1
|
Nasir F, Yadav P, Sivanandam TM. NaHS alters synaptic plasticity proteins and enhances dendritic arborization to improve cognitive and motor deficits after traumatic brain injury in mice. Br J Pharmacol 2025; 182:1183-1205. [PMID: 39562524 DOI: 10.1111/bph.17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) is a complex medical condition affecting people globally. Hydrogen sulfide (H2S) is a recently discovered gaseous mediator and is dysregulated in the brain after TBI. Sodium hydrogen sulfide (NaHS), a known donor of H2S, is beneficial in various biological processes involving aging and diseases, including injury. It is neuroprotective against oxidative stress, neuroinflammation, and other secondary injury processes. However, the NaHS-H2S system has not been investigated as a regulator of injury-mediated synaptic plasticity proteins and the underlying mechanisms after TBI. EXPERIMENTAL APPROACH We developed a model of TBI in Swiss albino mice to study the effects of exogenous H2S, administered as NaHS. We assessed cognitive function (Barnes maze and novel object recognition) and motor function (rotarod). Brain tissue was analysed with ELISA, qRT-PCR, immunoblotting, Golgi-cox staining, and immunofluorescence. KEY RESULTS NaHS administration restored the injury-caused decline in H2S levels. Injury-mediated oxidative stress parameters were improved following NaHS. It down-regulated TBI biomarkers, ameliorated the synaptic marker proteins, and improved cognitive and motor deficits. These changes were accompanied by enhanced dendritic arborization and spine number. Restoration of N-methyl D-aspartate receptor subunits and diminished glutamate and calcium levels, along with marked changes in microtubule-associated protein 2 A and calcium/calmodulin-dependent protein kinase II, formed the basis of the underlying mechanism(s). CONCLUSION AND IMPLICATIONS Our findings suggest that NaHS could have therapeutic activity against TBI, as it ameliorated cognitive and motor deficits caused by changes in synaptic plasticity proteins and dendritic arborisation, in our model.
Collapse
Affiliation(s)
- Farheen Nasir
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Thamil Mani Sivanandam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Andoh M, Shinoda N, Taira Y, Araki T, Kasahara Y, Takeuchi H, Miura M, Ikegaya Y, Koyama R. Nonapoptotic caspase-3 guides C1q-dependent synaptic phagocytosis by microglia. Nat Commun 2025; 16:918. [PMID: 39843445 PMCID: PMC11754728 DOI: 10.1038/s41467-025-56342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Caspases are known to mediate neuronal apoptosis during brain development. However, here we show that nonapoptotic activation of caspase-3 at presynapses drives microglial synaptic phagocytosis. Real-time observation and spatiotemporal manipulation of synaptic caspase-3 in the newly established, mouse-derived culture system demonstrate that increased neuronal activity triggers localized presynaptic caspase-3 activation, facilitating synaptic tagging by complements. High-resolution live imaging reveals that caspase-3 activation promotes synapse-selective complement-dependent microglial phagocytosis without axonal shearing. Furthermore, activity-dependent caspase-3 activation at inhibitory presynapses induces microglial phagocytosis in mice and increases seizure susceptibility. This increased susceptibility is reversed by genetic depletion of microglial complement receptors. Thus, localized, nonapoptotic caspase activity guides complement-dependent microglial synaptic phagocytosis and remodels neuronal circuits.
Collapse
Affiliation(s)
- Megumi Andoh
- Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Taira
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuka Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruki Takeuchi
- Laboratory of Molecular Neurobiology, Department of Biophysics and Biochemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Ryuta Koyama
- Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
3
|
Xia QQ, Singh A, Wang J, Xuan ZX, Singer JD, Powell CM. Autism risk gene Cul3 alters neuronal morphology via caspase-3 activity in mouse hippocampal neurons. Front Cell Neurosci 2024; 18:1320784. [PMID: 38803442 PMCID: PMC11129687 DOI: 10.3389/fncel.2024.1320784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders (NDDs) in which children display differences in social interaction/communication and repetitive stereotyped behaviors along with variable associated features. Cul3, a gene linked to ASD, encodes CUL3 (CULLIN-3), a protein that serves as a key component of a ubiquitin ligase complex with unclear function in neurons. Cul3 homozygous deletion in mice is embryonic lethal; thus, we examine the role of Cul3 deletion in early synapse development and neuronal morphology in hippocampal primary neuronal cultures. Homozygous deletion of Cul3 significantly decreased dendritic complexity and dendritic length, as well as axon formation. Synaptic spine density significantly increased, mainly in thin and stubby spines along with decreased average spine volume in Cul3 knockouts. Both heterozygous and homozygous knockout of Cul3 caused significant reductions in the density and colocalization of gephyrin/vGAT puncta, providing evidence of decreased inhibitory synapse number, while excitatory synaptic puncta vGulT1/PSD95 density remained unchanged. Based on previous studies implicating elevated caspase-3 after Cul3 deletion, we demonstrated increased caspase-3 in our neuronal cultures and decreased neuronal cell viability. We then examined the efficacy of the caspase-3 inhibitor Z-DEVD-FMK to rescue the decrease in neuronal cell viability, demonstrating reversal of the cell viability phenotype with caspase-3 inhibition. Studies have also implicated caspase-3 in neuronal morphological changes. We found that caspase-3 inhibition largely reversed the dendrite, axon, and spine morphological changes along with the inhibitory synaptic puncta changes. Overall, these data provide additional evidence that Cul3 regulates the formation or maintenance of cell morphology, GABAergic synaptic puncta, and neuronal viability in developing hippocampal neurons in culture.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anju Singh
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Wang
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhong Xin Xuan
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States
| | - Craig M. Powell
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Jia D, Wang F, Bai Z, Chen X. BDNF-TrkB/proBDNF-p75 NTR pathway regulation by lipid emulsion rescues bupivacaine-induced central neurotoxicity in rats. Sci Rep 2023; 13:18364. [PMID: 37884604 PMCID: PMC10603093 DOI: 10.1038/s41598-023-45572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Bupivacaine (BPV) can cause severe central nervous system toxicity when absorbed into the blood circulation system. Rapid intravenous administration of lipid emulsion (LE) could be used to treat local anaesthetic toxicity. This study aimed to investigate the mechanism by which the BDNF-TrkB/proBDNF-p75NTR pathway regulation by LE rescues BPV induced neurotoxicity in hippocampal neurons in rats. Seven- to nine-day-old primary cultured hippocampal neurons were randomly divided into 6 groups: the blank control group (Ctrl), the bupivacaine group (BPV), the lipid emulsion group (LE), the bupivacaine + lipid emulsion group (BPV + LE), the bupivacaine + lipid emulsion + tyrosine kinase receptor B (TrkB) inhibitor group (BPV + LE + K252a), the bupivacaine + lipid emulsion + p75 neurotrophic factor receptor (p75NTR) inhibitor group (BPV + LE + TAT-Pep5). All hippocampal neurons were incubated for 24 h, and their growth state was observed by light microscopy. The relative TrkB and p75NTR mRNA levels were detected by real-time PCR. The protein expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, TrkB, p75NTR and cleaved caspase-3 were detected by western blotting. The results showed that primary hippocampal neuron activity was reduced by BPV. As administration of LE elevated hippocampal neuronal activity, morphology was also somewhat improved. The protein expression and mRNA levels of TrkB and p75NTR were decreased when BPV induced hippocampal neuronal toxicity, while the expression of BDNF was increased. At the same time, BPV increased the original generation of cleaved caspase-3 protein content by hippocampal neurons, while the content of cleaved caspase-3 protein in hippocampal neurons cotreated with LE and BPV was decreased. Thus, this study has revealed LE may reduce apoptosis and promote survival of hippocampal neurons by regulating the BDNF-TrkB pathway and the proBDNF-p75NTR pathway to rescue BPV induced central neurotoxicity in rats.
Collapse
Affiliation(s)
- Danting Jia
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fang Wang
- Department of Anaesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, Ningxia, China
| | - Zhixia Bai
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xuexin Chen
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
5
|
Ma Q, Ruan H, Dai H, Yao WD. USP48/USP31 Is a Nuclear Deubiquitinase that Potently Regulates Synapse Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558317. [PMID: 37781625 PMCID: PMC10541093 DOI: 10.1101/2023.09.19.558317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Deubiquitinases present locally at synapses regulate synaptic development, function, and plasticity. It remains largely unknown, however, whether deubiquitinases localized outside of the synapse control synapse remodeling. Here we identify ubiquitin specific protease 48 (USP48; formerly USP31) as a nuclear deubiquitinase mediating robust synapse removal. USP48 is expressed primarily during the first postnatal week in the rodent brain and is virtually restricted to nuclei, mediated by a conserved, 13-amino acid nuclear localization signal. When exogenously expressed, USP48, in a deubiquitinase and nuclear localization-dependent manner, induces striking filopodia elaboration, marked spine loss, and significantly reduced synaptic protein clustering in vitro, and erases ~70% of functional synapses in vivo. USP48 interacts with the transcription factor NF-κB, deubiquitinates NF-κB subunit p65 and promotes its stability and activation, and up-regulates NF-κB target genes known to inhibit synaptogenesis. Depleting NF-κB prevents USP48-dependent spine pruning. These findings identify a novel nucleus-enriched deubiquitinase that plays critical roles in synapse remodeling.
Collapse
Affiliation(s)
- Qi Ma
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Hongyu Ruan
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Huihui Dai
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Wei-Dong Yao
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
6
|
Kastellakis G, Tasciotti S, Pandi I, Poirazi P. The dendritic engram. Front Behav Neurosci 2023; 17:1212139. [PMID: 37576932 PMCID: PMC10412934 DOI: 10.3389/fnbeh.2023.1212139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulating evidence from a wide range of studies, including behavioral, cellular, molecular and computational findings, support a key role of dendrites in the encoding and recall of new memories. Dendrites can integrate synaptic inputs in non-linear ways, provide the substrate for local protein synthesis and facilitate the orchestration of signaling pathways that regulate local synaptic plasticity. These capabilities allow them to act as a second layer of computation within the neuron and serve as the fundamental unit of plasticity. As such, dendrites are integral parts of the memory engram, namely the physical representation of memories in the brain and are increasingly studied during learning tasks. Here, we review experimental and computational studies that support a novel, dendritic view of the memory engram that is centered on non-linear dendritic branches as elementary memory units. We highlight the potential implications of dendritic engrams for the learning and memory field and discuss future research directions.
Collapse
Affiliation(s)
- George Kastellakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Simone Tasciotti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Ioanna Pandi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| |
Collapse
|
7
|
Oreshko AS, Rodnyy AY, Bazovkina DV, Naumenko VS. Effects of central administration of the human Tau protein on the Bdnf, Trkb, p75, Mapt, Bax and Bcl-2 genes expression in the mouse brain. Vavilovskii Zhurnal Genet Selektsii 2023; 27:342-348. [PMID: 37465194 PMCID: PMC10350857 DOI: 10.18699/vjgb-23-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 07/20/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia, affecting millions of people worldwide. Despite intensive work by many researchers, the mechanisms underlying Alzheimer's disease development have not yet been elucidated. Recently, more studies have been directed to the investigation of the processes leading to the formation of neurofibrillary tangles consisting of hyperphosphorylated microtubule-associated Tau proteins. Pathological aggregation of this protein leads to the development of neurodegeneration associated with impaired neurogenesis and apoptosis. In the present study, the effects of central administration of aggregating human Tau protein on the expression of the Bdnf, Ntrk2, Ngfr, Mapt, Bax and Bcl-2 genes in the brain of C57Bl/6J mice were explored. It was found that five days after administration of the protein into the fourth lateral ventricle, significant changes occurred in the expression of the genes involved in apoptosis and neurogenesis regulation, e. g., a notable decrease in the mRNA level of the gene encoding the most important neurotrophic factor BDNF (brain-derived neurotrophic factor) was observed in the frontal cortex which could play an important role in neurodegeneration caused by pathological Tau protein aggregation. Central administration of the Tau protein did not affect the expression of the Ntrk2, Ngfr, Mapt, Bax and Bcl-2 genes in the frontal cortex and hippocampus. Concurrently, a significant decrease in the expression of the Mapt gene encoding endogenous mouse Tau protein was found in the cerebellum. However, no changes in the level or phosphorylation of the endogenous Tau protein were observed. Thus, central administration of aggregating human Tau protein decreases the expression of the Bdnf gene in the frontal cortex and the Mapt gene encoding endogenous mouse Tau protein in the cerebellum of C57Bl/6J mice.
Collapse
Affiliation(s)
- A S Oreshko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Ya Rodnyy
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Bazovkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Naumenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Song C, Zhao J, Hao J, Mi D, Zhang J, Liu Y, Wu S, Gao F, Jiang W. Aminoprocalcitonin protects against hippocampal neuronal death via preserving oxidative phosphorylation in refractory status epilepticus. Cell Death Discov 2023; 9:144. [PMID: 37142587 PMCID: PMC10160063 DOI: 10.1038/s41420-023-01445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Refractory status epilepticus (RSE) is a neurological emergency where sustaining seizure causes severe neuronal death. Currently, there is no available neuroprotectant effective in RSE. Aminoprocalcitonin (NPCT) is a conserved peptide cleaved from procalcitonin, but its distribution and function in the brain remain enigmatic. Survival of neurons relies on sufficient energy supply. Recently, we found that NPCT was extensively distributed in the brain and had potent modulations on neuronal oxidative phosphorylation (OXPHOS), suggesting that NPCT might be involved in neuronal death by regulating energy status. In the present study, combining biochemical and histological methods, high-throughput RNA-sequence, Seahorse XFe analyser, an array of mitochondria function assays, and behavior-electroencephalogram (EEG) monitoring, we investigated the roles and translational values of NPCT in neuronal death after RSE. We found that NPCT was extensively distributed throughout gray matters in rat brain while RSE triggered NPCT overexpression in hippocampal CA3 pyramidal neurons. High-throughput RNA-sequence demonstrated that the influences of NPCT on primary hippocampal neurons were enriched in OXPHOS. Further function assays verified that NPCT facilitated ATP production, enhanced the activities of mitochondrial respiratory chain complexes I, IV, V, and increased neuronal maximal respiration capacity. NPCT exerted multiple neurotrophic effects including facilitating synaptogenesis, neuritogenesis, spinogenesis, and suppression of caspase-3. A polyclonal NPCT immunoneutralization antibody was developed to antagonize NPCT. In the in vitro 0-Mg2+ seizure model, immunoneutralization of NPCT caused more neuronal death, while exogenous NPCT supplementation, though did not reverse death outcomes, preserved mitochondrial membrane potential. In rat RSE model, both peripheral and intracerebroventricular immunoneutralization of NPCT exacerbated hippocampal neuronal death and peripheral immunoneutralization increased mortality. Intracerebroventricular immunoneutralization of NPCT further led to more serious hippocampal ATP depletion, and significant EEG power exhaustion. We conclude that NPCT is a neuropeptide regulating neuronal OXPHOS. During RSE, NPCT was overexpressed to protect hippocampal neuronal survival via facilitating energy supply.
Collapse
Affiliation(s)
- Changgeng Song
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jingjing Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jianmin Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Dan Mi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jiajia Zhang
- National Translational Science Centre for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
9
|
Li Y, Chen J, Yu H, Ye J, Wang C, Kong L. Serum brain-derived neurotrophic factor as diagnosis clue for Alzheimer's disease: A cross-sectional observational study in the elderly. Front Psychiatry 2023; 14:1127658. [PMID: 37009109 PMCID: PMC10060560 DOI: 10.3389/fpsyt.2023.1127658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveBrain-derived neurotrophic factor (BDNF) has not been validated as a diagnostic marker for Alzheimer's disease (AD). To provide a different perspective, this study aimed to evaluate the relationship between serum levels of mature BDNF (mBDNF) and precursor BDNF (proBDNF) in AD and to investigate whether serum BDNF levels or the ratio of mBDNF levels to proBDNF levels (M/P) could be a valuable biomarker for determining the risk of AD in elderly individuals.MethodA total of 126 subjects who met the inclusion criteria were assigned to either the AD group (n = 62) or the healthy control group (HC, n = 64) in this cross-sectional observationl study. Serum levels of mBDNF and proBDNF were measured using enzyme immunoassay kits. We analyzed the Mini-Mental State Examination (MMSE) scores from the two groups and examined the associations between AD and BDNF metabolism.ResultsThe serum concentration of proBDNF was significantly higher in ADs (4140.937 pg/ml) than in HCs (2606.943 pg/ml; p < 0.01). The MMSE significantly correlated with proBDNF (p < 0.01, r = −0.686) and M/P (p < 0.01, r = 0.595) in all subjects. To determine the risk for AD, the area under the receiver operating characteristic curve was calculated, which was 0.896 (95% confidence interval 0.844–0.949) for proBDNF and 0.901 (95% 0.850–0.953) for proBDNF and M/P combined.ConclusionWe observed a correlation between low serum proBDNF levels and higher MMSE scores in AD. The most effective diagnostic strategy was the combination of proBDNF and M/P, whereas mBDNF levels performed poorly when we evaluated the predictive model.
Collapse
Affiliation(s)
- Yuanyuan Li
- Medical Department, Qingdao University, Qingdao, China
| | - Jiao Chen
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Hui Yu
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Jiayu Ye
- School of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Chunxia Wang
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong, China
- *Correspondence: Chunxia Wang
| | - Lingli Kong
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong, China
- Lingli Kong
| |
Collapse
|
10
|
Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci 2022; 23:8011. [PMID: 35887357 PMCID: PMC9319713 DOI: 10.3390/ijms23148011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
Brain-derived neurotrophic factor is an extensively studied neurotrophin implicated in the pathology of multiple neurodegenerative and psychiatric disorders including, but not limited to, Parkinson's disease, Alzheimer's disease, Huntington's disease, traumatic brain injury, major de-pressive disorder, and schizophrenia. Here we provide a brief summary of current knowledge on the role of BDNF and the common human single nucleotide polymorphism, rs6265, in driving the pathogenesis and rehabilitation in these disorders, as well as the status of BDNF-targeted therapies. A common trend has emerged correlating low BDNF levels, either detected within the central nervous system or peripherally, to disease states, suggesting that BDNF replacement therapies may hold clinical promise. In addition, we introduce evidence for a distinct role of the BDNF pro-peptide as a biologically active ligand and the need for continuing studies on its neurological function outside of that as a molecular chaperone. Finally, we highlight the latest research describing the role of rs6265 expression in mechanisms of neurodegeneration as well as paradoxical advances in the understanding of this genetic variant in neuroregeneration. All of this is discussed in the context of personalized medicine, acknowledging there is no "one size fits all" therapy for neurodegenerative or psychiatric disorders and that continued study of the multiple BDNF isoforms and genetic variants represents an avenue for discovery ripe with therapeutic potential.
Collapse
Affiliation(s)
- Carlye A. Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| | - Margaret E. Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| |
Collapse
|
11
|
Caspase-mediated regulation of the distinct signaling pathways and mechanisms in neuronal survival. Int Immunopharmacol 2022; 110:108951. [PMID: 35717837 DOI: 10.1016/j.intimp.2022.108951] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
Caspases are intimately associated with altering various signaling pathways, resulting in programmed cell death or apoptosis. Apoptosis is necessary for the normal homeostasis of cells and their development. The untoward activation of apoptotic pathways indirectly or directly results in pathologies of various diseases. Identifying different caspases in apoptotic pathways directed the research to develop caspase inhibitors as therapeutic agents. However, no drug is available in the market that targets caspase inhibition and produces a therapeutic effect. Here, we will shed light on the role of caspases in the number of neuronal disorders and neurodegenerative diseases. The article reviews the findings about the activation of various upstream mechanisms associated with caspases in neurodegenerative disorders along with the recent progress in the generation of caspase inhibitors and the challenge faced in their development as therapeutic agents for neurological indications.
Collapse
|
12
|
Li H, Sheng Z, Khan S, Zhang R, Liu Y, Zhang Y, Yong VW, Xue M. Matrix Metalloproteinase-9 as an Important Contributor to the Pathophysiology of Depression. Front Neurol 2022; 13:861843. [PMID: 35370878 PMCID: PMC8971905 DOI: 10.3389/fneur.2022.861843] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are physiologically expressed in the central nervous system in neurons, astrocytes and microglia, and their aberrant elevation contributes to a number of diseases. Amongst the MMP members, MMP−9 has generated considerable attention because of its possible involvement in inflammatory responses, blood-brain barrier permeability, the regulation of perineuronal nets, demyelination, and synaptic long-term potentiation. Emerging evidence indicate an association between MMP−9 and the syndrome of depression. This review provides an updated and comprehensive summary of the probable roles of MMP−9 in depression with an emphasis on the mechanisms and potential of MMP−9 as a biomarker of depression.
Collapse
Affiliation(s)
- Hongmin Li
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Zhaofu Sheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruiyi Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yan Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: V. Wee Yong
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
- Mengzhou Xue
| |
Collapse
|
13
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
14
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
15
|
Goldfield GS, Walsh J, Sigal RJ, Kenny GP, Hadjiyannakis S, De Lisio M, Ngu M, Prud’homme D, Alberga AS, Doucette S, Goldfield DB, Cameron JD. Associations of the BDNF Val66Met Polymorphism With Body Composition, Cardiometabolic Risk Factors, and Energy Intake in Youth With Obesity: Findings From the HEARTY Study. Front Neurosci 2021; 15:715330. [PMID: 34867148 PMCID: PMC8633533 DOI: 10.3389/fnins.2021.715330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/01/2021] [Indexed: 01/10/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is functionally related to BDNF, and is associated with obesity and metabolic complications in adults, but limited research exists among adolescents. This study comparatively examined carriers and non-carriers of the BDNF Val66Met polymorphism on body composition, energy intake, and cardiometabolic profile among adolescents with obesity. The sample consisted of 187 adolescents with obesity; 99 were carriers of the homozygous Val (G/G) alleles and 88 were carriers of the Val/Met (G/A) or Met (A/A) alleles. Cardiometabolic profile and DNA were quantified from fasted blood samples. Body composition was assessed by magnetic resonance imaging (MRI). Compared to carriers of the homozygous Val (G/G) allele, carriers of the Val/Met (G/A) or Met/Met (A/A) variants exhibited significantly higher protein (p = 0.01) and fat (p = 0.05) intake, C-Reactive protein (p = 0.05), and a trend toward higher overall energy intake (p = 0.07), fat-free mass (p = 0.07), and lower HDL-C (p = 0.07) Results showed for the first time that among youth with obesity, carriers of the Val66Met BDNF Met-alleles exhibited significantly higher C-reactive protein and energy intake in the form of fat and protein compared to Val-allele carriers, thereby providing support for the possible role of BDNF in appetite, weight, and metabolic regulation during adolescence. Clinical Trial Registration: http://clinicaltrials.gov/, identifier NCT00195858.
Collapse
Affiliation(s)
- Gary S. Goldfield
- Healthy Active Living and Obesity Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
| | - Jeremy Walsh
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ronald J. Sigal
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
- Department of Medicine, Cardiac Sciences and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Glen P. Kenny
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Stasia Hadjiyannakis
- Centre for Healthy Active Living, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
| | - Mathew Ngu
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
| | - Denis Prud’homme
- President and Vice Chancellor, University of Moncton, Moncton, NB, Canada
| | - Angela S. Alberga
- Department of Kinesiology, Concordia University, Montreal, QC, Canada
| | - Steve Doucette
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | | | - Jameason D. Cameron
- Department of Pharmacy, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
16
|
Vignoli B, Sansevero G, Sasi M, Rimondini R, Blum R, Bonaldo V, Biasini E, Santi S, Berardi N, Lu B, Canossa M. Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun Biol 2021; 4:1152. [PMID: 34611268 PMCID: PMC8492720 DOI: 10.1038/s42003-021-02678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Memory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation. This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits. Beatrice Vignoli et al. examine potential molecular mechanisms of long-term storage information in mice. Their results suggest that astrocytes may help convert neuronal BDNF precursor into active prodomain and mature forms to enhance post-synaptic signaling and memory, providing further insight into the development of memory circuits.
Collapse
Affiliation(s)
- Beatrice Vignoli
- Department of Physics, University of Trento, 38123, Povo (TN), Italy. .,Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| | - Gabriele Sansevero
- Neuroscience Institute, National Research Council (IN-CNR), 56100, Pisa, Italy
| | - Manju Sasi
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Valerio Bonaldo
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Emiliano Biasini
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Spartaco Santi
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", National Research Council of Italy, 40136, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Nicoletta Berardi
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), University of Florence, 50100, Florence, Italy
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Marco Canossa
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| |
Collapse
|
17
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
18
|
Hsu MH, Chang KA, Chen YC, Lin IC, Sheen JM, Huang LT. Resveratrol prevented spatial deficits and rescued disarrayed hippocampus asymmetric dimethylarginine and brain-derived neurotrophic factor levels in young rats with increased circulating asymmetric dimethylarginine. Neuroreport 2021; 32:1091-1099. [PMID: 34284453 DOI: 10.1097/wnr.0000000000001698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increased plasma levels of asymmetric dimethylarginine can be encountered in chronic inflammatory disease, liver damage, renal failure, and multiple organ failure. In addition, an association between circulating asymmetric dimethylarginine levels and all-cause mortality has been reported. Male Sprague-Dawley rats, postnatal day 17 ± 1, received continuous asymmetric dimethylarginine infusion via an intraperitoneal pump. Spatial performance and dorsal hippocampal asymmetric dimethylarginine and brain-derived neurotrophic factor (BDNF) levels were examined, and the effect of resveratrol was tested. A 4-week continuous asymmetric dimethylarginine infusion in young male rats caused spatial deficits, increased asymmetric dimethylarginine levels, and decreased BDNF expression in the dorsal hippocampus. Increased oxidative stress and altered molecules in the dorsal hippocampus linked to asymmetric dimethylarginine and BDNF functions were detected. Resveratrol protected against these effects, reversing spatial deficits, and reducing the changes in the dorsal hippocampal asymmetric dimethylarginine and BDNF levels.
Collapse
Affiliation(s)
| | - Kow-Aung Chang
- Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | | | | | - Jiunn-Ming Sheen
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi County, Puzi City, Taiwan
| | | |
Collapse
|
19
|
Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. CHRONIC STRESS 2021; 5:24705470211029254. [PMID: 34485797 PMCID: PMC8408896 DOI: 10.1177/24705470211029254] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention.
Collapse
Affiliation(s)
- Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA.,Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| |
Collapse
|
20
|
Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the Developing Central Nervous System: Apoptosis and Beyond. Front Cell Dev Biol 2021; 9:702404. [PMID: 34336853 PMCID: PMC8322698 DOI: 10.3389/fcell.2021.702404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The caspase family of cysteine proteases represents the executioners of programmed cell death (PCD) type I or apoptosis. For years, caspases have been known for their critical roles in shaping embryonic structures, including the development of the central nervous system (CNS). Interestingly, recent findings have suggested that aside from their roles in eliminating unnecessary neural cells, caspases are also implicated in other neurodevelopmental processes such as axon guidance, synapse formation, axon pruning, and synaptic functions. These results raise the question as to how neurons regulate this decision-making, leading either to cell death or to proper development and differentiation. This review highlights current knowledge on apoptotic and non-apoptotic functions of caspases in the developing CNS. We also discuss the molecular factors involved in the regulation of caspase-mediated roles, emphasizing the mitochondrial pathway of cell death.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Germain Gillet
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
21
|
Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of Postnatal proBDNF in the Hippocampus for Spatial Memory Consolidation and Neural Function. Front Cell Dev Biol 2021; 9:678182. [PMID: 34336832 PMCID: PMC8319730 DOI: 10.3389/fcell.2021.678182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mature brain-derived neurotrophic factor (BDNF) and its downstream signaling pathways have been implicated in regulating postnatal development and functioning of rodent brain. However, the biological role of its precursor pro-brain-derived neurotrophic factor (proBDNF) in the postnatal brain remains unknown. The expression of hippocampal proBDNF was blocked in postnatal weeks, and multiple behavioral tests, Western blot and morphological techniques, and neural recordings were employed to investigate how proBDNF played a role in spatial cognition in adults. The peak expression and its crucial effects were found in the fourth but not in the second or eighth postnatal week. Blocking proBDNF expression disrupted spatial memory consolidation rather than learning or memory retrieval. Structurally, blocking proBDNF led to the reduction in spine density and proportion of mature spines. Although blocking proBDNF did not affect N-methyl-D-aspartate (NMDA) receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the learning-induced phosphorylation of the GluN2B subunit level declined significantly. Functionally, paired-pulse facilitation, post-low-frequency stimulation (LFS) transiently enhanced depression, and GluN2B-dependent short-lasting long-term depression in the Schaffer collateral-CA1 pathway were weakened. The firing rate of pyramidal neurons was significantly suppressed around the target region during the memory test. Furthermore, the activation of GluN2B-mediated signaling could effectively facilitate neural function and mitigate memory impairment. The findings were consistent with the hypothesis that postnatal proBDNF played an essential role in synaptic and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaolian Li
- Department of Neurology, Jinan Geriatric Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
22
|
Sex-Based Differences in Cardiac Gene Expression and Function in BDNF Val66Met Mice. Int J Mol Sci 2021; 22:ijms22137002. [PMID: 34210092 PMCID: PMC8269163 DOI: 10.3390/ijms22137002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a pleiotropic neuronal growth and survival factor that is indispensable in the brain, as well as in multiple other tissues and organs, including the cardiovascular system. In approximately 30% of the general population, BDNF harbors a nonsynonymous single nucleotide polymorphism that may be associated with cardiometabolic disorders, coronary artery disease, and Duchenne muscular dystrophy cardiomyopathy. We recently showed that transgenic mice with the human BDNF rs6265 polymorphism (Val66Met) exhibit altered cardiac function, and that cardiomyocytes isolated from these mice are also less contractile. To identify the underlying mechanisms involved, we compared cardiac function by echocardiography and performed deep sequencing of RNA extracted from whole hearts of all three genotypes (Val/Val, Val/Met, and Met/Met) of both male and female Val66Met mice. We found female-specific cardiac alterations in both heterozygous and homozygous carriers, including increased systolic (26.8%, p = 0.047) and diastolic diameters (14.9%, p = 0.022), increased systolic (57.9%, p = 0.039) and diastolic volumes (32.7%, p = 0.026), and increased stroke volume (25.9%, p = 0.033), with preserved ejection fraction and fractional shortening. Both males and females exhibited lower heart rates, but this change was more pronounced in female mice than in males. Consistent with phenotypic observations, the gene encoding SERCA2 (Atp2a2) was reduced in homozygous Met/Met mice but more profoundly in females compared to males. Enriched functions in females with the Met allele included cardiac hypertrophy in response to stress, with down-regulation of the gene encoding titin (Tcap) and upregulation of BNP (Nppb), in line with altered cardiac functional parameters. Homozygous male mice on the other hand exhibited an inflammatory profile characterized by interferon-γ (IFN-γ)-mediated Th1 immune responses. These results provide evidence for sex-based differences in how the BDNF polymorphism modifies cardiac physiology, including female-specific alterations of cardiac-specific transcripts and male-specific activation of inflammatory targets.
Collapse
|
23
|
Zang YQ, Zhai YQ, Feng YY, Ju XY, Zuo F. Molecular mechanisms of quinalizarin induces apoptosis and G0/G1 cell cycle of human esophageal cancer HCE-4 cells depends on MAPK, STAT3, and NF-κB signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:276-286. [PMID: 33030807 DOI: 10.1002/tox.23033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Quinalizarin (Quina) is one of the main components of many herbal medicines and has good anti-tumor activity. However, the exact mode of cytotoxic action and signaling pathways on Quina in human esophageal cancer has not yet been confirmed. In this study, we explored the anticancer effect of Quina against human esophageal cancer HCE-4 cells and the underlying mechanisms. The results of the Cell Counting Kit-8 (CCK-8) assay showed that Quina inhibited the viability of human esophageal cancer HCE-4 cells in a dose-dependent and time-dependent manner. It also inhibited HCE-4 cells proliferation and induced apoptosis by increasing the levels of Bad, caspase-3, and PARP, decreasing the level of Bcl-2. The results of the cell cycle analysis suggested that Quina arrested HCE-4 cells in the G0/G1 cycle by downregulating cyclin-dependent (CDK) 2/4, cyclin D1/E and upregulating the levels of p21 and p27. We also found that Quina activated mitogen-activated protein kinase (MAPK) and inhibited the signal transducer and activator of transcription-3 (STAT3) and nuclear factor kappa B (NF-κB) signaling pathways. Furthermore, Quina significantly increased intracellular reactive oxygen species (ROS) level. The pretreatment of N-acetyl-L-cysteine (NAC) blocked the apoptosis induced by Quina and inhibited the activities of MAPK, STAT3, and NF-κB signaling pathways. These results indicate that Quina induces the apoptosis in HCE-4 cells, which is via accumulating ROS generation and regulating MAPK, STAT3, and NF-κB. In conclusion, this study demonstrated that Quina have good therapeutic effects on human esophageal cancer cells.
Collapse
Affiliation(s)
- Yan-Qing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu-Qing Zhai
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan-Yu Feng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xue-Ying Ju
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
24
|
Gilchrist CP, Cumberland AL, Kondos-Devcic D, Hill RA, Khore M, Quezada S, Reichelt AC, Tolcos M. Hippocampal neurogenesis and memory in adolescence following intrauterine growth restriction. Hippocampus 2020; 31:321-334. [PMID: 33320965 DOI: 10.1002/hipo.23291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with hippocampal alterations that can increase the risk of short-term memory impairments later in life. Despite the role of hippocampal neurogenesis in learning and memory, research into the long-lasting impact of IUGR on these processes is limited. We aimed to determine the effects of IUGR on neuronal proliferation, differentiation and morphology, and on memory function at adolescent equivalent age. At embryonic day (E) 18 (term ∼E22), placental insufficiency was induced in pregnant Wistar rats via bilateral uterine vessel ligation to generate IUGR offspring (n = 10); control offspring (n = 11) were generated via sham surgery. From postnatal day (P) 36-44, spontaneous location recognition (SLR), novel object location and recognition (NOL, NOR), and open field tests were performed. Brains were collected at P45 to assess neurogenesis (immunohistochemistry), dendritic morphology (Golgi staining), and brain-derived neurotrophic factor expression (BDNF; Western blot analysis). In IUGR versus control rats there was no difference in object preference in the NOL or NOR, the similar and dissimilar condition of the SLR task, or in locomotion and anxiety-like behavior in the open field. There was a significant increase in the linear density of immature neurons (DCX+) in the subgranular zone (SGZ) of the dentate gyrus (DG), but no difference in the linear density of proliferating cells (Ki67+) in the SGZ, nor in areal density of mature neurons (NeuN+) or microglia (Iba-1+) in the DG in IUGR rats compared to controls. Dendritic morphology of dentate granule cells did not differ between groups. Protein expression of the BDNF precursor (pro-BDNF), but not mature BDNF, was increased in the hippocampus of IUGR compared with control rats. These findings highlight that while the long-lasting prenatal hypoxic environment may impact brain development, it may not impact hippocampal-dependent learning and memory in adolescence.
Collapse
Affiliation(s)
- Courtney P Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Angela L Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Delphi Kondos-Devcic
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Madhavi Khore
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Sebastian Quezada
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Amy C Reichelt
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
25
|
The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol Dis 2020; 148:105175. [PMID: 33188920 PMCID: PMC7855552 DOI: 10.1016/j.nbd.2020.105175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Prevalent in approximately 20% of the worldwide human population, the
rs6265 (also called ‘Val66Met’) single nucleotide polymorphism
(SNP) in the gene for brain-derived neurotrophic factor (BDNF)
is a common genetic variant that can alter therapeutic responses in individuals
with Parkinson’s disease (PD). Possession of the variant Met allele
results in decreased activity-dependent release of BDNF. Given the resurgent
worldwide interest in neural transplantation for PD and the biological relevance
of BDNF, the current studies examined the effects of the rs6265 SNP on
therapeutic efficacy and side-effect development following primary dopamine (DA)
neuron transplantation. Considering the significant reduction in BDNF release
associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF
signaling contributes to the limited clinical benefit observed in a
subpopulation of PD patients despite robust survival of grafted DA neurons, and
further, that this mutation contributes to the development of aberrant
graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat
model of the rs6265 BDNF SNP to examine for the first time the
influence of a common genetic polymorphism on graft survival, functional
efficacy, and side-effect liability, comparing these parameters between
wild-type (Val/Val) rats and those homozygous for the variant Met allele
(Met/Met). Counter to our hypothesis, the current research indicates that
Met/Met rats show enhanced graft-associated therapeutic efficacy and a
paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type
rats. However, consistent with our hypothesis, we demonstrate that the rs6265
genotype in the host rat is strongly linked to development of GID, and that this
behavioral phenotype is significantly correlated with neurochemical signatures
of atypical glutamatergic neurotransmission by grafted DA neurons.
Collapse
|
26
|
Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry 2020; 25:2251-2274. [PMID: 31900428 DOI: 10.1038/s41380-019-0639-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted for its involvement in resilience and antidepressant drug action, is a common genetic locus of risk for mental illnesses, and remains one of the most prominently studied molecules within psychiatry. Stress, which arguably remains the "lowest common denominator" risk factor for several mental illnesses, targets BDNF in disease-implicated brain regions and circuits. Altered stress-related responses have also been observed in animal models of BDNF deficiency in vivo, and BDNF is a common downstream intermediary for environmental factors that potentiate anxiety- and depressive-like behavior. However, BDNF's broad functionality has manifested a heterogeneous literature; likely reflecting that BDNF plays a hitherto under-recognized multifactorial role as both a regulator and target of stress hormone signaling within the brain. The role of BDNF in vulnerability to stress and stress-related disorders, such as posttraumatic stress disorder (PTSD), is a prominent example where inconsistent effects have emerged across numerous models, labs, and disciplines. In the current review we provide a contemporary update on the neurobiology of BDNF including new data from the behavioral neuroscience and neuropsychiatry literature on fear memory consolidation and extinction, stress, and PTSD. First we present an overview of recent advances in knowledge on the role of BDNF within the fear circuitry, as well as address mounting evidence whereby stress hormones interact with endogenous BDNF-TrkB signaling to alter brain homeostasis. Glucocorticoid signaling also acutely recruits BDNF to enhance the expression of fear memory. We then include observations that the functional common BDNF Val66Met polymorphism modulates stress susceptibility as well as stress-related and stress-inducible neuropsychiatric endophenotypes in both man and mouse. We conclude by proposing a BDNF stress-sensitivity hypothesis, which posits that disruption of endogenous BDNF activity by common factors (such as the BDNF Val66Met variant) potentiates sensitivity to stress and, by extension, vulnerability to stress-inducible illnesses. Thus, BDNF may induce plasticity to deleteriously promote the encoding of fear and trauma but, conversely, also enable adaptive plasticity during extinction learning to suppress PTSD-like fear responses. Ergo regulators of BDNF availability, such as the Val66Met polymorphism, may orchestrate sensitivity to stress, trauma, and risk of stress-induced disorders such as PTSD. Given an increasing interest in personalized psychiatry and clinically complex cases, this model provides a framework from which to experimentally disentangle the causal actions of BDNF in stress responses, which likely interact to potentiate, produce, and impair treatment of, stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia. .,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia. .,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Zagrebelsky M, Tacke C, Korte M. BDNF signaling during the lifetime of dendritic spines. Cell Tissue Res 2020; 382:185-199. [PMID: 32537724 PMCID: PMC7529616 DOI: 10.1007/s00441-020-03226-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Dendritic spines are tiny membrane specialization forming the postsynaptic part of most excitatory synapses. They have been suggested to play a crucial role in regulating synaptic transmission during development and in adult learning processes. Changes in their number, size, and shape are correlated with processes of structural synaptic plasticity and learning and memory and also with neurodegenerative diseases, when spines are lost. Thus, their alterations can correlate with neuronal homeostasis, but also with dysfunction in several neurological disorders characterized by cognitive impairment. Therefore, it is important to understand how different stages in the life of a dendritic spine, including formation, maturation, and plasticity, are strictly regulated. In this context, brain-derived neurotrophic factor (BDNF), belonging to the NGF-neurotrophin family, is among the most intensively investigated molecule. This review would like to report the current knowledge regarding the role of BDNF in regulating dendritic spine number, structure, and plasticity concentrating especially on its signaling via its two often functionally antagonistic receptors, TrkB and p75NTR. In addition, we point out a series of open points in which, while the role of BDNF signaling is extremely likely conclusive, evidence is still missing.
Collapse
Affiliation(s)
- Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany.
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124, Braunschweig, Germany.
| | - Charlotte Tacke
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany.
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124, Braunschweig, Germany.
| |
Collapse
|
28
|
Popova NK, Ilchibaeva TV, Antonov EV, Pershina AV, Bazovkina DV, Naumenko VS. On the interaction between BDNF and serotonin systems: The effects of long-term ethanol consumption in mice. Alcohol 2020; 87:1-15. [PMID: 32330588 DOI: 10.1016/j.alcohol.2020.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Abstract
We investigated the effect of chronic (6 weeks) consumption of 10% alcohol on the principal elements of BDNF (BDNF, proBDNF, p75, and TrkB receptors) and 5-HT (5-HT, 5-HIAA, tryptophan hydroxylase-2 [Tph-2], 5-HT transporter [5-HTT], 5-HT1A, 5-HT2A, and 5-HT7 receptors) systems in the brain of C57Bl/6 mice. BDNF mRNA level in the raphe nuclei area and BDNF protein level in the hippocampus were lowered in ethanol-treated mice. The increase in proBDNF protein level in the raphe nuclei area, cortex, and amygdala and the increase of p75 receptor protein levels in the raphe nuclei area were revealed after ethanol exposure. Alcohol intake reduced the protein level and increased the activity of Tph-2, the key enzyme for serotonin biosynthesis in the brain, and increased the main 5-HT metabolite 5-HIAA level and 5-HIAA/5-НТ ratio as well as the 5-HT7 receptor mRNA level in the raphe nuclei area. In the cortex, 5-HT2A receptor protein level was reduced, and 5-HIAA/5-HT ratio was increased. These data showed considerable impact of alcoholization on the BDNF system, resulting in proBDNF and p75 receptor expression enhancement. Alcohol-induced changes in BDNF and 5-HT systems were revealed in the raphe nuclei area where the majority of the cell bodies of the 5-HT neurons are localized, as well as in the cortex, hippocampus, and amygdala. Our data suggest that the BDNF/5-HT interaction contributes to the mechanism underlying chronic alcohol-induced neurodegenerative disorders.
Collapse
|
29
|
Sun W, Che H, Li J, Tang D, Liu X, Liu W, An L. Dorsolateral Striatal proBDNF Improves Reversal Learning by Enhancing Coordination of Neural Activity in Rats. Mol Neurobiol 2020; 57:4642-4656. [DOI: 10.1007/s12035-020-02051-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
|
30
|
Takeuchi C, Ishikawa M, Sawano T, Shin Y, Mizuta N, Hasegawa S, Tanaka R, Tsuboi Y, Nakatani J, Sugiura H, Yamagata K, Tanaka H. Dendritic Spine Density is Increased in Arcadlin-deleted Mouse Hippocampus. Neuroscience 2020; 442:296-310. [DOI: 10.1016/j.neuroscience.2020.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
|
31
|
Dong Y, Hong W, Tang Z, Gao Y, Wu X, Liu H. Sevoflurane leads to learning and memory dysfunction via breaking the balance of tPA/PAI-1. Neurochem Int 2020; 139:104789. [PMID: 32650025 DOI: 10.1016/j.neuint.2020.104789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Exposure to general anesthesia in early childhood may lead to adverse effects on adolescent neurocognition. This study investigated the effects of multiple inhalations of sevoflurane on long-term learning and memory in developing rats, and explored the mechanistic role of the tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) fibrinolysis system and its regulatory relationship with the brain derived neurotrophic factor (BDNF) by activation of tropomysin related kinase B (TrkB). After rats were inhaled with sevoflurane for 2 h/d for three days, the expression levels of tPA, PAI-1, BDNF, its precursor(proBDNF), TrkB and phosphorylation of TrkB (p-TrkB) were detected at different time points. After 28 d, Morris water maze was used to examine learning and memory function; Golgi staining was used to investigate synaptic plasticity and synaptic-related proteins, such as Synapsin I(SYN1), growth associated protein 43(GAP-43), and postsynaptic density protein 95(PSD-95). Rats were given exogenous tPA and an inhibitor of PAI-1, TM5275. The results showed multiple inhalation of sevoflurane led to learning and memory dysfunction, downregulated the expression of the synaptic-related proteins, decreased dendritic spine density in the hippocampus, increased the expression level of proBDNF and PAI-1, and reduced expression of BDNF, tPA, and p-TrkB. Interestingly, tPA or TM5275 partially reversed the learning and memory dysfunction and the reduction of synaptic plasticity induced by sevoflurane exposure. Furthermore, they blocked the upregulation of proBDNF and PAI-1 protein expression and increased the expression of BDNF, tPA, and p-TrkB. The protective effect of tPA or TM5275 on rats following multiple sevoflurane inhalation was blocked by a TrkB inhibitor. Multiple inhalation of sevoflurane in rats inhibited the cleavage of proBDNF by disrupting the balance of the tPA/PAI-1 fibrinolysis system. This blocked the activation of the downstream TrkB signaling pathway and reduced hippocampal synaptic plasticity, leading to long-term learning and memory dysfunction. Therefore, Sevoflurane exposure could lead to learning and memory dysfunction by inhibiting BDNF cleavage via breaking the balance of tPA/PAI-1.
Collapse
Affiliation(s)
- Yunxia Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Wei Hong
- Department of Ultrasound, The Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhiyin Tang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Gao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
32
|
Simchi L, Panov J, Morsy O, Feuermann Y, Kaphzan H. Novel Insights into the Role of UBE3A in Regulating Apoptosis and Proliferation. J Clin Med 2020; 9:jcm9051573. [PMID: 32455880 PMCID: PMC7290732 DOI: 10.3390/jcm9051573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
The UBE3A gene codes for a protein with two known functions, a ubiquitin E3-ligase which catalyzes ubiquitin binding to substrate proteins and a steroid hormone receptor coactivator. UBE3A is most famous for its critical role in neuronal functioning. Lack of UBE3A protein expression leads to Angelman syndrome (AS), while its overexpression is associated with autism. In spite of extensive research, our understanding of UBE3A roles is still limited. We investigated the cellular and molecular effects of Ube3a deletion in mouse embryonic fibroblasts (MEFs) and Angelman syndrome (AS) mouse model hippocampi. Cell cultures of MEFs exhibited enhanced proliferation together with reduced apoptosis when Ube3a was deleted. These findings were supported by transcriptome and proteome analyses. Furthermore, transcriptome analyses revealed alterations in mitochondria-related genes. Moreover, an analysis of adult AS model mice hippocampi also found alterations in the expression of apoptosis- and proliferation-associated genes. Our findings emphasize the role UBE3A plays in regulating proliferation and apoptosis and sheds light into the possible effects UBE3A has on mitochondrial involvement in governing this balance.
Collapse
|
33
|
Koga M, Nakagawa S, Kato A, Kusumi I. Caffeic acid reduces oxidative stress and microglial activation in the mouse hippocampus. Tissue Cell 2019; 60:14-20. [DOI: 10.1016/j.tice.2019.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
|
34
|
Speidell A, Asuni GP, Avdoshina V, Scognamiglio S, Forcelli P, Mocchetti I. Reversal of Cognitive Impairment in gp120 Transgenic Mice by the Removal of the p75 Neurotrophin Receptor. Front Cell Neurosci 2019; 13:398. [PMID: 31543761 PMCID: PMC6730486 DOI: 10.3389/fncel.2019.00398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
Activation of the p75 neurotrophin receptor (p75NTR), by the proneurotrophin brain-derived neurotrophic factor (proBDNF), triggers loss of synapses and promotes neuronal death. These pathological features are also caused by the human immunodeficiency virus-1 (HIV) envelope protein gp120, which increases the levels of proBDNF. To establish whether p75NTR plays a role in gp120-mediated neurite pruning, we exposed primary cultures of cortical neurons from p75NTR–/– mice to gp120. We found that the lack of p75NTR expression significantly reduced gp120-mediated neuronal cell death. To determine whether knocking down p75NTR is neuroprotective in vivo, we intercrossed gp120 transgenic (tg) mice with p75NTR heterozygous mice to obtain gp120tg mice lacking one or two p75NTR alleles. The removal of p75NTR alleles inhibited gp120-mediated decrease of excitatory synapses in the hippocampus, as measured by the levels of PSD95 and subunits of the N-methyl-D-Aspartate receptor in synaptosomes. Moreover, the deletion of only one copy of the p75NTR gene was sufficient to restore the cognitive impairment observed in gp120tg mice. Our data suggest that activation of p75NTR is one of the mechanisms crucial for the neurotoxic effect of gp120. These data indicate that p75NTR antagonists could provide an adjunct therapy against synaptic simplification caused by HIV.
Collapse
Affiliation(s)
- Andrew Speidell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Gino Paolo Asuni
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Valeria Avdoshina
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Serena Scognamiglio
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Patrick Forcelli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
35
|
Pradhan J, Noakes PG, Bellingham MC. The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2019; 13:368. [PMID: 31456666 PMCID: PMC6700252 DOI: 10.3389/fncel.2019.00368] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective functions, via activation of its high affinity receptor, tropomysin related kinase B (TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly via activation of adenosine 2A receptors (A2aRs), which in turn transactivates TrkB. Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by A2aRs, can occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of dying motor neurons (MNs), this has not been successful. Indeed, there is emerging in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause detrimental effects on MNs, making them more vulnerable to pathophysiological insults. For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN death. Moreover, direct inhibition of TrkB and A2aRs has been shown to protect MNs from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or A2aRs receptors may be important in early disease pathogenesis in ALS. This review highlights the relevance of pathophysiological actions of BDNF/TrkB under certain circumstances, so that manipulation of BDNF/TrkB and A2aRs may give rise to alternate neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.
Collapse
Affiliation(s)
- Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Peter G Noakes
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
36
|
Physical Exercise Affects Adipose Tissue Profile and Prevents Arterial Thrombosis in BDNF Val66Met Mice. Cells 2019; 8:cells8080875. [PMID: 31405230 PMCID: PMC6721716 DOI: 10.3390/cells8080875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue accumulation is an independent and modifiable risk factor for cardiovascular disease (CVD). The recent CVD European Guidelines strongly recommend regular physical exercise (PE) as a management strategy for prevention and treatment of CVD associated with metabolic disorders and obesity. Although mutations as well as common genetic variants, including the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, are associated with increased body weight, eating and neuropsychiatric disorders, and myocardial infarction, the effect of this polymorphism on adipose tissue accumulation and regulation as well as its relation to obesity/thrombosis remains to be elucidated. Here, we showed that white adipose tissue (WAT) of humanized knock-in BDNFVal66Met (BDNFMet/Met) mice is characterized by an altered morphology and an enhanced inflammatory profile compared to wild-type BDNFVal/Val. Four weeks of voluntary PE restored the adipocyte size distribution, counteracted the inflammatory profile of adipose tissue, and prevented the prothrombotic phenotype displayed, per se, by BDNFMet/Met mice. C3H10T1/2 cells treated with the Pro-BDNFMet peptide well recapitulated the gene alterations observed in BDNFMet/Met WAT mice. In conclusion, these data indicate the strong impact of lifestyle, in particular of the beneficial effect of PE, on the management of arterial thrombosis and inflammation associated with obesity in relation to the specific BDNF Val66Met mutation.
Collapse
|
37
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure elicits multigenerational disequilibria in proBDNF proteolysis and glucocorticoid signaling in the frontal cortices, striata, and hippocampi of adolescent mice. Biochem Pharmacol 2019; 168:438-451. [PMID: 31404529 DOI: 10.1016/j.bcp.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Abstract
Maternal smoking of conventional or vapor cigarettes during pregnancy, a form of developmental nicotine exposure (DNE), enhances the risk of neurodevelopmental disorders such as ADHD, autism, and schizophrenia in children. Modeling the multigenerational effects of smoking during pregnancy and nursing in the first- (F1) and second- (F2) generation adolescent offspring of oral nicotine-treated female C57BL/6J mice, we have previously reported that DNE precipitates intergenerational transmission of nicotine preference, hyperactivity and impulsivity-like behaviors, altered rhythmicity of home cage activity, corticostriatal nicotinic acetylcholine receptor and dopamine transporter dysfunction, and corticostriatal global DNA methylome deficits. In aggregate, these DNE-evoked behavioral, neuropharmacological, and epigenomic anomalies mirror fundamental etiological aspects of neurodevelopmental disorders including ADHD, autism, and schizophrenia. Expanding this line of research, the current study profiled the multigenerational neurotrophic and neuroendocrine consequences of DNE. Results reveal impaired proBDNF proteolysis as indicated by proBDNF-BDNF imbalance, downregulation of the proBDNF processing enzyme furin, atypical glucocorticoid receptor (GR) activity as implied by decreased relative nuclear GR localization, and deficient basal plasma corticosterone (CORT) levels in adolescent DNE offspring and grandoffspring. Collectively, these data recapitulate the BDNF deficits and HPA axis dysregulation characteristic of neurodevelopmental disorders such as ADHD, autism, and schizophrenia as well as the children of maternal smokers. Notably, as BDNF is a quintessential mediator of neurodevelopment, our prior findings of multigenerational DNE-induced behavioral and neuropharmacological abnormalities may stem from neurodevelopmental insults conferred by the proBDNF-BDNF imbalance detected in DNE mice. Similarly, our findings of multigenerational GR hypoactivity may contribute to the increased risk-taking behaviors and aberrant circadian rhythmicity of home cage activity that we previously documented in first- and second-generation DNE mice.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States
| |
Collapse
|
38
|
Kojima M, Matsui K, Mizui T. BDNF pro-peptide: physiological mechanisms and implications for depression. Cell Tissue Res 2019; 377:73-79. [DOI: 10.1007/s00441-019-03034-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
|
39
|
De Vincenti AP, Ríos AS, Paratcha G, Ledda F. Mechanisms That Modulate and Diversify BDNF Functions: Implications for Hippocampal Synaptic Plasticity. Front Cell Neurosci 2019; 13:135. [PMID: 31024262 PMCID: PMC6465932 DOI: 10.3389/fncel.2019.00135] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that has pleiotropic effects on neuronal morphology and synaptic plasticity that underlie hippocampal circuit development and cognition. Recent advances established that BDNF function is controlled and diversified by molecular and cellular mechanisms including trafficking and subcellular compartmentalization of different Bdnf mRNA species, pre- vs. postsynaptic release of BDNF, control of BDNF signaling by tropomyosin receptor kinase B (TrkB) receptor interactors and conversion of pro-BDNF to mature BDNF and BDNF-propeptide. Defects in these regulatory mechanisms affect dendritic spine formation and morphology of pyramidal neurons as well as synaptic integration of newborn granule cells (GCs) into preexisting circuits of mature hippocampus, compromising the cognitive function. Here, we review recent findings describing novel dynamic mechanisms that diversify and locally control the function of BDNF in hippocampal neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonella S Ríos
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Fernanda Ledda
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
40
|
Popova NK, Naumenko VS. Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin Ther Targets 2019; 23:227-239. [DOI: 10.1080/14728222.2019.1572747] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nina K. Popova
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Vladimir S. Naumenko
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
41
|
Song C, Wu YS, Yang ZY, Kalueff AV, Tsao YY, Dong Y, Su KP. Astrocyte-Conditioned Medium Protects Prefrontal Cortical Neurons from Glutamate-Induced Cell Death by Inhibiting TNF-α Expression. Neuroimmunomodulation 2019; 26:33-42. [PMID: 30699428 DOI: 10.1159/000495211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Both excitotoxicity and neurotrophin deficiency may contribute to the etiology of depression and neurodegeneration. Astrocytes not only regulate glutamate metabolism and clearance, they also produce neurotrophins in the brain. However, the direct interaction between neurons and astrocytes remains unknown. METHODS This study evaluated the cellular mechanisms by which astrocyte-conditioned medium (ACM) protects prefrontal cortical neurons from glutamate-induced death by measuring cell viability and morphology as well as mRNA and protein expression of brain-derived neurotrophic factor (BDNF), BDNF receptors, glial cell line-derived neurotrophic factor (GDNF), and the proinflammatory cytokine, tumor necrosis factor (TNF)-α. Neurons and astrocytes were purified from the brains of neonatal 1-day-old Sprague-Dawley rats. ACM was harvested after exposing astrocytes to culture medium containing 100 μM glutamate for 48 h. RESULTS Glutamate insult (100 μM for 6 h) significantly reduced neuronal cell viability and increased the mRNA expression of BDNF. Glutamate (24 h) decreased neuronal viability and the expression of BDNF, but increased mRNA expression of GFAP, p75 neurotrophin receptor (p75NTR), and TNF-α. ACM pretreatment (2 h) reversed glutamate-decreased cell viability and increased BDNF, but reduced the expression of GDNF, P75NTR, and TNF-α at the mRNA level. Western blotting generally confirmed the mRNA expression following 24 glutamate insults. Furthermore, the glutamate-induced decrease in the protein expression of BDNF and full-length TrkB receptor and increase in pro-BDNF, truncated TrkB isoform 1 receptor, p75NTR, GDNF, and TNF-α were significantly attenuated by ACM pretreatment. CONCLUSIONS The study demonstrates that ACM exerts neuroprotective effects on cell viability, and this effect is most likely mediated through the modulation of neurotrophin and TNF-α expression.
Collapse
Affiliation(s)
- Cai Song
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan,
| | - Yih-Shyuan Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Zhi-You Yang
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russian Federation
- Ural Federal University, Ekaterinburg, Russian Federation
| | - Yin-Yin Tsao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yilong Dong
- School of Medicine, Yunnan University, Kunming, China
| | - Kuan-Pin Su
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
42
|
Notaras M, van den Buuse M. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Neuroscientist 2018; 25:434-454. [DOI: 10.1177/1073858418810142] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since its discovery, brain-derived neurotrophic factor (BDNF) has spawned a literature that now spans 35 years of research. While all neurotrophins share considerable overlap in sequence homology and their processing, BDNF has become the most widely studied neurotrophin because of its broad roles in brain homeostasis, health, and disease. Although research on BDNF has produced thousands of articles, there remain numerous long-standing questions on aspects of BDNF molecular biology and signaling. Here we provide a comprehensive review, including both a historical narrative and a forward-looking perspective on advances in the actions of BDNF within the brain. We specifically review BDNF’s gene structure, peptide composition (including domains, posttranslational modifications and putative motif sites), mechanisms of transport, signaling pathway recruitment, and other recent developments including the functional effects of genetic variation and the discovery of a new BDNF prodomain ligand. This body of knowledge illustrates a highly conserved and complex role for BDNF within the brain, that promotes the idea that the neurotrophin biology of BDNF is diverse and that any disease involvement is likely to be equally multifarious.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Wang L, Li XX, Chen X, Qin XY, Kardami E, Cheng Y. Antidepressant-Like Effects of Low- and High-Molecular Weight FGF-2 on Chronic Unpredictable Mild Stress Mice. Front Mol Neurosci 2018; 11:377. [PMID: 30369869 PMCID: PMC6194172 DOI: 10.3389/fnmol.2018.00377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
The occurrence of depressive disorder has long been attributed to changes in monoamines, with the focus of drug treatment strategies being to change the effectiveness of monoamines. However, the success achieved by changing these processes is limited and further stimulates the exploration of alternative mechanisms and treatments. Fibroblast growth factor 2 (FGF-2), which occurs in a high-molecular weight (HMW) and low-molecular weight (LMW) form, is a potent developmental modulator and nervous system regulator that has been suggested to play an important role in various psychiatric disorders. In this study, we investigated the antidepressant effects of HMW and LMW FGF-2 on depression induced by chronic stress. Both peripheral LMW and HMW FGF-2 attenuated the depression-like behaviors in chronic unpredictable mild stress (CUMS) mice to a similar extent, as determined by the forced swimming, tail suspension, and sucrose preference tests. We then showed that CUMS-induced oxidative stresses in mice were inhibited by FGF-2 treatments both in central and peripheral. We also showed that both forms of FGF-2 increased the phosphorylation of ERK and AKT, increased Bcl-2 expression and inhibited caspase-3 activation in CUMS mice. Interestingly, HMW FGF-2 enhanced the activity of the brain-derived neurotrophic factor (BDNF) to a greater extent than did LMW FGF-2 in the hippocampus. Taken together, these results suggest that depressive symptoms can be relieved by administering different forms of FGF-2 peripherally in a CUMS-induced depression model through a similar antidepressant signaling pathway, therefore suggesting a potential clinical use for FGF-2 as a treatment for depression.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xi-Xi Li
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xi Chen
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
44
|
Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev 2018; 90:70-83. [PMID: 29626490 DOI: 10.1016/j.neubiorev.2018.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.
Collapse
|
45
|
Guo W, Nagappan G, Lu B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Dev Neurobiol 2018; 78:647-659. [PMID: 29575722 DOI: 10.1002/dneu.22592] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) serves a pleiotropic role in the central nervous system, ranging from promoting neuronal survival and differentiation during development and synaptic modulation in the adult. An important, yet unanswered question is how BDNF could serve such diverse functions, sometimes in the same cell. At least two modes of BDNF actions have been elucidated so far based on BDNF signaling kinetics and/or the activity status of the responding neurons. Acute and gradual increases in extracellular BDNF concentrations elicit, respectively, transient and sustained activation of TrkB receptor and its downstream signaling, leading to differential molecular and cellular functions. In cultured neurons, sustained TrkB activation promotes neuronal dendritic arborization and spinogenesis, whereas transient TrkB activation facilitates dendritic growth and spine morphogenesis. In hippocampal slices, slow delivery of BDNF facilitates LTP, whereas fast application of BDNF enhances basal synaptic transmission in schaffer collateral synapses. High-frequency stimulation of neurons converts BDNF-induced TrkB signaling from a transient to a sustained mode. These initial insights lay the foundation for future investigation of the BDNF-TrkB pathway, and analogous signaling pathways to gain a comprehensive understanding to enable translational research. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 647-659, 2018.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guandong, 518057, China
| | | | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guandong, 518057, China
| |
Collapse
|
46
|
BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 2018; 373:729-741. [DOI: 10.1007/s00441-017-2782-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
|
47
|
Hollville E, Deshmukh M. Physiological functions of non-apoptotic caspase activity in the nervous system. Semin Cell Dev Biol 2017; 82:127-136. [PMID: 29199140 DOI: 10.1016/j.semcdb.2017.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Caspases are cysteine proteases that play important and well-defined roles in apoptosis and inflammation. Increasing evidence point to alternative functions of caspases where restricted and localized caspase activation within neurons allows for a variety of non-apoptotic and non-inflammatory processes required for brain development and function. In this review, we highlight sublethal caspase functions in axon and dendrite pruning, neurite outgrowth and dendrite branches formation, as well as in long-term depression and synaptic plasticity. Importantly, as non-apoptotic activity of caspases is often confined in space and time in neurons, we also discuss the mechanisms that restrict caspase activity in order to maintain the neuronal networks in a healthy and functional state.
Collapse
Affiliation(s)
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
48
|
Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 2017; 22:1085-1095. [PMID: 28397840 PMCID: PMC5510719 DOI: 10.1038/mp.2017.61] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs activate neurotrophin signaling and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate; the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of currently existing drugs into new indications.
Collapse
|
49
|
Yang B, Ren Q, Zhang JC, Chen QX, Hashimoto K. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis. Transl Psychiatry 2017; 7:e1128. [PMID: 28509900 PMCID: PMC5534963 DOI: 10.1038/tp.2017.95] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF and BDNF pro-peptide in the parietal cortex, cerebellum, liver and spleen from control, major depressive disorder (MDD), schizophrenia (SZ) and bipolar disorder (BD) groups. The levels of mature BDNF in the parietal cortex from MDD, SZ and BD groups were significantly lower than the control group, whereas the levels of BDNF pro-peptide in this area were significantly higher than controls. In contrast, the levels of proBDNF and BDNF pro-peptide in the cerebellum of MDD, SZ and BD groups were significantly lower than controls. Moreover, the levels of mature BDNF from the livers of MDD, SZ and BD groups were significantly higher than the control group. The levels of mature BDNF in the spleen did not differ among the four groups. Interestingly, there was a negative correlation between mature BDNF in the parietal cortex and mature BDNF in the liver in all the subjects. These findings suggest that abnormalities in the production of mature BDNF and BDNF pro-peptide in the brain and liver might have a role in the pathophysiology of psychiatric disorders, indicating a brain-liver axis in psychiatric disorders.
Collapse
Affiliation(s)
- B Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Q Ren
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - J-c Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Q-X Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - K Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
50
|
Uegaki K, Kumanogoh H, Mizui T, Hirokawa T, Ishikawa Y, Kojima M. BDNF Binds Its Pro-Peptide with High Affinity and the Common Val66Met Polymorphism Attenuates the Interaction. Int J Mol Sci 2017; 18:ijms18051042. [PMID: 28498321 PMCID: PMC5454954 DOI: 10.3390/ijms18051042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 02/03/2023] Open
Abstract
Most growth factors are initially synthesized as precursors then cleaved into bioactive mature domains and pro-domains, but the biological roles of pro-domains are poorly understood. In the present study, we investigated the pro-domain (or pro-peptide) of brain-derived neurotrophic factor (BDNF), which promotes neuronal survival, differentiation and synaptic plasticity. The BDNF pro-peptide is a post-processing product of the precursor BDNF. Using surface plasmon resonance and biochemical experiments, we first demonstrated that the BDNF pro-peptide binds to mature BDNF with high affinity, but not other neurotrophins. This interaction was more enhanced at acidic pH than at neutral pH, suggesting that the binding is significant in intracellular compartments such as trafficking vesicles rather than the extracellular space. The common Val66Met BDNF polymorphism results in a valine instead of a methionine in the pro-domain, which affects human brain functions and the activity-dependent secretion of BDNF. We investigated the influence of this variation on the interaction between BDNF and the pro-peptide. Interestingly, the Val66Met polymorphism stabilized the heterodimeric complex of BDNF and its pro-peptide. Furthermore, compared with the Val-containing pro-peptide, the complex with the Met-type pro-peptide was more stable at both acidic and neutral pH, suggesting that the Val66Met BDNF polymorphism forms a more stable complex. A computational modeling provided an interpretation to the role of the Val66Met mutation in the interaction of BDNF and its pro-peptide. Lastly, we performed electrophysiological experiments, which indicated that the BDNF pro-peptide, when pre-incubated with BDNF, attenuated the ability of BDNF to inhibit hippocampal long-term depression (LTD), suggesting a possibility that the BDNF pro-peptide may interact directly with BDNF and thereby inhibit its availability. It was previously reported that the BDNF pro-domain exerts a chaperone-like function and assists the folding of the BDNF protein. However, our results suggest a new role for the BDNF pro-domain (or pro-peptide) following proteolytic cleave of precursor BDNF, and provide insight into the Val66Met polymorphism.
Collapse
Affiliation(s)
- Koichi Uegaki
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Haruko Kumanogoh
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Toshiyuki Mizui
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Takatsugu Hirokawa
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan.
| | - Yasuyuki Ishikawa
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Department of Systems Life Engineering, Maebashi Institute of Technology 460-1, Kamisadori, Maebashi 370-0816, Japan.
| | - Masami Kojima
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Graduate School of Frontier Bioscience, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|