1
|
Yari M, Eidi M, Omrani MA, Fazeli Z, Rahmanian M, Ghafouri-Fard S. Comprehensive identification of hub mRNAs and lncRNAs in colorectal cancer using galaxy: an in silico transcriptome analysis. Discov Oncol 2025; 16:282. [PMID: 40056245 DOI: 10.1007/s12672-025-02026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality. Using the Galaxy platform, the present study aimed to assess the differentially expressed genes (DEGs) in CRC patients. The expression data was obtained from the Gene Expression Omnibus database (GSE137327). DEGs were analyzed using Gene Ontology (GO) and GeneMANIA databases to detect the most critical biological pathways and processes. Protein-Protein Interaction Studies (PPIS) identified four hub genes (CCN1, CCL2, FLNC, MYH11). This article presents findings on three mRNAs (CEMIP, MMP7, and DPEP1) and also two notable lncRNAs, EVADR and DLX6-AS1, that have an impact on CRC pathogenesis and play a role in the epithelial-mesenchymal transition in tumor cells. The identified genes and lncRNAs are putative therapeutic targets and diagnostic markers. For instance, CRISPR/Cas9 editing systems can be designed in order to modulate expression of these genes, or edit them for the purpose of inducing sensitivity to conventional therapies. Besides, these genes can be incorporated into clinical prognostic models, offering panels of genes to choose appropriate personalized methods of treatment. Together, these genes represent novel markers and possible therapeutic targets for CRC.
Collapse
Affiliation(s)
- Mohsen Yari
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Milad Eidi
- The Endocrine Genetics Laboratory, Child Health and Human Development Program and Department of Pediatrics, Mcgill University Health Centre Research Institute, Montreal, QC, Canada
| | - Mohammad-Amin Omrani
- Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmanian
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Heidari R, Assadollahi V, Marashi SN, Elahian F, Mirzaei SA. Identification of Novel lncRNAs Related to Colorectal Cancer Through Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2025; 2025:5538575. [PMID: 39949372 PMCID: PMC11824705 DOI: 10.1155/bmri/5538575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/15/2024] [Indexed: 02/16/2025]
Abstract
Long noncoding RNA (lncRNA) plays a critical role in cancer cell proliferation, invasion, metastasis, and chemoresistance. The current study introduces novel lncRNAs in colorectal cancer (CRC) through bioinformatics analysis. GSE134834 CRC-related microarray of Gene Expression Omnibus (GEO) was analyzed to identify differentially expressed genes (DEGs) in CRC samples against normal samples. Analysis revealed 6763 DEGs (p < 0.05 and |log fold change (FC)| ≥ 0.5) that include differentially expressed mRNA (DEmRNA) and differentially expressed long noncoding RNA (DElncRNA). Novel lncRNAs were identified, and to better understand the biological function of the identified lncRNAs, gene modules were constructed using weighted gene coexpression network analysis (WGCNA), and finally, two modules for lncRNAs were obtained. The coexpression modules with these lncRNAs were subjected to enrichment analysis in FunRich software to predict their functions through their coexpressed genes. Gene ontology results of modules related to novel lncRNA revealed they significantly enriched the cellular pathways regulation in cancer. The protein-protein interaction (PPI) network of novel lncRNAs-related modules was constructed using Search Tool for the Retrieval of Interacting Genes (STRING) and visualized using the Cytoscape software. Hub genes were screened from the PPI network by the CytoHubba plug-in of Cytoscape. The hub genes were MRTO4, CDK1, CDC20, RPF2, NOP58, NIFK, GTPBP4, BUB1, BUB1B, and BOP1 for the lightpink4 module and BYSL, RPS23 (ribosomal protein S23), RSL1D1 (ribosomal L1 domain containing 1), NAT10, NOP14, GNL2, MRPS12, NOL6 (nucleolar protein 6), IMP4, and RRP12 (ribosomal RNA processing 12 homolog) for the pink module. The expression levels of the top DEmRNA and module hub genes in CRC were validated using the Gene Expression Profiling Interactive Analysis (GEPIA) database. Generally, our findings offer crucial insight into the hub genes and novel lncRNAs in the development of CRC by bioinformatics analysis, information that may prove useful in the identification of new biomarkers and treatment targets in CRC; however, more experimental investigation is required to validate the findings of the present study.
Collapse
Affiliation(s)
- Razieh Heidari
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Negar Marashi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Advanced Technologies Core, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
An SC, Jun HH, Kim KM, Kim I, Choi S, Yeo H, Lee S, An HJ. Auranofin as a Novel Anticancer Drug for Anaplastic Thyroid Cancer. Pharmaceuticals (Basel) 2024; 17:1394. [PMID: 39459033 PMCID: PMC11510098 DOI: 10.3390/ph17101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Anaplastic thyroid cancer (ATC) is an aggressive and rare cancer with a poor prognosis, and traditional therapies have limited efficacy. This study investigates drug repositioning, focusing on auranofin, a gold-based drug originally used for rheumatoid arthritis, as a potential treatment for ATC. Methods: Auranofin was identified from an FDA-approved drug library and tested on two thyroid cancer cell lines, 8505C and FRO. Antitumor efficacy was evaluated through gene and protein expression analysis using Western blot, FACS, and mRNA sequencing. In vivo experiments were conducted using subcutaneous injections in nude mice to confirm the anticancer effects of auranofin. Results: Auranofin induced reactive oxygen species (ROS) production and apoptosis, leading to a dose-dependent reduction in cell viability, G1/S phase cell cycle arrest, and altered expression of regulatory proteins. It also inhibited cancer stem cell activity and suppressed epithelial-mesenchymal transition. mRNA sequencing revealed significant changes in the extracellular matrix-receptor interaction pathway, supported by Western blot results. In vivo xenograft models demonstrated strong antitumor activity. Conclusions: Auranofin shows promise as a repurposed therapeutic agent for ATC, effectively inhibiting cell proliferation, reducing metastasis, and promoting apoptosis. These findings suggest that auranofin could play a key role in future ATC treatment strategies.
Collapse
Affiliation(s)
- Seung-Chan An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
| | - Hak Hoon Jun
- Department of General Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (H.H.J.); (I.K.)
| | - Kyeong Mi Kim
- Department of Laboratory Medicine, CHA Ilsan Medical Center, School of Medicine, CHA University, 100, Ilsan-ro, Ilsandong-gu, Goyang-si 10444, Republic of Korea;
| | - Issac Kim
- Department of General Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (H.H.J.); (I.K.)
| | - Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
| | - Hyunjeong Yeo
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si 11160, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si 11160, Republic of Korea
| |
Collapse
|
4
|
Chen YY, Li BP, Wang JF, Wang Y, Luo SS, Lin RJ, Liao XW, Chen JQ. Investigating the prognostic and predictive value of the type II cystatin genes in gastric cancer. BMC Cancer 2023; 23:1122. [PMID: 37978366 PMCID: PMC10657128 DOI: 10.1186/s12885-023-11550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that type II cystatin (CST) genes play a pivotal role in several tumor pathological processes, thereby affecting all stages of tumorigenesis and tumor development. However, the prognostic and predictive value of type II CST genes in GC has not yet been investigated. METHODS The present study evaluated the expression and prognostic value of type II CST genes in GC by using The Cancer Genome Atlas (TCGA) database and the Kaplan-Meier plotter (KM plotter) online database. The type II CST genes related to the prognosis of GC were then screened out. We then validated the expression and prognostic value of these genes by immunohistochemistry. We also used Database for Annotation, Visualization, and Integrated Discovery (DAVID), Gene Multiple Association Network Integration Algorithm (GeneMANIA), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), nomogram, genome-wide co-expression analysis, and other bioinformatics tools to analyze the value of type II CST genes in GC and the underlying mechanism. RESULTS The data from the TCGA database and the KM plotter online database showed that high expression of CST2 and CST4 was associated with the overall survival (OS) of patients with GC. The immunohistochemical expression analysis showed that patients with high expression of CST4 in GC tissues have a shorter OS than those with low expression of CST4 (HR = 1.85,95%CI: 1.13-3.03, P = 0.015). Multivariate Cox regression analysis confirmed that the high expression level of CST4 was an independent prognostic risk factor for OS. CONCLUSIONS Our findings suggest that CST4 could serve as a tumor marker that affects the prognosis of GC and could be considered as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Ye-Yang Chen
- Department of General Surgery, The First People's Hospital of Yulin, Yulin, China
| | - Bo-Pei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Fu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan-Shan Luo
- Department of Colorectal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ru-Jing Lin
- Department of General Surgery, The People's Hospital of Binyang, Nanning, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Xu C, Luo M, Liu X, Wei T, Zhou Z, Li C, He Z, Sui H. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase. Cell Tissue Res 2023:10.1007/s00441-023-03747-9. [PMID: 36781484 DOI: 10.1007/s00441-023-03747-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
The aim of this study was to investigate the effect and mechanism of action of miR-1298-5p in polycystic ovary syndrome (PCOS). Granulosa cells were isolated from follicular fluid of patients with PCOS and healthy women, and the expression of miR-1298-5p and glutathione-disulfide reductase (GSR) mRNA in these cells was evaluated using reverse transcription-quantitative polymerase chain reaction (qRT-PCR). Clinical data were obtained from all subjects, and reproductive hormones and endocrine indices were assayed to analyze the correlation between miR-1298-5p and clinicopathological characteristics of patients with PCOS. Following transfection with the miR-1298-5p mimic or inhibitor and/or pcDNA3.1-GSR, LC3 immunofluorescence and transmission electron microscopy were used to evaluate autophagy in the COV434 human granulosa cell line. Additionally, western blotting was performed to detect LC3-II, Beclin 1, and p62 protein levels in COV434 cells. The interaction between miR-1298-5p and GSR was also examined. A PCOS rat model was established and injected with the miR-1298-5p antagomir, followed by measurement of body and ovary weights, histological examination, and autophagosome observation. The protein expression levels of GSR, LC3-II, Beclin 1, and p62 were determined in rat ovaries. miR-1298-5p was expressed at a high level, and GSR was downregulated in granulosa cells from patients with PCOS. In COV434 cells, miR-1298-5p inversely mediated GSR expression, and miR-1298-5p mimic transfection promoted autophagy, whereas GSR overexpression blocked miR-1298-5p mimic-promoted autophagy. In PCOS rats, miR-1298-5p inhibition reduced autophagy and alleviated abnormalities in follicular development. Overall, miR-1298-5p enhances autophagy in granulosa cells by downregulating GSR, thereby affecting PCOS development.
Collapse
Affiliation(s)
- Changlong Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, No.13 Dancun Road, Nanning, Guangxi 530031, People's Republic of China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xiaodong Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Tao Wei
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Zheng Zhou
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Changze Li
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Zilin He
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China.
| |
Collapse
|
6
|
Kang Y, Deng J, Ling J, Li X, Chiang YJ, Koay EJ, Wang H, Burks JK, Chiao PJ, Hurd MW, Bhutani MS, Lee JH, Weston BR, Maitra A, Ikoma N, Tzeng CWD, Lee JE, DePinho RA, Wolff RA, Pant S, McAllister F, Katz MH, Fleming JB, Kim MP. 3D imaging analysis on an organoid-based platform guides personalized treatment in pancreatic ductal adenocarcinoma. J Clin Invest 2022; 132:e151604. [PMID: 36282600 PMCID: PMC9753992 DOI: 10.1172/jci151604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDPancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with unpredictable responses to chemotherapy. Approaches to assay patient tumors before treatment and identify effective treatment regimens based on tumor sensitivities are lacking. We developed an organoid-based platform (OBP) to visually quantify patient-derived organoid (PDO) responses to drug treatments and associated tumor-stroma modulation for personalized PDAC therapy.METHODSWe retrospectively quantified apoptotic responses and tumor-stroma cell proportions in PDOs via 3D immunofluorescence imaging through annexin A5, α-smooth muscle actin (α-SMA), and cytokeratin 19 (CK-19) levels. Simultaneously, an ex vivo organoid drug sensitivity assay (ODSA) was used to measure responses to standard-of-care regimens. Differences between ODSA results and patient tumor responses were assessed by exact McNemar's test.RESULTSImmunofluorescence signals, organoid growth curves, and Ki-67 levels were measured and authenticated through the OBP for up to 14 days. ODSA drug responses were not different from patient tumor responses, as reflected by CA19-9 reductions following neoadjuvant chemotherapy (P = 0.99). PDOs demonstrated unique apoptotic and tumor-stroma modulation profiles (P < 0.0001). α-SMA/CK-19 ratio levels of more than 1.0 were associated with improved outcomes (P = 0.0179) and longer parental patient survival by Kaplan-Meier analysis (P = 0.0046).CONCLUSIONHeterogenous apoptotic drug responses and tumor-stroma modulation are present in PDOs after standard-of-care chemotherapy. Ratios of α-SMA and CK-19 levels in PDOs are associated with patient survival, and the OBP could aid in the selection of personalized therapies to improve the efficacy of systemic therapy in patients with PDAC.FUNDINGNIH/National Cancer Institute grants (K08CA218690, P01 CA117969, R50 CA243707-01A1, U54CA224065), the Skip Viragh Foundation, the Bettie Willerson Driver Cancer Research Fund, and a Cancer Center Support Grant for the Flow Cytometry and Cellular Imaging Core Facility (P30CA16672).
Collapse
Affiliation(s)
- Ya’an Kang
- Department of Surgical Oncology
- Department of Experimental Therapeutics
| | | | | | | | | | | | - Huamin Wang
- Department of Translational Molecular Pathology
| | | | | | - Mark W. Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research
| | | | - Jeffrey H. Lee
- Department of Gastroenterology, Hepatology and Nutrition
| | | | | | | | | | | | | | | | - Shubham Pant
- Department of GI Medical Oncology
- Department of Cancer Therapeutics, and
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jason B. Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Michael P. Kim
- Department of Surgical Oncology
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
circIFITM1/miR-802/Foxp1 Axis Participates in Proliferation and Invasion of Lovo Cells. DISEASE MARKERS 2022; 2022:7366337. [PMID: 35783017 PMCID: PMC9249523 DOI: 10.1155/2022/7366337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
Objective. To explore the role of circIFITM1 and its potential molecular mechanism in colon cancer. Methods. The circIFITM1 in human samples and cell lines of colon cancer was measured via RT-PCR. The cyclicity of circIFITM1 was confirmed by agarose gel electrophoresis and Sanger sequencing, and the stability of circIFITM1 was confirmed by actinomycin D assay. The proliferative and invasive ability was detected by the CCK-8 assay and Transwell assay, respectively. RNA pull-down assay confirmed a combination of circIFITM1 and miRNA. Dual-luciferase reporter gene was used to detect the direct relationship between miRNA and the target gene. Results. circIFITM1 originated from the maternal gene IFITM1and had high stability. It was resistant to processing by actinomycin D. Upregulating circIFITM1 facilitated the proliferation and invasion of Lovo cells, while interfering with circIFITM1 expression inhibited them. circIFITM1 interacted with miR-802, and miR-802 targeted the 3
UTR of FOXP1. The overexpression of circIFITM1 downregulated miR-802 and upregulated FOXP1. Conclusion. circIFITM1 facilitates the proliferative and invasive abilities via miR-802/FOXP1 in Lovo cells.
Collapse
|
8
|
Yang J, Luo G, Li C, Zhao Z, Ju S, Li Q, Chen Z, Ding C, Tong X, Zhao J. Cystatin SN promotes epithelial-mesenchymal transition and serves as a prognostic biomarker in lung adenocarcinoma. BMC Cancer 2022; 22:589. [PMID: 35637432 PMCID: PMC9150371 DOI: 10.1186/s12885-022-09685-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Background Cystatins are a class of proteins that can inhibit cysteine protease and are widely distributed in human bodily fluids and secretions. Cystatin SN (CST1), a member of the CST superfamily, is abnormally expressed in a variety of tumors. However, its effect on the occurrence and development of lung adenocarcinoma (LUAD) remains unclear. Methods We obtained transcriptome analysis data of CST1 from The Cancer Genome Atlas (TCGA) and GSE31210 databases. The association of CST1 expression with prognosis, gene mutations and tumor immune microenvironment was analyzed using public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were performed to investigate the potential mechanisms of CST1. Results In this study, we found that CST1 was highly expressed in lung adenocarcinoma and was associated with prognosis and tumor immune microenvironment. Genetic mutations of CST1 were shown to be related to disease-free survival (DFS) by using the c-BioPortal tool. Potential proteins binding to CST1 were identified by constructing a protein-protein interaction (PPI) network. Gene set enrichment analysis (GSEA) of CST1 revealed that CST1 was notably enriched in epithelial-mesenchymal transition (EMT). Cell experiments confirmed that overexpression of CST1 promoted lung adenocarcinoma cells migration and invasion, while knockdown of CST1 significantly inhibited lung adenocarcinoma cells migration and invasion. Conclusions Our comprehensive bioinformatics analyses revealed that CST1 may be a novel prognostic biomarker in LUAD. Experiments confirmed that CST1 promotes epithelial-mesenchymal transition in LUAD cells. These findings will help to better understand the distinct role of CST1 in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09685-z.
Collapse
Affiliation(s)
- Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaomeng Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhunlin Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Ju
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Tong
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Role of the Long Intergenic Non-Protein-Coding RNA 1278/miR-185-5p/Cystatin SN Axis in Laryngeal Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:6406943. [PMID: 35498540 PMCID: PMC9050325 DOI: 10.1155/2022/6406943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Laryngeal cancer accounts for 25%–30% of tumors in the head and neck. Cystatin SN (CST1) was revealed to show upregulated expression in this cancer, while its functions and upstream pathway remain unknown and need investigation. The current study was designed to solve this problem. We designed short hairpin RNAs targeting CST1 for the loss-of-function assays to probe the influences of CST1 in laryngeal cancer cell proliferation and motility. The upstream competitive endogenous RNA pattern of CST1 was searched using bioinformatics analysis and confirmed by luciferase reporter assays. The experimental results demonstrated that CST1 is a tumor facilitator in laryngeal cancer by stimulating cellular proliferative, migrative, and invasive abilities. CST1 is regulated by the long intergenic non-protein-coding RNA 1278 (LINC01278)/miR-185-5p axis. LINC01278 knockdown and miR-185-5p overexpression exert the same functions as CST1 knockdown to repress cancer cell proliferation, migration, and invasion. In conclusion, LINC01278 plays an oncogenic role in laryngeal cancer by suppressing miR-185-5p to enhance CST1 expression, which enriches the molecular mechanism for the carcinogenesis of laryngeal cancer.
Collapse
|
10
|
Bhabak KP, Mahato SK, Bhattacherjee D, Barman P. Thioredoxin Reductase-triggered Fluorogenic Donor of Hydrogen Sulfide: A Model Study with Symmetrical Organopolysulfide Probe with Turn-on Near-Infrared Fluorescence Emission. J Mater Chem B 2022; 10:2183-2193. [DOI: 10.1039/d1tb02425f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the rational development of organopolysulfide-based fluorogenic donor of hydrogen sulfide (H2S) DCI-PS, which can be activated by the antioxidant selenoenzyme thioredoxin reductase (TrxR) with concomitant release of...
Collapse
|
11
|
Lai Y, Wang Y, Wu Y, Wu M, Xing S, Xie Y, Chen S, Li X, Zhang A, He Y, Li H, Dai S, Wang J, Lin S, Bai Y, Du H, Liu W. Identification and Validation of Serum CST1 as a Diagnostic Marker for Differentiating Early-Stage Non-Small Cell Lung Cancer from Pulmonary Benign Nodules. Cancer Control 2022; 29:10732748221104661. [PMID: 35653624 PMCID: PMC9168853 DOI: 10.1177/10732748221104661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Effective means for early diagnosis are imperative to reduce death rate of non-small cell lung cancer (NSCLC) patients. We aimed to find out high-performance serologic markers to distinguish early-stage NSCLC patients from benign pulmonary nodule patients and healthy controls (HC). Cystatin-SN (CST1) is an active cysteine protease inhibitor of the CST superfamily, involving in the processes of inflammation and tumorigenesis. This is the first exploration of the diagnostic and prognostic values of serum CST1 in NSCLC. METHODS We analyzed the transcriptome data from The Cancer Genome Atlas and the Gene Expression Omnibus database, screened biomarkers for NSCLC, and verified the candidate markers via the ONCOMINE database. Then, we performed ELISA, western blotting, and immunohistochemistry analysis to detect the expression levels of CST1 in NSCLC cell lines, tumor tissues, and serum samples of clinical cohorts. RESULTS We identified 3 up-regulated secreted protein-encoding genes, validated the expression levels of CST1 in NSCLC tumor tissues and cell lines, and found that serum CST1 levels of NSCLC (4289 ± 2405 pg/mL) were significantly higher than those of PBN patients (1558 ± 441 pg/mL, P < .0001) and healthy controls (1529 ± 416 pg/mL, P < .0001). The AUC of the combination of CST1, Cytokeratin 19 fragment (Cyfra21-1), and Carcinoembryonic antigen (CEA) for distinguishing early-stage NSCLC from PBN/HC was as high as .914/0.925. Furthermore, our results suggested that the NSCLC patient with low serum CST1 level had a better survival rate. CONCLUSIONS Serum CST1 may serve as a novel diagnostic marker for differentiating early-stage NSCLC from PBN and HC, and could be used as a prognosis predictor in NSCLC patients.
Collapse
Affiliation(s)
| | - Yu Wang
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Yaxian Wu
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Meng Wu
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Shan Xing
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Ying Xie
- Heyuan People’s
Hospital, Heyuan, China
| | - Shulin Chen
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Xiaohui Li
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Ao Zhang
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Yi He
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Huilan Li
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Shuqin Dai
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Junye Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Shudai Lin
- School of Biology and Biological
Engineering, South China University of
Technology, Guangzhou, China
| | - Yunmeng Bai
- School of Biology and Biological
Engineering, South China University of
Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological
Engineering, South China University of
Technology, Guangzhou, China
| | - Wanli Liu
- Department of Clinical Laboratory,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Sun Yat-sen University Cancer
Center, Guangzhou, China
| |
Collapse
|
12
|
Cystatin C and cystatin SN as possible soluble tumor markers in malignant uveal melanoma. Radiol Oncol 2021; 56:83-91. [PMID: 34957724 PMCID: PMC8884861 DOI: 10.2478/raon-2021-0049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background The aim of the study was to determine the concentration of endogenous cystatin C and cystatin SN, as potential tumor biomarkers, in the serum and biological fluids of the eye in both healthy controls and patients with uveal melanoma. Patients and methods The concentration of both cystatins was determined in the intraocular fluid (IOF), tear fluid, and serum of patients with uveal melanoma and compared to baseline measurements in IOF, tears, serum, cerebral spinal fluid, saliva and urine of healthy controls. Results The concentration of cystatin C in all the biological matrices obtained from healthy controls significantly exceeded the concentration of cystatin SN and was independent of gender. Cystatin C concentrations in the tear fluid of patients with uveal melanoma (both the eye with the malignancy, as well as the contralateral, non-affected eye), were significantly greater than cystatin C concentrations in the tear fluid of healthy controls and was independent of tumor size. The concentration of cystatin SN in IOF of patients with uveal melanoma was significantly less than the corresponding concentration of cystatin SN in healthy controls. Conclusions The ratio of cystatins (CysC:CysSN) in both the serum and tear fluid, as well as the concentration of cystatin SN in IOF, would appear to strongly suggest the presence of uveal melanoma. It is further suggested that multiple diagnostic criteria be utilized if a patient is suspected of having uveal melanoma, such as determination of the cystatin C and cystatin SN concentrations in serum, tears, and IOF, ocular fundus and ultrasound imaging, and biopsy with histopathological evaluation.
Collapse
|
13
|
Dinh HQ, Pan F, Wang G, Huang QF, Olingy CE, Wu ZY, Wang SH, Xu X, Xu XE, He JZ, Yang Q, Orsulic S, Haro M, Li LY, Huang GW, Breunig JJ, Koeffler HP, Hedrick CC, Xu LY, Lin DC, Li EM. Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment. Nat Commun 2021; 12:7335. [PMID: 34921160 PMCID: PMC8683407 DOI: 10.1038/s41467-021-27599-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
The tumor microenvironment is a highly complex ecosystem of diverse cell types, which shape cancer biology and impact the responsiveness to therapy. Here, we analyze the microenvironment of esophageal squamous cell carcinoma (ESCC) using single-cell transcriptome sequencing in 62,161 cells from blood, adjacent nonmalignant and matched tumor samples from 11 ESCC patients. We uncover heterogeneity in most cell types of the ESCC stroma, particularly in the fibroblast and immune cell compartments. We identify a tumor-specific subset of CST1+ myofibroblasts with prognostic values and potential biological significance. CST1+ myofibroblasts are also highly tumor-specific in other cancer types. Additionally, a subset of antigen-presenting fibroblasts is revealed and validated. Analyses of myeloid and T lymphoid lineages highlight the immunosuppressive nature of the ESCC microenvironment, and identify cancer-specific expression of immune checkpoint inhibitors. This work establishes a rich resource of stromal cell types of the ESCC microenvironment for further understanding of ESCC biology.
Collapse
Affiliation(s)
- Huy Q Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Feng Pan
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China
| | - Geng Wang
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qing-Feng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China
| | - Claire E Olingy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Xin Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China
| | - Jian-Zhong He
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China
| | - Qian Yang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marcela Haro
- Department of Obstetrics and Gynecology and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li-Yan Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Guo-Wei Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China.
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - En-Min Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China.
| |
Collapse
|
14
|
Xia Y, Wang G, Jiang M, Liu X, Zhao Y, Song Y, Jiang B, Zhu D, Hu L, Zhang Z, Cao T, Wang JM, Hu J. A Novel Biological Activity of the STAT3 Inhibitor Stattic in Inhibiting Glutathione Reductase and Suppressing the Tumorigenicity of Human Cervical Cancer Cells via a ROS-Dependent Pathway. Onco Targets Ther 2021; 14:4047-4060. [PMID: 34262291 PMCID: PMC8275107 DOI: 10.2147/ott.s313507] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Glutathione reductase (GSR) provides reduced glutathione (GSH) to maintain redox homeostasis. Inhibition of GSR disrupts this balance, resulting in cell damage, which benefits cancer therapy. However, the effect of GSR inhibition on the tumorigenicity of human cervical cancer is not fully understood. Materials and Methods Tissue microarray analysis was employed to determine GSR expression in cervical cancer tissues by immunohistochemical staining. Cell death was measured with PI/FITC-annexin V staining. mRNA levels were measured via quantitative RT-PCR. Protein expression was measured by Western blotting and flow cytometry. STAT3 deletion was performed with CRISPR/Cas9 technology. GSR knockdown was achieved by RNA interference. Reactive oxygen species (ROS) levels were measured by DCF staining. GSR enzymatic activity was measured with a GSR assay kit. The effect of GSR inhibition on the growth of tumors formed by cervical cancer cells was investigated using a xenograft model. Results The expression of GSR was increased in human cervical cancer tissues, as shown by immunohistochemical staining. GSR knockdown by RNA interference in human cervical cancer cell lines resulted in cell death, suggesting the ability of GSR to maintain cancer cell survival. The STAT3 inhibitor 6-nitrobenzo[b]thiophene 1,1-dioxide (Stattic) also inhibited the enzymatic activity of GSR and induced the death of cervical cancer cells. More importantly, Stattic decreased the growth of xenograft tumors formed by cervical cancer cells in nude mice. Mechanistically, tumor cell death induced by Stattic-mediated GSR inhibition was ROS-dependent, since the ROS scavengers GSH and N-acetyl cysteine (NAC) reversed the effect of Stattic. In contrast, pharmacological and molecular inhibition of STAT3 did not induce the death of cervical cancer cells, suggesting a STAT3-independent activity of Stattic. Conclusion Stattic inhibits the enzymatic activity of GSR and induces STAT3-independent but ROS-dependent death of cervical cancer cells, suggesting its potential application as a therapeutic agent for human cervical cancers.
Collapse
Affiliation(s)
- Yuchen Xia
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.,Department of Oncology, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Guihua Wang
- Department of Oncology, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yan Zhao
- Department of Pathology, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Binyuan Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Demao Zhu
- Department of Pathology, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Ling Hu
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhao Zhang
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Ting Cao
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Ji Ming Wang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| |
Collapse
|
15
|
Ding J, Wang X, Gao J, Song T. Silencing of cystatin SN abrogates cancer progression and stem cell properties in papillary thyroid carcinoma. FEBS Open Bio 2021. [PMID: 34102026 PMCID: PMC8329778 DOI: 10.1002/2211-5463.13221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) accounts for approximately 80% of total thyroid cancers worldwide. Although the prognosis for early‐stage PTC is favorable, the 5‐year survival rate of patients with late‐stage PTC is still very poor. Cystatin SN (cystatin 1, CST1) facilitates the progression of multiple cancers, but its role in regulating PTC pathogenesis is still largely unknown. In this study, we measured the expression levels of CST1 in PTC clinical tissues and cell lines by real‐time quantitative PCR and western blot analysis, and we performed gain‐ and loss‐of‐function experiments to examine the effects of CST1 on PTC cell growth, invasion, migration, epithelial–mesenchymal transition and stemness. Tumorigenicity was assessed using in vivo tumor‐bearing nude mouse models. As expected, upregulated CST1 was observed in PTC tissues (P < 0.05) and cells, compared with their normal counterparts (P < 0.05); furthermore, patients with PTC with higher levels of CST1 exhibited unfavorable prognosis (P < 0.05). In addition, CST1 ablation inhibited PTC cell growth (P < 0.05) in vivo and in vitro. Silencing of CST1 also inhibited cell motility and epithelial–mesenchymal transition in PTC cells (P < 0.05), whereas CST1 overexpression had the opposite effects on the earlier cellular functions. Notably, up‐regulation of CST1 promoted cell spheroid formation (P < 0.05) and increased the expression levels of stemness signatures (P < 0.05) in PTC cells. Collectively, these findings suggest that CST1 functions as an oncogene to facilitate cancer development and promote cancer stem cell properties in PTC cells, increasing our understanding of PTC pathogenesis mechanisms and possibly aiding in the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Jiaojiao Ding
- Department of Ultrasound, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaorong Wang
- Department of Ultrasound, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junxi Gao
- Department of Ultrasound, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tao Song
- Department of Ultrasound, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
16
|
Cathepsin D-Managing the Delicate Balance. Pharmaceutics 2021; 13:pharmaceutics13060837. [PMID: 34198733 PMCID: PMC8229105 DOI: 10.3390/pharmaceutics13060837] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Lysosomal proteases play a crucial role in maintaining cell homeostasis. Human cathepsin D manages protein turnover degrading misfolded and aggregated proteins and favors apoptosis in the case of proteostasis disruption. However, when cathepsin D regulation is affected, it can contribute to numerous disorders. The down-regulation of human cathepsin D is associated with neurodegenerative disorders, such as neuronal ceroid lipofuscinosis. On the other hand, its excessive levels outside lysosomes and the cell membrane lead to tumor growth, migration, invasion and angiogenesis. Therefore, targeting cathepsin D could provide significant diagnostic benefits and new avenues of therapy. Herein, we provide a brief overview of cathepsin D structure, regulation, function, and its role in the progression of many diseases and the therapeutic potentialities of natural and synthetic inhibitors and activators of this protease.
Collapse
|
17
|
Liu Y, Liao L, An C, Wang X, Li Z, Xu Z, Liu J, Liu S. α-Enolase Lies Downstream of mTOR/HIF1α and Promotes Thyroid Carcinoma Progression by Regulating CST1. Front Cell Dev Biol 2021; 9:670019. [PMID: 33968941 PMCID: PMC8097056 DOI: 10.3389/fcell.2021.670019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
Novel therapy strategies are crucial for thyroid carcinoma treatment. It is increasingly important to clarify the mechanism of thyroid carcinoma progression. Several studies demonstrate that α-Enolase (ENO1) participates in cancer development; nevertheless, the role of ENO1 in thyroid carcinoma progression remains unclear. In the present study, we found that the expression of ENO1 was upregulated in thyroid carcinoma samples. Proliferation and migration of thyroid carcinoma cells were suppressed by depletion of ENO1; conversely, ENO1 overexpression promoted thyroid carcinoma cell growth and invasion. To elucidate the mechanisms, we found that the hypoxia-related mTOR/HIF1 pathway regulated ENO1 expression. ENO1 regulated the expression of CST1; knockdown of CST1 reversed the tumorigenicity enhanced by ENO1 overexpression. Taken together, our findings provide a theoretical foundation for thyroid carcinoma treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lida Liao
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming An
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolei Wang
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengjiang Li
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengang Xu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoyan Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Wang S, Wang C, Liu O, Hu Y, Li X, Lin B. Prognostic value of immune-related cells and genes in the tumor microenvironment of ovarian cancer, especially CST4. Life Sci 2021; 277:119461. [PMID: 33811900 DOI: 10.1016/j.lfs.2021.119461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 01/03/2023]
Abstract
Ovarian cancer (OC) is the most common gynecological malignant tumor with the highest mortality rate. However, identification of effective immune therapeutic targets and biomarkers are beset by many challenges. CIBERSORT was used to calculate the abundance of 22 immune cell types in 379 OC samples, and indicated that three immune cell types were associated with poor prognoses. Further analysis revealed that 17 hub genes were associated with these three cell types. We screened differentially expressed immune-related prognostic gene associated with clinicopathological factors, which was CST4. We used clinical specimens to detect the expression of CST4, and determined that CST4 was both highly expressed in OC patients and associated with poor prognoses. Our findings indicated that infiltration of immune cells affected the survival of patients with OC, provided therapeutic targets represented by CST4, deepened our understanding of the immune microenvironment of OC, and enhanced the theoretical basis of immunotherapy.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
19
|
Luo Y, Fu Y, Huang Z, Li M. Transition metals and metal complexes in autophagy and diseases. J Cell Physiol 2021; 236:7144-7158. [PMID: 33694161 DOI: 10.1002/jcp.30359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Transition metals refer to the elements in the d and ds blocks of the periodic table. Since the success of cisplatin and auranofin, transition metal-based compounds have become a prospective source for drug development, particularly in cancer treatment. In recent years, extensive studies have shown that numerous transition metal-based compounds could modulate autophagy, promising a new therapeutic strategy for metal-related diseases and the design of metal-based agents. Copper, zinc, and manganese, which are common components in physiological pathways, play important roles in the progression of cancer, neurodegenerative diseases, and cardiovascular diseases. Furthermore, enrichment of copper, zinc, or manganese can regulate autophagy. Thus, we summarized the current advances in elucidating the mechanisms of some metals/metal-based compounds and their functions in autophagy regulation, which is conducive to explore the intricate roles of autophagy and exploit novel therapeutic drugs for human diseases.
Collapse
Affiliation(s)
- Yuping Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiying Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Li Y, Pang X, Cui Z, Zhou Y, Mao F, Lin Y, Zhang X, Shen S, Zhu P, Zhao T, Sun Q, Zhang J. Genetic factors associated with cancer racial disparity - an integrative study across twenty-one cancer types. Mol Oncol 2020; 14:2775-2786. [PMID: 32920960 PMCID: PMC7607166 DOI: 10.1002/1878-0261.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
It is well known that different racial groups have significantly different incidence and mortality rates for certain cancers. It has been suggested that biological factors play a major role in these cancer racial disparities. Previous studies on the biological factors contributing to cancer racial disparity have generated a very large number of candidate factors, although there is modest agreement among the results of the different studies. Here, we performed an integrative analysis using genomic data of 21 cancer types from TCGA, GTEx, and the 1000 Genomes Project to identify biological factors contributing to racial disparity in cancer. We also built a companion website with additional results for cancer researchers to freely mine. Our study identified genes, gene families, and pathways displaying similar differential expression patterns between different racial groups across multiple cancer types. Among them, XKR9 gene expression was found to be significantly associated with overall survival for all cancers combined as well as for several individual cancers. Our results point to the interesting hypothesis that XKR9 could be a novel drug target for cancer immunotherapy. Bayesian network modeling showed that XKR9 is linked to important cancer-related genes, including FOXM1, cyclin B1, and RB1CC1 (RB1 regulator). In addition, metabolic pathways, neural signaling pathways, and several cancer-related gene families were found to be significantly associated with cancer racial disparities for multiple cancer types. Single nucleotide polymorphisms (SNPs) discovered through integrating data from the TCGA, GTEx, and 1000 Genomes databases provide biologists the opportunity to test highly promising, targeted hypotheses to gain a deeper understanding of the genetic drivers of cancer racial disparity and cancer biology in general.
Collapse
Affiliation(s)
- Yan Li
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | | | - Zihan Cui
- Department of StatisticsFlorida State UniversityTallahasseeFLUSA
| | - Yidong Zhou
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Feng Mao
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Yan Lin
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiaohui Zhang
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Songjie Shen
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Peixin Zhu
- Boston Biosciences Inc.BostonMAUSA
- Broad Institute of Harvard & MITCambridgeMAUSA
- McGovern Institute for Brain ResearchMITCambridgeMAUSA
| | - Tingting Zhao
- Department of GeographyFlorida State UniversityTallahasseeFLUSA
| | - Qiang Sun
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jinfeng Zhang
- Department of StatisticsFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
21
|
ROS Overproduction Sensitises Myeloma Cells to Bortezomib-Induced Apoptosis and Alleviates Tumour Microenvironment-Mediated Cell Resistance. Cells 2020; 9:cells9112357. [PMID: 33114738 PMCID: PMC7693395 DOI: 10.3390/cells9112357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that remains incurable due to innate or acquired resistance. Although MM cells produce high intracellular levels of reactive oxygen species (ROS), we hypothesised that they could remain sensitive to ROS unbalance. We tested if the inhibition of ROS, on one hand, or the overproduction of ROS, on the other, could (re)sensitise cells to bortezomib (BTZ). Two drugs were used in a panel of MM cell lines with various responses to BTZ: VAS3947 (VAS), an inhibitor of NADPH oxidase and auranofin (AUR), an inhibitor of thioredoxin reductase (TXNRD1), an antioxidant enzyme overexpressed in MM cells. We used several culture models: in suspension, on a fibronectin layer, in coculture with HS-5 mesenchymal cells, and/or in 3-D culture (or spheroids) to study the response of MM primary cells and cell lines. Several MM cell lines were sensitive to VAS but the combination with BTZ showed antagonistic or additive effects at best. By contrast, in all culture systems studied, the combined AUR/BTZ treatment showed synergistic effects on cell lines, including those less sensitive to BTZ and primary cells. MM cell death is due to the activation of apoptosis and autophagy. Modulating the redox balance of MM cells could be an effective therapy for refractory or relapse post-BTZ patients.
Collapse
|
22
|
Xie Y, Wang Y, Xiang W, Wang Q, Cao Y. Molecular Mechanisms of the Action of Myricetin in Cancer. Mini Rev Med Chem 2020; 20:123-133. [PMID: 31648635 DOI: 10.2174/1389557519666191018112756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Natural compounds, such as paclitaxel and camptothecin, have great effects on the treatment of tumors. Such natural chemicals often achieve anti-tumor effects through a variety of mechanisms. Therefore, it is of great significance to conduct further studies on the anticancer mechanism of natural anticancer agents to lay a solid foundation for the development of new drugs. Myricetin, originally isolated from Myrica nagi, is a natural pigment of flavonoids that can inhibit the growth of cancer cells (such as liver cancer, rectal cancer, skin cancer and lung cancer, etc.). It can regulate many intracellular activities (such as anti-inflammatory and blood lipids regulation) and can even be bacteriostatic. The purpose of this paper is to outline the molecular pathways of the anticancer effects of myricetin, including the effect on cancer cell death, proliferation, angiogenesis, metastasis and cell signaling pathway.
Collapse
Affiliation(s)
- Yutao Xie
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yunlong Wang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Wei Xiang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Qiaoying Wang
- Department of Cardiothoracic Surgery, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yajun Cao
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| |
Collapse
|
23
|
The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology 2020; 547:7-11. [PMID: 32442105 PMCID: PMC7236683 DOI: 10.1016/j.virol.2020.05.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 11/25/2022]
Abstract
SARS-COV-2 has recently emerged as a new public health threat. Herein, we report that the FDA-approved drug, auranofin, inhibits SARS-COV-2 replication in human cells at low micro molar concentration. Treatment of cells with auranofin resulted in a 95% reduction in the viral RNA at 48 h after infection. Auranofin treatment dramatically reduced the expression of SARS-COV-2-induced cytokines in human cells. These data indicate that auranofin could be a useful drug to limit SARS-CoV-2 infection and associated lung injury due to its antiviral, anti-inflammatory and anti-reactive oxygen species (ROS) properties. Further animal studies are warranted to evaluate the safety and efficacy of auranofin for the management of SARS-COV-2 associated disease. Auranofin inhibits replication of SARS-COV-2 in human cells at low micro molar concentration. Auranofin treatment resulted in significant reduction in SARS-COV-2-induced cytokines in human cells. Auranofin could mitigate SARS-COV-2 infection and lung damage due to its anti-viral and anti-inflammatory properties. Auranofin is a gold-containing FDA-approved drug.
Collapse
|
24
|
Kaya C, Ashraf M, Alyemeni MN, Ahmad P. The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:10-20. [PMID: 31837556 DOI: 10.1016/j.plaphy.2019.11.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 05/24/2023]
Abstract
An experimentation was carried out to appraise whether or not nitric oxide (NO) contributes to salicylic acid (SA)-induced salinity tolerance particularly by regulating ascorbate-glutathione (AsA-GSH) cycle. Before starting salinity stress (SS), SA (0.5 mM) was sprayed to the foliage of plants once every other day for a week and then seedlings were grown under control or SS (100 mM NaCl), for five weeks. Salinity stress enhanced the AsA-GSH cycle-related enzymes, glutathione reductase (GR), ascorbate peroxidase (APX), and dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR). Furthermore, SS caused substantial decreases in plant physiological-related traits such as leaf potassium (K) contents, K+/Na+ ratio, the ratios of reduced ascorbate/dehydroascorbic acid (AsA/DHA) and reduced glutathione/oxidized glutathione (GSH/GSSG), but in contrast, significant increases occurred in leaf hydrogen peroxide, malondialdehyde, electron leakage, proline, the premier antioxidant enzymes' activities, Na+ and NO. SA reduced leaf Na+ content and oxidative stress-related traits, but improved all earlier-mentioned traits compared with those in plants treated with SS alone. All positive effects of SA were eliminated by NO scavenger, 0.1 mM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide (c-PTIO) by reducing NO, suggesting that NO produced by SA up-regulated the activities of AsA-GSH cycle and antioxidant enzymes, so it could play a central function as a signal molecule in salt tolerance of pepper plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
25
|
Liu Y, Ma H, Wang Y, Du X, Yao J. Cystatin SN Affects Cell Proliferation by Regulating the ERα/PI3K/AKT/ERα Loopback Pathway in Breast Cancer. Onco Targets Ther 2019; 12:11359-11369. [PMID: 31920327 PMCID: PMC6934116 DOI: 10.2147/ott.s234328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 01/03/2023] Open
Abstract
Background Cystatin SN (CST1) has been reported to act as an oncogene in cancers, but its underlying mechanism remains unclear. Methods We performed Western blotting analyses to observe protein expression and conducted transwell invasion, wound healing, and colony formation assays to assess cell invasion, migration, and proliferation, respectively. We also performed cell cycle analyses by flow cytometry to determine the role of CST1 in the cell cycle. In vivo experiments used subcutaneous tumor models in BALB/c-nu athymic female mice to evaluate the effect of CST1 on tumor growth. Results Western blotting analyses showed that CST1 was upregulated in ER+ breast cancer cells such as MCF7, T47D, and BT474. CST1 knockdown led to slower cell growth and inhibited the G1 to S phase transition in ER+ breast cancer cells. In vivo experiments showed that CST1 deletion inhibited tumor growth, and led to decreased expression of estrogen receptor α (ERα) and p-AKT. In vitro experiments showed that the over-expression of CST1 led to the upregulation of ERα, and inhibition of CST1 inhibited the expression of ERα. Western blotting analyses showed that CST1 regulated the activity of the PI3K/AKT signaling pathway in breast cancer cells. We confirmed that CST1 acted as an oncogene in ER+ breast cancer by regulating the ERα/PI3K/AKT/ERα loopback pathway. Conclusion CST1 acts as an oncogene in ER+ breast cancer, and CST1 contributes to cancer development by regulating the ERα/PI3K/AKT/ERα loopback pathway in ER+ breast cancer. Our findings indicate that CST1 could be a significant therapeutic target for ER+ breast cancer patients. Our discovery should inspire further studies on the role of CST1 in cancers.
Collapse
Affiliation(s)
- Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xinyang Du
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
26
|
Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie 2019; 166:233-250. [PMID: 31071357 DOI: 10.1016/j.biochi.2019.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
Cystatins are endogenous and reversible inhibitors of cysteine peptidases that are important players in cancer progression. Besides their primary role as regulators of cysteine peptidase activity, cystatins are involved in cancer development and progression through proteolysis-independent mechanisms. Mechanistic studies of cystatin function revealed that they affect all stages of cancer progression including tumor growth, apoptosis, invasion, metastasis and angiogenesis. Recently, the involvement of cystatins in the antitumor immune responses was reported. In this review, we discuss molecular mechanisms and clinical aspects of cystatins in cancer. Altered expression of cystatins in cancer resulting in harmful excessive cysteine peptidase activity has been a subject of several studies in order to find correlations with clinical outcome and therapy response. However, involvement in anti-tumor immune response and signaling cascades leading to cancer progression designates cystatins as possible targets for development of new anti-tumor drugs.
Collapse
|
27
|
Abstract
Cystatin SN, belonging to the type 2 cystatin superfamily, is widely expressed and distributed in mammals. Cystatin SN is involved in inflammation, cell cycle, cellular senescence, tumorigenesis, and metastasis. Cystatin SN is also known to participate in signaling pathways like Wnt signaling pathway, GSK3 signaling pathway, AKT signaling pathway, and IL-6 signaling pathway. Cystatin SN was found to be highly expressed in peritumoral normal tissues in esophageal squamous cell carcinoma (ESCC); however, low cystatin SN expression was found in ESCC cancer tissues. Conversely, in other cancer types such as lung cancer, breast cancer, gastric cancer, pancreatic cancer, and colorectal cancer, high cystatin SN expression in cancer tissues but low cystatin SN expression in peritumoral normal tissues was found. Survival analyses showed that high cystatin SN expression benefited ESCC patients but did harm to other types of cancer patients. Univariate and multivariate analyses indicated that cystatin SN possibly acts as a marker for cancer prognosis. Here, we provide a brief introduction about the role of cystatin SN in cancer and discuss the different prognostic effects of cystatin SN on different tumors. Cystatin SN might be a potential marker for cancer prognosis and a target for cancer therapy.
Collapse
Affiliation(s)
- Yanfang Liu
- Department of Oncology, The Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China,
| | - Jing Yao
- Department of Oncology, The Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China,
| |
Collapse
|
28
|
New leads for drug repurposing against malaria. Drug Discov Today 2019; 24:263-271. [DOI: 10.1016/j.drudis.2018.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 02/03/2023]
|
29
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
30
|
Li M, Zhao LM, Li SL, Li J, Gao B, Wang FF, Wang SP, Hu XH, Cao J, Wang GY. Differentially expressed lncRNAs and mRNAs identified by NGS analysis in colorectal cancer patients. Cancer Med 2018; 7:4650-4664. [PMID: 30039525 PMCID: PMC6144144 DOI: 10.1002/cam4.1696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in gene regulation, but their impact on the pathogenesis of colorectal cancer and the biological function of cancer cells is unclear. In this study, we used next‐generation sequencing to study the differences in the expression profiles of lncRNAs and mRNAs in colorectal cancer tissues. We analyzed the differentially expressed genes by Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment and predicted new lncRNA functions. Our results revealed that compared with lncRNAs and mRNAs in nontumor colorectal tissues, 1019 lncRNAs (512 upregulated, 507 downregulated) and 3221 mRNAs (1606 upregulated, 1615 downregulated) were differentially expressed in tumor colorectal tissues (fold change >2 and P < 0.05). We validated some of these genes by qPCR. Furthermore, we identified some new lncRNAs differently expressed in colorectal cancer samples from patients in northern China. We confirmed the function of lncRNA‐FIRRE‐201 and SLCO4A1‐AS1‐202 in colorectal cancer cells to provide an experimental basis for studies on their roles in the occurrence and development of colorectal cancer and in the regulation of networks.
Collapse
Affiliation(s)
- Meng Li
- Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| | - Lian-Mei Zhao
- Research Center, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| | - Suo-Lin Li
- Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Li
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| | - Bo Gao
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| | - Fei-Fei Wang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| | - Sheng-Pu Wang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| | - Xu-Hua Hu
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| | - Jian Cao
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| | - Gui-Ying Wang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
31
|
Yang G, Bai Y, Wu X, Sun X, Sun M, Liu X, Yao X, Zhang C, Chu Q, Jiang L, Wang S. Patulin induced ROS-dependent autophagic cell death in Human Hepatoma G2 cells. Chem Biol Interact 2018; 288:24-31. [DOI: 10.1016/j.cbi.2018.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/02/2023]
|
32
|
Qu C, Li J, Zhou Y, Yang S, Chen W, Li F, You B, Liu Y, Zhang X. Targeted Delivery of Doxorubicin via CD147-Mediated ROS/pH Dual-Sensitive Nanomicelles for the Efficient Therapy of Hepatocellular Carcinoma. AAPS JOURNAL 2018; 20:34. [DOI: 10.1208/s12248-018-0195-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/13/2018] [Indexed: 01/10/2023]
|
33
|
Nagakannan P, Eftekharpour E. Differential redox sensitivity of cathepsin B and L holds the key to autophagy-apoptosis interplay after Thioredoxin reductase inhibition in nutritionally stressed SH-SY5Y cells. Free Radic Biol Med 2017; 108:819-831. [PMID: 28478025 DOI: 10.1016/j.freeradbiomed.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) are essential for induction of protective autophagy, however unexpected rise in cellular ROS levels overpowers the cellular defense and therefore promotes the programmed apoptotic cell death. We recently reported that inhibition of thioredoxin reductase (TrxR) in starving SH-SY5Y cells interrupted autophagy flux by induction of lysosomal deficiency and promoted apoptosis. (Free Radic Biol Med. 2016: 101:53-70). Here, we aimed to elucidate the underlying mechanisms during autophagy-apoptosis interplay, and focused on regulation of cathepsin B (CTSB) and L (CTSL), the pro-apoptotic and pro-autophagy cathepsins respectively. Inhibition of TrxR by Auranofin, caused lysosomal membrane permeabilization (LMP) that was associated with a significant upregulation of CTSB activity, despite no significant changes in CTSB protein level. Conversely, a significant rise in CTSL protein levels was observed without any apparent change in CTSL activity. Using thiol-trapping techniques to examine the differential sensitivity of cathepsins to oxidative stress, we discovered that Auranofin-mediated oxidative stress interferes with CTSL processing and thereby interrupts its pro-autophagy function. No evidence of CTSB susceptibility to oxidative stress was observed. Our data suggest that cellular fate in these conditions is mediated by two concurrent systems: while oxidative stress prevents the protective autophagy by inhibition of CTSL processing, concomitantly, apoptosis is induced by increasing lysosomal membrane permeability and leakage of CTSB into cytoplasm. Inhibition of CTSB in these conditions inhibited apoptosis and increased cell viability. To our knowledge this is the first report uncovering the impact of redox environment on autophagy-apoptosis interplay in neuronal cells.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program, Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program, Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
34
|
del Socorro Santos Díaz M, Barba de la Rosa AP, Héliès-Toussaint C, Guéraud F, Nègre-Salvayre A. Opuntia spp.: Characterization and Benefits in Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8634249. [PMID: 28491239 PMCID: PMC5401751 DOI: 10.1155/2017/8634249] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
Abstract
Opuntia species have been used for centuries as food resources and in traditional folk medicine for their nutritional properties and their benefit in chronic diseases, particularly diabetes, obesity, cardiovascular diseases, and cancer. These plants are largely distributed in America, Africa, and the Mediterranean basin. Opuntia spp. have great economic potential because they grow in arid and desert areas, and O. ficus-indica, the domesticated O. species, is used as a nutritional and pharmaceutical agent in various dietary and value-added products. Though differences in the phytochemical composition exist between wild and domesticated (O. ficus-indica) Opuntia spp., all Opuntia vegetatives (pear, roots, cladodes, seeds, and juice) exhibit beneficial properties mainly resulting from their high content in antioxidants (flavonoids, ascorbate), pigments (carotenoids, betalains), and phenolic acids. Other phytochemical components (biopeptides, soluble fibers) have been characterized and contribute to the medicinal properties of Opuntia spp. The biological properties of Opuntia spp. have been investigated on cellular and animal models and in clinical trials in humans, allowing characterization and clarification of the protective effect of Opuntia-enriched diets in chronic diseases. This review is an update on the phytochemical composition and biological properties of Opuntia spp. and their potential interest in medicine.
Collapse
Affiliation(s)
| | | | - Cécile Héliès-Toussaint
- Toxalim (Research Center in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- University of Toulouse, Toulouse, France
| | - Françoise Guéraud
- Toxalim (Research Center in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- University of Toulouse, Toulouse, France
| | | |
Collapse
|