1
|
Wang X, Sun Z, Fu J, Fang Z, Zhang W, He JC, Lee K. LRG1 loss effectively restrains glomerular TGF-β signaling to attenuate diabetic kidney disease. Mol Ther 2024; 32:3177-3193. [PMID: 38910328 PMCID: PMC11403230 DOI: 10.1016/j.ymthe.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Transforming growth factor (TGF)-β signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-β signaling regulators can substantially influence TGF-β's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-β-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-β-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-β signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-β signaling to attenuate DKD.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeguo Sun
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jia Fu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengying Fang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, NY 10468, USA.
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Gao Y, Huang X, Liu Y, Lv H, Yin X, Li W, Chu Z. Transcriptome analysis of large yellow croaker (Larimichthys crocea) at different growth rates. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1745-1757. [PMID: 38842792 DOI: 10.1007/s10695-024-01367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The unsynchronized growth of the large yellow croaker (Larimichthys crocea), which impacts growth efficiency, poses a challenge for aquaculture practitioners. In our study, juvenile stocks of large yellow croaker were sorted by size after being cultured in offshore cages for 4 months. Subsequently, individuals from both the fast-growing (FG) and slow-growing (SG) groups were sampled for analysis. High-throughput RNA-Seq was employed to identify genes and pathways that are differentially expressed during varying growth rates, which could suggest potential physiological mechanisms that influence growth rate. Our transcriptome analysis identified 382 differentially expressed genes (DEGs), comprising 145 upregulated and 237 downregulated genes in comparison to the SG group. GO and KEGG enrichment analyses indicated that these DEGs are predominantly involved in signal transduction and biochemical metabolic pathways. Quantitative PCR (qPCR) results demonstrated that cat, fasn, idh1, pgd, fgf19, igf2, and fads2 exhibited higher expression levels, whereas gadd45b and gadd45g showed lower expression compared to the slow-growing group. In conclusion, the differential growth rates of large yellow croaker are intricately associated with cellular proliferation, metabolic rates of the organism, and immune regulation. These findings offer novel insights into the molecular mechanisms and regulatory aspects of growth in large yellow croaker and enhance our understanding of growth-related genes.
Collapse
Affiliation(s)
- Yang Gao
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China.
| | - Xuming Huang
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Yanli Liu
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Huirong Lv
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Weiye Li
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Zhangjie Chu
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| |
Collapse
|
3
|
Li CL, Zhou GF, Xie XY, Wang L, Chen X, Pan QL, Pu YL, Yang J, Song L, Chen GJ. STAU1 exhibits a dual function by promoting amyloidogenesis and tau phosphorylation in cultured cells. Exp Neurol 2024; 377:114805. [PMID: 38729552 DOI: 10.1016/j.expneurol.2024.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral β-amyloid protein (Aβ) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of β-amyloid converting enzyme 1 (BACE1) and Aβ. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 β (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.
Collapse
Affiliation(s)
- Chen-Lu Li
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Ya-Lan Pu
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|
4
|
Wang L, Liang C, Zheng N, Yang C, Yan S, Wang X, Zuo Z, He C. Kidney injury contributes to edema of zebrafish larvae caused by quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168420. [PMID: 37963533 DOI: 10.1016/j.scitotenv.2023.168420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Edema represents a notable outcome in fishes exposed to aquatic pollutants, yet the underlying etiology remains inadequately understood. This investigation delves into the etiological factors of edema formation in 7 days post fertilization (dpf) zebrafish larvae following their exposure to InP/ZnS quantum dots (QDs), which was chosen as a prototypical edema inducer. Given the fundamental role of the kidney in osmoregulation, we used transgenic zebrafish lines featuring fluorescent protein labeling of the glomerulus, renal tubule, and blood vessels, in conjunction with histopathological scrutiny. We identified the pronounced morphological and structural aberrations within the pronephros. By means of tissue mass spectrometry imaging and hyperspectral microscopy, we discerned the accumulation of InP/ZnS QDs in the pronephros. Moreover, InP/ZnS QDs impeded the renal clearance capacity of the pronephros, as substantiated by diminished uptake of FITC-dextran. InP/ZnS QDs also disturbed the expression levels of marker genes associated with kidney development and osmoregulatory function at the earlier time points, which preceded the onset of edema. These results suggest that impaired fluid clearance most likely resulting from pronephros injury contributes to the emergence of zebrafish edema. Briefly, our study provides a perspective: the kidney developmental injury induced by exogenous substances may regulate edema in a zebrafish model.
Collapse
Affiliation(s)
- Luanjin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixin Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Li C, Wei A, Qin Y. Expression of GADD45B in Renal Tissue of Children with IgA Nephropathy and Correlation with Mesangial Hypercellularity. Fetal Pediatr Pathol 2023; 42:785-795. [PMID: 37534585 DOI: 10.1080/15513815.2023.2239904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Background: We correlated the expression of growth arrest and DNA damage-inducible protein beta (GADD45B) in renal tissue with IgA nephropathy (IgAN) with clinical characteristics and mesangial hypercellularity. Materials and methods: Biopsies from IgAN children were divided into M0 and M1 groups based on the Oxford classification, and biopsies with minimal change disease (MCD) were selected as controls. The mesangial cell proliferation area was evaluated on PAS-stained tissues, and the relative level of GADD45B in renal tissue was assessed by immunohistochemical staining (IHC). Results: Compared with the MCD group, levels of GADD45B in the M0 and M1 groups were significantly higher (p < 0.05). Levels of GADD45B positively correlated with mesangial cell proliferation, proteinuria, and total cholesterol, negatively correlated with Alb levels. Conclusions: It is suggested that high expression of GADD45B may play a regulatory role in mesangial hypercellularity.
Collapse
Affiliation(s)
- Chong Li
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ailing Wei
- Department of Rehabilitation, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Al-Zahaby SA, Farag MR, Alagawany M, Taha HSA, Varoni MV, Crescenzo G, Mawed SA. Zinc Oxide Nanoparticles (ZnO-NPs) Induce Cytotoxicity in the Zebrafish Olfactory Organs via Activating Oxidative Stress and Apoptosis at the Ultrastructure and Genetic Levels. Animals (Basel) 2023; 13:2867. [PMID: 37760268 PMCID: PMC10525688 DOI: 10.3390/ani13182867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein.
Collapse
Affiliation(s)
- Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | | | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| |
Collapse
|
7
|
Liu S, Chen L, Li J, Sun Y, Xu Y, Li Z, Zhu Z, Li X. Asiaticoside Mitigates Alzheimer's Disease Pathology by Attenuating Inflammation and Enhancing Synaptic Function. Int J Mol Sci 2023; 24:11976. [PMID: 37569347 PMCID: PMC10418370 DOI: 10.3390/ijms241511976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, hallmarked by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles. Due to the uncertainty of the pathogenesis of AD, strategies aimed at suppressing neuroinflammation and fostering synaptic repair are eagerly sought. Asiaticoside (AS), a natural triterpenoid derivative derived from Centella asiatica, is known for its anti-inflammatory, antioxidant, and wound-healing properties; however, its neuroprotective function in AD remains unclear. Our current study reveals that AS, when administered (40 mg/kg) in vivo, can mitigate cognitive dysfunction and attenuate neuroinflammation by inhibiting the activation of microglia and proinflammatory factors in Aβ1-42-induced AD mice. Further mechanistic investigation suggests that AS may ameliorate cognitive impairment by inhibiting the activation of the p38 MAPK pathway and promoting synaptic repair. Our findings propose that AS could be a promising candidate for AD treatment, offering neuroinflammation inhibition and enhancement of synaptic function.
Collapse
Affiliation(s)
- Sai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Long Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinran Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Xinuo Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Liwen Z, Song J, Shi J, Xu X, Wang L, Xiuwen Z, Hou Q, Weisong Q, Chen Z. TYRO3 protects podocyte via JNK/c-jun-P53 pathway. Arch Biochem Biophys 2023; 739:109578. [PMID: 36948351 DOI: 10.1016/j.abb.2023.109578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Podocyte injury plays a critical role in diabetic nephropathy (DN). Our previous work demonstrated a protective role of tyrosine-protein kinase receptor TYRO3 in glomerular disease; However, the downstream signaling of TYRO3 remains unclear. Our data showed that genetic ablation of tyro3 in zebrafish recapitulated a nephrotic syndrome phenotype. TYRO3 expression was suppressed by high glucose and TGF-β, which may contribute to decreased TYRO3 expression in progressive DN. Moreover, knockdown of TYRO3 expression with siRNA induced podocytes apoptosis and cytoskeleton rearrangement. Further study revealed that TYRO3 conferred antiapoptotic effects through the activation of JNK/c-jun-P53 in podocytes. Our results revealed a novel signaling module of TYRO3 in podocyte homeostasis, which provides a new molecular insight of TYRO3 effect in podocyte protection.
Collapse
Affiliation(s)
- Zhang Liwen
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Song
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ling Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhai Xiuwen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qin Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qin Weisong
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
9
|
Delacoux M, Guenther A. Stressfulness of the design influences consistency of cognitive measures and their correlation with animal personality traits in wild mice (Mus musculus). Anim Cogn 2023; 26:997-1009. [PMID: 36737560 PMCID: PMC10066096 DOI: 10.1007/s10071-023-01748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Individual variation in cognition is being increasingly recognized as an important evolutionary force but contradictory results so far hamper a general understanding of consistency and association with other behaviors. Partly, this might be caused by external factors imposed by the design. Stress, for example, is known to influence cognition, with mild stress improving learning abilities, while strong or chronic stress impairs them. Also, there might be intraspecific variation in how stressful a given situation is perceived. We investigated two personality traits (stress coping and voluntary exploration), spatial learning with two mazes, and problem-solving in low- and high-stress tests with a group of 30 female wild mice (Mus musculus domesticus). For each test, perceived stress was assessed by measuring body temperature change with infrared thermography, a new non-invasive method that measures skin temperature as a proxy of changes in the sympathetic system activity. While spatial learning and problem-solving were found to be repeatable traits in mice in earlier studies, none of the learning measures were significantly repeatable between the two stress conditions in our study, indicating that the stress level impacts learning. We found correlations between learning and personality traits; however, they differed between the two stress conditions and between the cognitive tasks, suggesting that different mechanisms underlie these processes. These findings could explain some of the contradictory findings in the literature and argue for very careful design of cognitive test setups to draw evolutionary implications.
Collapse
Affiliation(s)
- Mathilde Delacoux
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany. .,Department for Collective Behavior, Max Planck Institute of Animal Behavior, 78464, Constance, Germany. .,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Constance, Germany.
| | - Anja Guenther
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| |
Collapse
|
10
|
A novel epithelial-mesenchymal transition gene signature for the immune status and prognosis of hepatocellular carcinoma. Hepatol Int 2022; 16:906-917. [PMID: 35699863 PMCID: PMC9349121 DOI: 10.1007/s12072-022-10354-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Background This study clarified whether EMT-related genes can predict immunotherapy efficacy and overall survival in patients with HCC. Methods The RNA-sequencing profiles and patient information of 370 samples were derived from the Cancer Genome Atlas (TCGA) dataset, and EMT-related genes were obtained from the Molecular Signatures database. The signature model was constructed using the least absolute shrinkage and selection operator Cox regression analysis in TCGA cohort. Validation data were obtained from the International Cancer Genome Consortium (ICGC) dataset of patients with HCC. Kaplan–Meier analysis and multivariate Cox analyses were employed to estimate the prognostic value. Immune status and tumor microenvironment were estimated using a single-sample gene set enrichment analysis (ssGSEA). The expression of prognostic genes was verified using qRT-PCR analysis of HCC cell lines. Results A signature model was constructed using EMT-related genes to determine HCC prognosis, based on which patients were divided into high-risk and low-risk groups. The risk score, as an independent factor, was related to tumor stage, grade, and immune cells infiltration. The results indicated that the most prognostic genes were highly expressed in the HCC cell lines, but GADD45B was down-regulated. Enrichment analysis suggested that immunoglobulin receptor binding and material metabolism were essential in the prognostic signature. Conclusion Our novel prognostic signature model has a vital impact on immune status and prognosis, significantly helping the decision-making related to the diagnosis and treatment of patients with HCC. Supplementary Information The online version contains supplementary material available at 10.1007/s12072-022-10354-3.
Collapse
|
11
|
The circular RNA circNlgnmediates doxorubicin-inducedcardiac remodeling and fibrosis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:175-189. [PMID: 35402068 PMCID: PMC8956965 DOI: 10.1016/j.omtn.2022.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023]
Abstract
Doxorubicin is a chemotherapeutic medication commonly used to treat many types of cancers, but it has side effects including vomiting, rash, hair loss, and bone marrow suppression. The most dangerous side effects are cardiomyopathy, cardiofibrosis, and heart failure, as doxorubicin generates cytotoxicity and stops DNA replication. There is no treatment to block these side effects. We have developed a transgenic mouse line overexpressing the circular RNA circNlgn and shown that circNlgn is a mediator of doxorubicin-induced cardiofibrosis. Increased expression of circNlgn decreased cardiac function and induced cardiofibrosis by upregulating Gadd45b, Sema4C, and RAD50 and activating p38 and pJNK in circNlgn transgenic heart. Silencing circNlgn decreased the effects of doxorubicin on cardiac cell activities and prevented doxorubicin-induced expression of fibrosis-associated molecules. The protein (Nlgn173) translated by circNlgn could bind and activate H2AX, producing γH2AX, resulting in upregulation of IL-1b, IL-2Rb, IL-6, EGR1, and EGR3. We showed that silencing these molecules in the signaling pathway prevented doxorubicin-induced cardiomyocyte apoptosis, increased cardiomyocyte viability, decreased cardiac fibroblast proliferation, and inhibited collagen production. This mechanism may hold therapeutic implications for mitigating the side effects of doxorubicin therapy in cancer patients.
Collapse
|
12
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|
13
|
Molecular Mechanisms of Kidney Injury and Repair. Int J Mol Sci 2022; 23:ijms23031542. [PMID: 35163470 PMCID: PMC8835923 DOI: 10.3390/ijms23031542] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.
Collapse
|
14
|
Deng K, Fan Y, Liang Y, Cai Y, Zhang G, Deng M, Wang Z, Lu J, Shi J, Wang F, Zhang Y. FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:34-48. [PMID: 34513292 PMCID: PMC8408560 DOI: 10.1016/j.omtn.2021.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
N6-methyladenosine (m6A) modification plays a critical role in mammalian development. However, the role of m6A in the skeletal muscle development remains largely unknown. Here, we report a global m6A modification pattern of goat skeletal muscle at two key development stages and identified that the m6A modification regulated the expression of the growth arrest and DNA damage-inducible 45B (GADD45B) gene, which is involved in myogenic differentiation. We showed that GADD45B expression increased during myoblast differentiation, whereas the downregulation of GADD45B inhibits myogenic differentiation and mitochondrial biogenesis. Moreover, the expression of GADD45B regulates the expression of myogenic regulatory factors and peroxisome proliferator-activated receptor gamma coactivator 1 alpha by activating the p38 mitogen-activated protein kinase (MAPK) pathway. Conversely, the inactivation of p38 MAPK abolished the GADD45B-mediated myogenic differentiation. Furthermore, we found that the knockdown of fat mass and obesity-associated protein (FTO) increases GADD45B m6A modification and decreases the stability of GADD45B mRNA, which impairs myogenic differentiation. Our results indicate that the FTO-mediated m6A modification in GADD45B mRNA drives skeletal muscle differentiation by activating the p38 MAPK pathway, which provides a molecular mechanism for the regulation of myogenesis via RNA methylation.
Collapse
Affiliation(s)
- Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxu Liang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingtian Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhibo Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Lu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianfei Shi
- Haimen Goat Breeding Farm, Nantong 226100, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China.,Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Evaluation of endogenous miRNA reference genes across different zebrafish strains, developmental stages and kidney disease models. Sci Rep 2021; 11:22894. [PMID: 34819534 PMCID: PMC8613261 DOI: 10.1038/s41598-021-00075-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
The majority of kidney diseases arise from the loss of podocytes and from morphological changes of their highly complex foot process architecture, which inevitably leads to a reduced kidney filtration and total loss of kidney function. It could have been shown that microRNAs (miRs) play a pivotal role in the pathogenesis of podocyte-associated kidney diseases. Due to their fully functioning pronephric kidney, larval zebrafish have become a popular vertebrate model, to study kidney diseases in vivo. Unfortunately, there is no consensus about a proper normalization strategy of RT-qPCR-based miRNA expression data in zebrafish. In this study we analyzed 9 preselected candidates dre-miR-92a-3p, dre-miR-206-3p, dre-miR-99-1, dre-miR-92b-3p, dre-miR-363-3p, dre-let-7e, dre-miR-454a, dre-miR-30c-5p, dre-miR-126a-5p for their capability as endogenous reference genes in zebrafish experiments. Expression levels of potential candidates were measured in 3 different zebrafish strains, different developmental stages, and in different kidney disease models by RT-qPCR. Expression values were analyzed with NormFinder, BestKeeper, GeNorm, and DeltaCt and were tested for inter-group differences. All candidates show an abundant expression throughout all samples and relatively high stability. The most stable candidate without significant inter-group differences was dre-miR-92b-3p making it a suitable endogenous reference gene for RT-qPCR-based miR expression zebrafish studies.
Collapse
|
16
|
Yang J, Zhang D, Motojima M, Kume T, Hou Q, Pan Y, Duan A, Zhang M, Jiang S, Hou J, Shi J, Qin Z, Liu Z. Super-Enhancer-Associated Transcription Factors Maintain Transcriptional Regulation in Mature Podocytes. J Am Soc Nephrol 2021; 32:1323-1337. [PMID: 33771836 PMCID: PMC8259645 DOI: 10.1681/asn.2020081177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Transcriptional programs control cell fate, and identifying their components is critical for understanding diseases caused by cell lesion, such as podocytopathy. Although many transcription factors (TFs) are necessary for cell-state maintenance in glomeruli, their roles in transcriptional regulation are not well understood. METHODS The distribution of H3K27ac histones in human glomerulus cells was analyzed to identify superenhancer-associated TFs, and ChIP-seq and transcriptomics were performed to elucidate the regulatory roles of the TFs. Transgenic animal models of disease were further investigated to confirm the roles of specific TFs in podocyte maintenance. RESULTS Superenhancer distribution revealed a group of potential TFs in core regulatory circuits in human glomerulus cells, including FOXC1/2, WT1, and LMX1B. Integration of transcriptome and cistrome data of FOXC1/2 in mice resolved transcriptional regulation in podocyte maintenance. FOXC1/2 regulated differentiation-associated transcription in mature podocytes. In both humans and animal models, mature podocyte injury was accompanied by deregulation of FOXC1/2 expression, and FOXC1/2 overexpression could protect podocytes in zebrafish. CONCLUSIONS FOXC1/2 maintain podocyte differentiation through transcriptional stabilization. The genome-wide chromatin resources support further investigation of TFs' regulatory roles in glomeruli transcription programs.
Collapse
Affiliation(s)
- Jingping Yang
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Difei Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Pan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhua Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Zhihong Liu
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Burbridge K, Holcombe J, Weavers H. Metabolically active and polyploid renal tissues rely on graded cytoprotection to drive developmental and homeostatic stress resilience. Development 2021; 148:dev197343. [PMID: 33913484 PMCID: PMC8214761 DOI: 10.1242/dev.197343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Body tissues are frequently exposed to stress, from toxic byproducts generated during cellular metabolism through to infection or wounding. Although it is well-established that tissues respond to exogenous injury by rapidly upregulating cytoprotective machinery, how energetically demanding tissues - vulnerable to persistent endogenous insult - withstand stress is poorly understood. Here, we show that the cytoprotective factors Nrf2 and Gadd45 act within a specific renal cell subtype, the energetically and biosynthetically active 'principal' cells, to drive stress resilience during Drosophila renal development and homeostasis. Renal tubules lacking Gadd45 exhibit striking morphogenetic defects (with cell death, inflammatory infiltration and reduced ploidy) and accumulate significant DNA damage in post-embryonic life. In parallel, the transcription factor Nrf2 is active during periods of intense renal physiological activity, where it protects metabolically active renal cells from oxidative damage. Despite its constitutive nature, renal cytoprotective activity must be precisely balanced and sustained at modest sub-injury levels; indeed, further experimental elevation dramatically perturbs renal development and function. We suggest that tissues requiring long-term protection must employ restrained cytoprotective activity, whereas higher levels might only be beneficial if activated transiently pre-emptive to exogenous insult.
Collapse
Affiliation(s)
| | | | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
18
|
Duan A, Wang H, Zhu Y, Wang Q, Zhang J, Hou Q, Xing Y, Shi J, Hou J, Qin Z, Chen Z, Liu Z, Yang J. Chromatin architecture reveals cell type-specific target genes for kidney disease risk variants. BMC Biol 2021; 19:38. [PMID: 33627123 PMCID: PMC7905576 DOI: 10.1186/s12915-021-00977-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cell type-specific transcriptional programming results from the combinatorial interplay between the repertoire of active regulatory elements. Disease-associated variants disrupt such programming, leading to altered expression of downstream regulated genes and the onset of pathological states. However, due to the non-linear regulatory properties of non-coding elements such as enhancers, which can activate transcription at long distances and in a non-directional way, the identification of causal variants and their target genes remains challenging. Here, we provide a multi-omics analysis to identify regulatory elements associated with functional kidney disease variants, and downstream regulated genes. RESULTS In order to understand the genetic risk of kidney diseases, we generated a comprehensive dataset of the chromatin landscape of human kidney tubule cells, including transcription-centered 3D chromatin organization, histone modifications distribution and transcriptome with HiChIP, ChIP-seq and RNA-seq. We identified genome-wide functional elements and thousands of interactions between the distal elements and target genes. The results revealed that risk variants for renal tumor and chronic kidney disease were enriched in kidney tubule cells. We further pinpointed the target genes for the variants and validated two target genes by CRISPR/Cas9 genome editing techniques in zebrafish, demonstrating that SLC34A1 and MTX1 were indispensable genes to maintain kidney function. CONCLUSIONS Our results provide a valuable multi-omics resource on the chromatin landscape of human kidney tubule cells and establish a bioinformatic pipeline in dissecting functions of kidney disease-associated variants based on cell type-specific epigenome.
Collapse
Affiliation(s)
- Aiping Duan
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Hong Wang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yan Zhu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qi Wang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jing Zhang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qing Hou
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuexian Xing
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinhua Hou
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road N.E, Atlanta, GA, 30322, USA
| | - Zhaohong Chen
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jingping Yang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
19
|
Wang Y, Tang N, Mao M, Zhou Y, Wu Y, Li J, Zhang W, Peng C, Chen X, Li J. Fine particulate matter (PM2.5) promotes IgE-mediated mast cell activation through ROS/Gadd45b/JNK axis. J Dermatol Sci 2021; 102:47-57. [PMID: 33676788 DOI: 10.1016/j.jdermsci.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mast cells play an important role in allergic responses and persistently exposure to environmental fine particulate matter (PM2.5) exacerbates allergic diseases,but the details remained elucidative. OBJECTIVES To investigate the effect of PM2.5 on IgE-mediated mast cell responses through an IgE-mediated mouse model and mast cell activation. METHODS The β-hexosaminidase release and a BALB/c model of passive cutaneous anaphylaxis (PCA) was used to test IgE-mediated mast cells activation in vitro and in vivo. RNA-Seq technique was conducted to study the gene expression profile. Reactive oxygen species (ROS) production was measured by flow-cytometry. RT-PCR,WB and ELISA were performed to examine targeting molecules expression. RESULTS PM2.5 facilitated IgE-mediated degranulation and increased cytokines expression in mast cells. Meanwhile, the Evan's blue extravasation as well as serum cytokines in mice was increased after treatment with PM2.5. Furthermore, PM2.5 treatment dramatically increased the expression of Gadd45b which is an oxidative stress molecule that directly activates down-stream pathway, such as MEKK4/JNK. PM2.5 treatment activated MEKK4, JNK1/2 but not ERK1/2 and p38. Meanwhile, Knockdown of Gadd45b significantly attenuated PM2.5-mediated JNK1/2 activation and expression of cytokines. In addition, a JNK1/2-specific inhibitor SP600125 blocked IgE-mediated mast cell activation and cytokine release in PCA model mice. Moreover, PM2.5 treatment increased the ROS level and ROS inhibitor dramatically blocked the PM2.5-induced ROS production and reversed the PM2.5-mediated gene expression in the mitochondrial respiratory chain. CONCLUSIONS PM2.5 regulates ROS production through Gadd45b/MEKK4/JNK pathway, facilitating IgE-mediated mast cell activation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Ni Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Manyun Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Youyou Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Yingfang Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Juan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.
| |
Collapse
|
20
|
Pepin ME, Schiano C, Miceli M, Benincasa G, Mansueto G, Grimaldi V, Soricelli A, Wende AR, Napoli C. The human aortic endothelium undergoes dose-dependent DNA methylation in response to transient hyperglycemia. Exp Cell Res 2021; 400:112485. [PMID: 33515594 DOI: 10.1016/j.yexcr.2021.112485] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glycemic control is a strong predictor of long-term cardiovascular risk in patients with diabetes mellitus, and poor glycemic control influences long-term risk of cardiovascular disease even decades after optimal medical management. This phenomenon, termed glycemic memory, has been proposed to occur due to stable programs of cardiac and endothelial cell gene expression. This transcriptional remodeling has been shown to occur in the vascular endothelium through a yet undefined mechanism of cellular reprogramming. METHODS In the current study, we quantified genome-wide DNA methylation of cultured human endothelial aortic cells (HAECs) via reduced-representation bisulfite sequencing (RRBS) following exposure to diabetic (250 mg/dL), pre-diabetic (125 mg/dL), or euglycemic (100 mg/dL) glucose concentrations for 72 h (n = 2). RESULTS We discovered glucose-dependent methylation of genomic regions (DMRs) encompassing 2199 genes, with a disproportionate number found among genes associated with angiogenesis and nitric oxide (NO) signaling-related pathways. Multi-omics analysis revealed differential methylation and gene expression of VEGF (↑5.6% DMR, ↑3.6-fold expression), and NOS3 (↓20.3% DMR, ↓1.6-fold expression), nodal regulators of angiogenesis and NO signaling, respectively. CONCLUSION In the current exploratory study, we examine glucose-dependent and dose-responsive alterations in endothelial DNA methylation to examine a putative epigenetic mechanism underlying diabetic vasculopathy. Specifically, we uncover the disproportionate glucose-dependent methylation and gene expression of VEGF and NO signaling cascades, a physiologic imbalance known to cause endothelial dysfunction in diabetes. We therefore hypothesize that epigenetic mechanisms encode a glycemic memory within endothelial cells.
Collapse
Affiliation(s)
- Mark E Pepin
- Dept. of Pathology, Division of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, USA; Dept. of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA; Institüt für Experimentelle Kardiologie, Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | - Concetta Schiano
- Dept. of Advanced Medical and Surgical Sciences (DAMSS), Università Della Campania "Luigi Vanvitelli", P.za Miraglia, 2 - 80138, Naples, Italy.
| | - Marco Miceli
- IRCCS SDN, Via E. Gianturco, 113 - 80143, Naples, Italy.
| | - Giuditta Benincasa
- Dept. of Advanced Medical and Surgical Sciences (DAMSS), Università Della Campania "Luigi Vanvitelli", P.za Miraglia, 2 - 80138, Naples, Italy.
| | - Gelsomina Mansueto
- Dept. of Advanced Medical and Surgical Sciences (DAMSS), Università Della Campania "Luigi Vanvitelli", P.za Miraglia, 2 - 80138, Naples, Italy; Clinical Dept. of Internal Medicine and Specialistic Units, Università Della Campania "Luigi Vanvitelli", P.za Miraglia, 2 - 80138, Naples, Italy.
| | - Vincenzo Grimaldi
- Dept. of Advanced Medical and Surgical Sciences (DAMSS), Università Della Campania "Luigi Vanvitelli", P.za Miraglia, 2 - 80138, Naples, Italy; IRCCS SDN, Via E. Gianturco, 113 - 80143, Naples, Italy.
| | - Andrea Soricelli
- IRCCS SDN, Via E. Gianturco, 113 - 80143, Naples, Italy; Dept of Exercise and Wellness Sciences, University of Naples Parthenope, Via Ammiraglio Ferdinando Acton, 38 - 80133 Naples, Italy.
| | - Adam R Wende
- Dept. of Pathology, Division of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, USA; Dept. of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA.
| | - Claudio Napoli
- Dept. of Advanced Medical and Surgical Sciences (DAMSS), Università Della Campania "Luigi Vanvitelli", P.za Miraglia, 2 - 80138, Naples, Italy; IRCCS SDN, Via E. Gianturco, 113 - 80143, Naples, Italy; Clinical Dept. of Internal Medicine and Specialistic Units, Università Della Campania "Luigi Vanvitelli", P.za Miraglia, 2 - 80138, Naples, Italy.
| |
Collapse
|
21
|
Tian X, Inoue K, Zhang Y, Wang Y, Sperati CJ, Pedigo CE, Zhao T, Yan M, Groener M, Moledina DG, Ebenezer K, Li W, Zhang Z, Liebermann DA, Greene L, Greer P, Parikh CR, Ishibe S. Inhibiting calpain 1 and 2 in cyclin G associated kinase-knockout mice mitigates podocyte injury. JCI Insight 2020; 5:142740. [PMID: 33208557 PMCID: PMC7710277 DOI: 10.1172/jci.insight.142740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Evidence for reduced expression of cyclin G associated kinase (GAK) in glomeruli of patients with chronic kidney disease was observed in the Nephroseq human database, and GAK was found to be associated with the decline in kidney function. To examine the role of GAK, a protein that functions to uncoat clathrin during endocytosis, we generated podocyte-specific Gak-knockout mice (Gak-KO), which developed progressive proteinuria and kidney failure with global glomerulosclerosis. We isolated glomeruli from the mice carrying the mutation to perform messenger RNA profiling and unearthed evidence for dysregulated podocyte calpain protease activity as an important contributor to progressive podocyte damage. Treatment with calpain inhibitor III specifically inhibited calpain-1/-2 activities, mitigated the degree of proteinuria and glomerulosclerosis, and led to a striking increase in survival in the Gak-KO mice. Podocyte-specific deletion of Capns1, essential for calpain-1 and calpain-2 activities, also improved proteinuria and glomerulosclerosis in Gak-KO mice. Increased podocyte calpain activity-mediated proteolysis of IκBα resulted in increased NF-κB p65-induced expression of growth arrest and DNA-damage-inducible 45 beta in the Gak-KO mice. Our results suggest that loss of podocyte-associated Gak induces glomerular injury secondary to calcium dysregulation and aberrant calpain activation, which when inhibited, can provide a protective role.
Collapse
MESH Headings
- Animals
- Calpain/antagonists & inhibitors
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/therapy
- Female
- Glomerulosclerosis, Focal Segmental/etiology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/therapy
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Podocytes/metabolism
- Podocytes/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/therapy
Collapse
Affiliation(s)
- Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - C. John Sperati
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tingting Zhao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meihua Yan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan A. Liebermann
- Fels Institute of Cancer Research and Molecular Biology and Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania USA
| | - Lois Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peter Greer
- Queen’s Cancer Research Institute, Kingston, Ontario, Canada
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Xue M, Sun H, Xu R, Wang Y, Guo J, Li X, Cheng Y, Xu C, Tang C, Sun B, Chen L. GADD45B Promotes Glucose-Induced Renal Tubular Epithelial-Mesenchymal Transition and Apoptosis via the p38 MAPK and JNK Signaling Pathways. Front Physiol 2020; 11:1074. [PMID: 33013461 PMCID: PMC7508261 DOI: 10.3389/fphys.2020.01074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Growth arrest and DNA damage-inducible beta (GADD45B) is closely linked with cell cycle arrest, DNA repair, cell survival, or apoptosis in response to stress and is known to regulate the mitogen-activated protein kinase (MAPK) pathway. Here, using an RNA sequencing approach, we determined that GADD45B was significantly upregulated in diabetic kidneys, which was accompanied by renal tubular epithelial-mesenchymal transition (EMT) and apoptosis, as well as elevated MAPK pathway activation. In vitro, GADD45B expression in cultured human kidney proximal tubular epithelial cells (HK-2 cells) was also stimulated by high glucose (HG). In addition, overexpression of GADD45B in HK-2 cells exacerbated renal tubular EMT and apoptosis and increased p38 MAPK and c-Jun N-terminal kinases (JNK) activation, whereas knockdown of GADD45B reversed these changes. Notably, the activity of extracellular regulated kinase (ERK) was not affected by GADD45B expression. Furthermore, inhibitors of p38 MAPK (SB203580) and JNK (SP600125) alleviated HG‐ and GADD45B overexpression-induced renal tubular epithelial-mesenchymal transition and apoptosis. These findings indicate a role of GADD45B in diabetes-induced renal tubular EMT and apoptosis via the p38 MAPK and JNK pathways, which may be an important mechanism of diabetic kidney injury.
Collapse
Affiliation(s)
- Mei Xue
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hongxi Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Rong Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yue Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jun Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ying Cheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chaofei Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chao Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
Zhai X, Wang L, Xu C, Hou Q, Zhang L, Li Z, Qin W, Liu Z, Chen Z. Triptolide preserves glomerular barrier function via the inhibition of p53-mediated increase of GADD45B. Arch Biochem Biophys 2019; 671:210-217. [DOI: 10.1016/j.abb.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/03/2019] [Accepted: 07/14/2019] [Indexed: 01/21/2023]
|
24
|
Camilleri-Robles C, Serras F, Corominas M. Role of D-GADD45 in JNK-Dependent Apoptosis and Regeneration in Drosophila. Genes (Basel) 2019; 10:378. [PMID: 31109086 PMCID: PMC6562583 DOI: 10.3390/genes10050378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
The GADD45 proteins are induced in response to stress and have been implicated in the regulation of several cellular functions, including DNA repair, cell cycle control, senescence, and apoptosis. In this study, we investigate the role of D-GADD45 during Drosophila development and regeneration of the wing imaginal discs. We find that higher expression of D-GADD45 results in JNK-dependent apoptosis, while its temporary expression does not have harmful effects. Moreover, D-GADD45 is required for proper regeneration of wing imaginal discs. Our findings demonstrate that a tight regulation of D-GADD45 levels is required for its correct function both, in development and during the stress response after cell death.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
25
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
26
|
Ni Y, Wang X, Yin X, Li Y, Liu X, Wang H, Liu X, Zhang J, Gao H, Shi B, Zhao S. Plectin protects podocytes from adriamycin-induced apoptosis and F-actin cytoskeletal disruption through the integrin α6β4/FAK/p38 MAPK pathway. J Cell Mol Med 2018; 22:5450-5467. [PMID: 30187999 PMCID: PMC6201223 DOI: 10.1111/jcmm.13816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Podocyte injury is an early pathological change characteristic of various glomerular diseases, and apoptosis and F‐actin cytoskeletal disruption are typical features of podocyte injury. In this study, we found that adriamycin (ADR) treatment resulted in typical podocyte injury and repressed plectin expression. Restoring plectin expression protected against ADR‐induced podocyte injury whereas siRNA‐mediated plectin silencing produced similar effects as ADR‐induced podocyte injury, suggesting that plectin plays a key role in preventing podocyte injury. Further analysis showed that plectin repression induced significant integrin α6β4, focal adhesion kinase (FAK) and p38 MAPK phosphorylation. Mutating Y1494, a key tyrosine residue in the integrin β4 subunit, blocked FAK and p38 phosphorylation, thereby alleviating podocyte injury. Inhibitor studies demonstrated that FAK Y397 phosphorylation promoted p38 activation, resulting in podocyte apoptosis and F‐actin cytoskeletal disruption. In vivo studies showed that administration of ADR to rats resulted in significantly increased 24‐hour urine protein levels along with decreased plectin expression and activated integrin α6β4, FAK, and p38. Taken together, these findings indicated that plectin protects podocytes from ADR‐induced apoptosis and F‐actin cytoskeletal disruption by inhibiting integrin α6β4/FAK/p38 pathway activation and that plectin may be a therapeutic target for podocyte injury‐related glomerular diseases.
Collapse
Affiliation(s)
- Yongliang Ni
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Urology, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Xin Wang
- Department of Urology, Tengzhou Central People's Hospital affiliated to Jining Medical College, Xintan Road 181, Tengzhou, China
| | - Xiaoxuan Yin
- Department of Traditional Chinese Medicine, Yankuang Group General Hospital, Zoucheng, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xigao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Haixin Wang
- Department of Urology, Yankuang Group General Hospital, Zoucheng, China
| | - Xiangjv Liu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Jun Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Haiqing Gao
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaohua Zhao
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| |
Collapse
|
27
|
Wang L, Zhang L, Hou Q, Zhu X, Chen Z, Liu Z. Triptolide attenuates proteinuria and podocyte apoptosis via inhibition of NF-κB/GADD45B. Sci Rep 2018; 8:10843. [PMID: 30022148 PMCID: PMC6052061 DOI: 10.1038/s41598-018-29203-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Podocyte injury is a primary contributor to proteinuria. Triptolide is a major active component of Tripterygium wilfordii Hook F that exhibits potent antiproteinuric effects. We used our previously developed in vivo zebrafish model of inducible podocyte-target injury and found that triptolide treatment effectively alleviated oedema, proteinuria and foot process effacement. Triptolide also inhibited podocyte apoptosis in our zebrafish model and in vitro. We also examined the mechanism of triptolide protection of podocyte. Whole-genome expression profiles of cultured podocytes demonstrated that triptolide treatment downregulated apoptosis pathway-related GADD45B expression. Specific overexpression of gadd45b in zebrafish podocytes abolished the protective effects of triptolide. GADD45B is a mediator of podocyte apoptosis that contains typical NF-κB binding sites in the promoter region, and NF-κB p65 primarily transactivates this gene. Triptolide inhibited NF-κB signalling activation and binding of NF-κB to the GADD45B promoter. Taken together, our findings demonstrated that triptolide attenuated proteinuria and podocyte apoptosis via inhibition of NF-κB/GADD45B signalling, which provides a new understanding of the antiproteinuric effects of triptolide in glomerular diseases.
Collapse
Affiliation(s)
- Ling Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Liwen Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.
| |
Collapse
|
28
|
Doria HB, Ferreira MB, Rodrigues SD, Lo SM, Domingues CE, Nakao LS, de Campos SX, Ribeiro CADO, Randi MAF. Time does matter! Acute copper exposure abolishes rhythmicity of clock gene in Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 155:26-36. [PMID: 29499429 DOI: 10.1016/j.ecoenv.2018.02.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock is a key cellular timing system that coordinates physiology and behavior. Light is a key regulator of the clock mechanism via its activation of Per and Cry clock gene expression. Evidence points to a key role of reactive oxygen species (ROS) in resetting this process. In this context, the aim of the present study was to explore copper as a ROS generator, using an innovative approach investigating its effects on circadian timing. Liver and brain from Danio rerio specimens exposed to 0, 5, 25 and 45 μg/L copper concentrations were obtained. Daily oscillations of superoxide dismutase (SOD) and catalase (CAT) enzymatic activity and their correlations both with clock genes (per1, per2, and cry1a) and with organism energy cost were determined. CAT expression correlates with per2 and cry1a and, thus, provides data to support the hypothesis of hydrogen peroxide production by a phototransducing flavin-containing oxidase. Higher SOD activity is correlated with higher intracellular ATP levels. Copper disturbed the daily oscillation of antioxidant enzymes and clock genes, with disturbed per1 rhythmicity in both the brain and liver, while cry1a rhythmicity was abolished in the liver at 25 μg/L copper. Coordination between the SOD and the CAT enzymes was lost when copper concentrations exceeded the limits established by international laws. These results indicate that organism synchronization with the environment may be impaired due to acute copper exposure.
Collapse
Affiliation(s)
- Halina Binde Doria
- Federal University of Paraná (UFPR), Department of Cellular Biology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil.
| | - Marianna Boia Ferreira
- Federal University of Paraná (UFPR), Department of Cellular Biology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Silvia Daniele Rodrigues
- Federal University of Paraná (UFPR), Department of Basic Pathology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Sze Mei Lo
- Federal University of Paraná (UFPR), Department of Basic Pathology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Cinthia Eloise Domingues
- Ponta Grossa State University (UEPG), Research Group on Environmental and Sanitary Analytical Chemistry (QAAS), Caixa Postal 992, Postal Code: 84030-900, Ponta Grossa, Paraná, Brazil
| | - Lia Sumie Nakao
- Federal University of Paraná (UFPR), Department of Basic Pathology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Sandro Xavier de Campos
- Ponta Grossa State University (UEPG), Research Group on Environmental and Sanitary Analytical Chemistry (QAAS), Caixa Postal 992, Postal Code: 84030-900, Ponta Grossa, Paraná, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Federal University of Paraná (UFPR), Department of Cellular Biology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| | - Marco Antonio Ferreira Randi
- Federal University of Paraná (UFPR), Department of Cellular Biology, School of Biological Sciences, Caixa Postal 19.031, Postal Code: 81531-990, Curitiba, Paraná, Brazil
| |
Collapse
|
29
|
Huang H, Wang Q, Du T, Lin C, Lai Y, Zhu D, Wu W, Ma X, Bai S, Li Z, Liu L, Li Q. Matrine inhibits the progression of prostate cancer by promoting expression of GADD45B. Prostate 2018; 78:327-335. [PMID: 29356020 DOI: 10.1002/pros.23469] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Matrine is a naturally occurring alkaloid extracted from the Chinese herb Sophora flavescens. It has been demonstrated to exhibit antiproliferative properties, promote apoptosis, and inhibit cell invasion in a number of cancer cell lines by modulating the NF-κB pathway to downregulate the expression of MMP2 and MM9. It has also been shown to improve the efficacy of chemotherapy when it is combined with other chemotherapy drugs. However, the therapeutic potential of matrine for prostate cancer needs to be further studied. METHODS We analyzed KEGG pathways of differential gene expression between matrine-treated and untreated prostate cancer cell lines and identified GADD45B as one of major target genes of matrine based on its role in apoptosis and prognosis value for prostate cancer patients in TCGA database. We further analyzed the expression of GADD45B protein in a tissue microarray and mRNA in TCGA database, and tested the synergistic impacts of matrine and GADD45B overexpression on proliferation, apoptosis, migration and invasion of prostate cancer cell DU145. RESULTS Matrine promoted the expression of GADD45B, a tumor suppressive gene that is involved in the regulation of cell cycle, DNA damage repair, cell survival, aging, apoptosis and other cellular processes through p38/JNK, ROS-GADD45B-p38, or other signal pathways. Although GADD45B is elevated in prostate cancer tissues, levels of GADD45B in prostate tumor tissues are reduced at late stage of tumor invasion, and higher levels of GADD45B predict better survivals of prostate cancer patients. CONCLUSIONS Matrine may be used to treat prostate cancer patients to increase the levels of GADD45B to inhibit tumor invasion and improve patient survivals.
Collapse
Affiliation(s)
- Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Qiong Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunhao Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wanhua Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Ma
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Soumin Bai
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zean Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Leyuan Liu
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Transcriptome profiling analysis of senescent gingival fibroblasts in response to Fusobacterium nucleatum infection. PLoS One 2017; 12:e0188755. [PMID: 29190775 PMCID: PMC5708803 DOI: 10.1371/journal.pone.0188755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Periodontal disease is caused by dental plaque biofilms. Fusobacterium nucleatum is an important periodontal pathogen involved in the development of bacterial complexity in dental plaque biofilms. Human gingival fibroblasts (GFs) act as the first line of defense against oral microorganisms and locally orchestrate immune responses by triggering the production of reactive oxygen species and pro-inflammatory cytokines (IL-6 and IL-8). The frequency and severity of periodontal diseases is known to increase in elderly subjects. However, despite several studies exploring the effects of aging in periodontal disease, the underlying mechanisms through which aging affects the interaction between F. nucleatum and human GFs remain unclear. To identify genes affected by infection, aging, or both, we performed an RNA-Seq analysis using GFs isolated from a single healthy donor that were passaged for a short period of time (P4) 'young GFs' or for longer period of time (P22) 'old GFs', and infected or not with F. nucleatum. Comparing F. nucleatum-infected and uninfected GF(P4) cells the differentially expressed genes (DEGs) were involved in host defense mechanisms (i.e., immune responses and defense responses), whereas comparing F. nucleatum-infected and uninfected GF(P22) cells the DEGs were involved in cell maintenance (i.e., TGF-β signaling, skeletal development). Most DEGs in F. nucleatum-infected GF(P22) cells were downregulated (85%) and were significantly associated with host defense responses such as inflammatory responses, when compared to the DEGs in F. nucleatum-infected GF(P4) cells. Five genes (GADD45b, KLF10, CSRNP1, ID1, and TM4SF1) were upregulated in response to F. nucleatum infection; however, this effect was only seen in GF(P22) cells. The genes identified here appear to interact with each other in a network associated with free radical scavenging, cell cycle, and cancer; therefore, they could be potential candidates involved in the aged GF's response to F. nucleatum infection. Further studies are needed to confirm these observations.
Collapse
|
31
|
Hagmann H, Mangold N, Rinschen MM, Koenig T, Kunzelmann K, Schermer B, Benzing T, Brinkkoetter PT. Proline-dependent and basophilic kinases phosphorylate human TRPC6 at serine 14 to control channel activity through increased membrane expression. FASEB J 2017; 32:208-219. [PMID: 28877958 DOI: 10.1096/fj.201700309r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023]
Abstract
Signaling via the transient receptor potential (TRP) ion channel C6 plays a pivotal role in hereditary and sporadic glomerular kidney disease. Several studies have identified gain-of-function mutations of TRPC6 and report induced expression and enhanced channel activity of TRPC6 in association with glomerular diseases. Interfering with TRPC6 activity may open novel therapeutic pathways. TRPC6 channel activity is controlled by protein expression and stability as well as intracellular trafficking. Identification of regulatory phosphorylation sites in TRPC6 and corresponding protein kinases is essential to understand the regulation of TRPC6 activity and may result in future therapeutic strategies. In this study, an unbiased phosphoproteomic screen of human TRPC6 identified several novel serine phosphorylation sites. The phosphorylation site at serine 14 of TRPC6 is embedded in a basophilic kinase motif that is highly conserved across species. We confirmed serine 14 as a target of MAPKs and proline-directed kinases like cyclin-dependent kinase 5 (Cdk5) in cell-based as well as in vitro kinase assays and quantitative phosphoproteomic analysis of TRPC6. Phosphorylation of TRPC6 at serine 14 enhances channel conductance by boosting membrane expression of TRPC6, whereas protein stability and multimerization of TRPC6 are not altered, making serine 14 phosphorylation a potential drug target to interfere with TRPC6 channel activity.-Hagmann, H., Mangold, N., Rinschen, M. M., Koenig, T., Kunzelmann, K., Schermer, B., Benzing, T., Brinkkoetter, P. T. Proline-dependent and basophilic kinases phosphorylate human TRPC6 at serine 14 to control channel activity through increased membrane expression.
Collapse
Affiliation(s)
- Henning Hagmann
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Nicole Mangold
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Tim Koenig
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; and
| | - Karl Kunzelmann
- Department of Physiology, University Regensburg, Regensburg, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany;
| |
Collapse
|
32
|
Siegerist F, Blumenthal A, Zhou W, Endlich K, Endlich N. Acute podocyte injury is not a stimulus for podocytes to migrate along the glomerular basement membrane in zebrafish larvae. Sci Rep 2017; 7:43655. [PMID: 28252672 PMCID: PMC5333633 DOI: 10.1038/srep43655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/26/2017] [Indexed: 12/28/2022] Open
Abstract
Podocytes have a unique 3D structure of major and interdigitating foot processes which is the prerequisite for renal blood filtration. Loss of podocytes leads to chronic kidney disease ending in end stage renal disease. Until now, the question if podocytes can be replaced by immigration of cells along the glomerular basement membrane (GBM) is under debate. We recently showed that in contrast to former theories, podocytes are stationary in the zebrafish pronephros and neither migrate nor change their branching pattern of major processes over 23 hours. However, it was still unclear whether podocytes are able to migrate during acute injury. To investigate this, we applied the nitroreductase/metronidazole zebrafish model of podocyte injury to in vivo two-photon microscopy. The application of metronidazole led to retractions of major processes associated with a reduced expression of podocyte-specific proteins and a formation of subpodocyte pseudocyst. Electron microscopy showed that broad areas of the capillaries became denuded. By 4D in vivo observation of single podocytes, we could show that the remaining podocytes did not walk along GBM during 24 h. This in vivo study reveals that podocytes are very stationary cells making regenerative processes by podocyte walking along the GBM very unlikely.
Collapse
Affiliation(s)
- Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Antje Blumenthal
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
33
|
Metadherin facilitates podocyte apoptosis in diabetic nephropathy. Cell Death Dis 2016; 7:e2477. [PMID: 27882943 PMCID: PMC5260885 DOI: 10.1038/cddis.2016.335] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 02/01/2023]
Abstract
Apoptosis, one of the major causes of podocyte loss, has been reported to have a vital role in diabetic nephropathy (DN) pathogenesis, and understanding the mechanisms underlying the regulation of podocyte apoptosis is crucial. Metadherin (MTDH) is an important oncogene, which is overexpressed in most cancers and responsible for apoptosis, metastasis, and poor patient survival. Here we show that the expression levels of Mtdh and phosphorylated p38 mitogen-activated protein kinase (MAPK) are significantly increased, whereas those of the microRNA-30 family members (miR-30s) are considerably reduced in the glomeruli of DN rat model and in high glucose (HG)-induced conditionally immortalized mouse podocytes (MPC5). These levels are positively correlated with podocyte apoptosis rate. The inhibition of Mtdh expression, using small interfering RNA, but not Mtdh overexpression, was shown to inhibit HG-induced MPC5 apoptosis and p38 MAPK pathway, and Bax and cleaved caspase 3 expression. This was shown to be similar to the effects of p38 MAPK inhibitor (SB203580). Furthermore, luciferase assay results demonstrated that Mtdh represents the target of miR-30s. Transient transfection experiments, using miR-30 microRNA (miRNA) inhibitors, led to the increase in Mtdh expression and induced the apoptosis of MPC5, whereas the treatment with miR-30 miRNA mimics led to the reduction in Mtdh expression and apoptosis of HG-induced MPC5 cells in comparison with their respective controls. Our results demonstrate that Mtdh is a potent modulator of podocyte apoptosis, and that it represents the target of miR-30 miRNAs, facilitating podocyte apoptosis through the activation of HG-induced p38 MAPK-dependent pathway.
Collapse
|
34
|
Whole-Genome Expression Analysis and Signal Pathway Screening of Synovium-Derived Mesenchymal Stromal Cells in Rheumatoid Arthritis. Stem Cells Int 2016; 2016:1375031. [PMID: 27642302 PMCID: PMC5014955 DOI: 10.1155/2016/1375031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/25/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
Synovium-derived mesenchymal stromal cells (SMSCs) may play an important role in the pathogenesis of rheumatoid arthritis (RA) and show promise for therapeutic applications in RA. In this study, a whole-genome microarray analysis was used to detect differential gene expression in SMSCs from RA patients and healthy donors (HDs). Our results showed that there were 4828 differentially expressed genes in the RA group compared to the HD group; 3117 genes were upregulated, and 1711 genes were downregulated. A Gene Ontology analysis showed significantly enriched terms of differentially expressed genes in the biological process, cellular component, and molecular function domains. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the MAPK signaling and rheumatoid arthritis pathways were upregulated and that the p53 signaling pathway was downregulated in RA SMSCs. Quantitative real-time polymerase chain reaction was applied to verify the expression variations of the partial genes mentioned above, and a western blot analysis was used to determine the expression levels of p53, p-JNK, p-ERK, and p-p38. Our study found that differentially expressed genes in the MAPK signaling, rheumatoid arthritis, and p53 signaling pathways may help to explain the pathogenic mechanism of RA and lead to therapeutic RA SMSC applications.
Collapse
|
35
|
Jiang X, An Z, Lu C, Chen Y, Du E, Qi S, Yang K, Zhang Z, Xu Y. The protective role of Nrf2-Gadd45b against antimony-induced oxidative stress and apoptosis in HEK293 cells. Toxicol Lett 2016; 256:11-8. [PMID: 27208483 DOI: 10.1016/j.toxlet.2016.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
Antimony (Sb) is one of the most prevalent heavy metals and frequently causes biological toxicity. However, the specific mechanisms by which Sb elicits its toxic effects remains to be fully elucidated. In this study, we found antimony trioxide (Sb2O3) caused a dose-dependent cytotoxicity against HEK293 cells, and Sb2O3-induced excessive reactive oxygen species (ROS) was closely correlated with increased cell apoptosis. Mechanistic investigation manifested that nuclear factor NF-E2-related factor 2 (Nrf2) expression and nuclear translocation were significantly induced under Sb2O3 treatment in HEK293 cells, and Nrf2 knockdown aggregated Sb2O3-induced cell apoptosis. Moreover, elevated Gadd45b expression actives the phosphorylation of MAPKs upon Sb2O3 exposure, whereas Gadd45b knockdown diminished Sb2O3-induced activation of MAPKs and promoted cell apoptosis. In the meantime, however, the antioxidant N-acetylcysteine (NAC) was found to ameliorate Nrf2 expression and nuclear translocation as well as Gadd45b expression and MAPKs activation by repressing Sb2O3-induced ROS production. More importantly, we found Gadd45b was transcriptionally enhanced by Nrf2 through binding to three canonical antioxidant response elements (AREs) within its promoter region. Either Sb2O3 or TBHQ (a selective Nrf2 activator) treatment, Gadd45b expression was significantly increased by luciferase assay. Nrf2 inhibition greatly diminished Gadd45b expression due to reduced binding of Nrf2 in Gadd45b promoter under Sb2O3 treatment. To summarize, this study demonstrated the Nrf2-Gadd45b signaling axis exhibited a protective role in Sb-induced cell apoptosis.
Collapse
Affiliation(s)
- Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zesheng An
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Chao Lu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Kuo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China.
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China.
| |
Collapse
|