1
|
Garcia IS, Silva-Vignato B, Cesar ASM, Petrini J, da Silva VH, Morosini NS, Goes CP, Afonso J, da Silva TR, Lima BD, Clemente LG, Regitano LCDA, Mourão GB, Coutinho LL. Novel putative causal mutations associated with fat traits in Nellore cattle uncovered by eQTLs located in open chromatin regions. Sci Rep 2024; 14:10094. [PMID: 38698200 PMCID: PMC11066111 DOI: 10.1038/s41598-024-60703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.
Collapse
Affiliation(s)
- Ingrid Soares Garcia
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Bárbara Silva-Vignato
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Aline Silva Mello Cesar
- Department of Agroindustry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Juliana Petrini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Vinicius Henrique da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Natália Silva Morosini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Carolina Purcell Goes
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Thaís Ribeiro da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Beatriz Delcarme Lima
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Gerson Barreto Mourão
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
2
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
3
|
Al-U'datt DGF, Tranchant CC, Alu'datt M, Abusara S, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Altuntas Y, Jaradat S, Alzoubi KH. Inhibition of transglutaminase 2 (TG2) ameliorates ventricular fibrosis in isoproterenol-induced heart failure in rats. Life Sci 2023; 321:121564. [PMID: 36931499 DOI: 10.1016/j.lfs.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
AIMS Transglutaminase (TG) inhibitors represent promising therapeutic interventions in cardiac fibrosis and related dysfunctions. However, it remains unknown how TG inhibition, TG2 in particular, affects the signaling systems that drive pathological fibrosis. This study aimed to examine the effect TG inhibition by cystamine on the progression of isoproterenol (ISO)-induced cardiac fibrosis and dysfunction in rats. MATERIALS AND METHODS Cardiac fibrosis was established by intraperitoneal injection of ISO to rats (ISO group), followed by 6 weeks of cystamine injection (ISO + Cys group). The control groups were administered normal saline alone or with cystamine. Hemodynamics, lipid profile, liver enzymes, urea, and creatinine were assessed in conjunction with heart failure markers (serum NT-proANP and cTnI). Left ventricular (LV) and atrial (LA) fibrosis, total collagen content, and mRNA expression of profibrotic markers including TG2 were quantified by Masson's trichrome staining, LC-MS/MS and quantitative PCR, respectively. KEY FINDINGS Cystamine administration to ISO rats significantly decreased diastolic and mean arterial pressures, total cholesterol, triglycerides, LDL, liver enzymes, urea, and creatinine levels, while increasing HDL. NT-proANP and cTnI serum levels remained unchanged. In LV tissues, significant reductions in ISO-induced fibrosis and elevated total collagen content were achieved after cystamine treatment, together with a reduction in TG2 concentration. Reduced mRNA expression of several profibrotic genes (COL1A1, FN1, MMP-2, CTGF, periostin, CX43) was also evidenced in LV tissues of ISO rats upon cystamine administration, whereas TGF-β1 expression was depressed in LA tissues. Cystamine decreased TG2 mRNA expression in the LV of control rats, while LV expression of TG2 was relatively low in ISO rats irrespective of cystamine treatment. SIGNIFICANCE TG2 inhibition by cystamine in vivo exerted cardioprotective effects against ISO-induced cardiac fibrosis in rats decreasing the LV abundance of several profibrotic markers and the content of TG2 and collagen, suggesting that TG2 pharmacological inhibition could be beneficial to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Muhammad Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sara Abusara
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
4
|
Rossin F, Ciccosanti F, D'Eletto M, Occhigrossi L, Fimia GM, Piacentini M. Type 2 transglutaminase in the nucleus: the new epigenetic face of a cytoplasmic enzyme. Cell Mol Life Sci 2023; 80:52. [PMID: 36695883 PMCID: PMC9874183 DOI: 10.1007/s00018-023-04698-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
One of the major mysteries in science is how it is possible to pack the cellular chromatin with a total length of over 1 m, into a small sphere with a diameter of 5 mm "the nucleus", and even more difficult to envisage how to make it functional. Although we know that compaction is achieved through the histones, however, the DNA needs to be accessible to the transcription machinery and this is allowed thanks to a variety of very complex epigenetic mechanisms. Either DNA (methylation) or post-translational modifications of histone proteins (acetylation, methylation, ubiquitination and sumoylation) play a crucial role in chromatin remodelling and consequently on gene expression. Recently the serotonylation and dopaminylation of the histone 3, catalyzed by the Transglutaminase type 2 (TG2), has been reported. These novel post-translational modifications catalyzed by a predominantly cytoplasmic enzyme opens a new avenue for future investigations on the enzyme function itself and for the possibility that other biological amines, substrate of TG2, can influence the genome regulation under peculiar cellular conditions. In this review we analyzed the nuclear TG2's biology by discussing both its post-translational modification of various transcription factors and the implications of its epigenetic new face. Finally, we will focus on the potential impact of these events in human diseases.
Collapse
Affiliation(s)
- Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Luca Occhigrossi
- Department of Molecular Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
- Department of Molecular Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Via Della Ricerca Scientifica 1, 00133, Rome, Italy.
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy.
| |
Collapse
|
5
|
Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, Antoun E, Lillycrop KA, Calder PC. Dysregulation of Subcutaneous White Adipose Tissue Inflammatory Environment Modelling in Non-Insulin Resistant Obesity and Responses to Omega-3 Fatty Acids – A Double Blind, Randomised Clinical Trial. Front Immunol 2022; 13:922654. [PMID: 35958557 PMCID: PMC9358040 DOI: 10.3389/fimmu.2022.922654] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
Background Obesity is associated with enhanced lipid accumulation and the expansion of adipose tissue accompanied by hypoxia and inflammatory signalling. Investigation in human subcutaneous white adipose tissue (scWAT) in people living with obesity in which metabolic complications such as insulin resistance are yet to manifest is limited, and the mechanisms by which these processes are dysregulated are not well elucidated. Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have been shown to modulate the expression of genes associated with lipid accumulation and collagen deposition and reduce the number of inflammatory macrophages in adipose tissue from individuals with insulin resistance. Therefore, these lipids may have positive actions on obesity associated scWAT hypertrophy and inflammation. Methods To evaluate obesity-associated tissue remodelling and responses to LC n-3 PUFAs, abdominal scWAT biopsies were collected from normal weight individuals and those living with obesity prior to and following 12-week intervention with marine LC n-3 PUFAs (1.1 g EPA + 0.8 g DHA daily). RNA sequencing, qRT-PCR, and histochemical staining were used to assess remodelling- and inflammatory-associated gene expression, tissue morphology and macrophage infiltration. Results Obesity was associated with scWAT hypertrophy (P < 0.001), hypoxia, remodelling, and inflammatory macrophage infiltration (P = 0.023). Furthermore, we highlight the novel dysregulation of Wnt signalling in scWAT in non-insulin resistant obesity. LC n-3 PUFAs beneficially modulated the scWAT environment through downregulating the expression of genes associated with inflammatory and remodelling pathways (P <0.001), but there were altered outcomes in individuals living with obesity in comparison to normal weight individuals. Conclusion Our data identify dysregulation of Wnt signalling, hypoxia, and hypertrophy, and enhanced macrophage infiltration in scWAT in non-insulin resistant obesity. LC n-3 PUFAs modulate some of these processes, especially in normal weight individuals which may be preventative and limit the development of restrictive and inflammatory scWAT in the development of obesity. We conclude that a higher dose or longer duration of LC n-3 PUFA intervention may be needed to reduce obesity-associated scWAT inflammation and promote tissue homeostasis. Clinical Trial Registration www.isrctn.com, identifier ISRCTN96712688.
Collapse
Affiliation(s)
- Helena L Fisk
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Caroline E Childs
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elizabeth A Miles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert Ayres
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Paul S Noakes
- School of Medicine, The University of Notre Dame Australia, Freemantle, WA, Australia
| | | | - Elie Antoun
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karen A Lillycrop
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Lénárt K, Bankó C, Ujlaki G, Póliska S, Kis G, Csősz É, Antal M, Bacso Z, Bai P, Fésüs L, Mádi A. Tissue Transglutaminase Knock-Out Preadipocytes and Beige Cells of Epididymal Fat Origin Possess Decreased Mitochondrial Functions Required for Thermogenesis. Int J Mol Sci 2022; 23:5175. [PMID: 35563567 PMCID: PMC9105016 DOI: 10.3390/ijms23095175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Beige adipocytes with thermogenic function are activated during cold exposure in white adipose tissue through the process of browning. These cells, similar to brown adipocytes, dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). Recently, we have shown that tissue transglutaminase (TG2) knock-out mice have decreased cold tolerance in parallel with lower utilization of their epididymal adipose tissue and reduced browning. To learn more about the thermogenic function of this fat depot, we isolated preadipocytes from the epididymal adipose tissue of wild-type and TG2 knock-out mice and differentiated them in the beige direction. Although differentiation of TG2 knock-out preadipocytes is phenotypically similar to the wild-type cells, the mitochondria of the knock-out beige cells have multiple impairments including an altered electron transport system generating lower electrochemical potential difference, reduced oxygen consumption, lower UCP1 protein content, and a higher portion of fragmented mitochondria. Most of these differences are present in preadipocytes as well, and the differentiation process cannot overcome the functional disadvantages completely. TG2 knock-out beige adipocytes produce more iodothyronine deiodinase 3 (DIO3) which may inactivate thyroid hormones required for the establishment of optimal mitochondrial function. The TG2 knock-out preadipocytes and beige cells are both hypometabolic as compared with the wild-type controls which may also be explained by the lower expression of solute carrier proteins SLC25A45, SLC25A47, and SLC25A42 which transport acylcarnitine, Co-A, and amino acids into the mitochondrial matrix. As a consequence, the mitochondria in TG2 knock-out beige adipocytes probably cannot reach the energy-producing threshold required for normal thermogenic functions, which may contribute to the decreased cold tolerance of TG2 knock-out mice.
Collapse
Affiliation(s)
- Kinga Lénárt
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Csaba Bankó
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Gyula Ujlaki
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.U.); (P.B.)
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - Gréta Kis
- Department of Anatomy, Histology Embryology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.K.); (M.A.)
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - Miklós Antal
- Department of Anatomy, Histology Embryology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.K.); (M.A.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Péter Bai
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.U.); (P.B.)
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - András Mádi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| |
Collapse
|
7
|
Ramirez-Perez FI, Cabral-Amador FJ, Whaley-Connell AT, Aroor AR, Morales-Quinones M, Woodford ML, Ghiarone T, Ferreira-Santos L, Jurrissen TJ, Manrique-Acevedo CM, Jia G, DeMarco VG, Padilla J, Martinez-Lemus LA, Lastra G. Cystamine reduces vascular stiffness in Western diet-fed female mice. Am J Physiol Heart Circ Physiol 2022; 322:H167-H180. [PMID: 34890280 PMCID: PMC8742720 DOI: 10.1152/ajpheart.00431.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri
| | | | - Adam T. Whaley-Connell
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Annayya R. Aroor
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | | | - Makenzie L. Woodford
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Larissa Ferreira-Santos
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,6Instituto do Coracao, Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade
de São Paulo, São Paulo, Brazil
| | - Thomas J. Jurrissen
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M. Manrique-Acevedo
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - GuangHong Jia
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Vincent G. DeMarco
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A. Martinez-Lemus
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Guido Lastra
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|
9
|
Majeed Y, Halabi N, Madani AY, Engelke R, Bhagwat AM, Abdesselem H, Agha MV, Vakayil M, Courjaret R, Goswami N, Hamidane HB, Elrayess MA, Rafii A, Graumann J, Schmidt F, Mazloum NA. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci Rep 2021; 11:8177. [PMID: 33854178 PMCID: PMC8046990 DOI: 10.1038/s41598-021-87759-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
The NAD+-dependent deacetylase SIRT1 controls key metabolic functions by deacetylating target proteins and strategies that promote SIRT1 function such as SIRT1 overexpression or NAD+ boosters alleviate metabolic complications. We previously reported that SIRT1-depletion in 3T3-L1 preadipocytes led to C-Myc activation, adipocyte hyperplasia, and dysregulated adipocyte metabolism. Here, we characterized SIRT1-depleted adipocytes by quantitative mass spectrometry-based proteomics, gene-expression and biochemical analyses, and mitochondrial studies. We found that SIRT1 promoted mitochondrial biogenesis and respiration in adipocytes and expression of molecules like leptin, adiponectin, matrix metalloproteinases, lipocalin 2, and thyroid responsive protein was SIRT1-dependent. Independent validation of the proteomics dataset uncovered SIRT1-dependence of SREBF1c and PPARα signaling in adipocytes. SIRT1 promoted nicotinamide mononucleotide acetyltransferase 2 (NMNAT2) expression during 3T3-L1 differentiation and constitutively repressed NMNAT1 and 3 levels. Supplementing preadipocytes with the NAD+ booster nicotinamide mononucleotide (NMN) during differentiation increased expression levels of leptin, SIRT1, and PGC-1α and its transcriptional targets, and reduced levels of pro-fibrotic collagens (Col6A1 and Col6A3) in a SIRT1-dependent manner. Investigating the metabolic impact of the functional interaction of SIRT1 with SREBF1c and PPARα and insights into how NAD+ metabolism modulates adipocyte function could potentially lead to new avenues in developing therapeutics for obesity complications.
Collapse
Affiliation(s)
- Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Najeeb Halabi
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Rudolf Engelke
- Department of Biochemistry, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Aditya M Bhagwat
- Department of Biochemistry, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- Biomolecular Mass Spectrometry, Max-Plank Institute for Heart and Lung Research, Ludwigstr 43, 61231, Bad Nauheim, Germany
| | - Houari Abdesselem
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Doha, Qatar
| | - Maha V Agha
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Muneera Vakayil
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Neha Goswami
- Department of Biochemistry, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Hisham Ben Hamidane
- Department of Biochemistry, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- CSL Behring, Bern, Switzerland
| | | | - Arash Rafii
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Johannes Graumann
- Department of Biochemistry, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- Biomolecular Mass Spectrometry, Max-Plank Institute for Heart and Lung Research, Ludwigstr 43, 61231, Bad Nauheim, Germany
| | - Frank Schmidt
- Department of Biochemistry, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
10
|
Kim HJ, Lee JH, Cho SY, Jeon JH, Kim IG. Transglutaminase 2 mediates transcriptional regulation through BAF250a polyamination. Genes Genomics 2021; 43:333-342. [PMID: 33555506 DOI: 10.1007/s13258-021-01055-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transglutaminase 2 (TG2) mediates protein modifications by crosslinking or by incorporating polyamine in response to oxidative or DNA-damaging stress, thereby regulating apoptosis, extracellular matrix formation, and inflammation. The regulation of transcriptional activity by TG2-mediated histone serotonylation or by Sp1 crosslinking may also contribute to cellular stress responses. OBJECTIVE In this study, we attempted to identify TG2-interacting proteins to better understand the role of TG2 in transcriptional regulation. METHODS Using a yeast two-hybrid assay to screen a HeLa cell cDNA library, we found that TG2 bound BAF250a, a core subunit of the cBAF chromatin remodeling complex, through an interaction between the TG2 barrel 1 and BAF250a C-terminal domains. RESULTS TG2 was pulled down with a GST-BAF250a C-term fusion protein. Moreover, TG2 and BAF250a were co-fractionated using P11 chromatography, and co-immunoprecipitated. A transamidation reaction showed that TG2 mediated incorporation of polyamine into BAF250a. In glucocorticoid response-element reporter-expressing cells, TG2 overexpression increased the luciferase reporter activity in a transamidation-dependent manner. In addition, a comparison of genome-wide gene expression between wild-type and TG2-deficient primary hepatocytes in response to dexamethasone treatment showed that TG2 further enhanced or suppressed the expression of dexamethasone-regulated genes that were identified by a gene ontology enrichment analysis. CONCLUSION Thus, our results indicate that TG2 regulates transcriptional activity through BAF250a polyamination.
Collapse
Affiliation(s)
- Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hong Jeon
- Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Kaartinen MT, Arora M, Heinonen S, Rissanen A, Kaprio J, Pietiläinen KH. Transglutaminases and Obesity in Humans: Association of F13A1 to Adipocyte Hypertrophy and Adipose Tissue Immune Response. Int J Mol Sci 2020; 21:E8289. [PMID: 33167412 PMCID: PMC7663854 DOI: 10.3390/ijms21218289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy-lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy-Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.
Collapse
Affiliation(s)
- Mari T. Kaartinen
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
- Faculty of Dentistry (Biomedical Sciences), McGill University, Montreal, QC H3A 0J7, Canada
| | - Mansi Arora
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, 00100 Helsinki, Finland;
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
- Abdominal Center, Obesity Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020; 115:62-84. [PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, PJ 47500, Selangor, Malaysia.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Chen Y, Wang Y, Lin W, Sheng R, Wu Y, Xu R, Zhou C, Yuan Q. AFF1 inhibits adipogenic differentiation via targeting TGM2 transcription. Cell Prolif 2020; 53:e12831. [PMID: 32441391 PMCID: PMC7309944 DOI: 10.1111/cpr.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES AF4/FMR2 family member 1 (AFF1), known as a central scaffolding protein of super elongation complex (SEC), regulates gene transcription. We previously reported that AFF1 inhibited osteogenic differentiation of human mesenchymal stromal/stem cells (hMSCs). However, its role in adipogenic differentiation has not been elucidated. MATERIALS AND METHODS hMSCs and 3T3-L1 pre-adipocytes were cultured and induced for adipogenic differentiation. Small interfering RNAs (siRNAs) were applied to deplete AFF1 while lentiviruses expressing HA-Aff1 were used for overexpression. Oil Red O staining, triglyceride (TAG) quantification, quantitative real-time PCR (qPCR), Western blot analysis, immunofluorescence staining, RNA sequencing (RNA-seq) analysis and ChIP-qPCR were performed. To evaluate the adipogenesis in vivo, BALB/c nude mice were subcutaneously injected with Aff1-overexpressed 3T3-L1 pre-adipocytes. RESULTS AFF1 depletion leads to an enhanced adipogenesis in both hMSCs and 3T3-L1 pre-adipocytes. Overexpression of Aff1 in 3T3-L1 cells results in the reduction of adipogenic differentiation and less adipose tissue formation in vivo. Mechanistically, AFF1 binds to the promoter region of Tgm2 gene and regulates its transcription. Overexpression of Tgm2 largely rescues adipogenic differentiation of Aff1-deficient cells. CONCLUSIONS Our data indicate that AFF1 inhibits adipogenic differentiation by regulating the transcription of TGM2.
Collapse
Affiliation(s)
- Yaqian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Bornschein J, Wernisch L, Secrier M, Miremadi A, Perner J, MacRae S, O'Donovan M, Newton R, Menon S, Bower L, Eldridge MD, Devonshire G, Cheah C, Turkington R, Hardwick RH, Selgrad M, Venerito M, Malfertheiner P, Fitzgerald RC. Transcriptomic profiling reveals three molecular phenotypes of adenocarcinoma at the gastroesophageal junction. Int J Cancer 2019; 145:3389-3401. [PMID: 31050820 PMCID: PMC6851674 DOI: 10.1002/ijc.32384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
Cancers occurring at the gastroesophageal junction (GEJ) are classified as predominantly esophageal or gastric, which is often difficult to decipher. We hypothesized that the transcriptomic profile might reveal molecular subgroups which could help to define the tumor origin and behavior beyond anatomical location. The gene expression profiles of 107 treatment-naïve, intestinal type, gastroesophageal adenocarcinomas were assessed by the Illumina-HTv4.0 beadchip. Differential gene expression (limma), unsupervised subgroup assignment (mclust) and pathway analysis (gage) were undertaken in R statistical computing and results were related to demographic and clinical parameters. Unsupervised assignment of the gene expression profiles revealed three distinct molecular subgroups, which were not associated with anatomical location, tumor stage or grade (p > 0.05). Group 1 was enriched for pathways involved in cell turnover, Group 2 was enriched for metabolic processes and Group 3 for immune-response pathways. Patients in group 1 showed the worst overall survival (p = 0.019). Key genes for the three subtypes were confirmed by immunohistochemistry. The newly defined intrinsic subtypes were analyzed in four independent datasets of gastric and esophageal adenocarcinomas with transcriptomic data available (RNAseq data: OCCAMS cohort, n = 158; gene expression arrays: Belfast, n = 63; Singapore, n = 191; Asian Cancer Research Group, n = 300). The subgroups were represented in the independent cohorts and pooled analysis confirmed the prognostic effect of the new subtypes. In conclusion, adenocarcinomas at the GEJ comprise three distinct molecular phenotypes which do not reflect anatomical location but rather inform our understanding of the key pathways expressed.
Collapse
Affiliation(s)
- Jan Bornschein
- MRC Cancer Unit, Hutchison/MRC Research CentreUniversity of CambridgeCambridgeUnited Kingdom
- Department of Gastroenterology, Hepatology and Infectious DiseasesOtto‐von‐Guericke UniversityMagdeburgGermany
- Translational Gastroenterology UnitOxford University HospitalsOxfordUnited Kingdom
| | - Lorenz Wernisch
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Maria Secrier
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Ahmad Miremadi
- Department of Histopathology, Addenbrooke's HospitalCambridge University HospitalsCambridgeUnited Kingdom
| | - Juliane Perner
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Shona MacRae
- MRC Cancer Unit, Hutchison/MRC Research CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Maria O'Donovan
- Department of Histopathology, Addenbrooke's HospitalCambridge University HospitalsCambridgeUnited Kingdom
| | - Richard Newton
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Suraj Menon
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Lawrence Bower
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Matthew D. Eldridge
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Ginny Devonshire
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Calvin Cheah
- MRC Cancer Unit, Hutchison/MRC Research CentreUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Richard H. Hardwick
- Department of Surgery, Addenbrooke's HospitalCambridge University HospitalsCambridgeUnited Kingdom
| | - Michael Selgrad
- Department of Gastroenterology, Hepatology and Infectious DiseasesOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious DiseasesOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious DiseasesOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Rebecca C. Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research CentreUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
15
|
MiR-532-3p suppresses colorectal cancer progression by disrupting the ETS1/TGM2 axis-mediated Wnt/β-catenin signaling. Cell Death Dis 2019; 10:739. [PMID: 31570702 PMCID: PMC6768886 DOI: 10.1038/s41419-019-1962-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
The expression panel of plasma microRNA defined miR-532-3p as a valuable biomarker for colorectal adenoma (CRA). However, its expression pattern and function in colorectal cancer (CRC) have remained unclear. The present study investigated the expression levels of miR-532-3p and found that it was in situ downregulated both in CRA and CRC. Moreover, it functioned as a sensitizer for chemotherapy in CRC by inducing cell cycle arrest and early apoptosis via its activating effects on p53 and apoptotic signaling pathways. In addition, miR-532-3p was found to restrain cell growth, metastasis, and epithelial–mesenchymal transition (EMT) phenotype of CRC. A study on the mechanism behind these effects revealed that miR-532-3p directly binds to 3′UTR regions of ETS1 and TGM2, ultimately repressing the canonical Wnt/β-catenin signaling. Further investigation showed that TGM2 was transcriptionally regulated by ETS1 and ETS1/TGM2 axis served as a vital functional target of miR-532-3p in suppressing CRC progression. To conclude, miR-532-3p mimics could act as potential candidate for molecular therapy in CRC through inactivation of the canonical Wnt/β-catenin signaling and enhancement of chemosensitivity.
Collapse
|
16
|
Al Hasan M, Roy P, Dolan S, Martin PE, Patterson S, Bartholomew C. Adhesion G-protein coupled receptor 56 is required for 3T3-L1 adipogenesis. J Cell Physiol 2019; 235:1601-1614. [PMID: 31304602 DOI: 10.1002/jcp.29079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Obesity-associated conditions represent major global health and financial burdens and understanding processes regulating adipogenesis could lead to novel intervention strategies. This study shows that adhesion G-protein coupled receptor 56 (GPR56) gene transcripts are reduced in abdominal visceral white adipose tissue derived from obese Zucker rats versus lean controls. Immunostaining in 3T3-L1 preadipocytes reveals both mitotic cell restricted surface and low level general expression patterns of Gpr56. Gpr56 transcripts are differentially expressed in 3T3-L1 cells during adipogenesis. Transient knockdown (KD) of Gpr56 in 3T3-L1 cells dramatically inhibits differentiation through reducing the accumulation of both neutral cellular lipids (56%) and production of established adipogenesis Pparγ 2 (60-80%), C/ebpα (40-78%) mediator, and Ap2 (56-80%) marker proteins. Furthermore, genome editing of Gpr56 in 3T3-L1 cells created CW2.2.4 and RM4.2.5.5 clones (Gpr56 -/- cells) with compound heterozygous deletion frameshift mutations which abolish adipogenesis. Genome edited cells have sustained levels of the adipogenesis inhibitor β-catenin, reduced proliferation, reduced adhesion, altered profiles, and or abundance of extracellular matrix component gene transcripts for fibronectin, types I, III, and IV collagens and loss of actin stress fibers. β-catenin KD alone is insufficient to restore adipogenesis in Gpr56 -/- cells. Together these data show that Gpr56 is required for adipogenesis in 3T3-L1 cells. This report is the first demonstration that Gpr56 participates in regulation of the adipogenesis developmental program. Modulation of the levels of this protein and/or its biological activity may represent a novel target for development of therapeutic agents for the treatment of obesity.
Collapse
Affiliation(s)
- Mohammad Al Hasan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Poornima Roy
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Sharron Dolan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Patricia E Martin
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Steven Patterson
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Chris Bartholomew
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| |
Collapse
|
17
|
Loss of transglutaminase 2 sensitizes for diet-induced obesity-related inflammation and insulin resistance due to enhanced macrophage c-Src signaling. Cell Death Dis 2019; 10:439. [PMID: 31165747 PMCID: PMC6549190 DOI: 10.1038/s41419-019-1677-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/09/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that promotes clearance of apoptotic cells (efferocytosis) acting as integrin β3 coreceptor. Accumulating evidence indicates that defective efferocytosis contributes to the development of chronic inflammatory diseases. Obesity is characterized by the accumulation of dead adipocytes and inflammatory macrophages in the adipose tissue leading to obesity-related metabolic syndrome. Here, we report that loss of TG2 from bone marrow-derived cells sensitizes for high fat diet (HFD)-induced pathologies. We find that metabolically activated TG2 null macrophages express more phospho-Src and integrin β3, unexpectedly clear dying adipocytes more efficiently via lysosomal exocytosis, but produce more pro-inflammatory cytokines than the wild type ones. Anti-inflammatory treatment with an LXR agonist reverts the HFD-induced phenotype in mice lacking TG2 in bone marrow-derived cells with less hepatic steatosis than in wild type mice proving enhanced lipid clearance. Thus it is interesting to speculate whether LXR agonist treatment together with enhancing lysosomal exocytosis could be a beneficial therapeutic strategy in obesity.
Collapse
|
18
|
Myneni VD, McClain-Caldwell I, Martin D, Vitale-Cross L, Marko K, Firriolo JM, Labow BI, Mezey E. Mesenchymal stromal cells from infants with simple polydactyly modulate immune responses more efficiently than adult mesenchymal stromal cells. Cytotherapy 2018; 21:148-161. [PMID: 30595353 DOI: 10.1016/j.jcyt.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/04/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived stromal cells or mesenchymal stromal cells (BMSCs or MSCs, as we will call them in this work) are multipotent progenitor cells that can differentiate into osteoblasts, adipocytes and chondrocytes. In addition, MSCs have been shown to modulate the function of a variety of immune cells. Donor age has been shown to affect the regenerative potential, differentiation, proliferation and anti-inflammatory potency of MSCs; however, the impact of donor age on their immunosuppressive activity is unknown. In this study, we evaluated the ability of MSCs derived from very young children and adults on T-cell suppression and cytokine secretion by monocytes/macrophages. MSCs were obtained from extra digits of children between 10 and 21 months and adults between 28 and 64 years of age. We studied cell surface marker expression, doubling time, lineage differentiation potential and immunosuppressive function of the MSCs. Young MSCs double more quickly and differentiate into bone and fat cells more efficiently than those from older donors. They also form more and dense colonies of fibroblasts (colony forming unit-fibroblast [CFU-F]). MSCs from both young and adult subjects suppressed T-cell proliferation in a mitogen-induced assay at 1:3 and 1:30 ratios. At a 1:30 ratio, however, MSCs from adults did not, but MSCs from infants did suppress T-cell proliferation. In the mixed lymphocyte reaction assay, MSCs from infants produced similar levels of suppression at all three MSC/T-cell ratios, but adult MSCs only inhibited T-cell proliferation at a 1:3 ratio. Cytokine analyses of co-cultures of MSCs and macrophages showed that both adult and young MSCs suppress tumor necrosis factor alpha (TNF-α) and induce interleukin-10 (IL-10) production in macrophage co-culture assay in a similar manner. Overall, this work shows that developing MSCs display a higher level of immunosuppression than mature MSCs.
Collapse
Affiliation(s)
- Vamsee D Myneni
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian McClain-Caldwell
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics & Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Lynn Vitale-Cross
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Karoly Marko
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph M Firriolo
- Department of Plastic and Oral Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian I Labow
- Department of Plastic and Oral Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Mezey
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
19
|
Tissue transglutaminase induces Epithelial-Mesenchymal-Transition and the acquisition of stem cell like characteristics in colorectal cancer cells. Oncotarget 2017; 8:20025-20041. [PMID: 28223538 PMCID: PMC5386741 DOI: 10.18632/oncotarget.15370] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/07/2017] [Indexed: 12/26/2022] Open
Abstract
Human colon cancer cell lines (CRCs) RKO, SW480 and SW620 were investigated for TG2 involvement in tumour advancement and aggression. TG2 expression correlated with tumour advancement and expression of markers of epithelial-mesenchymal transition (EMT). The metastatic cell line SW620 showed high TG2 expression compared to the primary tumour cell lines SW480 and RKO and could form tumour spheroids under non- adherent conditions. TG2 manipulation in the CRCs by shRNA or TG2 transduction confirmed the relationship between TG2 and EMT. TGFβ1 expression in CRC cells, and its level in the cell medium and extracellular matrix was increased in primary tumour CRCs overexpressing TG2 and could regulate TG2 expression and EMT by both canonical (RKO) and non-canonical (RKO and SW480) signalling. TGFβ1 regulation was not observed in the metastatic SW620 cell line, but TG2 knockdown or inhibition in SW620 reversed EMT. In SW620, TG2 expression and EMT was associated with increased presence of nuclear β-catenin which could be mediated by association of TG2 with the Wnt signalling co-receptor LRP5. TG2 inhibition/knockdown increased interaction between β-catenin and ubiquitin shown by co-immunoprecipitation, suggesting that TG2 could be important in β-catenin regulation. β-Catenin and TG2 was also upregulated in SW620 spheroid cells enriched with cancer stem cell marker CD44 and TG2 inhibition/knockdown reduced the spheroid forming potential of SW620 cells. Our data suggests that TG2 could hold both prognostic and therapeutic significance in colon cancer.
Collapse
|
20
|
Faust I, Donhauser E, Fischer B, Ibold B, Kuhn J, Knabbe C, Hendig D. Characterization of dermal myofibroblast differentiation in pseudoxanthoma elasticum. Exp Cell Res 2017; 360:153-162. [PMID: 28882457 DOI: 10.1016/j.yexcr.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023]
Abstract
Pseudoxanthoma elasticum (PXE) is a rare hereditary disorder which is caused by ABCC6 (ATP-binding cassette subfamily C member 6) gene mutations. Characteristic hallmarks of PXE are progressive calcification and degradation of the elastic fibers in skin, cardiovascular system and ocular fundus. Since the underlying pathomechanisms of PXE remain unidentified, the aim of this study was to get new insights into PXE pathophysiology by characterizing dermal myofibroblast differentiation. Fibroblasts are the key cells of extracellular matrix (ECM) remodeling and, therefore, participate not only in physiological processes, such as calcification or wound healing, but also in pathologic events, such as fibrotization. We revealed that human dermal PXE fibroblasts possess exaggerated migration capability in wound healing and attenuated myofibroblast contractility in comparison to controls. Subsequent analyses reinforced these observations and indicated a diminished induction of the myofibroblast differentiation markers α-smooth muscle actin and xylosyltransferase-I as well as poor transforming growth factor-β1 responsiveness in PXE fibroblasts. In summary, we describe pathological deviations of dermal myofibroblast differentiation in PXE which might be mediated by aberrant supramolecular ECM organization. These results not only improve our insights into cellular PXE pathophysiology, but might also qualify us to interfere with ECM remodeling in the future.
Collapse
Affiliation(s)
- Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany.
| | - Elfi Donhauser
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Bettina Ibold
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
21
|
Browning deficiency and low mobilization of fatty acids in gonadal white adipose tissue leads to decreased cold-tolerance of transglutaminase 2 knock-out mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1575-1586. [PMID: 28774822 DOI: 10.1016/j.bbalip.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
During cold-exposure 'beige' adipocytes with increased mitochondrial content are activated in white adipose tissue (WAT). These cells, similarly to brown adipose tissue (BAT), dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). We investigated the effect of tissue transglutaminase (TG2) ablation on the function of ATs in mice. Although TG2+/+ and TG2-/- mice had the same amount of WAT and BAT, we found that TG2+/+ animals could tolerate acute cold exposure for 4h, whereas TG2-/- mice only for 3h. Both TG2-/- and TG2+/+ animals used up half of the triacylglycerol content of subcutaneous WAT (SCAT) after 3h treatment; however, TG2-/- mice still possessed markedly whiter and higher amount of gonadal WAT (GONAT) as reflected in the larger size of adipocytes and lower free fatty acid levels in serum. Furthermore, lower expression of 'beige' marker genes such as UCP1, TBX1 and TNFRFS9 was observed after cold exposure in GONAT of TG2-/- mice, paralleled with a lower level of UCP1 protein and a decreased mitochondrial content. The detected changes in gene expression of Resistin and Adiponectin did not provoke glucose intolerance in the investigated TG2-/- mice, and TG2 deletion did not influence adrenaline, noradrenaline, glucagon and insulin production. Our data suggest that TG2 has a tissue-specific role in GONAT function and browning, which becomes apparent under acute cold exposure.
Collapse
|
22
|
Mousa A, Cui C, Song A, Myneni VD, Sun H, Li JJ, Murshed M, Melino G, Kaartinen MT. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ 2017; 24:844-854. [PMID: 28387755 PMCID: PMC5423109 DOI: 10.1038/cdd.2017.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
Appropriate bone mass is maintained by bone-forming osteoblast and bone-resorbing osteoclasts. Mesenchymal stem cell (MSC) lineage cells control osteoclastogenesis via expression of RANKL and OPG (receptor activator of nuclear factor κB ligand and osteoprotegerin), which promote and inhibit bone resorption, respectively. Protein crosslinking enzymes transglutaminase 2 (TG2) and Factor XIII-A (FXIII-A) have been linked to activity of myeloid and MSC lineage cells; however, in vivo evidence has been lacking to support their function. In this study, we show in mice that TG2 and FXIII-A control monocyte-macrophage cell differentiation into osteoclasts as well as RANKL production in MSCs and in adipocytes. Long bones of mice lacking TG2 and FXIII-A transglutaminases, show compromised biomechanical properties and trabecular bone loss in axial and appendicular skeleton. This was caused by increased osteoclastogenesis, a cellular phenotype that persists in vitro. The increased potential of TG2 and FXIII-A deficient monocytes to form osteoclasts was reversed by chemical inhibition of TG activity, which revealed the presence of TG1 in osteoclasts and assigned different roles for the TGs as regulators of osteoclastogenesis. TG2- and FXIII-A-deficient mice had normal osteoblast activity, but increased bone marrow adipogenesis, MSCs lacking TG2 and FXIII-A showed high adipogenic potential and significantly increased RANKL expression as well as upregulated TG1 expression. Chemical inhibition of TG activity in the null cells further increased adipogenic potential and RANKL production. Altered differentiation of TG2 and FXIII-A null MSCs was associated with plasma fibronectin (FN) assembly defect in cultures and FN retention in serum and marrow in vivo instead of assembly into bone. Our findings provide new functions for TG2, FXIII-A and TG1 in bone cells and identify them as novel regulators of bone mass, plasma FN homeostasis, RANKL production and myeloid and MSC cell differentiation.
Collapse
Affiliation(s)
- Aisha Mousa
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Cui Cui
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Aimei Song
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Vamsee D Myneni
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Huifang Sun
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Jin Jin Li
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Monzur Murshed
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Gerry Melino
- Department Experimental Medicine & Surgery, University of Rome Tor Vergata, Rome, Italy
- MRC Toxicology Unit, Leicester LE19HN, UK
| | - Mari T Kaartinen
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Rahman N, Jeon M, Kim YS. Methyl gallate, a potent antioxidant inhibits mouse and human adipocyte differentiation and oxidative stress in adipocytes through impairment of mitotic clonal expansion. Biofactors 2016; 42:716-726. [PMID: 27412172 DOI: 10.1002/biof.1310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/05/2016] [Indexed: 01/31/2023]
Abstract
Methyl gallate (MG) is a derivative of gallic acid and a potent antioxidant. In this study, we confirmed that MG treatment effectively inhibits lipid accumulation, which occurred mostly in the early stages of adipogenesis. We also showed that shortly after adipogenic induction, MG facilitated a G0/G1 cell cycle arrest. Mechanistic studies revealed that MG treatment inhibited ERK1/2 phosphorylation, which is a key regulator of the G1- to S-phase transition. Furthermore, MG treatment prevented the adipogenic hormonal stimuli-induced inhibition of the cyclin-dependent kinase inhibitor p27Kip1 . This led to inhibition of the transcription factor E2F1 by preventing the phosphorylation of, and thereby activation of its destruction partner RB. MG treatment also downregulated factors that are upstream of RB-E2F1 signaling such as Cdk2, Cyclin E, Cdk4, and Cyclin D1 where Cyclin D3 level was unaffected. We also found that MG treatment markedly decreased the expression and phosphorylation of C/EBPβ, by phosphorylating, and therefore inactivating, GSK3β, which is a prerequisite for its DNA binding capacity, and thereby mitotic clonal expansion (MCE). Ultimately, MG treatment downregulates key terminal adipogenic transcription factors including C/EBPα, PPARγ, aP2 (Fabp4), and adiponectin. Moreover, MG also protects adipocytes from oxidative stress by alleviating intracellular reactive oxygen species and activating Nrf2, HO-1, and PRDX3. Thus, this study provides a mechanistic insight into the anti-adipogenic actions of MG. © 2016 BioFactors, 42(6):716-726, 2016.
Collapse
Affiliation(s)
- Naimur Rahman
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
- Institute of Tissue Engineering, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
| | - Miso Jeon
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
- Institute of Tissue Engineering, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
- Institute of Tissue Engineering, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
| |
Collapse
|
24
|
Regina C, Panatta E, Candi E, Melino G, Amelio I, Balistreri CR, Annicchiarico-Petruzzelli M, Di Daniele N, Ruvolo G. Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases. Mech Ageing Dev 2016; 159:14-21. [DOI: 10.1016/j.mad.2016.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
|
25
|
Dietz K, de Los Reyes Jiménez M, Gollwitzer ES, Chaker AM, Zissler UM, Rådmark OP, Baarsma HA, Königshoff M, Schmidt-Weber CB, Marsland BJ, Esser-von Bieren J. Age dictates a steroid-resistant cascade of Wnt5a, transglutaminase 2, and leukotrienes in inflamed airways. J Allergy Clin Immunol 2016; 139:1343-1354.e6. [PMID: 27554815 DOI: 10.1016/j.jaci.2016.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Airway remodeling is a detrimental and refractory process showing age-dependent clinical manifestations that are mechanistically undefined. The leukotriene (LT) and wingless/integrase (Wnt) pathways have been implicated in remodeling, but age-specific expression profiles and common regulators remained elusive. OBJECTIVE We sought to study the activation of the LT and Wnt pathways during early- or late-onset allergic airway inflammation and to address regulatory mechanisms and clinical relevance in normal human bronchial epithelial cells (NHBEs) and nasal polyp tissues. METHODS Mice were sensitized with house dust mite (HDM) allergens from days 3, 15, or 60 after birth. Remodeling factors in murine bronchoalveolar lavage fluid, lung tissue, or human nasal polyp tissue were analyzed by means of Western blotting, immunoassays, or histology. Regulatory mechanisms were studied in cytokine/HDM-stimulated NHBEs and macrophages. RESULTS Bronchoalveolar lavage fluid LT levels were increased in neonatal and adult but reduced in juvenile HDM-sensitized mice. Lungs of neonatally sensitized mice showed increased 5-lipoxygenase levels, whereas adult mice expressed more group 10 secretory phospholipase A2, Wnt5a, and transglutaminase 2 (Tgm2). Older mice showed colocalization of Wnt5a and LT enzymes in the epithelium, a pattern also observed in human nasal polyps. IL-4 promoted epithelial Wnt5a secretion, which upregulated macrophage Tgm2 expression, and Tgm2 inhibition in turn reduced LT release. Tgm2, group 10 secretory phospholipase A2, and LT enzymes in NHBEs and nasal polyps were refractory to corticosteroids. CONCLUSION Our findings reveal age differences in LT and Wnt pathways during airway inflammation and identify a steroid-resistant cascade of Wnt5a, Tgm2, and LTs, which might represent a therapeutic target for airway inflammation and remodeling.
Collapse
Affiliation(s)
- Katharina Dietz
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Marta de Los Reyes Jiménez
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Eva S Gollwitzer
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Adam M Chaker
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany; Department of Otolaryngology, Allergy Section, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Olof P Rådmark
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hoeke A Baarsma
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL) and Ludwig-Maximilians-Universität, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL) and Ludwig-Maximilians-Universität, University Hospital Grosshadern, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|