1
|
Kuriyama M, Hirose H, Kawaguchi Y, Michibata J, Maekawa M, Futaki S. KCNN4 as a genomic determinant of cytosolic delivery by the attenuated cationic lytic peptide L17E. Mol Ther 2025; 33:595-614. [PMID: 39748507 PMCID: PMC11852704 DOI: 10.1016/j.ymthe.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
The development of a cytosolic delivery strategy for biopharmaceuticals is one of the central issues in drug development. Knowledge of the mechanisms underlying these processes may also pave the way for the discovery of novel delivery systems. L17E is an attenuated cationic amphiphilic lytic (ACAL) peptide developed by our research group that shows promise for cytosolic antibody delivery. In this study, given the high efficacy of L17E in cytosolic delivery, we investigated the mechanism of action of L17E in detail. L17E was found to achieve cytosolic delivery predominantly by transient disruption of the plasma membrane without the need for endocytosis. Importantly, the cell-line selectivity studies of L17E revealed a strong correlation between the efficiency of L17E-mediated delivery and the expression level of KCNN4, the gene encoding the calcium-activated potassium channel KCa3.1. Genetic and pharmacological regulation of KCNN4 expression and KCa3.1 activity, respectively, correlate closely with the efficiency of L17E-mediated cytosolic delivery, suggesting the importance of membrane-potential regulation by extracellular Ca2+ influx. Therefore, the activity of the L17E is relevant to the calcium-activated potassium channel.
Collapse
Affiliation(s)
- Masashi Kuriyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
2
|
Jo HJ, Kang MS, Heo HJ, Jang HJ, Park R, Hong SW, Kim YH, Han DW. Skeletal muscle regeneration with 3D bioprinted hyaluronate/gelatin hydrogels incorporating MXene nanoparticles. Int J Biol Macromol 2024; 265:130696. [PMID: 38458288 DOI: 10.1016/j.ijbiomac.2024.130696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.
Collapse
Affiliation(s)
- Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Rowoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Periodontal Disease Signaling Network Research Center & Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
O’Neill A, Martinez AL, Mueller AL, Huang W, Accorsi A, Kane MA, Eyerman D, Bloch RJ. Optimization of Xenografting Methods for Generating Human Skeletal Muscle in Mice. Cell Transplant 2024; 33:9636897241242624. [PMID: 38600801 PMCID: PMC11010746 DOI: 10.1177/09636897241242624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.
Collapse
Affiliation(s)
- Andrea O’Neill
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Llach Martinez
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amber L. Mueller
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Cell Metabolism, Cambridge, MA, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Anthony Accorsi
- Fulcrum Therapeutics, Cambridge, MA, USA
- Blackbird Laboratories, Baltimore, MD, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - David Eyerman
- Fulcrum Therapeutics, Cambridge, MA, USA
- Apellis Pharmaceuticals, Waltham, MA, USA
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Porquet F, Weidong L, Jehasse K, Gazon H, Kondili M, Blacher S, Massotte L, Di Valentin E, Furling D, Gillet NA, Klein AF, Seutin V, Willems L. Specific DMPK-promoter targeting by CRISPRi reverses myotonic dystrophy type 1-associated defects in patient muscle cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:857-871. [PMID: 37273786 PMCID: PMC10238591 DOI: 10.1016/j.omtn.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disease that originates from an expansion of CTG microsatellites in the 3' untranslated region of the DMPK gene, thus leading to the expression of transcripts containing expanded CUG repeats (CUGexp). The pathophysiology is explained by a toxic RNA gain of function where CUGexp RNAs form nuclear aggregates that sequester and alter the function of MBNL splicing factors, triggering splicing misregulation linked to the DM1 symptoms. There is currently no cure for DM1, and most therapeutic strategies aim at eliminating CUGexp-DMPK transcripts. Here, we investigate a DMPK-promoter silencing strategy using CRISPR interference as a new alternative approach. Different sgRNAs targeting the DMPK promoter are evaluated in DM1 patient muscle cells. The most effective guides allowed us to reduce the level of DMPK transcripts and CUGexp-RNA aggregates up to 80%. The CUGexp-DMPK repression corrects the overall transcriptome, including spliceopathy, and reverses a physiological parameter in DM1 muscle cells. Its action is specific and restricted to the DMPK gene, as confirmed by genome-wide expression analysis. Altogether, our findings highlight DMPK-promoter silencing by CRISPRi as a promising therapeutic approach for DM1.
Collapse
Affiliation(s)
- Florent Porquet
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Lin Weidong
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Kévin Jehasse
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | - Hélène Gazon
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Maria Kondili
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Silvia Blacher
- Laboratory of Biology of Tumor and Development, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Laurent Massotte
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | | | - Denis Furling
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Nicolas Albert Gillet
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, 5000 Namur, Belgium
| | - Arnaud François Klein
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Vincent Seutin
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | - Luc Willems
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| |
Collapse
|
5
|
Malhan D, Yalçin M, Schoenrock B, Blottner D, Relógio A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 2023; 9:30. [PMID: 37012297 PMCID: PMC10070655 DOI: 10.1038/s41526-023-00273-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Britt Schoenrock
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Neuromuscular System and Neuromuscular Signaling, Berlin Center of Space Medicine & Extreme Environments, Berlin, 10115, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
6
|
Gao SY, Liu YP, Wen R, Huang XM, Li P, Yang YH, Yang N, Zhang TN. Kcnma1 is involved in mitochondrial homeostasis in diabetes-related skeletal muscle atrophy. FASEB J 2023; 37:e22866. [PMID: 36929614 DOI: 10.1096/fj.202201397rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.
Collapse
Affiliation(s)
- Shan-Yan Gao
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Morotti M, Garofalo S, Cocozza G, Antonangeli F, Bianconi V, Mozzetta C, De Stefano ME, Capitani R, Wulff H, Limatola C, Catalano M, Grassi F. Muscle Damage in Dystrophic mdx Mice Is Influenced by the Activity of Ca2+-Activated KCa3.1 Channels. Life (Basel) 2022; 12:life12040538. [PMID: 35455028 PMCID: PMC9025295 DOI: 10.3390/life12040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease, caused by a mutant dystrophin gene, leading to muscle membrane instability, followed by muscle inflammation, infiltration of pro-inflammatory macrophages and fibrosis. The calcium-activated potassium channel type 3.1 (KCa3.1) plays key roles in controlling both macrophage phenotype and fibroblast proliferation, two critical contributors to muscle damage. In this work, we demonstrate that pharmacological blockade of the channel in the mdx mouse model during the early degenerative phase favors the acquisition of an anti-inflammatory phenotype by tissue macrophages and reduces collagen deposition in muscles, with a concomitant reduction of muscle damage. As already observed with other treatments, no improvement in muscle performance was observed in vivo. In conclusion, this work supports the idea that KCa3.1 channels play a contributing role in controlling damage-causing cells in DMD. A more complete understanding of their function could lead to the identification of novel therapeutic approaches.
Collapse
Affiliation(s)
- Marta Morotti
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Germana Cocozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (C.L.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Valeria Bianconi
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (V.B.); (C.M.)
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (V.B.); (C.M.)
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Riccardo Capitani
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, CA 95616, USA;
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (C.L.)
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
- Correspondence:
| |
Collapse
|
8
|
Copola AGL, Dos Santos ÍGD, Coutinho LL, Del-Bem LEV, de Almeida Campos-Junior PH, da Conceição IMCA, Nogueira JM, do Carmo Costa A, Silva GAB, Jorge EC. Transcriptomic characterization of the molecular mechanisms induced by RGMa during skeletal muscle nuclei accretion and hypertrophy. BMC Genomics 2022; 23:188. [PMID: 35255809 PMCID: PMC8902710 DOI: 10.1186/s12864-022-08396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background The repulsive guidance molecule a (RGMa) is a GPI-anchor axon guidance molecule first found to play important roles during neuronal development. RGMa expression patterns and signaling pathways via Neogenin and/or as BMP coreceptors indicated that this axon guidance molecule could also be working in other processes and diseases, including during myogenesis. Previous works from our research group have consistently shown that RGMa is expressed in skeletal muscle cells and that its overexpression induces both nuclei accretion and hypertrophy in muscle cell lineages. However, the cellular components and molecular mechanisms induced by RGMa during the differentiation of skeletal muscle cells are poorly understood. In this work, the global transcription expression profile of RGMa-treated C2C12 myoblasts during the differentiation stage, obtained by RNA-seq, were reported. Results RGMa treatment could modulate the expression pattern of 2,195 transcripts in C2C12 skeletal muscle, with 943 upregulated and 1,252 downregulated. Among them, RGMa interfered with the expression of several RNA types, including categories related to the regulation of RNA splicing and degradation. The data also suggested that nuclei accretion induced by RGMa could be due to their capacity to induce the expression of transcripts related to ‘adherens junsctions’ and ‘extracellular-cell adhesion’, while RGMa effects on muscle hypertrophy might be due to (i) the activation of the mTOR-Akt independent axis and (ii) the regulation of the expression of transcripts related to atrophy. Finally, RGMa induced the expression of transcripts that encode skeletal muscle structural proteins, especially from sarcolemma and also those associated with striated muscle cell differentiation. Conclusions These results provide comprehensive knowledge of skeletal muscle transcript changes and pathways in response to RGMa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08396-w.
Collapse
Affiliation(s)
- Aline Gonçalves Lio Copola
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Íria Gabriela Dias Dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brasil
| | - Luiz Eduardo Vieira Del-Bem
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | - Júlia Meireles Nogueira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Alinne do Carmo Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil.
| |
Collapse
|
9
|
Chen L, Hassani Nia F, Stauber T. Ion Channels and Transporters in Muscle Cell Differentiation. Int J Mol Sci 2021; 22:13615. [PMID: 34948411 PMCID: PMC8703453 DOI: 10.3390/ijms222413615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.
Collapse
Affiliation(s)
- Lingye Chen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| |
Collapse
|
10
|
Tanner MR, Huq R, Sikkema WKA, Nilewski LG, Yosef N, Schmitt C, Flores-Suarez CP, Raugh A, Laragione T, Gulko PS, Tour JM, Beeton C. Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis. Antioxidants (Basel) 2020; 9:E1005. [PMID: 33081234 PMCID: PMC7602875 DOI: 10.3390/antiox9101005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species have been involved in the pathogenesis of rheumatoid arthritis (RA). Our goal was to determine the effects of selectively scavenging superoxide (O2•-) and hydroxyl radicals with antioxidant nanoparticles, called poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), on the pathogenic functions of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and on the progression of an animal model of RA. We used human FLS from patients with RA to determine PEG-HCC internalization and effects on FLS cytotoxicity, invasiveness, proliferation, and production of proteases. We used the pristane-induced arthritis (PIA) rat model of RA to assess the benefits of PEG-HCCs on reducing disease severity. PEG-HCCs were internalized by RA-FLS, reduced their intracellular O2•-, and reduced multiple measures of their pathogenicity in vitro, including proliferation and invasion. In PIA, PEG-HCCs caused a 65% reduction in disease severity, as measured by a standardized scoring system of paw inflammation and caused a significant reduction in bone and tissue damage, and circulating rheumatoid factor. PEG-HCCs did not induce lymphopenia during PIA. Our study demonstrated a role for O2•- and hydroxyl radicals in the pathogenesis of a rat model of RA and showed efficacy of PEG-HCCs in treating a rat model of RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William K. A. Sikkema
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Lizanne G. Nilewski
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Nejla Yosef
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cody Schmitt
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
| | - Carlos P. Flores-Suarez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arielle Raugh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresina Laragione
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - Pércio S. Gulko
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
- The NanoCarbon Center, Rice University, Houston, TX 77005, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Echeverry S, Grismaldo A, Sánchez C, Sierra C, Henao JC, Granados ST, Sutachán JJ, Torres YP. Activation of BK Channel Contributes to PL-Induced Mesenchymal Stem Cell Migration. Front Physiol 2020; 11:210. [PMID: 32265729 PMCID: PMC7105713 DOI: 10.3389/fphys.2020.00210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/24/2020] [Indexed: 01/16/2023] Open
Abstract
Due to their capacity to proliferate, migrate, and differentiate, mesenchymal stem cells (MSCs) are considered to be good candidates for regenerative medicine applications. The mechanisms underlying proliferation and differentiation of MSCs have been studied. However, much less is known about the mechanisms regulating the migration of MSCs. Platelet lysate (PL), a supplement used to promote cell expansion, has been shown to promote MSCs migration; however, the underlying mechanism are unknown. Here, by using adipose-derived rat MSCs (rMSCs) and the scratch assay in the absence and presence of various BK channels modulators, we evaluated the role of BK channels in mediating the PL-stimulated migration of rMSCs. We found that 5% PL increased rMSCs migration, and this effect was blocked by the addition of the BK channel selective antagonist Iberiotoxin (IBTX). In the absence of PL, the BK channel agonist NS1619, stimulated rMSCs migration to similar level as 5% PL. Addition of both NS1619 and 5% PL resulted in an increase in rMSCs migration, that was higher than when either one was added individually. From whole-cell recordings, it was found that the addition of 5% PL increased the magnitude of BK current density. By using Western blot and flow cytometry, it was found that PL did not affect the expression of BK channels. Together, our results indicate that as shown in other cell types, activation of BK channels by themselves also promote rMSC migration, and show that activation of BK channels contribute to the observed PL-induced increase in migration of rMSC.
Collapse
|
12
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
13
|
Ciuffoli V, Lena AM, Gambacurta A, Melino G, Candi E. Myoblasts rely on TAp63 to control basal mitochondria respiration. Aging (Albany NY) 2019; 10:3558-3573. [PMID: 30487319 PMCID: PMC6286837 DOI: 10.18632/aging.101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
p53, with its family members p63 and p73, have been shown to promote myoblast differentiation by regulation of the function of the retinoblastoma protein and by direct activation of p21Cip/Waf1 and p57Kip2, promoting cell cycle exit. In previous studies, we have demonstrated that the TAp63γ isoform is the only member of the p53 family that accumulates during in vitro myoblasts differentiation, and that its silencing led to delay in myotube fusion. To better dissect the role of TAp63γ in myoblast physiology, we have generated both sh-p63 and Tet-On inducible TAp63γ clones. Gene array analysis of sh-p63 C2C7 clones showed a significant modulation of genes involved in proliferation and cellular metabolism. Indeed, we found that sh-p63 C2C7 myoblasts present a higher proliferation rate and that, conversely, TAp63γ ectopic expression decreases myoblasts proliferation, indicating that TAp63γ specifically contributes to myoblasts proliferation, independently of p53 and p73. In addition, sh-p63 cells have a defect in mitochondria respiration highlighted by a reduction in spare respiratory capacity and a decrease in complex I, IV protein levels. These results demonstrated that, beside contributing to cell cycle exit, TAp63γ participates to myoblasts metabolism control.
Collapse
Affiliation(s)
- Veronica Ciuffoli
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Biochemistry laboratory, Rome, Italy
| |
Collapse
|
14
|
Frezza V, Fierro C, Gatti E, Peschiaroli A, Lena AM, Petruzzelli MA, Candi E, Anemona L, Mauriello A, Pelicci PG, Melino G, Bernassola F. ΔNp63 promotes IGF1 signalling through IRS1 in squamous cell carcinoma. Aging (Albany NY) 2019; 10:4224-4240. [PMID: 30594912 PMCID: PMC6326668 DOI: 10.18632/aging.101725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Accumulating evidence has proved that deregulation of ΔNp63 expression plays an oncogenic role in head and neck squamous cell carcinomas (HNSCCs). Besides p63, the type 1-insulin-like growth factor (IGF) signalling pathway has been implicated in HNSCC development and progression. Most insulin/IGF1 signalling converges intracellularly onto the protein adaptor insulin receptor substrate-1 (IRS-1) that transmits signals from the receptor to downstream effectors, including the PI3K/AKT and the MAPK kinase pathways, which, ultimately, promote proliferation, invasion, and cell survival. Here we report that p63 directly controls IRS1 transcription and cellular abundance and fosters the PI3K/AKT and MAPK downstream signalling pathways. Inactivation of ΔNp63 expression indeed reduces tumour cell responsiveness to IGF1 stimulation, and inhibits the growth potential of HNSCC cells. In addition, a positive correlation was observed between p63 and IRS1 expression in human HNSCC tissue arrays and in publicly available gene expression data. Our findings indicate that aberrant expression of ΔNp63 in HNSSC may act as an oncogenic stimulus by altering the IGF signalling pathway.
Collapse
Affiliation(s)
- Valentina Frezza
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Elena Gatti
- Department of Experimental Oncology European Institute of Oncology, Milan 20139, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy Institute of Translational Pharmacology (IFT-CNR), Rome 00133, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | | | - Eleonora Candi
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy.,Istituto Dermopatico dell'Immacolata, IRCCS,, Rome 00163, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology European Institute of Oncology, Milan 20139, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| |
Collapse
|
15
|
Han S, Cui C, He H, Shen X, Chen Y, Wang Y, Li D, Zhu Q, Yin H. FHL1 regulates myoblast differentiation and autophagy through its interaction with LC3. J Cell Physiol 2019; 235:4667-4678. [DOI: 10.1002/jcp.29345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| | - Yuqi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province Sichuan Agricultural University Chengdu Sichuan China
| |
Collapse
|
16
|
Tanner MR, Pennington MW, Chamberlain BH, Huq R, Gehrmann EJ, Laragione T, Gulko PS, Beeton C. Targeting KCa1.1 Channels with a Scorpion Venom Peptide for the Therapy of Rat Models of Rheumatoid Arthritis. J Pharmacol Exp Ther 2018; 365:227-236. [PMID: 29453198 PMCID: PMC5878672 DOI: 10.1124/jpet.117.245118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are a key cell type involved in rheumatoid arthritis (RA) progression. We previously identified the KCa1.1 potassium channel (Maxi-K, BK, Slo 1, KCNMA1) as a regulator of FLSs and found that KCa1.1 inhibition reduces disease severity in RA animal models. However, systemic KCa1.1 block causes multiple side effects. In this study, we aimed to determine whether the KCa1.1 β1-3-specific venom peptide blocker iberiotoxin (IbTX) reduces disease severity in animal models of RA without inducing major side effects. We used immunohistochemistry to identify IbTX-sensitive KCa1.1 subunits in joints of rats with a model of RA. Patch-clamp and functional assays were used to determine whether IbTX can regulate FLSs through targeting KCa1.1. We then tested the efficacy of IbTX in ameliorating disease in two rat models of RA. Finally, we determined whether IbTX causes side effects including incontinence or tremors in rats, compared with those treated with the small-molecule KCa1.1 blocker paxilline. IbTX-sensitive subunits of KCa1.1 were expressed by FLSs in joints of rats with experimental arthritis. IbTX inhibited KCa1.1 channels expressed by FLSs from patients with RA and by FLSs from rat models of RA and reduced FLS invasiveness. IbTX significantly reduced disease severity in two rat models of RA. Unlike paxilline, IbTX did not induce tremors or incontinence in rats. Overall, IbTX inhibited KCa1.1 channels on FLSs and treated rat models of RA without inducing side effects associated with nonspecific KCa1.1 blockade and could become the basis for the development of a new treatment of RA.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics (M.R.T., B.H.C., R.H., E.J.G., C.B.), Interdepartmental Graduate Program in Translational Biology and Molecular Medicine (M.R.T.), and Biology of Inflammation Center and Center for Drug Discovery (C.B.), Baylor College of Medicine, Houston, Texas; Peptides International Inc., Louisville, Kentucky (M.W.P.); and Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (T.L., P.S.G.)
| | - Michael W Pennington
- Department of Molecular Physiology and Biophysics (M.R.T., B.H.C., R.H., E.J.G., C.B.), Interdepartmental Graduate Program in Translational Biology and Molecular Medicine (M.R.T.), and Biology of Inflammation Center and Center for Drug Discovery (C.B.), Baylor College of Medicine, Houston, Texas; Peptides International Inc., Louisville, Kentucky (M.W.P.); and Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (T.L., P.S.G.)
| | - Brayden H Chamberlain
- Department of Molecular Physiology and Biophysics (M.R.T., B.H.C., R.H., E.J.G., C.B.), Interdepartmental Graduate Program in Translational Biology and Molecular Medicine (M.R.T.), and Biology of Inflammation Center and Center for Drug Discovery (C.B.), Baylor College of Medicine, Houston, Texas; Peptides International Inc., Louisville, Kentucky (M.W.P.); and Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (T.L., P.S.G.)
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics (M.R.T., B.H.C., R.H., E.J.G., C.B.), Interdepartmental Graduate Program in Translational Biology and Molecular Medicine (M.R.T.), and Biology of Inflammation Center and Center for Drug Discovery (C.B.), Baylor College of Medicine, Houston, Texas; Peptides International Inc., Louisville, Kentucky (M.W.P.); and Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (T.L., P.S.G.)
| | - Elizabeth J Gehrmann
- Department of Molecular Physiology and Biophysics (M.R.T., B.H.C., R.H., E.J.G., C.B.), Interdepartmental Graduate Program in Translational Biology and Molecular Medicine (M.R.T.), and Biology of Inflammation Center and Center for Drug Discovery (C.B.), Baylor College of Medicine, Houston, Texas; Peptides International Inc., Louisville, Kentucky (M.W.P.); and Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (T.L., P.S.G.)
| | - Teresina Laragione
- Department of Molecular Physiology and Biophysics (M.R.T., B.H.C., R.H., E.J.G., C.B.), Interdepartmental Graduate Program in Translational Biology and Molecular Medicine (M.R.T.), and Biology of Inflammation Center and Center for Drug Discovery (C.B.), Baylor College of Medicine, Houston, Texas; Peptides International Inc., Louisville, Kentucky (M.W.P.); and Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (T.L., P.S.G.)
| | - Pércio S Gulko
- Department of Molecular Physiology and Biophysics (M.R.T., B.H.C., R.H., E.J.G., C.B.), Interdepartmental Graduate Program in Translational Biology and Molecular Medicine (M.R.T.), and Biology of Inflammation Center and Center for Drug Discovery (C.B.), Baylor College of Medicine, Houston, Texas; Peptides International Inc., Louisville, Kentucky (M.W.P.); and Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (T.L., P.S.G.)
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics (M.R.T., B.H.C., R.H., E.J.G., C.B.), Interdepartmental Graduate Program in Translational Biology and Molecular Medicine (M.R.T.), and Biology of Inflammation Center and Center for Drug Discovery (C.B.), Baylor College of Medicine, Houston, Texas; Peptides International Inc., Louisville, Kentucky (M.W.P.); and Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (T.L., P.S.G.)
| |
Collapse
|
17
|
Ayad O, Magaud C, Sebille S, Bescond J, Mimbimi C, Cognard C, Faivre JF, Bois P, Chatelier A. Functional BKCa channel in human resident cardiac stem cells expressing W8B2. FEBS J 2017; 285:518-530. [PMID: 29211342 DOI: 10.1111/febs.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 11/30/2017] [Indexed: 01/24/2023]
Abstract
Recently, a new population of resident cardiac stem cells (CSCs) positive for the W8B2 marker has been identified. These CSCs are considered to be an ideal cellular source to repair myocardial damage after infarction. However, the electrophysiological profile of these cells has not been characterized yet. We first establish the conditions of isolation and expansion of W8B2+ CSCs from human heart biopsies using a magnetic sorting system followed by flow cytometry cell sorting. These cells display a spindle-shaped morphology, are highly proliferative, and possess self-renewal capacity demonstrated by their ability to form colonies. Besides, W8B2+ CSCs are positive for mesenchymal markers but negative for hematopoietic and endothelial ones. RT-qPCR and immunostaining experiments show that W8B2+ CSCs express some early cardiac-specific transcription factors but lack the expression of cardiac-specific structural genes. Using patch clamp in the whole-cell configuration, we show for the first time the electrophysiological signature of BKCa current in these cells. Accordingly, RT-PCR and western blotting analysis confirmed the presence of BKCa at both mRNA and protein levels in W8B2+ CSCs. Interestingly, BKCa channel inhibition by paxilline decreased cell proliferation in a concentration-dependent manner and halted cell cycle progression at the G0/G1 phase. The inhibition of BKCa also decreased the self-renewal capacity but did not affect migration of W8B2+ CSCs. Taken together, our results are consistent with an important role of BKCa channels in cell cycle progression and self-renewal in human cardiac stem cells.
Collapse
Affiliation(s)
- Oualid Ayad
- Equipe Transferts Ioniques et Rythmicité Cardiaque, Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7368, EA 7349, Université de Poitiers, France
| | - Christophe Magaud
- Equipe Transferts Ioniques et Rythmicité Cardiaque, Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7368, EA 7349, Université de Poitiers, France
| | - Stéphane Sebille
- Equipe Transferts Ioniques et Rythmicité Cardiaque, Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7368, EA 7349, Université de Poitiers, France
| | - Jocelyn Bescond
- Equipe Transferts Ioniques et Rythmicité Cardiaque, Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7368, EA 7349, Université de Poitiers, France
| | - Chloé Mimbimi
- Service de chirurgie cardio-thoracique, CHU Poitiers, France
| | - Christian Cognard
- Equipe Transferts Ioniques et Rythmicité Cardiaque, Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7368, EA 7349, Université de Poitiers, France
| | - Jean-Francois Faivre
- Equipe Transferts Ioniques et Rythmicité Cardiaque, Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7368, EA 7349, Université de Poitiers, France
| | - Patrick Bois
- Equipe Transferts Ioniques et Rythmicité Cardiaque, Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7368, EA 7349, Université de Poitiers, France
| | - Aurelien Chatelier
- Equipe Transferts Ioniques et Rythmicité Cardiaque, Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7368, EA 7349, Université de Poitiers, France
| |
Collapse
|
18
|
Tanner MR, Pennington MW, Laragione T, Gulko PS, Beeton C. KCa1.1 channels regulate β 1-integrin function and cell adhesion in rheumatoid arthritis fibroblast-like synoviocytes. FASEB J 2017; 31:3309-3320. [PMID: 28428266 DOI: 10.1096/fj.201601097r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/05/2017] [Indexed: 01/01/2023]
Abstract
Large-conductance calcium-activated potassium channel (KCa1.1; BK, Slo1, MaxiK, KCNMA1) is the predominant potassium channel expressed at the plasma membrane of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) isolated from the synovium of patients with RA. It is a critical regulator of RA-FLS migration and invasion and therefore represents an attractive target for the therapy of RA. However, the molecular mechanisms by which KCa1.1 regulates RA-FLS invasiveness have remained largely unknown. Here, we demonstrate that KCa1.1 regulates RA-FLS adhesion through controlling the plasma membrane expression and activation of β1 integrins, but not α4, α5, or α6 integrins. Blocking KCa1.1 disturbs calcium homeostasis, leading to the sustained phosphorylation of Akt and the recruitment of talin to β1 integrins. Interestingly, the pore-forming α subunit of KCa1.1 coimmunoprecipitates with β1 integrins, suggesting that this physical association underlies the functional interaction between these molecules. Together, these data outline a new signaling mechanism by which KCa1.1 regulates β1-integrin function and therefore invasiveness of RA-FLSs.-Tanner, M. R., Pennington, M. W., Laragione, T., Gulko, P. S., Beeton, C. KCa1.1 channels regulate β1-integrin function and cell adhesion in rheumatoid arthritis fibroblast-like synoviocytes.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.,Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | | | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pércio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA; .,Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|