | - Maréne Landström
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden. .,Unit of Pathology, Department of Medical Biosciences, Umeå University, Umeå SE 901 85, Sweden
| |
Collapse
|
34
|
Wang Y, Zhang P, Wang Y, Zhan P, Liu C, Mao JH, Wei G. Distinct Interactions of EBP1 Isoforms with FBXW7 Elicits Different Functions in Cancer. Cancer Res 2017; 77:1983-1996. [PMID: 28209614 PMCID: PMC5392370 DOI: 10.1158/0008-5472.can-16-2246] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 01/07/2023]
Abstract
The ErbB3 receptor-binding protein EBP1 encodes two alternatively spliced isoforms P48 and P42. While there is evidence of differential roles for these isoforms in tumorigenesis, little is known about their underlying mechanisms. Here, we demonstrate that EBP1 isoforms interact with the SCF-type ubiquitin ligase FBXW7 in distinct ways to exert opposing roles in tumorigenesis. EBP1 P48 bound to the WD domain of FBXW7 as an oncogenic substrate of FBXW7. EBP1 P48 binding sequestered FBXW7α to the cytosol, modulating its role in protein degradation and attenuating its tumor suppressor function. In contrast, EBP1 P42 bound to both the F-box domain of FBXW7 as well as FBXW7 substrates. This adapter function of EBP1 P42 stabilized the interaction of FBXW7 with its substrates and promoted FBXW7-mediated degradation of oncogenic targets, enhancing its overall tumor-suppressing function. Overall, our results establish distinct physical and functional interactions between FBXW7 and EBP1 isoforms, which yield their mechanistically unique isoform-specific functions of EBP1 in cancer. Cancer Res; 77(8); 1983-96. ©2017 AACR.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Yunshan Wang
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Panpan Zhan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Chunyan Liu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China.
| |
Collapse
|
35
|
Ko HR, Hwang I, Ahn SY, Chang YS, Park WS, Ahn JY. Neuron-specific expression of p48 Ebp1 during murine brain development and its contribution to CNS axon regeneration. BMB Rep 2017; 50:126-131. [PMID: 27916024 PMCID: PMC5422024 DOI: 10.5483/bmbrep.2017.50.3.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
P48 Ebp1 is expressed in rapidly proliferating cells such as cancer cells and accelerates cell growth and survival. However, its expression pattern and role in central nervous system development have not been studied. Here, we demonstrated the spatiotemporal expression pattern of p48 Ebp1 during embryonic development and the postnatal period. During embryonic development, p48 Ebp1 was highly expressed in the brain. Expression gradually decreased after birth but was still more abundant than p42 expression after birth. Strikingly, we found that p48 Ebp1 was expressed in a cell type specific manner in neurons but not astrocytes. Moreover, p48 Ebp1 physically interacted with beta tubulin but not alpha tubulin. This fits with its accumulation in distal microtubule growth cone regions. Furthermore, in injured hippocampal slices, p48 Ebp1 introduction promoted axon regeneration. Thus, we speculate that p48 Ebp1 might contribute to microtubule dynamics acting as an MAP and promotes CNS axon regeneration. [BMB Reports 2017; 50(3): 126-131].
Collapse
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
36
|
LncRNA AK023948 is a positive regulator of AKT. Nat Commun 2017; 8:14422. [PMID: 28176758 PMCID: PMC5309785 DOI: 10.1038/ncomms14422] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022] Open
Abstract
Despite the overwhelming number of human long non-coding RNAs (lncRNAs) reported so far, little is known about their physiological functions for the majority of them. The present study uses a CRISPR/Cas9-based synergistic activation mediator (SAM) system to identify potential lncRNAs capable of regulating AKT activity. Among lncRNAs identified from this screen, we demonstrate that AK023948 is a positive regulator for AKT. Knockout of AK023948 suppresses, whereas rescue with AK023948 restores the AKT activity. Mechanistically, AK023948 functionally interacts with DHX9 and p85. Importantly, AK023948 is required for the interaction between DHX9 and p85 to hence the p85 stability and promote AKT activity. Finally, AK023948 is upregulated in breast cancer; interrogation of TCGA data set indicates that upregulation of DHX9 in breast cancer is associated with poor survival. Together, this study demonstrates two previously uncharacterized factors AK023948 and DHX9 as important players in the AKT pathway, and that their upregulation may contribute to breast tumour progression. The function of many human long non-coding RNAs (lncRNAs) is still undetermined. Here, the authors setup a gain of function CRISPR-based screen and identify a lncRNA that positively regulates AKT activity by interacting with the RNA helicase DHX9 resulting in stabilization of PI3K regulatory subunit p85.
Collapse
|
37
|
Huang-Doran I, Tomlinson P, Payne F, Gast A, Sleigh A, Bottomley W, Harris J, Daly A, Rocha N, Rudge S, Clark J, Kwok A, Romeo S, McCann E, Müksch B, Dattani M, Zucchini S, Wakelam M, Foukas LC, Savage DB, Murphy R, O'Rahilly S, Barroso I, Semple RK. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations. JCI Insight 2016; 1:e88766. [PMID: 27766312 PMCID: PMC5070960 DOI: 10.1172/jci.insight.88766] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. C-terminal mutations in human PIK3R1 are associated with severe insulin resistance in the absence of dyslipidemia or hepatic steatosis.
Collapse
Affiliation(s)
- Isabel Huang-Doran
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Patsy Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Felicity Payne
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Alexandra Gast
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom.,National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge, United Kingdom
| | - William Bottomley
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Julie Harris
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Allan Daly
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Nuno Rocha
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Simon Rudge
- Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Clark
- Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
| | - Albert Kwok
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Emma McCann
- Department of Clinical Genetics, Glan Clwyd Hospital, Rhyl, United Kingdom
| | - Barbara Müksch
- Department of Pediatrics, Children's Hospital, Cologne, Germany
| | - Mehul Dattani
- Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Stefano Zucchini
- Pediatric Endocrine Unit, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Michael Wakelam
- Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
| | - Lazaros C Foukas
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David B Savage
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stephen O'Rahilly
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Inês Barroso
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom.,Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
38
|
C-terminal domain of p42 Ebp1 is essential for down regulation of p85 subunit of PI3K, inhibiting tumor growth. Sci Rep 2016; 6:30626. [PMID: 27464702 PMCID: PMC4964336 DOI: 10.1038/srep30626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Potential tumor suppressor p42, ErbB3-binding protein 1 (EBP1) inhibits phosphoinositide 3-kinase (PI3K) activity reducing the p85 regulatory subunit. In this study, we demonstrated that overexpression of p42 promoted not only a reduction of wild type of p85 subunit but also oncogenic mutant forms of p85 which were identified in human cancers. Moreover, we identified the small fragment of C-terminal domain of p42 is sufficient to exhibit tumor suppressing activity of p42-WT, revealing that this small fragment (280-394) of p42 is required for the binding of both HSP70 and CHIP for a degradation of p85. Furthermore, we showed the small fragment of p42 markedly inhibited the tumor growth in mouse xenograft models of brain and breast cancer, resembling tumor suppressing activity of p42. Through identification of the smallest fragment of p42 that is responsible for its tumor suppressor activity, our findings represent a novel approach for targeted therapy of cancers that overexpress PI3K.
Collapse
|
39
|
Ko HR, Chang YS, Park WS, Ahn JY. Opposing roles of the two isoforms of ErbB3 binding protein 1 in human cancer cells. Int J Cancer 2016; 139:1202-8. [DOI: 10.1002/ijc.30165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology; Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine; Suwon Korea
| | - Yun Sil Chang
- Department of Pediatrics; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Won Soon Park
- Department of Pediatrics; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology; Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine; Suwon Korea
| |
Collapse
|
40
|
Girnita L, Takahashi SI, Crudden C, Fukushima T, Worrall C, Furuta H, Yoshihara H, Hakuno F, Girnita A. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:277-311. [PMID: 27378760 DOI: 10.1016/bs.pmbts.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - S-I Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - C Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - T Fukushima
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - C Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Furuta
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Yoshihara
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - F Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - A Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Seo J, Lee EW, Sung H, Seong D, Dondelinger Y, Shin J, Jeong M, Lee HK, Kim JH, Han SY, Lee C, Seong JK, Vandenabeele P, Song J. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol 2016; 18:291-302. [DOI: 10.1038/ncb3314] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022]
|
42
|
Nguyen LXT, Lee Y, Urbani L, Utz PJ, Hamburger AW, Sunwoo JB, Mitchell BS. Regulation of ribosomal RNA synthesis in T cells: requirement for GTP and Ebp1. Blood 2015; 125:2519-29. [PMID: 25691158 PMCID: PMC4400289 DOI: 10.1182/blood-2014-12-616433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, an effective immunosuppressive drug. Both MPA and mycophenolate mofetil are highly specific inhibitors of guanine nucleotide synthesis and of T-cell activation. However, the mechanism by which guanine nucleotide depletion suppresses T-cell activation is unknown. Depletion of GTP inhibits ribosomal RNA synthesis in T cells by inhibiting transcription initiation factor I (TIF-IA), a GTP-binding protein that recruits RNA polymerase I to the ribosomal DNA promoter. TIF-IA-GTP binds the ErbB3-binding protein 1, and together they enhance the transcription of proliferating cell nuclear antigen (PCNA). GTP binding by TIF-IA and ErbB3-binding protein 1 phosphorylation by protein kinase C δ are both required for optimal PCNA expression. The protein kinase C inhibitor sotrastaurin markedly potentiates the inhibition of ribosomal RNA synthesis, PCNA expression, and T-cell activation induced by MPA, suggesting that the combination of the two agents are more highly effective than either alone in inducing immunosuppression.
Collapse
Affiliation(s)
| | - Yunqin Lee
- Department of Otolaryngology (Head and Neck Surgery), Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Lenore Urbani
- Departments of Medicine and Chemical and Systems Biology, and
| | - Paul J Utz
- Division of Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford CA; and
| | - Anne W Hamburger
- Department of Pathology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - John B Sunwoo
- Department of Otolaryngology (Head and Neck Surgery), Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
43
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Adrienne L Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, 6140, Grahamstown, South Africa,
| |
Collapse
|
44
|
Hu B, Xiong Y, Ni R, Wei L, Jiang D, Wang G, Wu D, Xu T, Zhao F, Zhu M, Wan C. The downregulation of ErbB3 binding protein 1 (EBP1) is associated with poor prognosis and enhanced cell proliferation in hepatocellular carcinoma. Mol Cell Biochem 2014; 396:175-85. [PMID: 25081333 DOI: 10.1007/s11010-014-2153-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
ErbB3 binding protein 1 (EBP1) has been recently reported to function as a tumor suppressor in the progression of multiple cancers, including breast cancer, prostate cancer, salivary adenoid cystic carcinoma (ACC), and oral squamous cell carcinoma (OSCC). However, the expression and physiological significance of EBP1 in hepatocellular carcinoma (HCC) remain unclear. In the study, we showed that EBP1 was significantly downregulated in clinical HCC specimens, and that decreased expression of EBP1 was associated with enhanced proliferation in HCC cells. Western blot and immunohistochemical analyses revealed that EBP1 was remarkably downregulated in HCC tissues compared with the adjacent normal ones. The levels of EBP1 were significantly associated with histological grade (P = 0.034), tumor size (P = 0.001), and Ki67 expression (P < 0.001) in HCC specimens. Univariate and multivariate analyses showed that EBP1 could serve as an independent prognostic indicator of patients' survival. Serum starvation and refeeding assay indicated that EBP1 was accumulated in growth-arrested HCC cells, and was progressively decreased when cells entered into S phase. Moreover, the depletion of EBP1 induced growth acceleration and cell cycle progression in L02 hepatocytes. On the basis of these findings, we conclude that EBP1 may be a valuable prognostic marker and promising therapeutic target of HCC.
Collapse
Affiliation(s)
- Baoying Hu
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|