1
|
Wang H, Yuan X, Han J, Wu Z, Ma Z, Shi F, Luo Z, Chen Z, Guo C, Yuan G, He X, Ling Z, Meng L, Shen R, Huang J, Xu R. RO5126766 attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through mediating the ERK pathway. J Orthop Translat 2025; 52:27-39. [PMID: 40231159 PMCID: PMC11995706 DOI: 10.1016/j.jot.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/09/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease that remains challenging to treat due to lack of complete understanding of its pathogenesis. Previous studies have identified RO5126766 (RO) as a small molecule compound that inhibited RAF/MEK-ERK pathway and garnered much interest for its anti-cancer properties. But its role in the treatment of OA remains unclear. Methods This study employed the anterior cruciate ligament transection (ACLT) procedure to create an OA model in mice. The effects of RO on pathological changes in articular cartilage and subchondral bone were assessed using micro-CT and histological staining. Mice received peritoneal injections of RO at 1 mg/kg and 5 mg/kg biweekly for 4 weeks after ACLT, while control mice received saline. In vitro, bone marrow-derived macrophages were cultured to examine the effects of RO on osteoclast activation using immunofluorescence, TRAP staining, and bone resorption assays. The inflammatory degeneration of chondrocytes and gene expression levels were evaluated using staining and RT-qPCR. Western blot and immunohistochemistry were used to analyze MAPK signaling and autophagy-related protein expression, investigating RO's molecular mechanism in OA treatment. Human single-cell data were also analyzed to identify genes and pathways upregulated in OA tissues. Results Our findings showed that RO protects subchondral bone by inhibiting osteoclast formation in the ACLT mouse model of OA. In vitro, RO was shown to inhibit osteoclast differentiation and reduce inflammatory degeneration of chondrocytes. Mechanistically, RO counteracted subchondral osteoclast hyperactivation by suppressing the ERK/c-fos/NFATc1 signaling pathway. Additionally, RO inhibited LPS-induced inflammatory degeneration of chondrocytes and enhanced autophagy via the ERK pathway. Single-cell analysis further confirmed significant upregulation of the ERK signaling pathway in human OA tissues. Conclusions Overall, our findings suggested that RO inhibited osteoclast differentiation and protected articular cartilage, suggesting its potential as a novel treatment for OA. Translational potential of this article In this study, we have, for the first time, substantiated the therapeutic potential of RO in the treatment of OA. By demonstrating its ability to inhibit osteoclast differentiation and protect articular cartilage, RO could offer a new avenue for disease-modifying treatments in OA. Thus, this paper provides valuable insights into understanding the molecular mechanisms and treatment of OA.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xiwen Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jie Han
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zheru Ma
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Fan Shi
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zhengqiong Luo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zihan Chen
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chenyang Guo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xuemei He
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Meng
- Department of Electronic and Computer Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Rong Shen
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jianming Huang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ren Xu
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| |
Collapse
|
2
|
Wen M, Guo X, Zhang J, Li Y, Li J, Fan Z, Ren W. Non-coding RNA in cartilage regeneration: regulatory mechanism and therapeutic strategies. Front Bioeng Biotechnol 2025; 13:1522303. [PMID: 40206827 PMCID: PMC11979253 DOI: 10.3389/fbioe.2025.1522303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
The pathogenesis of cartilage injury and degeneration is exceptionally complex. In addition to being associated with osteoarthritis and trauma, factors such as age, gender, obesity, inflammation, and apoptosis of chondrocytes are also considered significant influencing factors. Due to the lack of direct blood supply, lymphatic circulation, and neural innervation, coupled with low metabolic activity, the self-repair capability of cartilage after injury is extremely limited, making its treatment quite challenging. Recent research indicated that ncRNA, a class of RNA transcribed from the genome that does not encode proteins, played a crucial regulatory role in various disease processes. Particularly noteworthy is its positive regulatory role in cartilage regeneration, achieved through the modulation of the inflammatory microenvironment, promotion of chondrocyte proliferation, inhibition of chondrocyte degradation, and facilitation of the recruitment and differentiation of bone marrow mesenchymal stem cells into chondrocytes. In the earlier phase, we conducted a review and outlook on therapeutic strategies for the regeneration of articular cartilage injuries. This article specifically focuses on summarizing the regulatory roles and research advancements of ncRNA in cartilage regeneration, as well as its contributions to the clinical application of gene therapy for cartilage defects.
Collapse
Affiliation(s)
- Mengnan Wen
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xueqiang Guo
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Jingdi Zhang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yunian Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jixiang Li
- Junji College of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Wenjie Ren
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Pan H, Zhao Z, Zhu Y, Gao Y, Ruan H, Huang Y, Chi P, Huang S. Combining proteomics and Phosphoproteomics to investigate radiation-induced rectal fibrosis in rats and the effects of pSTAT3 inhibitor S3I-201 on human intestinal fibroblasts. J Proteomics 2024; 308:105287. [PMID: 39173903 DOI: 10.1016/j.jprot.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE To investigate the regulatory mechanisms of radiation-induced rectal fibrosis (RIRF) and assess the therapeutic potential of S3I-201. METHODS Sprague-Dawley rats were divided into control and radiation groups, with the latter exposed to 20 Gray pelvic X-rays. After 10 weeks, rectal tissues were analyzed using tandem mass tag (TMT) proteomics and phosphoproteomics. Pathway enrichment was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, with secondary annotation using Cluego. Representative proteins and their phosphorylated counterparts were validated through immunoblotting in another cohort. STAT3 levels in rectal tissues from irradiated and non-irradiated colorectal cancer patients were examined, and the effects of S3I-201 on human rectal fibroblasts were evaluated. RESULTS The radiation group showed significant inflammatory responses and collagen deposition in the rat rectal walls. Enrichment analysis revealed that radiation-induced proteins and phosphoproteins were primarily involved in extracellular matrix-receptor interaction and the MAPK signaling pathway. Immunoblotting indicated increased expression of p-CAMKII, p-MRACKS, p-Cfl1, p-Myl9, and p-STAT3 in the radiation group compared to the control, while p-AKT1 expression decreased. Elevated phosphorylation of STAT3 was observed in submucosal fibroblasts of the post-radiation human rectum. S3I-201 specifically inhibited STAT3 phosphorylation and suppressed activation of human rectal fibroblasts, also inhibiting the pro-fibrotic effects of the classical TGF-β/Smad/CTGF pathway. CONCLUSION By integrating phosphoproteomics and proteomics, this study elucidated the protein regulatory network of RIRF and identified the potential therapeutic targets, including phosphoproteins such as STAT3 in managing RIRF. SIGNIFICANCE In our research, we employed TMT labeling alongside LC-MS/MS techniques to comprehensively explore the proteomic and phosphoproteomic landscapes in rat models of radiation-induced intestinal fibrosis (RIRF). Our analysis revealed the function and pathways of proteins and phosphorylated proteins triggered by radiation, as well as those with protective roles. We mapped a network of interactions among these proteins and validated key protein expression levels using quantitative methods. Furthermore, we investigated STAT3 as a potential therapeutic target, assessing the efficacy of the inhibitor S3I-201 in laboratory settings, and highlighting its potential for RIRF treatment. Overall, our findings provide groundbreaking insights into the mechanisms underlying RIRF, paving the way for the development of future antifibrotic therapies.
Collapse
Affiliation(s)
- Hongfeng Pan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zeyi Zhao
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yihuang Gao
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haoyang Ruan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ying Huang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shenghui Huang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
4
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
5
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Li P, Gao Y, Zhou R, Che X, Wang H, Cong L, Jiang P, Liang D, Li P, Wang C, Li W, Sang S, Duan Q, Wei X. Intra-articular injection of miRNA-1 agomir, a novel chemically modified miRNA agonists alleviates osteoarthritis (OA) progression by downregulating Indian hedgehog in rats. Sci Rep 2024; 14:8101. [PMID: 38582868 PMCID: PMC10998901 DOI: 10.1038/s41598-024-56200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/04/2024] [Indexed: 04/08/2024] Open
Abstract
Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1β for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1β-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.
Collapse
Affiliation(s)
- Pengcui Li
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yangyang Gao
- Department of Orthopaedic Surgery, Jincheng People's Hospital, Jincheng, 048000, Shanxi, China
| | - Raorao Zhou
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xianda Che
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hang Wang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingling Cong
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Pinpin Jiang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dan Liang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Penghua Li
- Shanxi Province Fenyang Hospital, Fenyang, 032200, Shanxi, China
| | - Chunfang Wang
- Department of Experimental Animal Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenjin Li
- Department of Stomatology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shengbo Sang
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education and College of Information and Computer, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Qianqian Duan
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education and College of Information and Computer, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Xiaochun Wei
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
8
|
Zhu K, Zhang Y, Li D, Xie M, Jiang H, Zhang K, Lei Y, Chen G. MiR-29a-3p mediates phosphatase and tensin homolog and inhibits osteoarthritis progression. Funct Integr Genomics 2024; 24:54. [PMID: 38467932 DOI: 10.1007/s10142-024-01327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Despite substantial progress in clinical trials of osteoarthritis (OA) gene therapy, the prevalence of OA is still on the rise. MiRNAs have a potential biomarker and therapeutic target for OA. OA cartilage and chondrosarcoma cells were studied to determine the role of miR-29a-3p and PTEN. OA cartilage and human chondrosarcoma cells (SW1353) were obtained. miR-29a-3p and PTEN signature expression was determined by RT-qPCR. The binding relationship between miR-29a-3p and PTEN was investigated by dual-luciferase reporter gene and western blot assay. TUNEL, immunohistochemistry, CCK-8, and flow cytometry were utilized to determine the proliferation and apoptosis of SW1353 cells. This study indicated downregulation of miR-29a-3p expression and upregulation of PTEN expression in human OA primary chondrocytes or OA tissue samples, compared with the normal cartilage cells or tissues. PTEN expression was negatively correlated with miR-29a-3p expression, and miR-29a-3p targeted PTEN mechanistically. miR-29a-3p reduced SW1353 cell activity and proliferation and promoted cell apoptosis. However, the aforementioned effects could be reversed by downregulating PTEN. miR-29a-3p can stimulate chondrocyte proliferation and inhibit apoptosis by inhibiting PTEN expression.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - Yan Zhang
- Department of Orthopedics, Chinese Medicine Hospital of Anyue County, Ziyang City, 642350, Sichuan Province, China
| | - DongDong Li
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - MingZhong Xie
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - HuaCai Jiang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - KaiQuan Zhang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - Yang Lei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - GuangYou Chen
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
9
|
Umoh IO, dos Reis HJ, de Oliveira ACP. Molecular Mechanisms Linking Osteoarthritis and Alzheimer's Disease: Shared Pathways, Mechanisms and Breakthrough Prospects. Int J Mol Sci 2024; 25:3044. [PMID: 38474288 PMCID: PMC10931612 DOI: 10.3390/ijms25053044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aβ) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.
Collapse
Affiliation(s)
| | - Helton Jose dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| | - Antonio Carlos Pinheiro de Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
10
|
Geng Y, Cui P, Hu M, Zhang B, Dai L, Han F, Patrick YH, Fu SC, Li B, Zhang X. Biomimetic triphasic silk fibroin scaffolds seeded with tendon-derived stem cells for tendon-bone junction regeneration. Biomater Sci 2024; 12:1239-1248. [PMID: 38231128 DOI: 10.1039/d3bm00548h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The regeneration of tendon and bone junctions (TBJs), a fibrocartilage transition zone between tendons and bones, is a challenge due to the special triphasic structure. In our study, a silk fibroin (SF)-based triphasic scaffold consisting of aligned type I collagen (Col I), transforming growth factor β (TGF-β), and hydroxyapatite (HA) was fabricated to mimic the compositional gradient feature of the native tendon-bone architecture. Rat tendon-derived stem cells (rTDSCs) were loaded on the triphasic SF scaffold, and the high cell viability suggested that the scaffold presents good biocompatibility. Meanwhile, increased expressions of tenogenic-, chondrogenic-, and osteogenic-related genes in the TBJs were observed. The in vivo studies of the rTDSC-seeded scaffold in a rat TBJ rupture model showed tendon tissue regeneration with a clear transition zone within 8 weeks of implantation. These results indicated that the biomimetic triphasic SF scaffolds seeded with rTDSCs have great potential to be applied in TBJ regeneration.
Collapse
Affiliation(s)
- Yiyun Geng
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Muli Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bingjun Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
- National Facility for Translational Medicine, Shanghai, China
| | - Liming Dai
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yungshu-Hang Patrick
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai-Chuen Fu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
- National Facility for Translational Medicine, Shanghai, China
| |
Collapse
|
11
|
Yassin AM, AbuBakr HO, Abdelgalil AI, Farid OA, El-Behairy AM, Gouda EM. Circulating miR-146b and miR-27b are efficient biomarkers for early diagnosis of Equidae osteoarthritis. Sci Rep 2023; 13:7966. [PMID: 37198318 PMCID: PMC10192321 DOI: 10.1038/s41598-023-35207-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/14/2023] [Indexed: 05/19/2023] Open
Abstract
One of the most orthopedic problems seen in the equine is osteoarthritis (OA). The present study tracks some biochemical, epigenetic, and transcriptomic factors along different stages of monoiodoacetate (MIA) induced OA in donkeys in serum and synovial fluid. The aim of the study was the detection of sensitive noninvasive early biomarkers. OA was induced by a single intra-articular injection of 25 mg of MIA into the left radiocarpal joint of nine donkeys. Serum and synovial samples were taken at zero-day and different intervals for assessment of total GAGs and CS levels as well as miR-146b, miR-27b, TRAF-6, and COL10A1 gene expression. The results showed that the total GAGs and CS levels increased in different stages of OA. The level of expression of both miR-146b and miR-27b were upregulated as OA progressed and then downregulated at late stages. TRAF-6 gene was upregulated at the late stage while synovial fluid COL10A1 was over-expressed at the early stage of OA and then decreased at the late stages (P < 0.05). In conclusion, both miR-146b and miR-27b together with COL10A1 could be used as promising noninvasive biomarkers for the very early diagnosis of OA.
Collapse
Affiliation(s)
- Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Omar A Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Adel M El-Behairy
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman M Gouda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
12
|
Ouyang X, Wang S, Xie J, Kong J, Chunmei M, Pan H, Cao J, Chen D, Liu A. rno-miR-90 promotes chondrogenic differentiation of bone marrow mesenchymal stem cells by targeting SPARC-related modular calcium binding 2. Anat Rec (Hoboken) 2023. [PMID: 36691370 DOI: 10.1002/ar.25163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have the ability to differentiate into chondrocytes. In the differentiation of BMSCs into chondrocytes, micro-RNAs (miRNAs) play an important role. rno-miR-90 is a new miRNA discovered by our research team, and its role in chondrogenic differentiation of BMSCs is unknown. This study aimed to investigate whether rno-miR-90 could promote chondrogenic differentiation of BMSCs by regulating secreted protein acidic and rich in cysteine-related modular calcium binding 2 (Smoc2). First, BMSCs chondroblast differentiation was successfully induced in vitro by classical induction method of transforming growth factor (TGF)-β3. On this basis, we transfected rno-miR-90 mimic and inhibitor, and confirmed that rno-miR-90 mimic could promote the differentiation of BMSCs into chondrocytes by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. In addition, we demonstrated that Smoc2 was a target gene of rno-miR-90 by dual-luciferase reporter assay, and confirmed that rno-miR-90 mimic could inhibit the expression of Smoc2 by RT-qPCR and western blotting. In order to further prove the targeting relationship between rno-miR-90 and Smoc2, we constructed three interfering fragments of Smoc2, and proved that silencing Smoc2 could promote the differentiation of BMSCs into chondrocytes at the transcriptional and protein levels. Finally, we constructed a carrier scaffold for ectopic chondrogenic differentiation in vivo, and confirmed that rno-miR-90 mimic and siSmoc2 could promote chondrogenic differentiation of BMSCs by Alcian blue staining and immunohistochemistry. In summary, our results suggested that rno-miR-90 could promote chondrogenic differentiation of BMSCs by down-regulating the expression of Smoc2. rno-miR-90 mimic and Smoc2 may be therapeutic targets of osteoarthritis.
Collapse
Affiliation(s)
- Xiyan Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Shuxian Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jinqi Xie
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiechen Kong
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Ma Chunmei
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Hao Pan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Aijun Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
13
|
Qin H, Wang C, He Y, Lu A, Li T, Zhang B, Shen J. Silencing miR-146a-5p Protects against Injury-Induced Osteoarthritis in Mice. Biomolecules 2023; 13:123. [PMID: 36671508 PMCID: PMC9856058 DOI: 10.3390/biom13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA), the most prevalent joint disease and the leading cause of disability, remains an incurable disease largely because the etiology and pathogenesis underlying this degenerative process are poorly understood. Low-grade inflammation within joints is a well-established factor that disturbs joint homeostasis and leads to an imbalance between anabolic and catabolic processes in articular cartilage; however, the complexity of the network between inflammatory factors that often involves positive and negative feedback loops makes current anti-cytokine therapy ineffective. MicroRNAs (miRNAs) have emerged as key regulators to control inflammation, and aberrant miRNAs expression has recently been linked to OA pathophysiology. In the present study, we characterized transcriptomic profiles of miRNAs in primary murine articular chondrocytes in response to a proinflammatory cytokine, IL-1β, and identified miR-146a-5p as the most responsive miRNA to IL-1β. miR-146a-5p was also found to be upregulated in human OA cartilage. We further demonstrated that knockdown of miR-146a-5p antagonized IL-1β-mediated inflammatory responses and IL-1β-induced catabolism in vitro, and silencing of miR-146a in chondrocytes ameliorated articular cartilage destruction and reduced OA-evoked pain in an injury-induced murine OA model. Moreover, parallel RNA sequencing revealed that differentially expressed genes in response to IL-1β were enriched in pathways related to inflammatory processes, cartilage matrix homeostasis, and cell metabolism. Bioinformatic analyses of putative miR-146a-5p gene targets and following prediction of protein-protein interactions suggest a functional role of miR-146a-5p in mediating inflammatory processes and regulation of cartilage homeostasis. Our genetic and transcriptomic data define a crucial role of miR-146a-5p in OA pathogenesis and implicate modulation of miR-146a-5p in articular chondrocytes as a potential therapeutic strategy to alleviate OA.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
- The 2nd Xiangya Hospital, Central South University, Changsha 410021, China
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Cai D, Zhang J, Yang J, Lv Q, Zhong C. Overexpression of FTO alleviates osteoarthritis by regulating the processing of miR-515-5p and the TLR4/MyD88/NF-κB axis. Int Immunopharmacol 2023; 114:109524. [PMID: 36538851 DOI: 10.1016/j.intimp.2022.109524] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is regarded as the most prevalent chronic joint disease. Fat-mass and obesity-associated gene (FTO) is involved in OA alleviation. This study elucidated the role of FTO in OA and the associated mechanism. METHODS We established a cell injury model by stimulating human normal chondrocytes (C28/I2) with lipopolysaccharide (LPS), and measured cell viability, apoptosis, and inflammatory cytokines using CCK-8, flow cytometry, Western blot, and ELISA. TLR4, MyD88, p/t-p65, and p/t-IκBα levels, FTO, COX-2, and iNOS mRNA levels, and m6A methylation levels were measured by Western blot, RT-qPCR, and colorimetry. RNA immunoprecipitation and co-immunoprecipitation were conducted to confirm the interaction between FTO and DGCR8. pri-miR-515-5p process was regulated in an m6A-dependent manner. After predicting the presence of several binding sites between miR-515-5p and TLR4 on Targetscan, we further confirmed their relationship by dual-luciferase assay. OA rat models were established by monosodium iodoacetate injection. The pathological changes in knee joint were observed by HE staining. RESULTS FTO was diminished in LPS-induced C28/I2 cells. With the increase of LPS concentration, cell viability was repressed, apoptosis rate was increased, and inflammatory markers were promoted, which were annulled by FTO overexpression. FTO interacted with DGCR8 and modulated the pri-miR-515-5p processing in an m6A-dependent manner. miR-515-5p silencing partially averted the inhibitory effect of FTO on LPS-induced cell injury. Given that TLR4 was a direct target of miR-515-5p, miR-515-5p inactivated the MyD88/NF-κB pathway by targeting TLR4. FTO overexpression improved cartilage structure in OA rats, reduced apoptosis, inhibited inflammation in synovial fluid, and repressed the TLR4/MyD88/NF-κB axis. CONCLUSION FTO alleviated OA in an m6A-dependent manner via the miR-515-5p/TLR4/MyD88/NF-κB axis.
Collapse
Affiliation(s)
- Dongfeng Cai
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563000, China.
| | - Jing Zhang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563000, China
| | - Jin Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563000, China
| | - Qi Lv
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563000, China
| | - Chao Zhong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563000, China
| |
Collapse
|
15
|
Bell-Hensley A, Zheng H, McAlinden A. Modulation of MicroRNA Expression During In Vitro Chondrogenesis. Methods Mol Biol 2023; 2598:197-215. [PMID: 36355294 PMCID: PMC10069062 DOI: 10.1007/978-1-0716-2839-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since their discovery in 1993, microRNAs (miRNAs) are now recognized as important epigenetic regulators of many mammalian cellular processes including proliferation, apoptosis, metabolism, and differentiation. These small non-coding RNAs function by interacting with specific regions in the 3'-untranslated region of mRNAs, thereby resulting in mRNA degradation or suppression of translation. Since miRNAs have the ability to target many mRNAs within a given cell type, a number of cellular pathways and networks may be regulated as a result. To study the function of miRNAs, a number of methods can be used to modulate their activity in cells such as synthetic mimics or antagomirs for short-term assays or viral-based approaches for longer-term experiments such as cell differentiation assays. In this chapter, we provide our methodology to constitutively overexpress a desired miRNA during in vitro chondrogenesis of human cartilage progenitor cells (CPCs). Specifically, we describe how we obtain CPCs from human articular cartilage specimens, how we generate and titrate lentivirus engineered to overexpress a precursor miRNA, how we transduce CPCs with lentivirus and differentiate them toward the chondrocyte lineage, and how we extract RNA and measure expression levels of the miRNA of interest during in vitro chondrogenesis. We also provide some data from our laboratory demonstrating that we can achieve and maintain miRNA overexpression for up to 14 days in cartilage pellet cultures. We predict that these lentiviral-based approaches will also be useful to study how miRNA modulation of progenitor cells affects cell differentiation and extracellular matrix production within three-dimensional biomaterial scaffolds.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA.
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Shriners Hospitals for Children - St Louis, St Louis, MO, USA.
| |
Collapse
|
16
|
Lu H, Yang Y, Ou S, Qi Y, Li G, He H, Lu F, Li W, Sun H. miRNA-382-5p Carried by Extracellular Vesicles in Osteoarthritis Reduces Cell Viability and Proliferation, and Promotes Cell Apoptosis by Targeting PTEN. DNA Cell Biol 2022; 41:1012-1025. [DOI: 10.1089/dna.2021.0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hanyu Lu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yixin Yang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shuanji Ou
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yong Qi
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guitao Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Hebei He
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Fanglian Lu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Wenjun Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Hongtao Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Iulian Stanciugelu S, Homorogan C, Selaru C, Patrascu JM, Patrascu JM, Stoica R, Nitusca D, Marian C. Osteoarthritis and microRNAs: Do They Provide Novel Insights into the Pathophysiology of This Degenerative Disorder? Life (Basel) 2022; 12:1914. [PMID: 36431049 PMCID: PMC9692287 DOI: 10.3390/life12111914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent degenerative joint diseases in older adults and a leading cause of disability. Recent research studies have evidenced the importance of mi-croRNAs (miRs) in the pathogenesis of OA. In the present review, we focused on current literature findings on dysregulated miRs involved in the pathophysiology of OA. From the 35 case-control studies including OA patients compared to healthy controls, a total of 54 human miRs were identified to be dysregulated in OA. In total, 41 miRs were involved in the pathophysiological processes of OA, including apoptosis, inflammation, and proliferation, having either a protective or a progressive role in OA. The discovery of altered miR levels in OA patients compared to healthy controls determines a better understanding of the molecular mechanisms involved in the pathophysiology of OA and could open novel horizons in the field of orthopedics.
Collapse
Affiliation(s)
- Stefan Iulian Stanciugelu
- Doctoral School, Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Claudia Homorogan
- Doctoral School, Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Cosmin Selaru
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Jenel Marian Patrascu
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
- Department of Orthopedics and Trauma, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Jenel Marian Patrascu
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
- Department of Orthopedics and Trauma, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Raymond Stoica
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
18
|
Li S, Si H, Xu J, Liu Y, Shen B. The therapeutic effect and mechanism of melatonin on osteoarthritis: From the perspective of non-coding RNAs. Front Genet 2022; 13:968919. [PMID: 36267400 PMCID: PMC9576930 DOI: 10.3389/fgene.2022.968919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is a slowly progressing and irreversible joint disease. The existing non-surgical treatment can only delay its progress, making the early treatment of OA a research hotspot in recent years. Melatonin, a neurohormone mainly secreted by the pineal gland, has a variety of regulatory functions in different organs, and numerous studies have confirmed its therapeutic effect on OA. Non-coding RNAs (ncRNAs) constitute the majority of the human transcribed genome. Various ncRNAs show significant differentially expressed between healthy people and OA patients. ncRNAs play diverse roles in many cellular processes and have been implicated in many pathological conditions, especially OA. Interestingly, the latest research found a close interaction between ncRNAs and melatonin in regulating the pathogenesis of OA. This review discusses the current understanding of the melatonin-mediated modulation of ncRNAs in the early stage of OA. We also delineate the potential link between rhythm genes and ncRNAs in chondrocytes. This review will serve as a solid foundation to formulate ideas for future mechanistic studies on the therapeutic potential of melatonin and ncRNAs in OA and better explore the emerging functions of the ncRNAs.
Collapse
|
19
|
Anderson JR, Jacobsen S, Walters M, Bundgaard L, Diendorfer A, Hackl M, Clarke EJ, James V, Peffers MJ. Small non-coding RNA landscape of extracellular vesicles from a post-traumatic model of equine osteoarthritis. Front Vet Sci 2022; 9:901269. [PMID: 36003409 PMCID: PMC9393553 DOI: 10.3389/fvets.2022.901269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles comprise an as yet inadequately investigated intercellular communication pathway in the field of early osteoarthritis. We hypothesised that the small non-coding RNA expression pattern in synovial fluid and plasma would change during progression of experimental osteoarthritis. In this study, we conducted small RNA sequencing to provide a comprehensive overview of the temporal expression profiles of small non-coding transcripts carried by extracellular vesicles derived from plasma and synovial fluid for the first time in a posttraumatic model of equine osteoarthritis. Additionally, we characterised synovial fluid and plasma-derived extracellular vesicles with respect to quantity, size, and surface markers. The different temporal expressions of seven microRNAs in plasma and synovial fluid-derived extracellular vesicles, eca-miR-451, eca-miR-25, eca-miR-215, eca-miR-92a, eca-miR-let-7c, eca-miR-486-5p, and eca-miR-23a, and four snoRNAs, U3, snord15, snord46, and snord58, represent potential biomarkers for early osteoarthritis. Bioinformatics analysis of the differentially expressed microRNAs in synovial fluid highlighted that in early osteoarthritis these related to the inhibition of cell cycle, cell cycle progression, DNA damage and cell proliferation as well as increased cell viability and differentiation of stem cells. Plasma and synovial fluid-derived extracellular vesicle small non-coding signatures have been established for the first time in a temporal model of osteoarthritis. These could serve as novel biomarkers for evaluation of osteoarthritis progression or act as potential therapeutic targets.
Collapse
Affiliation(s)
- James R. Anderson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | | | - Emily J. Clarke
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Mandy J. Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
20
|
Li D, Wang X, Yi T, Zhang L, Feng L, Zhang M, He Y, Gang S. LncRNA MINCR attenuates osteoarthritis progression via sponging miR-146a-5p to promote BMPR2 expression. Cell Cycle 2022; 21:2417-2432. [PMID: 35848848 DOI: 10.1080/15384101.2022.2099191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The purposes of this study are to explore the function and regulatory mechanism of a novel lncRNA MYC-Induced Long non-coding RNA (MINCR) in osteoarthritis (OA). The expression of lncRNA MINCR, miR-146a-5p, and bone morphogenetic protein receptor 2 (BMPR2), Sry-type high-mobility-group box 9 (SOX9), collagen type II alpha 1 (COL2A1), Aggrecan, metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), Matrix metalloproteinase 3 (MMP3), MMP13, COL2A1, and Aggrecan were determined using quantitative real-time PCR (qRT-PCR), western blot, immunohistochemistry (IHC) and immunofluorescence (IF) in vitro and in vivo. And distribution and expression of MINCR were examined by fluorescence in situ hybridization (FISH). Cell proliferation and apoptosis were detected by cell counting kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EdU) staining, Annexin V-FITC/Propidium Iodide (PI), and Terminal Deoxynucleotidyl transferase-mediated dUTP Nick-End Labeling (TUNEL) staining in vitro and in vivo. The anterior cruciate ligament transection (ACLT) rat model was constructed to analyze the MINCR/miR-146a-5p/BMPR2 axis in vivo. The cartilage degeneration was determined by pathological staining with Hematoxylin and Eosin (H&E) and Safranin O staining. The binding relationship between MINCR and miR-146a-5p, and between miR-146a-5p and BMPR2 were determined by a dual-luciferase reporter gene, RNA Immunoprecipitation (RIP) assay, and RNA-pull down assays. Here, MINCR and BMPR2 were downregulated whereas miR-146a-5p was upregulated in OA cartilage tissues compared with control as well as IL-1β-induced chondrocytes compared with normal chondrocytes. Function experiments indicated that MINCR upregulation promoted cell proliferation and inhibited apoptosis and extracellular matrix (ECM)-degeneration. We also proved the binding relationship between MINCR and miR-146a-5p, and the BMPR2 acted as a target of miR-146a-5p. Mechanism analysis using rescue experiments in vitro and in vivo, MINCR silencing reversed the effects of miR-146a-5p downregulation in OA. Overexpression of miR-146a-5p also reversed the function of BMPR2 overexpression in OA. These data indicated that MINCR prevented OA progression via targeting miR-146a-5p to promote BMPR2 expression.
Collapse
Affiliation(s)
- Dongyun Li
- Department of Preventive Treatment of Disease, the Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiaoying Wang
- Department of Preventive Treatment of Disease, the Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tengda Yi
- Department of Preventive Treatment of Disease, the Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Lin Zhang
- Department of Preventive Treatment of Disease, the Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Lirui Feng
- Department of Preventive Treatment of Disease, the Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Mingxing Zhang
- Department of Preventive Treatment of Disease, the Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongsheng He
- Research and development center, The Yunnan Labreal Biotechnology Co., Ltd, Kunming, China
| | - Shunkui Gang
- Department of Preventive Treatment of Disease, the Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
21
|
Feng L, Yang Z, Li Y, Pan Q, Zhang X, Wu X, Lo JHT, Wang H, Bai S, Lu X, Wang M, Lin S, Pan X, Li G. MicroRNA-378 contributes to osteoarthritis by regulating chondrocyte autophagy and bone marrow mesenchymal stem cell chondrogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:328-341. [PMID: 35474736 PMCID: PMC9010521 DOI: 10.1016/j.omtn.2022.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease; thus, understanding the pathological mechanisms of OA initiation and progression is critical for OA treatment. MicroRNAs (miRNAs) have been shown to be involved in the progression of osteoarthritis, one candidate is microRNA-378 (miR-378), which is highly expressed in the synovium of OA patients during late-stage disease, but its function and the underlying mechanisms of how it contributes to disease progression remain poorly understood. In this study, miR-378 transgenic (TG) mice were used to study the role of miR-378 in OA development. miR-378 TG mice developed spontaneous OA and also exaggerated surgery-induced disease progression. Upon in vitro OA induction, miR-378 expression was upregulated and correlated with elevated inflammation and chondrocyte hypertrophy. Chondrocytes isolated from articular cartilage from miR-378 TG mice showed impaired chondrogenic differentiation. The bone marrow mesenchymal stem cells (BMSCs) collected from miR-378 TG mice also showed repressed chondrogenesis compared with the control group. The autophagy-related protein Atg2a, as well as chondrogenesis regulator Sox6, were identified as downstream targets of miR-378. Ectopic expression of Atg2a and Sox6 rescued miR-378-repressed chondrocyte autophagy and BMSC chondrogenesis, respectively. Anti-miR-378 lentivirus intra-articular injection in an established OA mouse model was shown to ameliorate OA progression, promote articular regeneration, and repress hypertrophy. Atg2a and Sox6 were again confirmed to be the target of miR-378 in vivo. In conclusion, miR-378 amplified OA development via repressing chondrocyte autophagy and by inhibiting BMSCs chondrogenesis, thus indicating miR-378 may be a potential therapeutic target for OA treatments.
Collapse
Affiliation(s)
- Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Department of Pediatric Orthopaedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xiaomin Wu
- Department of Orthopaedics and Traumatology, People’s Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Jessica Hiu Tung Lo
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xiaohua Pan
- Department of Orthopaedics and Traumatology, People’s Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| |
Collapse
|
22
|
Choi SY, Rhim J, Han WJ, Park H, Noh JW, Han J, Ha CW. Associations between biomarkers and histological assessment in individual animals in a destabilization of the medial meniscus (DMM) model of osteoarthritis (OA). Acta Orthop Belg 2022; 87:713-721. [PMID: 35172438 DOI: 10.52628/87.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, the use of biomarkers for assessing individual severity of osteoarthritis (OA) is limited, and the correlation of histological scores with biomarkers for individual animals in the destabilization of the medial meniscus (DMM) model of OA has not been well investigated. Accordingly, this study investigated how well representative biomarkers in the DMM model reflected specific changes in individual animals. Rats were randomly divided into the OA group and the sham group. OA model was established by destabilization of the medial meniscus (DMM). After 2,4,6,8,10 and 12 weeks (n=14, each week), the concentrations of CTXII, COMP, C2C, and OC in serum were measured, and cartilage degeneration, osteophytes, and synovial membrane inflammation, typical of OA, were scored using Osteoarthritis Research Society International (OARSI) scoring system. Additionally, the correlation between each biomarker and the specific changes in osteoarthritis was analyzed for individual animals using the Generalized Estimating Equation (GEE). Statistical analysis showed a low correlation between CTXII and osteophyte score of the medial femur (coefficient = -0.0088, p= 0.0103), COMP and osteophyte score of the medial tibia (coefficient = -0.0911, p= 0.0003), and C2C and synovial membrane inflammation scores of the medial femoral (coefficient = 0.054, p= 0.0131). These results suggest that representative OA bio- markers in individual animals in the DMM model did not reflect histological scores well.
Collapse
|
23
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
24
|
Zhi L, Zhao J, Zhao H, Qing Z, Liu H, Ma J. Downregulation of LncRNA OIP5-AS1 Induced by IL-1β Aggravates Osteoarthritis via Regulating miR-29b-3p/PGRN. Cartilage 2021; 13:1345S-1355S. [PMID: 32037864 PMCID: PMC8804817 DOI: 10.1177/1947603519900801] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) is an oncogenic lncRNA; however, its role in osteoarthritis (OA) pathology still remains unknown. MATERIALS AND METHODS qRT-PCR was performed to measure the expressions of OIP5-AS1, miR-29b-3p and progranulin (PGRN) mRNA in OA cartilage tissues and normal cartilage tissues. Chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to induce the inflammatory response. Overexpression plasmids, microRNA mimics, microRNA inhibitors and small interfering RNAs were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 assay was used for determining the cell viability and Transwell assay was used for monitoring cell migration. Western blot was applied to measure the expressions of apoptosis-related proteins. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. StarBase and TargetScan were used to predict the binding sites between OIP5-AS1 and miR-29b-3p, miR-29b-3p and 3'-UTR of PGRN respectively, which were verified by dual luciferase reporter assay. RESULTS OIP5-AS1 and PGRN mRNA were downregulated while miR-29b-3p was upregulated in OA tissues and models. The up-regulated OIP5-AS1 facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while ameliorated the apoptosis and inflammatory response. However, miR-29b-3p had opposite effects. PGRN was identified as a target gene of miR-29b-3p, which could be indirectly suppressed by OIP5-AS1 knockdown. CONCLUSION Downregulation of OIP5-AS1 induced by IL-1β could inhibit the proliferation and migration abilities of CHON-001 and ATDC5 cells and facilitate the apoptosis and inflammation response via regulating miR-29b-3p/PGRN axis.
Collapse
Affiliation(s)
- Liqiang Zhi
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianwu Zhao
- Department of Microsurgery, Yulin First
Hospital, Second Affiliated Hospital of Yan-an University, Yulin, Shaanxi,
China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery,
Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhong Qing
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongliang Liu
- Department of Trauma Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Jianbing Ma, Department of Joint Surgery,
Honghui Hospital, Xi’an Jiaotong University, Youyi East Road No. 555, Xi’an,
Shaanxi 710054, China.
| |
Collapse
|
25
|
Izda V, Martin J, Sturdy C, Jeffries MA. DNA methylation and noncoding RNA in OA: Recent findings and methodological advances. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100208. [PMID: 35360044 PMCID: PMC8966627 DOI: 10.1016/j.ocarto.2021.100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by progressive loss of joint function. Historically, it has been characterized as a disease caused by mechanical trauma, so-called 'wear and tear'. Over the past two decades, it has come to be understood as a complex systemic disorder involving gene-environmental interactions. Epigenetic changes have been increasingly implicated. Recent improvements in microarray and next-generation sequencing (NGS) technologies have allowed for ever more complex evaluations of epigenetic aberrations associated with the development and progression of OA. Methods A systematic review was conducted in the Pubmed database. We curated studies that presented the results of DNA methylation and noncoding RNA research in human OA and OA animal models since 1985. Results Herein, we discuss recent findings and methodological advancements in OA epigenetics, including a discussion of DNA methylation, including microarray and NGS studies, and noncoding RNAs. Beyond cartilage, we also highlight studies in subchondral bone and peripheral blood mononuclear cells, which highlight widespread and potentially clinically important alterations in epigenetic patterns seen in OA patients. Finally, we discuss epigenetic editing approaches in the context of OA. Conclusions Although a substantial body of literature has already been published in OA, much is still unknown. Future OA epigenetics studies will no doubt continue to broaden our understanding of underlying pathophysiology and perhaps offer novel diagnostics and/or treatments for human OA.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Jake Martin
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, And Allergy, Oklahoma City, OK, USA
| |
Collapse
|
26
|
Gan K, Wu W, Li J, Xu D, Liu Y, Bi M, Lu L, Li J. Positive feedback loop of lncRNA FAM201A/miR‑146a‑5p/POU2F1 regulates IL‑1β‑induced chondrocyte injury in vitro. Mol Med Rep 2021; 25:20. [PMID: 34796909 PMCID: PMC8628288 DOI: 10.3892/mmr.2021.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
Numerous studies have previously demonstrated that long non-coding RNAs (lncRNAs) serve an important regulatory role in osteoarthritis (OA). In particular, the lncRNA family with sequence similarity 201 member A (FAM201A) was previously found to be downregulated in necrotic femoral head samples. However, the role of FAM201A in IL-1β-induced chondrocyte injury remains unclear. It was hypothesized that FAM201A may exert a protective effect on IL-1β-induced chondrocyte injury in OA by sponging microRNAs (miRNAs/miRs). The purpose of the present study was to explore the role and molecular mechanism of FAM201A in IL-1β-induced chondrocyte injury. A model of OA was established by stimulation C-28/I2 cell with IL-1β in vitro. The expression levels of FAM201A following IL-1β-induced chondrocyte injury were detected via reverse transcription-quantitative PCR. Luciferase reporter assay was used to assess the possible associations among FAM201A, miR-146a-5p and POU class 2 homeobox 1 (POU2F1). Chromatin immunoprecipitation assay was performed to analyze the interaction between POU2F1 and miR-146a-5p. ELISA, TUNEL and western blotting were performed to measure the level of inflammation, lactate dehydrogenase release, apoptosis and the expression of apoptosis-related proteins (Bcl-2, Bax, cleaved caspase 3 and cleaved caspase 9), respectively. The expression levels of FAM201A were found to be downregulated following IL-1β-induced chondrocyte injury. Overexpression of FAM201A exerted a protective effect against IL-1β-induced chondrocyte injury. In addition, FAM201A could upregulate the expression levels of POU2F1 by sponging miR-146a-5p. Further experiments revealed that POU2F1 could bind to the promoter region of FAM201A and subsequently regulate the expression levels of POU2F1, indicating a role for the FAM201A/miR-146a-5p/POU2F1 positive feedback loop in IL-1β-induced chondrocyte injury. The present study revealed the protective effects of the FAM201A/miR-146a-5p/POU2F1 positive feedback loop on IL-1β-induced chondrocyte injury and provided a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Kaifeng Gan
- Department of Orthopedics, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wei Wu
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315100, P.R. China
| | - Jie Li
- Department of Orthopedics, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dingli Xu
- Department of Orthopedics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Yunpeng Liu
- Faculty of Electronics and Computers, Zhejiang Wanli University, Ningbo, Zhejiang 315100, P.R. China
| | - Mingguang Bi
- Department of Orthopedics, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liangjie Lu
- Department of Orthopedics, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jin Li
- Department of Orthopedics, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
27
|
Ning F, Zhu S, Gao H, Deng Y. NEAT1/miR-146a-3p/TrkB/ShcB axis regulates the development and function of chondrocyte. Cell Cycle 2021; 20:2174-2194. [PMID: 34494934 PMCID: PMC8565836 DOI: 10.1080/15384101.2021.1974787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/01/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
The current study aimed to explored the regulatory effect of Tropomyosin-related kinases B (TrkB) in the development and function of chondrocyte. Correlation between clinicopathological characteristics and osteoarthritis (OA) were analyzed. The expressions of TrkA, brain-derived neurotrophic factor (BDNF), TrkB, Src homolog and collagen homolog B (ShcB), and ShcC in OA cartilage tissue and IL-1β-stimulated chondrocytes from normal cartilage were determined by Western blot/qRT-PCR. After manipulating the expressions of TrkA, shTrkB, ShcB, miR-146a-3p and nuclear paraspeckle assembly transcript 1 (NEAT1), the differentiation-related molecules, and apoptosis-related molecules were examined by Western blot/qRT-PCR, and migration, invasion, proliferation, tube formation, and apoptosis rate in IL-1β-stimulated chondrocyte were examined by scratch, Transwell, colony formation, and tube formation, and flow cytometry assays, respectively. Bioinformatics, dual-luciferase and Spearman were used to analyze the binding and correlation of target genes. The findings showed that OA was related to body mass Index (BMI). The expressions of TrkA, TrkB and ShcB and NEAT1 were up-regulated in OA and IL-1β-stimulated chondrocytes, while miR-146a-3p was donwnregulated and was negatively correlated with TrkB or NEAT1. NEAT1 competed with TrkB in chondrocytes for miR-146a-3p binding. ShTrkB reversed the decrease in expressions of differentiation-related molecules, migration, invasion and proliferation, and the increase in ShcB expression and tube formation, of IL-1β-stimulated chondrocytes. Overexpressed ShcB reversed effect of shTrkB on the functions of IL-1β-stimulated chondrocytes. MiR-146a-3p inhibitor reversed effects of shTrkB on the function and apoptosis-related molecules on IL-1β-stimulated chondrocytes, while NEAT1 reversed role of miR-146a-3p. This paper demonstrated that NEAT1/miR-146a-3p/TrkB/ShcB axis regulates the development and function of chondrocyte.
Collapse
Affiliation(s)
- Fanyou Ning
- Department of Extremitas Superior, Luoyang Orthopedic-Traumatological Hospital Of Henan Province(Henan Provincial Orthopedic Hospital), Luoyang City, Henan Province, China
| | - Shaobo Zhu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hui Gao
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Deng
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
28
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
29
|
Huang Z, Ma W, Xiao J, Dai X, Ling W. CircRNA_0092516 regulates chondrocyte proliferation and apoptosis in osteoarthritis through the miR-337-3p/PTEN axis. J Biochem 2021; 169:467-475. [PMID: 33135071 DOI: 10.1093/jb/mvaa119] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases. Here, we probed into the potential mechanism of circRNA_0092516 in osteoarthritis (OA). The expression of circRNA_0092516 was tested by quantitative real-time PCR. MTT, flow cytometry and western blot were applied to confirm the functions of circRNA_0092516 in vitro. Besides, RNA pull-down and dual-luciferase reporter gene experiments were applied to probe into the mechanism. circRNA_0092516 was raised in the tissues of OA patients and chondrocytes stimulated by IL-1β. The potential mechanism analysis expounded that circRNA_0092516 bound to miR-337-3p, and the interference with circRNA_0092516 boosted chondrocyte proliferation and restrained cell apoptosis through the miR-337-3p/phosphatase and tensin homolog (PTEN) axis, thereby improving OA. In-vivo experiments expounded that circRNA_0092516 regulated cartilage production through miR-337-3p. Overall, our data expounded that the interference with circRNA_0092516 boosted chondrocyte proliferation and restrained cell apoptosis through the miR-337-3p/PTEN axis, eventually slowed down the progress of OA.
Collapse
Affiliation(s)
- Zhihui Huang
- Department of Orthopedics, The Third Affiliated Hospital of Suchow University, No. 185 Juqian Road, Changzhou 213000, Jiangsu Province, China
| | - Wenming Ma
- Department of Orthopedics, The Third Affiliated Hospital of Suchow University, No. 185 Juqian Road, Changzhou 213000, Jiangsu Province, China
| | - Jinhuai Xiao
- Department of Orthopedics, The Third Affiliated Hospital of Suchow University, No. 185 Juqian Road, Changzhou 213000, Jiangsu Province, China
| | - Xiaoyu Dai
- Department of Orthopedics, The Third Affiliated Hospital of Suchow University, No. 185 Juqian Road, Changzhou 213000, Jiangsu Province, China
| | - Weiqi Ling
- Department of Orthopedics, The Third Affiliated Hospital of Suchow University, No. 185 Juqian Road, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
30
|
Zhang D, Qiu S. LncRNA GAS5 upregulates Smad4 to suppress the apoptosis of chondrocytes induced by lipopolysaccharide. Arch Gerontol Geriatr 2021; 97:104478. [PMID: 34329870 DOI: 10.1016/j.archger.2021.104478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is closely correlated with inflammation. It has been reported that lncRNA GAS5 plays an important role in inflammation, indicating the potential involvement of GAS5 in OA. This study was carried out to investigate the function of GAS5 in OA. METHODS Expression levels of GAS5 in synovial fluid from 45 OA patients and 45 healthy controls were measured by RT-qPCR. Cell transfections were performed to explore the potential interactions among GAS5, miR-146a, and Smad4 in chondrocytes. Lipopolysaccharide (LPS)-induced cell apoptosis after overexpression of GAS5, miR-146a, and Smad4 was analyzed by cell apoptosis assay. RESULTS GAS5 was downregulated in OA. Moreover, LPS treatment downregulated GAS5 in chondrocytes. Interaction between GAS5 could with miR-146a was predicted by bioinformatics analysis and further confirmed by RNA-RNA pulldown assay. However, overexpression of GAS5 and miR-146a did not affect the expression of each other. GAS5 overexpression increased Smad4 expression in chondrocytes. In contrast, miR-146a overexpression downregulated Smad4 in chondrocytes. Moreover, GAS5 and Smad4 overexpression inhibited LPS- induced chondrocytes apoptosis, while miR-146a overexpression played an opposite role and attenuated the effects of GAS5 and Smad4 overexpression on cell apoptosis. CONCLUSION GAS5 might sponge miR-146a to upregulate Smad4, thereby suppressing LPS- induced chondrocytes apoptosis.
Collapse
Affiliation(s)
- Di Zhang
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan City, Shandong Province, 250021, P. R. China
| | - Shenqiang Qiu
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan City, Shandong Province, 250021, P. R. China..
| |
Collapse
|
31
|
Association between miRNA Target Sites and Incidence of Primary Osteoarthritis in Women from Volga-Ural Region of Russia: A Case-Control Study. Diagnostics (Basel) 2021; 11:diagnostics11071222. [PMID: 34359306 PMCID: PMC8306068 DOI: 10.3390/diagnostics11071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Over the past decades, numerous studies on the genetic markers of osteoarthritis (OA) have been conducted. MiRNA targets sites are a promising new area of research. In this study, we analyzed the polymorphic variants in 3′ UTR regions of COL1A1, COL11A1, ADAMTS5, MMP1, MMP13, SOX9, GDF5, FGF2, FGFR1, and FGFRL1 genes to examine the association between miRNA target site alteration and the incidence of OA in women from the Volga-Ural region of Russia using competitive allele-specific PCR. The T allele of the rs9659030 was associated with generalized OA (OR = 2.0), whereas the C allele of the rs229069 was associated with total OA (OR = 1.43). The T allele of the rs13317 was associated with the total OA (OR = 1.67). After Benjamini-Hochberg correction, only rs13317 remained statistically significant. According to ethnic heterogeneity, associations between the T allele (rs1061237) with OA in women of Russian descent (OR = 1.77), the G allele (rs6854081) in women of Tatar descent (OR = 4.78), the C allele (rs229069) and the T allele (rs73611720) in women of mixed descent and other ethnic groups (OR = 2.25 and OR = 3.02, respectively) were identified. All associations remained statistically significant after Benjamini-Hochberg correction. Together, this study identified miRNA target sites as a genetic marker for the development of OA in various ethnic groups.
Collapse
|
32
|
Joung S, Yoon DS, Cho S, Ko EA, Lee KM, Park KH, Lee JW, Kim SH. Downregulation of MicroRNA-495 Alleviates IL-1β Responses among Chondrocytes by Preventing SOX9 Reduction. Yonsei Med J 2021; 62:650-659. [PMID: 34164963 PMCID: PMC8236342 DOI: 10.3349/ymj.2021.62.7.650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Our previous work demonstrated that miRNA-495 targets SOX9 to inhibit chondrogenesis of mesenchymal stem cells. In this study, we aimed to investigate whether miRNA-495-mediated SOX9 regulation could be a novel therapeutic target for osteoarthritis (OA) using an in vitro cell culture model. MATERIALS AND METHODS An in vitro model mimicking the OA environment was established using TC28a2 normal human chondrocyte cells. Interleukin-1β (IL-1β, 10 ng/mL) was utilized to induce inflammation-related changes in TC28a2 cells. Safranin O staining and glycosaminoglycan assay were used to detect changes in proteoglycans among TC28a2 cells. Expression levels of COX-2, ADAMTS5, MMP13, SOX9, CCL4, and COL2A1 were examined by qRT-PCR and/or Western blotting. Immunohistochemistry was performed to detect SOX9 and CCL4 proteins in human cartilage tissues obtained from patients with OA. RESULTS miRNA-495 was upregulated in IL-1β-treated TC28a2 cells and chondrocytes from damaged cartilage tissues of patients with OA. Anti-miR-495 abolished the effect of IL-1β in TC28a2 cells and rescued the protein levels of SOX9 and COL2A1, which were reduced by IL-1β. SOX9 was downregulated in the damaged cartilage tissues of patients with OA, and knockdown of SOX9 abolished the effect of anti-miR-495 on IL-1β-treated TC28a2 cells. CONCLUSION We demonstrated that inhibition of miRNA-495 alleviates IL-1β-induced inflammatory responses in chondrocytes by rescuing SOX9 expression. Accordingly, miRNA-495 could be a potential novel target for OA therapy, and the application of anti-miR-495 to chondrocytes could be a therapeutic strategy for treating OA.
Collapse
Affiliation(s)
- Soyeong Joung
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Suk Yoon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sehee Cho
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ae Ko
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Mi Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Hwan Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hwan Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
33
|
Tao Y, Zhou J, Wang Z, Tao H, Bai J, Ge G, Li W, Zhang W, Hao Y, Yang X, Geng D. Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway. Bioorg Chem 2021; 113:104978. [PMID: 34052737 DOI: 10.1016/j.bioorg.2021.104978] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a chronic disease featured by joint hyperplasia, deterioration of articular cartilage, and progressive degeneration. Abnormal expression of microRNAs (miRNAs) has been found to be implicated in the pathological process of OA. In this study, the role of miR-361-5p transferred by exosomes derived from human bone mesenchymal stem cells (hBMSCs) in OA was investigated. The expression of Asp-Glu-Ala-Asp-box polypeptide 20 (DDX20) and miR-361-5p in interleukin-1β (IL-1β)-treated chondrocytes was determined by reverse transcription quantitative polymerase chain reaction. DDX20 was knocked down by transfection of short hairpin RNA targeting DDX20, and the effects of DDX20 downregulation on IL-1β-induced damage of chondrocytes were detected. The interaction between DDX20 and miR-361-5p was tested by luciferase report assay. hBMSCs-derived exosomes loaded with miR-361-5p were co-incubated with chondrocytes followed by detection of cell viability, proliferation and inflammatory response. An OA rat model was established to further explore the role of miR-361-5p in vivo. Western blot, luciferase reporter and immunofluorescence staining assays were used to evaluate the activation of the nuclear factor kappa-B (NF-κB) signaling pathway. We found that DDX20 was upregulated, while miR-361-5p was underexpressed in IL-1β-treated chondrocytes. Downregulation of DDX20 inhibits levels of matrix metalloproteinases (MMPs) and suppresses inflammation induced by IL-1β. Mechanistically, miR-361-5p was verified to directly target DDX20. In addition, hBMSC-derived exosomes-transferred miR-361-5p alleviates chondrocyte damage and inhibits the NF-κB signaling pathway via targeting DDX20. Inhibition of NF-κB signaling reverses the effect of overexpressed DDX20 on IL-1β-induced chondrocyte damage. Moreover, exosomal miR-361-5p alleviates OA damage in vivo. Overall, hBMSC-derived exosomal miR-361-5p alleviates OA damage by targeting DDX20 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yunxia Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, Jiangsu, China
| | - Zhen Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou 215006, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, Jiangsu, China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
34
|
Hou M, Zhang Y, Zhou X, Liu T, Yang H, Chen X, He F, Zhu X. Kartogenin prevents cartilage degradation and alleviates osteoarthritis progression in mice via the miR-146a/NRF2 axis. Cell Death Dis 2021; 12:483. [PMID: 33986262 PMCID: PMC8119954 DOI: 10.1038/s41419-021-03765-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common articular degenerative disease characterized by loss of cartilage matrix and subchondral bone sclerosis. Kartogenin (KGN) has been reported to improve chondrogenic differentiation of mesenchymal stem cells. However, the therapeutic effect of KGN on OA-induced cartilage degeneration was still unclear. This study aimed to explore the protective effects and underlying mechanisms of KGN on articular cartilage degradation using mice with post-traumatic OA. To mimic the in vivo arthritic environment, in vitro cultured chondrocytes were exposed to interleukin-1β (IL-1β). We found that KGN barely affected the cell proliferation of chondrocytes; however, KGN significantly enhanced the synthesis of cartilage matrix components such as type II collagen and aggrecan in a dose-dependent manner. Meanwhile, KGN markedly suppressed the expression of matrix degradation enzymes such as MMP13 and ADAMTS5. In vivo experiments showed that intra-articular administration of KGN ameliorated cartilage degeneration and inhibited subchondral bone sclerosis in an experimental OA mouse model. Molecular biology experiments revealed that KGN modulated intracellular reactive oxygen species in IL-1β-stimulated chondrocytes by up-regulating nuclear factor erythroid 2-related factor 2 (NRF2), while barely affecting its mRNA expression. Microarray analysis further revealed that IL-1β significantly up-regulated miR-146a that played a critical role in regulating the protein levels of NRF2. KGN treatment showed a strong inhibitory effect on the expression of miR-146a in IL-1β-stimulated chondrocytes. Over-expression of miR-146a abolished the anti-arthritic effects of KGN not only by down-regulating the protein levels of NRF2 but also by up-regulating the expression of matrix degradation enzymes. Our findings demonstrate, for the first time, that KGN exerts anti-arthritic effects via activation of the miR-146a-NRF2 axis and KGN is a promising heterocyclic molecule to prevent OA-induced cartilage degeneration.
Collapse
Affiliation(s)
- Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Xinfeng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China. .,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China. .,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
35
|
Huangfu L, He Q, Han J, Shi J, Li X, Cheng X, Guo T, Du H, Zhang W, Gao X, Luan F, Xing X, Ji J. MicroRNA-135b/CAMK2D Axis Contribute to Malignant Progression of Gastric Cancer through EMT Process Remodeling. Int J Biol Sci 2021; 17:1940-1952. [PMID: 34131397 PMCID: PMC8193265 DOI: 10.7150/ijbs.58062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023] Open
Abstract
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.
Collapse
Affiliation(s)
- Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Qifei He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China.,Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Jing Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Jingyao Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaomei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaojing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Wanhong Zhang
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, Fu-Cheng Road, Beijing, 100142, China.,Center of Minimally Invasive Gastrointestinal Surgery, Shanxi Cancer Hospital, Zhigong New Street, Taiyuan, Shanxi, China
| | - Xiangyu Gao
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Fengming Luan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, Fu-Cheng Road, Beijing, 100142, China
| |
Collapse
|
36
|
Exosomes derived from circRNA Rtn4-modified BMSCs attenuate TNF-α-induced cytotoxicity and apoptosis in murine MC3T3-E1 cells by sponging miR-146a. Biosci Rep 2021; 40:224122. [PMID: 32400849 PMCID: PMC7251325 DOI: 10.1042/bsr20193436] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the most common and complex skeletal disorder worldwide. Exosomes secreted by bone marrow-derived mesenchymal stromal cells (BMSCs) are considered as an ideal seed source for bone tissue regeneration. However, the role of exosomes secreted by BMSCs (BMSCs-Exos) in osteoporosis and its underlying mechanisms remain unclear. In the present study, the expression of microRNA (miRNA)-146a and circular RNA (circRNA) Rtn4 (circ-Rtn4) was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), and their protein expression was determined by Western blotting. Enzyme-linked immunosorbent assay was performed to detect caspase-3 activity. Cell viability and apoptosis were assessed using 3-(4,5-Dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry analysis, respectively. Luciferase reporter assay was exploited for target validation. Results showed that tumor necrosis factor-α (TNF-α) dose-dependently increased miR-146a expression, inhibited cell viability, and promoted cell apoptosis, as indicated by increased caspase-3, cleaved caspase-3, and Bcl-2-associated X protein (Bax) expression as well as caspase-3 activity. However, miR-146a silencing or co-culture with BMSCs-Exos blocked these effects. Moreover, co-culture with exosomes-derived from circ-Rtn4-modified BMSCs (Rtn4-Exos) attenuated TNF-α-induced cytotoxicity and apoptosis in MC3T3-E1 cells, as evidenced by the decrease in caspase-3, cleaved caspase-3, and Bax protein expression and caspase-3 activity. In addition, miR-146a was identified as a target of circ-Rtn4, and Rtn4-Exos exerted their function in TNF-α-treated MC3T3-E1 cells by sponging miR-146a. Hence, our findings suggested that Rtn4-Exos attenuated TNF-α-induced cytotoxicity and apoptosis in murine MC3T3-E1 cells by sponging miR-146a, suggesting that Rtn4-Exos may serve as novel candidates for treating osteoporosis.
Collapse
|
37
|
Zheng M, Tan J, Liu X, Jin F, Lai R, Wang X. miR-146a-5p targets Sirt1 to regulate bone mass. Bone Rep 2021; 14:101013. [PMID: 33855130 PMCID: PMC8024884 DOI: 10.1016/j.bonr.2021.101013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) have been proven to serve as key post-transcriptional regulators, affecting diverse biological processes including osteogenic differentiation and bone formation. Recently, it has been reported that miR-146a-5p affects the activity of both osteoblasts and osteoclasts. However, the target genes of miR-146a-5p in these procedures remain unknown. Here we identify miR-146a-5p as a critical suppressor of osteoblastogenesis and bone formation. We found that miR-146a-5p knockout mice exhibit elevated bone formation and enhanced bone mass in vivo. Consistently, we also found that miR-146a-5p inhibited the osteoblast differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. Importantly, we further demonstrated that miR-146a-5p directly targeted Sirt1 to inhibit osteoblast activity. Additionally, we showed that the expression of miR-146a-5p gradually increased in femurs with age not only in female mice but also in female patients, and miR-146a-5p deletion protected female mice from age-induced bone loss. These data suggested that miR-146a-5p has a crucial role in suppressing the bone formation and that inhibition of miR-146a-5p may be a strategy for ameliorating osteoporosis. MiR-146a-5p inhibits osteoblast activity by targeting Sirt1. MiR-146a-5p deletion ameliorates age-induced bone loss in mice. MiR-146a-5p expression was increased in bone specimens from older females. MiR-146a-5p was a potential target for osteoporosis treatment.
Collapse
Affiliation(s)
- Mingxia Zheng
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China
| | - Junlong Tan
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China
| | - Xiangning Liu
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China
| | - Fujun Jin
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100000, China
| | - Renfa Lai
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China
| | - Xiaogang Wang
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100000, China
| |
Collapse
|
38
|
Lin Z, Miao J, Zhang T, He M, Zhou X, Zhang H, Gao Y, Bai L. d-Mannose suppresses osteoarthritis development in vivo and delays IL-1β-induced degeneration in vitro by enhancing autophagy activated via the AMPK pathway. Biomed Pharmacother 2021; 135:111199. [PMID: 33401221 DOI: 10.1016/j.biopha.2020.111199] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a heterogeneous disease that is consistently difficult to treat due to the complexity of the regulatory network involved in OA pathogenesis, especially in terms of cartilage degeneration. As a C-2 epimer of glucose, d-mannose can alleviate bone loss and repress immunopathology by upregulating regulatory T cells; however, the role of d-mannose in OA-related cartilage degeneration remains unknown. In this study, we investigated the chondroprotective effect of d-mannose in vitro and in vivo on OA. We found that incubating interleukin (IL)-1β-treated rat chondrocytes with d-mannose restrained OA degeneration by elevating cell proliferation, strongly activating autophagy, reducing apoptosis, and downregulating catabolism. Additionally, oral gavage administration of d-mannose to monosodium iodoacetate (MIA)-treated rats revealed that a median (1.25 g/kg/day) rather than high or low dose of d-mannose suppressed OA progression and attenuated OA development based on lower macroscopic scores for cartilage, decreased histological scores for cartilage and synovium, strongly activated autophagy, and downregulated catabolism. In terms of a downstream mechanism, we showed that d-mannose might attenuate OA degeneration by activating autophagy in IL-1β-treated rat chondrocytes by promoting the phosphorylation of 5' AMP-activated protein kinase (AMPK). Our in vitro findings revealed that d-mannose delayed IL-1β-induced OA degeneration in rat chondrocytes by enhancing autophagy activation through the AMPK pathway. Furthermore, the in vivo results indicated that a median dose of d-mannose suppressed MIA-induced OA development. These results suggested that d-mannose exhibits chondroprotective effects and represents a potential disease-modifying drug and novel therapeutic agent for OA.
Collapse
Affiliation(s)
- Zhiming Lin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Jianing Miao
- Medical Research Center/Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shenyang, 110000, China
| | - Tao Zhang
- Department of Thoracic Surgery, Xiamen Branch of Zhongshan Hospital of Fudan University, Xiamen, 361000, China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Xiaonan Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - He Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yue Gao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
39
|
Data Integration Reveals the Potential Biomarkers of Circulating MicroRNAs in Osteoarthritis. Diagnostics (Basel) 2021; 11:diagnostics11030412. [PMID: 33670901 PMCID: PMC7997238 DOI: 10.3390/diagnostics11030412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
The abnormal expression of circulating miRNAs (c-miRNAs) has become an emerging field in the development of miRNAs-based diagnostic and therapeutic tools for human diseases, including osteoarthritis (OA). OA is the most common form of arthritis leading to disability and a major socioeconomic burden. The abnormal expression of miRNAs plays important roles in the pathogenesis of OA. Unraveling the role of miRNAs in the pathogenesis of OA will throw light on the potential for the development of miRNAs-based diagnostic and therapeutic tools for OA. This article reviews and highlights recent advances in the study of miRNAs in OA, with specific demonstration of the functions of miRNA, especially c-miRNA, in OA pathogenesis as well as its potential implication in the treatment of OA. Based on a systematic literature search using online databases, we figured out the following main points: (1) the integrative systematic review of c-mRNAs and its target genes related to OA pathogenesis; (2) the potential use of c-miRNAs for OA diagnosis purposes as potential biomarkers; and (3) for therapeutic purposes, and we also highlight certain remedies that regulate microRNA expression based on its target genes.
Collapse
|
40
|
Lin Z, Miao J, Zhang T, He M, Wang Z, Feng X, Bai L. JUNB-FBXO21-ERK axis promotes cartilage degeneration in osteoarthritis by inhibiting autophagy. Aging Cell 2021; 20:e13306. [PMID: 33450132 PMCID: PMC7884044 DOI: 10.1111/acel.13306] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a heterogeneous disease that is extremely hard to cure owing to its complex regulation network of pathogenesis, especially cartilage degeneration. FBXO21 is a subunit of ubiquitin E3 ligases that degrades P-glycoprotein and EID1 by ubiquitination and activates the JNK and p38 pathways; however, its role in OA remains unknown. Here, the main objective of this study was to evaluate the potential effects and mechanism of FBXO21 in OA degeneration, we revealed that FBXO21 is upregulated in the cartilage of patients with OA, aging, and monosodium iodoacetate-induced OA rats, and chondrocytes treated with interleukin-1β, tumor necrosis factor-α, and lipopolysaccharide. Moreover, the in vivo and in vitro knockdown of FBXO21 suppressed OA-related cartilage degeneration, as evidenced by activated autophagy, upregulated anabolism, alleviated apoptosis, and downregulated catabolism. In contrast, its overexpression promoted OA-related cartilage degeneration. In addition, using mass spectrometry and co-immunoprecipitation assay, we demonstrated that the downstream mechanism of FBXO21 inhibits autophagy by interacting with and phosphorylating ERK. Furthermore, FBXO21 alleviated anabolism and enhanced apoptosis and catabolism by inhibiting autophagy in rat chondrocytes. Interestingly, for its upstream mechanism, JUNB promoted FBXO21 expression by directly targeting the FBXO21 promoter, thus further accelerating cartilage degeneration in SW1353 cells and rat chondrocytes. Overall, our findings reveal that the JUNB-FBXO21-ERK axis regulates OA apoptosis and cartilage matrix metabolism by inhibiting autophagy. Therefore, FBXO21 is an attractive target for regulating OA pathogenesis, and its knockdown may provide a novel targeted therapy for OA.
Collapse
Affiliation(s)
- Zhiming Lin
- Department of Orthopedics Shengjing Hospital of China Medical University Shenyang China
| | - Jianing Miao
- Medical Research Center/Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases Shenyang China
| | - Tao Zhang
- Department of Thoracic Surgery Xiamen Branch of Zhongshan Hospital of Fudan University Xiamen China
| | - Ming He
- Department of Orthopedics Shengjing Hospital of China Medical University Shenyang China
| | - Ziyuan Wang
- Department of Orthopedics Shengjing Hospital of China Medical University Shenyang China
| | - Xinyuan Feng
- Department of Orthopedics Shengjing Hospital of China Medical University Shenyang China
| | - Lunhao Bai
- Department of Orthopedics Shengjing Hospital of China Medical University Shenyang China
| |
Collapse
|
41
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
42
|
Yu D, Wei W, Hefeng Y, Weihao L, Qianqian Q, Song L. Upregulated ox40l Can Be Inhibited by miR-146a-5p in Condylar Chondrocytes Induced by IL-1β and TNF-α: A Possible Regulatory Mechanism in Osteoarthritis. Int Arch Allergy Immunol 2020; 182:408-416. [PMID: 33147588 DOI: 10.1159/000512291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a common musculoskeletal disease characterized by pain, stiffness, limited activity, occasional effusion, and local inflammation. MiR-146 is one of the noncoding RNA closely related to OA, but the role of miR-146 in OA remains controversial. The tumour necrosis factor receptor OX40 is activated by its cognate ligand OX40L (TNFSF4) and functions as a T-cell costimulatory molecule. The T-cell functions, including cytokine production, expansion, and survival, are enhanced by the OX40 costimulatory signals. METHODS We established an inflammatory model of condylar chondrocytes induced by IL-1β and TNF-α and detected the expression of miRNA by miRNA sequencing. Then, cell transfection was used to study the role of miR146a-5p in OA. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and database analysis were used to screen out potential target genes of miR-146a-5p. A dual luciferase activity assay tested whether ox40l is the target gene of miR-146a-5p. RESULTS MiR-146a-5p and OX40L was upregulated after induced by IL-1β and TNF-α, miR-146a-5p reduced the production of inflammatory factors but had no effect on chondrophenotypic factors, and ox40l was targeted by miR-146a-5p. CONCLUSION OX40L and miR-146a-5p of condylar chondrocytes in the inflammatory environment (induced by IL-1β and TNF-α) were significantly increased, miR-146a-5p is a protective factor in the inflammatory response, which can reduce the production of inflammatory factors, and miR-146a-5p may regulate T-cell-mediated immunity through targeting of ox40l in OA.
Collapse
Affiliation(s)
- Ding Yu
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Wang Wei
- Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Yang Hefeng
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Li Weihao
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Qu Qianqian
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Li Song
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China,
| |
Collapse
|
43
|
Wan D, Qu Y, Ai S, Cheng L. miR-152 Attenuates Apoptosis in Chondrocytes and Degeneration of Cartilages in Osteoarthritis Rats via TCF-4 Pathway. Dose Response 2020; 18:1559325820946918. [PMID: 33192200 PMCID: PMC7597564 DOI: 10.1177/1559325820946918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Osteoarthritis (OA) is associated with deregulation of various miRNAs (miRs). The present study reported protective effect of miR-152 in osteoarthritis. Methods Tissue cartilage tissues of OA and normal subjects were used, rat model of anterior cruciate ligament transection (ACLT) was developed. Cartilage study was done by Safranin O-fast green, histological and immunostaining. The chondrocytes were isolated from tissues and were treated with IL-1β and infected with miR-152 or TCF-4 cloned lentiviral vectors. MTT assay was done for cell viability, apoptosis by Annexin-V-FITC staining. Expressions of proteins by western blot assay. Collagen-II assay was done by immunofluroscent assay. Luciferase activity by dual luciferase reporter assay. Results Upregulation of miR-152 improved viability of chondrocytes, decreased apoptosis and balanced the catabolic and anabolic factors of extracellular matrix in vitro. Injecting miR-152 lentivirus in rats improved articular cartilage in osteoarthritis ACLT rats. Bioinformatics analysis suggested TCF-4 as favorable target gene of miR-152, having binding site on the 3'UTR region of TCF-4 mRNA and inhibited the expression of TCF-4. Osteoarthritis tissue cartilage both from humans and rats showed expression of miR-152 inversely linked with expression of TCF-4. Conclusion Present study concludes miR-152 diminished the progression of osteoarthritis partially by inhibiting the expression of TCF-4.
Collapse
Affiliation(s)
- Daqian Wan
- Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, China
| | - Yang Qu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Cheng
- Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, China
| |
Collapse
|
44
|
Primorac D, Molnar V, Rod E, Jeleč Ž, Čukelj F, Matišić V, Vrdoljak T, Hudetz D, Hajsok H, Borić I. Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes (Basel) 2020; 11:E854. [PMID: 32722615 PMCID: PMC7464436 DOI: 10.3390/genes11080854] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- School of Medicine, Faculty of Dental Medicine and Health, University “Josip Juraj Strossmayer”, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nursing, University North, 48 000 Varaždin, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Hana Hajsok
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
45
|
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
|
46
|
MiR-132/212 promotes the growth of precartilaginous stem cells (PCSCs) by regulating Ihh/PTHrP signaling pathway. Biosci Rep 2020; 40:222734. [PMID: 32319512 PMCID: PMC7214394 DOI: 10.1042/bsr20191654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022] Open
Abstract
Precartilaginous stem cells (PCSCs) are adult stem cells that can initiate chondrocytes and bone development. In the present study, we explored whether miR-132/212 was involved in the proliferation of PCSCs via Hedgehog signaling pathway. PCSCs were isolated and purified with the fibroblast growth factor receptor-3 (FGFR-3) antibody. Cell viability, DNA synthesis and apoptosis were measured using MTT, BrdU and flow cytometric analysis. The mRNA and protein expression were detected by real-time PCR and Western blot, respectively. The target gene for miR-132/212 was validated by luciferase reporter assay. Results showed that transfection with miR-132/212 mimic significantly increased cell viability and DNA synthesis, and inhibited apoptosis of PCSCs. By contrast, miR-132/212 inhibitor could suppress growth and promote apoptosis of PCSCs. Luciferase reporter assays indicated that transfection of miR-132/212 led to a marked reduction of luciferase activity, but had no effect on PTCH1 3′-UTR mutated fragment, suggesting that Patched1 (PTCH1) is a target of miR-132/212. Furthermore, treatment with miR-132/212 mimics obviously increased the protein expression of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP), which was decreased after treatment with Hedgehog signaling inhibitor, cyclopamine. We also found that inhibition of Ihh/PTHrP signaling by cyclopamine significantly suppressed growth and DNA synthesis, and induced apoptosis in PCSCs. These findings demonstrate that miR-132/212 promotes growth and inhibits apoptosis in PCSCs by regulating PTCH1-mediated Ihh/PTHrP pathway, suggesting that miR-132/212 cluster might serve as a novel target for bone diseases.
Collapse
|
47
|
Che X, Chen T, Wei L, Gu X, Gao Y, Liang S, Li P, Shi D, Liang B, Wang C, Li P. MicroRNA‑1 regulates the development of osteoarthritis in a Col2a1‑Cre‑ERT2/GFPfl/fl‑RFP‑miR‑1 mouse model of osteoarthritis through the downregulation of Indian hedgehog expression. Int J Mol Med 2020; 46:360-370. [PMID: 32626917 PMCID: PMC7255451 DOI: 10.3892/ijmm.2020.4601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/21/2020] [Indexed: 11/06/2022] Open
Abstract
The present study assessed the effects of microRNA‑1 (miR‑1) on the development of osteoarthritis using human tissues and a Col2a1‑Cre‑ERT2/GFPfl/fl‑RFP‑miR‑1 mouse model of osteoarthritis. Human cartilage tissues (n=20) were collected for reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), histological analysis and immunohistochemistry experiments. A transgenic mouse model of osteoarthritis was established by subjecting Col2a1‑Cre‑ERT2/GFPfl/fl‑RFP‑miR‑1 transgenic mice to anterior cruciate ligament transection (ACLT). Mice were subjected to radiography and in vivo fluorescence molecular tomography (FMT), while mouse tissues were collected for histological analysis, RT‑qPCR and Safranin O staining. It was found that the miR‑1 level was downregulated, whereas the levels of Indian hedgehog (Ihh), as well as those of its downstream genes were upregulated in human osteoarthritic cartilage. In the transgenic mice, treatment with tamoxifen induced miR‑1, as well as collagen, type II (Col2a1) and Aggrecan (Acan) expression; however, it decreased Ihh, glioma‑associated oncogene homolog (Gli)1, Gli2, Gli3, smoothened homolog (Smo), matrix metalloproteinase (MMP)‑13 and collagen type X (Col10) expression. Safranin O staining revealed cartilage surface damage in the non‑tamoxifen + ACLT group, compared with that in the tamoxifen + ACLT group. Histologically, an intact cartilage surface and less fibrosis were observed in the tamoxifen + ACLT group. Immunohistochemistry revealed that the protein expression of Ihh, Col10, and MMP‑13 was significantly higher in the joint tissues of the non‑tamoxifen + ACLT group than in those of the tamoxifen + ACLT group. However, Col2a1 expression was lower in the joint tissues of the non‑tamoxifen + ACLT group than in those of the tamoxifen + ACLT group. The results of RT‑qPCR and FMT further confirmed these findings. On the whole, the findings of the present study demonstrate that miR‑1 expression protects against osteoarthritis‑induced cartilage damage and gene expression by inhibiting Ihh signaling.
Collapse
Affiliation(s)
- Xianda Che
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Taoyu Chen
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lei Wei
- Department of Orthopedics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Xiaodong Gu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yangyang Gao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Shufen Liang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Penghua Li
- Fengyang Hospital of Shanxi Province, Fengyang, Shanxi 032200, P.R. China
| | - Dongping Shi
- Fengyang Hospital of Shanxi Province, Fengyang, Shanxi 032200, P.R. China
| | - Bin Liang
- Fengyang Hospital of Shanxi Province, Fengyang, Shanxi 032200, P.R. China
| | - Chunfang Wang
- Laboratory Animal Center of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengcui Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
48
|
Mumtaz F, Albeltagy RS, Diab MSM, Abdel Moneim AE, El-Habit OH. Exposure to arsenite and cadmium induces organotoxicity and miRNAs deregulation in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17184-17193. [PMID: 32152865 DOI: 10.1007/s11356-020-08306-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Sodium arsenite (NaAsO2) and cadmium chloride (CdCl2) are two prime examples of un-biodegradable compounds that accumulate in the ecosystems causing great threats to human health and produce severe adverse effects. However, their joint toxicities are poorly understood in mammals. This study aimed to identify the effect of exposure to NaAsO2 (5 mg/kg, by oral gavage) and CdCl2 (1 mg/kg injected interperitoneal, i.p.) either alone or in combinations after 14 and 28 days on oxidative stress, antioxidant enzyme activities, and histopathological changes. The results revealed a downregulation of miR-146a also, in miR-let7a after 14 days and a notable upregulation after 28 days. However, administrations of their combinations for 14 days caused downregulated miR-146a and miR-let7a. However, upregulation miR-let7a was observed only after 28 days. Organotoxicity of liver results in a remarkable increase in oxidative stress biomarkers by the two metals either alone or in combinations. A remarkable decrease was noted in an antioxidant enzyme activity indicating a defect in the antioxidant defense system. Also, CdCl2 alone showed remarkable liver histopathological changes. This study concluded that there was a close relationship of high epigenetic changes as deregulation of both miR-146a and miR-let7a as a result of the joint toxicity of both compounds, and ultimately major changes in hepatic tissues that may lead to cell transformations. However, further studies are needed to investigate the target genes for those miRNAs.
Collapse
Affiliation(s)
- Farah Mumtaz
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rasha S Albeltagy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Marwa S M Diab
- Molecular Drug Evaluation Department, National Organization for Drug Control & Research (NODCAR), Giza, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Ola H El-Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
49
|
Zhang C, Wang H, Yang B. miR-146a regulates inflammation and development in patients with abdominal aortic aneurysms by targeting CARD10. INT ANGIOL 2020; 39:314-322. [PMID: 32138469 DOI: 10.23736/s0392-9590.20.04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We present the expression of miR-146a in abdominal aortic aneurysms (AAA) patients, and its mechanism for regulating inflammation and development in AAA patients. METHODS The expression of miR-146a in serum, PBMC, and abdominal aorta tissues was measured in AAA patients. RESULTS We found that level of miR-146a in the serum and its expression in AAA tissues were significantly higher than that in healthy people or normal abdominal aorta tissues. Pearson's method analysis showed that miRNA-146a in the serum of AAA patients was negatively correlated with serum TNF-α, IFN-γ and CRP, and was positively correlated with serum IL-10. The luciferase reporter gene system confirmed that miR-146a targeted inhibition of CARD10 expression in THP-1 and human umbilical vein endothelial cells (HUVECs), and miR-146a was negatively correlated with the expression of CARD10 in the tissues/PBMC of AAA patients. In PBMC of healthy people, over-expression of miR-146a by transferring miR-146a-mimic could increase the expression of SIRT1 but decreased the expression of p65 and the level of TNF-α secretion. Moreover, HUVECs cellular activity change by TNF-α in a dose-dependent manner. CONCLUSIONS These results suggested that miR-146a suppressed the inflammation of peripheral blood in AAA patients by targeting CARD10, and miR-146a blocked the progression of AAA through CARD10/SIRT1/p65 pathway.
Collapse
Affiliation(s)
- Chenglei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Haohua Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Bin Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China -
| |
Collapse
|
50
|
Cheng Z, Sun W, Ni X, Xu H, Wang Y. GAB2 inhibits chondrocyte apoptosis through PI3K-AKT signaling in osteoarthritis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:616-623. [PMID: 32269703 PMCID: PMC7137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Cartilage degeneration is considered the main pathologic feature of osteoarthritis (OA). Cumulative evidence indicates that chondrocyte apoptosis is associated with cartilage degradation. However, the underlying molecular mechanism of chondrocyte apoptosis remains unclear. Growth factor receptor-bound protein 2 (GAB2), an adaptor protein, belongs to the Gab family and is involved in various biologic processes. Here, we explored the role of GAB2 in the pathogenesis of osteoarthritis (OA). GAB2 expression was markedly increased in OA articular cartilage. GAB2 expression was also increased in an in vitro model of TNFα-induced apoptosis. GAB2 depletion by siRNA promoted expression of the apoptosis markers, PARP and caspase-3, and increased the number of apoptotic cells, indicating that GAB2 might have an anti-apoptotic effect in chondrocytes. Moreover, GAB2 knockdown inhibited AKT phosphorylation, increased BAX expression, and decreased BCL2 expression, which indicated that GAB2 regulates chondrocyte apoptosis through PI3K-AKT signaling. Taken together, our study indicates that GAB2 plays a vital role in chondrocyte apoptosis and provides a new therapeutic target for OA.
Collapse
Affiliation(s)
- Zhen Cheng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong UniversityNantong, Jiangsu, China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong UniversityNantong, Jiangsu, China
| | - Xiaohui Ni
- Department of Orthopaedics, The People’s Hospital of Dafeng CityYancheng, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong UniversityNantong, Jiangsu, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong UniversityNantong, Jiangsu, China
| |
Collapse
|