1
|
Saliba A, Debnath S, Tamayo I, Lee HJ, Ragi N, Das F, Montellano R, Tumova J, Maddox M, Trevino E, Singh P, Fastenau C, Maity S, Zhang G, Hejazi L, Venkatachalam MA, O’Connor JC, Fongang B, Hopp SC, Bieniek KF, Lechleiter JD, Sharma K. Quinolinic acid potentially links kidney injury to brain toxicity. JCI Insight 2025; 10:e180229. [PMID: 39946208 PMCID: PMC11949017 DOI: 10.1172/jci.insight.180229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/12/2025] [Indexed: 02/19/2025] Open
Abstract
Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 (Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of a focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells in the setting of kidney failure. These findings were associated with brain inflammation and cell death. Separate mouse models of ischemia-induced acute kidney injury and adenine-induced chronic kidney disease also exhibited systemic inflammation and accumulating toxic tryptophan metabolites. Patients with advanced chronic kidney disease (stage 3b-4 and stage 5) similarly demonstrated elevated plasma kynurenine metabolites, and quinolinic acid was uniquely correlated with fatigue and reduced quality of life. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.
Collapse
Affiliation(s)
- Afaf Saliba
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Subrata Debnath
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ian Tamayo
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hak Joo Lee
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Falguni Das
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Richard Montellano
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jana Tumova
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Esmeralda Trevino
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Pragya Singh
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Caitlyn Fastenau
- Department of Pharmacology
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, and
| | - Soumya Maity
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Guanshi Zhang
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Leila Hejazi
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Manjeri A. Venkatachalam
- Center for Precision Medicine and
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jason C. O’Connor
- Department of Pharmacology
- South Texas Veterans Health Care System, Audie L. Murphy VA Hospital, San Antonio, Texas, USA
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, and
- Department of Biochemistry and Structural Biology
- Department of Population Health Sciences, and
| | - Sarah C. Hopp
- Department of Pharmacology
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, and
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, and
| | - James D. Lechleiter
- Center for Precision Medicine and
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Kumar Sharma
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Zeng J, Ye C, Zhang C, Su H. Membranous translocation of murine double minute 2 promotes the increased renal tubular immunogenicity in ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F290-F303. [PMID: 38867673 DOI: 10.1152/ajprenal.00200.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Kidneys from donors with prolonged warm and cold ischemia are prone to posttransplant T cell-mediated rejection (TCMR) due to ischemia-reperfusion injury (IRI). However, the precise mechanisms still remain obscure. Renal tubular epithelial cells (TECs) are the main target during IRI. Meanwhile, we have previously reported that murine double minute 2 (MDM2) actively participates in TEC homeostasis during IRI. In this study, we established a murine model of renal IRI and a cell model of hypoxia-reoxygenation by culturing immortalized rat renal proximal tubule cells (NRK-52E) in a hypoxic environment for different time points followed by 24 h of reoxygenation and incubating NRK-52E cells in a chemical anoxia-recovery environment. We found that during renal IRI MDM2 expression increased on the membrane of TECs and aggregated mainly on the basolateral side. This process was accompanied by a reduction of a transmembrane protein, programmed death ligand 1 (PD-L1), a coinhibitory second signal for T cells in TECs. Using mutant plasmids of MDM2 to anchor MDM2 on the cell membrane or nuclei, we found that the upregulation of membrane MDM2 could promote the ubiquitination of PD-L1 and lead to its ubiquitination-proteasome degradation. Finally, we set up a coculture system of TECs and CD4+ T cells in vitro; our results revealed that the immunogenicity of TECs was enhanced during IRI. In conclusion, our findings suggest that the increased immunogenicity of TECs during IRI may be related to ubiquitinated degradation of PD-L1 by increased MDM2 on the cell membrane, which consequently results in T-cell activation and TCMR.NEW & NOTEWORTHY Ischemic acute kidney injury (AKI) donors can effectively shorten the waiting time for kidney transplantation but increase immune rejection, especially T cell-mediated rejection (TCMR), the mechanism of which remains to be elucidated. Our study demonstrates that during ischemia-reperfusion injury (IRI), the translocation of tubular murine double minute 2 leads to basolateral programmed death ligand 1 degradation, which ultimately results in the occurrence of TCMR, which may provide a new therapeutic strategy for preventing AKI donor-associated TCMR.
Collapse
Affiliation(s)
- Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
3
|
Saliba A, Debnath S, Tamayo I, Tumova J, Maddox M, Singh P, Fastenau C, Maity S, Lee HJ, Zhang G, Hejazi L, O'Connor JC, Fongang B, Hopp SC, Bieniek KF, Lechleiter JD, Sharma K. Quinolinic acid links kidney injury to brain toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592801. [PMID: 38766008 PMCID: PMC11100748 DOI: 10.1101/2024.05.07.592801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 ( Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a novel connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells adjacent to the ventricle in the setting of kidney failure. These findings were associated with brain inflammation and cell death. A separate mouse model of acute kidney injury also had an increase in circulating toxic tryptophan metabolites along with altered brain inflammation. Patients with advanced CKD similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life in humans. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.
Collapse
|
4
|
Yan X, Ma X, Hao Y, Liu J, Fang H, Lu D, Shen W, Zhang H, Ge W, Zhao Y. Alginate oligosaccharides ameliorate busulfan-induced renal tubule injury. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Peired AJ, Antonelli G, Angelotti ML, Allinovi M, Guzzi F, Sisti A, Semeraro R, Conte C, Mazzinghi B, Nardi S, Melica ME, De Chiara L, Lazzeri E, Lasagni L, Lottini T, Landini S, Giglio S, Mari A, Di Maida F, Antonelli A, Porpiglia F, Schiavina R, Ficarra V, Facchiano D, Gacci M, Serni S, Carini M, Netto GJ, Roperto RM, Magi A, Christiansen CF, Rotondi M, Liapis H, Anders HJ, Minervini A, Raspollini MR, Romagnani P. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Sci Transl Med 2021; 12:12/536/eaaw6003. [PMID: 32213630 DOI: 10.1126/scitranslmed.aaw6003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/15/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Giulia Antonelli
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Marco Allinovi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy.,Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence 50139, Italy
| | - Francesco Guzzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Alessandro Sisti
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Carolina Conte
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Sara Nardi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Maria Elena Melica
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Letizia De Chiara
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence 50139, Italy
| | - Samuela Landini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Sabrina Giglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Andrea Mari
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Fabrizio Di Maida
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Alessandro Antonelli
- Department of Urology, Spedali Civili Hospital, University of Brescia, Brescia 25123, Italy
| | - Francesco Porpiglia
- Department of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Riccardo Schiavina
- Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | | | - Davide Facchiano
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Mauro Gacci
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Sergio Serni
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rosa Maria Roperto
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | | | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Scientific Institute of Pavia, Pavia 28100, Italy
| | | | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Klinikum der LMU München, Munich 80336, Germany
| | - Andrea Minervini
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | | | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy. .,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| |
Collapse
|
6
|
Campbell RA, Docherty MH, Ferenbach DA, Mylonas KJ. The Role of Ageing and Parenchymal Senescence on Macrophage Function and Fibrosis. Front Immunol 2021; 12:700790. [PMID: 34220864 PMCID: PMC8248495 DOI: 10.3389/fimmu.2021.700790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
In this review, we examine senescent cells and the overlap between the direct biological impact of senescence and the indirect impact senescence has via its effects on other cell types, particularly the macrophage. The canonical roles of macrophages in cell clearance and in other physiological functions are discussed with reference to their functions in diseases of the kidney and other organs. We also explore the translational potential of different approaches based around the macrophage in future interventions to target senescent cells, with the goal of preventing or reversing pathologies driven or contributed to in part by senescent cell load in vivo.
Collapse
Affiliation(s)
- Ross A. Campbell
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie-Helena Docherty
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Ferenbach
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Katie J. Mylonas
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Luo X, Zhang L, Han GD, Lu P, Zhang Y. MDM2 inhibition improves cisplatin-induced renal injury in mice via inactivation of Notch/hes1 signaling pathway. Hum Exp Toxicol 2021; 40:369-379. [PMID: 32856486 DOI: 10.1177/0960327120952158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the potential function of MDM2-mediated Notch/hes1 signaling pathway in cisplatin-induced renal injury. METHODS The acute renal injury models of mice after intraperitoneal injection of cisplatin in vivo, and the apoptotic models of human renal tubular epithelial (HK-2) cells induced by cisplatin in vitro, were conducted respectively. The renal function-related parameters were measured. The renal tissue pathological changes and apoptosis were observed by PAS staining and TUNEL staining, respectively. Cell viability and apoptosis were detected by MTT and flow cytometry. Notch/hes1 pathway-related proteins were tested by Western blotting. RESULTS After mice injected by cisplatin, the levels of Cr, BUN, urine cystatin C, urine NGAL and urine ACR were increased and GFR was decreased with the elevation of renal tubular injury scores, the upregulation of the expressions of MDM2, N1ICD, Hes1 and Cleaved caspase-3, as well as the enhancement of cell apoptosis accompanying decreased ratio of Bcl-2/Bax. However, these cisplatin-induced renal injuries of mice have been improved by MDM2 inhibition. Besides, the declined viability, increased cytotoxicity, and enhanced apoptosis were observed in cisplatin-induced HK-2 cells, with the activated Notch/hes1 pathway. Notably, the phenomenon was alleviated in cisplatin-induced HK-2 cells transfected with MDM2 shRNA, but was severer in those co-treated with AdMDM2. Moreover, Notch1 siRNA can reverse the injury of AdMDM2 on HK-2 cells. CONCLUSION Inhibiting MDM2 could reduce cell apoptosis through blocking Notch/hes1 signaling pathway, thus alleviating the acute renal injury caused by cisplatin.
Collapse
Affiliation(s)
- X Luo
- Department of Pharmacology, Cangzhou Central Hospital, Cangzhou, China
| | - L Zhang
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - G-D Han
- Department of Oncology Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - P Lu
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Y Zhang
- Department of Ultrasonic, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
8
|
Chen Y, Yan R, Li B, Liu J, Liu X, Song W, Zhu C. Silencing CCNG1 protects MPC-5 cells from high glucose-induced proliferation-inhibition and apoptosis-promotion via MDM2/p53 signaling pathway. Int Urol Nephrol 2020; 52:581-593. [PMID: 32016904 DOI: 10.1007/s11255-020-02383-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus and one of the most important causes of end-stage renal disease, but its pathogenesis has not been elucidated so far, and there is no effective treatment. METHODS DN models of rats and MPC-5 cells were established with streptozotocin (STZ) and high glucose (HG) in vivo and in vitro, respectively. Cell markers desmin and nephrin in foot kidney tissue were detected by Western blot. CCNG1 level in vitro was analyzed by Western blot and immunohistochemistry. CCK-8 assay and flow cytometry were conducted to analyze the effect of CCNG1 on HG-treated MPC-5 cells. Apoptosis-related proteins (Bcl-2, Bax and p53), CCNG1, and MDM2 were determined by RT-qPCR and Western blot. RESULTS The level of nephrin was decreased, while desmin was increased in STZ-induced DN rats and CCNG1 level was also enhanced by STZ. In vitro experiments indicated that MPC-5 cell viability was inhibited and apoptosis was induced by HG and we also found that CCNG1 expression was up-regulated by HG and negatively correlated with MDM2 level. The effects of HG on MPC-5 cell viability, apoptosis, and cell cycle were reversed by silencing CCNG1, but further deteriorated by overexpression of CCNG1. Furthermore, overexpression of MDM2 inhibited HG-induced MPC-5 cell injury and CCNG1 expression. CONCLUSIONS These findings revealed that down-regulation of CCNG1 has protection effects in DN that is mechanistically linked to MDM2-p53 pathways.
Collapse
Affiliation(s)
- Ye Chen
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Bo Li
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Jun Liu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Xiaoxia Liu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Wenyu Song
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Chunling Zhu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
9
|
Sayed AEDH, Kotb AM, Oda S, Kashiwada S, Mitani H. Protective effect of p53 knockout on 4-nonylphenol-induced nephrotoxicity in medaka (Oryzias latipes). CHEMOSPHERE 2019; 236:124314. [PMID: 31310970 DOI: 10.1016/j.chemosphere.2019.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
In the past few decades, environmental pollutants have become common because of misused nonionic surfactants and detergents. Nonylphenol ethoxylates (NPs) are one of the most important contaminants of water. Therefore, the present study aimed to investigate the protective blocking effect of apoptosis (deficient P53 gene) on 4-nonylphenol (4-NP)-induced nephrotoxicity of medaka (Oryzias latipes). We divided 36 fish into six groups: two different control groups of wild type (Wt; Hd-rR) control and p53 (-/-) control, and four different treated with 4-nonylphenol (50 μg/L and 100 μg/L) for 15 days. Histology, immunochemistry, and TUNEL assays confirmed that 4-NP causes nephrotoxicity. Our results showed that 4-NP administration significantly disturbed the kidney structure and function and 4-NP-treated fish showed dilated glomerular vessels, had less glomerular cellular content, decreased expression of glomerular proteins, and an increased level of apoptosis compared with a Wt control group (P < 0.05). As p53 is an apoptotic inducer, some protection in p53-deficient medaka was found as nephrotoxic effects of 4-NP were minimized significantly. Our study demonstrated for the first time to our knowledge that 4-NP induces apoptosis, causing nephrotoxicity in medaka. We found that blocking apoptosis blocking was able to protect the kidney from the toxic effects of 4-NP.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | - Ahmed M Kotb
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71516 Assiut, Egypt
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shosaku Kashiwada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
10
|
Wang W, Qin JJ, Rajaei M, Li X, Yu X, Hunt C, Zhang R. Targeting MDM2 for novel molecular therapy: Beyond oncology. Med Res Rev 2019; 40:856-880. [PMID: 31587329 DOI: 10.1002/med.21637] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
The murine double minute 2 (MDM2) oncogene exerts major oncogenic activities in human cancers; it is not only the best-documented negative regulator of the p53 tumor suppressor, but also exerts p53-independent activities. There is an increasing interest in developing MDM2-based targeted therapies. Several classes of MDM2 inhibitors have been evaluated in preclinical models, with a few entering clinical trials, mainly for cancer therapy. However, noncarcinogenic roles for MDM2 have also been identified, demonstrating that MDM2 is involved in many chronic diseases and conditions such as inflammation and autoimmune diseases, dementia and neurodegenerative diseases, heart failure and cardiovascular diseases, nephropathy, diabetes, obesity, and sterility. MDM2 inhibitors have been shown to have promising therapeutic efficacy for treating inflammation and other nonmalignant diseases in preclinical evaluations. Therefore, targeting MDM2 may represent a promising approach for treating and preventing these nonmalignant diseases. In addition, a better understanding of how MDM2 works in nonmalignant diseases may provide new biomarkers for their diagnosis, prognostic prediction, and monitoring of therapeutic outcome. In this review article, we pay special attention to the recent findings related to the roles of MDM2 in the pathogenesis of several nonmalignant diseases, the therapeutic potential of its downregulation or inhibition, and its use as a biomarker.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.,Drug Discovery Institute, University of Houston, Houston, Texas
| | - Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xiaoyi Yu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Courtney Hunt
- Drug Discovery Institute, University of Houston, Houston, Texas
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.,Drug Discovery Institute, University of Houston, Houston, Texas
| |
Collapse
|
11
|
Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J 2019; 33:10596-10606. [PMID: 31284746 PMCID: PMC6766640 DOI: 10.1096/fj.201900943r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease affects >15% of the U.S. population and >850 million individuals worldwide. Fibrosis is the common outcome of many chronic renal disorders and, although the etiology varies (i.e., diabetes, hypertension, ischemia, acute injury, and urologic obstructive disorders), persistently elevated renal TGF-β1 levels result in the relentless progression of fibrotic disease. TGF-β1 orchestrates the multifaceted program of renal fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery and redifferentiation, and subsequent tubulointerstitial fibrosis, eventually leading to chronic renal disease. Recent findings implicate p53 as a cofactor in the TGF-β1-induced signaling pathway and a transcriptional coregulator of several TGF-β1 profibrotic response genes by complexing with receptor-activated SMADs, which are homologous to the small worms (SMA) and Drosophilia mothers against decapentaplegic (MAD) gene families. The cooperative p53-TGF-β1 genomic cluster includes genes involved in cell growth control and extracellular matrix remodeling [e.g., plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor, clade E, member 1), connective tissue growth factor, and collagen I]. Although the molecular basis for this codependency is unclear, many TGF-β1-responsive genes possess p53 binding motifs. p53 up-regulation and increased p53 phosphorylation; moreover, they are evident in nephrotoxin- and ischemia/reperfusion-induced injury, diabetic nephropathy, ureteral obstructive disease, and kidney allograft rejection. Pharmacologic and genetic approaches that target p53 attenuate expression of the involved genes and mitigate the fibrotic response, confirming a key role for p53 in renal disorders. This review focuses on mechanisms whereby p53 functions as a transcriptional regulator within the TGF-β1 cluster with an emphasis on the potent fibrosis-promoting PAI-1 gene.-Higgins, C. E., Tang, J., Mian, B. M., Higgins, S. P., Gifford, C. C., Conti, D. J., Meldrum, K. K., Samarakoon, R., Higgins, P. J. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Kirstan K. Meldrum
- Division of Pediatric Urology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| |
Collapse
|
12
|
Proximal Tubular Development Is Impaired with Downregulation of MAPK/ERK Signaling, HIF-1 α, and Catalase by Hyperoxia Exposure in Neonatal Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9219847. [PMID: 31558952 PMCID: PMC6735195 DOI: 10.1155/2019/9219847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
Abstract
Supplemental oxygen therapy (hyperoxia) is a widely used treatment for alveolar hypoxia in preterm infants. Despite being closely monitored, hyperoxia exposure is believed to undermine neonatal nephrogenesis and renal function caused by elevated oxidative stress. Previous studies have mostly focused on the hyperoxia-induced impairment of glomerular development, while the long-term impact of neonatal hyperoxia on tubular development and the regulatory component involved in this process remain to be clarified. Here, we examined tubular histology and apoptosis, along with the expression profile of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling, hypoxia-inducible factor 1α (HIF-1α), and catalase, following hyperoxia exposure in neonatal rats. Hematoxylin and eosin (H&E) staining revealed the early disappearance of the nephrogenic zone, as well as dilated lumens and reduced epithelial cells, of mature proximal tubules following neonatal hyperoxia. A robust increase in tubular cell apoptosis caused by neonatal hyperoxia was found using a TUNEL assay. Moreover, neonatal hyperoxia altered renal MAPK/ERK signaling activity and downregulated the expression of HIF-1α and catalase in the proximal tubules throughout nephrogenesis from S-shaped bodies to mature proximal tubules. Cell apoptosis in the proximal tubules was positively correlated with HIF-1α expression on the 14th postnatal day. Our data indicates that proximal tubular development is impaired by neonatal hyperoxia, which is accompanied by altered MAPK/ERK signaling as well as downregulated HIF-1α and catalase. Therapeutic management that targets MAPK/ERK signaling, HIF-1α, or catalase may serve as a protective agent against hyperoxia-induced oxidative damage to neonatal proximal tubules.
Collapse
|
13
|
Outtandy P, Russell C, Kleta R, Bockenhauer D. Zebrafish as a model for kidney function and disease. Pediatr Nephrol 2019; 34:751-762. [PMID: 29502161 PMCID: PMC6424945 DOI: 10.1007/s00467-018-3921-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease.
Collapse
Affiliation(s)
- Priya Outtandy
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Robert Kleta
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK.
| | - Detlef Bockenhauer
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
14
|
Siegerist F, Endlich K, Endlich N. Novel Microscopic Techniques for Podocyte Research. Front Endocrinol (Lausanne) 2018; 9:379. [PMID: 30050501 PMCID: PMC6050355 DOI: 10.3389/fendo.2018.00379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/22/2018] [Indexed: 01/16/2023] Open
Abstract
Together with endothelial cells and the glomerular basement membrane, podocytes form the size-specific filtration barrier of the glomerulus with their interdigitating foot processes. Since glomerulopathies are associated with so-called foot process effacement-a severe change of well-formed foot processes into flat and broadened processes-visualization of the three-dimensional podocyte morphology is a crucial part for diagnosis of nephrotic diseases. However, interdigitating podocyte foot processes are too narrow to be resolved by classic light microscopy due to Ernst Abbe's law making electron microscopy necessary. Although three dimensional electron microscopy approaches like serial block face and focused ion beam scanning electron microscopy and electron tomography allow volumetric reconstruction of podocytes, these techniques are very time-consuming and too specialized for routine use or screening purposes. During the last few years, different super-resolution microscopic techniques were developed to overcome the optical resolution limit enabling new insights into podocyte morphology. Super-resolution microscopy approaches like three dimensional structured illumination microscopy (3D-SIM), stimulated emission depletion microscopy (STED) and localization microscopy [stochastic optical reconstruction microscopy (STORM), photoactivated localization microscopy (PALM)] reach resolutions down to 80-20 nm and can be used to image and further quantify podocyte foot process morphology. Furthermore, in vivo imaging of podocytes is essential to study the behavior of these cells in situ. Therefore, multiphoton laser microscopy was a breakthrough for in vivo studies of podocytes in transgenic animal models like rodents and zebrafish larvae because it allows imaging structures up to several hundred micrometer in depth within the tissue. Additionally, along with multiphoton microscopy, lightsheet microscopy is currently used to visualize larger tissue volumes and therefore image complete glomeruli in their native tissue context. Alongside plain visualization of cellular structures, atomic force microscopy has been used to study the change of mechanical properties of podocytes in diseased states which has been shown to be a culprit in podocyte maintenance. This review discusses recent advances in the field of microscopic imaging and demonstrates their currently used and other possible applications for podocyte research.
Collapse
Affiliation(s)
| | | | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Higgins SP, Tang Y, Higgins CE, Mian B, Zhang W, Czekay RP, Samarakoon R, Conti DJ, Higgins PJ. TGF-β1/p53 signaling in renal fibrogenesis. Cell Signal 2017; 43:1-10. [PMID: 29191563 DOI: 10.1016/j.cellsig.2017.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 01/04/2023]
Abstract
Fibrotic disorders of the renal, pulmonary, cardiac, and hepatic systems are associated with significant morbidity and mortality. Effective therapies to prevent or curtail the advancement to organ failure, however, remain a major clinical challenge. Chronic kidney disease, in particular, constitutes an increasing medical burden affecting >15% of the US population. Regardless of etiology (diabetes, hypertension, ischemia, acute injury, urologic obstruction), persistently elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling networks and disease progression. TGF-β1 is the principal driver of renal fibrogenesis, a dynamic pathophysiologic process that involves tubular cell injury/apoptosis, infiltration of inflammatory cells, interstitial fibroblast activation and excess extracellular matrix synthesis/deposition leading to impaired kidney function and, eventually, to chronic and end-stage disease. TGF-β1 activates the ALK5 type I receptor (which phosphorylates SMAD2/3) as well as non-canonical (e.g., src kinase, EGFR, JAK/STAT, p53) pathways that collectively drive the fibrotic genomic program. Such multiplexed signal integration has pathophysiological consequences. Indeed, TGF-β1 stimulates the activation and assembly of p53-SMAD3 complexes required for transcription of the renal fibrotic genes plasminogen activator inhibitor-1, connective tissue growth factor and TGF-β1. Tubular-specific ablation of p53 in mice or pifithrin-α-mediated inactivation of p53 prevents epithelial G2/M arrest, reduces the secretion of fibrotic effectors and attenuates the transition from acute to chronic renal injury, further supporting the involvement of p53 in disease progression. This review focuses on the pathophysiology of TGF-β1-initiated renal fibrogenesis and the role of p53 as a regulator of profibrotic gene expression.
Collapse
Affiliation(s)
- Stephen P Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Craig E Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Badar Mian
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Ralf-Peter Czekay
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - David J Conti
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; Division of Transplantation Surgery, Albany Medical College, Albany, NY 12208, United States.
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States; Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
16
|
Chen D, Xiong XQ, Zang YH, Tong Y, Zhou B, Chen Q, Li YH, Gao XY, Kang YM, Zhu GQ. BCL6 attenuates renal inflammation via negative regulation of NLRP3 transcription. Cell Death Dis 2017; 8:e3156. [PMID: 29072703 PMCID: PMC5680929 DOI: 10.1038/cddis.2017.567] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
Abstract
Renal inflammation contributes to the pathogeneses of hypertension. This study was designed to determine whether B-cell lymphoma 6 (BCL6) attenuates renal NLRP3 inflammasome activation and inflammation and its underlying mechanism. Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were used in the present study. Angiotensin (Ang) II or lipopolysaccharides (LPS) was used to induce inflammation in HK-2 cells, a human renal tubular epithelial (RTE) cell line. NLRP3 inflammasome was activated and BCL6 was downregulated in the kidneys of SHR. Either Ang II or LPS suppressed BCL6 expression in HK-2 cells. BCL6 overexpression in HK-2 cells attenuated Ang II-induced NLRP3 upregulation, inflammation and cell injury. The inhibitory effects of BCL6 overexpression on NLRP3 expression and inflammation were also observed in LPS-treated HK-2 cells. BCL6 inhibited the NLRP3 transcription via binding to the NLRP3 promoter. BCL6 knockdown with shRNA increased NLRP3 and mature IL-1β expression levels in both PBS- or Ang II-treated HK-2 cells but had no significant effects on ASC, pro-caspase-1 and pro-IL-1β expression levels. BCL6 overexpression caused by recombinant lentivirus expressing BCL6 reduced blood pressure in SHR. BCL6 overexpression prevented the upregulation of NLRP3 and mature IL-1β expression levels in the renal cortex of SHR. The results indicate that BCL6 attenuates Ang II- or LPS-induced inflammation in HK-2 cells via negative regulation of NLRP3 transcription. BCL6 overexpression in SHR reduced blood pressure, NLRP3 expression and inflammation in the renal cortex of SHR.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying-Hao Zang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Tong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bing Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xing-Ya Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
17
|
MDM2 Contributes to High Glucose-Induced Glomerular Mesangial Cell Proliferation and Extracellular Matrix Accumulation via Notch1. Sci Rep 2017; 7:10393. [PMID: 28871126 PMCID: PMC5583188 DOI: 10.1038/s41598-017-10927-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
Murine double minute 2 (MDM2) is an E3-ubiquitin ligase critical for various biological functions. Previous data have revealed an indispensable role of MDM2 in kidney homeostasis. However, its role in glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) accumulation during hyperglycemia condition remains unclear. In our present study, we found that MDM2 protein level was significantly upregulated in high glucose-treated GMCs, while knocking down MDM2 by siRNA could attenuate high glucose-induced ECM accumulation and GMCs proliferation. Unexpectedly, Nutlin-3a, a MDM2-p53 interaction blocker, had no benefit in protecting diabetic mice from renal impairment in vivo and in alleviating high glucose-induced ECM accumulation in vitro. Intriguingly, we found that Notch1 signaling activation was obviously attenuated by MDM2 depletion in GMCs with high glucose exposure. However, Numb, a substrate of MDM2 which suppresses Notch1 signaling, was found not to be involved in the MDM2 and Notch1 association. Moreover, our findings demonstrated that MDM2 interacted with Notch1 intracellular domain (NICD1) independent of Numb and regulated the ubiquitination status of NICD1. Collectively, our data propose a pivotal role of MDM2 in high glucose-induced GMC proliferation and ECM accumulation, via modulating the activation of Notch1 signaling pathway in an ubiquitination-dependent way.
Collapse
|
18
|
Abstract
Podocytes, the postmitotic and highly branched epithelial cells of the glomerulus, play a pivotal role for the function of the glomerular filtration barrier and the development of chronic kidney disease. It has long been discussed whether podocytes in vivo are motile and can laterally migrate in a coordinated way along the capillaries until they reach the position of naked glomerular basement membrane often found in podocytopathies. Such motility would also be the prerequisite for the replacement of lost podocytes by progenitor cells. Additionally, the change of the podocyte foot processes from a normal to an effaced morphology, like it is found in many kidney diseases, would require a dynamic behavior of podocytes. Since the actin cytoskeleton is expressed in podocytes in vitro and in vivo and the morphology of podocytes is highly dependent on actin, actin-associated, and actin-regulating proteins, it was assumed that podocytes are dynamic and motile. After earlier technical limitations had been overcome and novel microscopic techniques like multiphoton microscopy had been developed, it became possible to continuously study the behavior of podocytes in living rodents and zebrafish larvae under physiological and pathological conditions. Recent in vivo microscopic studies in different model organisms suggest that lateral migration of podocytes in situ is a very unlikely event and only dynamic apical cell protrusions can be observed under pathological conditions. This review discusses recent findings concerning different forms of motility (like lateral translocative (LTM), apical translocative (ATM), and stationary motility (SM)) and their role for podocytopathies.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany. .,Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17487, Greifswald, Germany.
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany
| |
Collapse
|