1
|
Wang Y, Wang Y, Bao L, Vale G, McDonald JG, Fang Y, Peng Y, Kumar A, Xing C, Brasó-Maristany F, Prat A, Arteaga CL, Wang Y, Luo W. ZMYND8 drives HER2 antibody resistance in breast cancer via lipid control of IL-27. Nat Commun 2025; 16:3908. [PMID: 40281007 PMCID: PMC12032076 DOI: 10.1038/s41467-025-59184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Anti-HER2 antibodies are effective but often lead to resistance in patients with HER2+ breast cancer. Here, we report an epigenetic crosstalk with aberrant glycerophospholipid metabolism and inflammation as a key resistance mechanism of anti-HER2 therapies in HER2+ breast cancer. Histone reader ZMYND8 specifically confers resistance to cancer cells against trastuzumab and/or pertuzumab. Mechanistically, ZMYND8 enhances cPLA2α expression in resistant tumor cells through inducing c-Myc. cPLA2α inactivates phosphatidylcholine-specific phospholipase C to inhibit phosphatidylcholine breakdown into diacylglycerol, which diminishes protein kinase C activity leading to interleukin-27 secretion. Supplementation with interleukin-27 protein counteracts cPLA2α loss to reinforce trastuzumab resistance in HER2+ tumor cells and patient-derived organoids. Upregulation of ZMYND8, c-Myc, cPLA2α, and IL-27 is prevalent in HER2+ breast cancer patients following HER2-targeted therapies. Targeting c-Myc or cPLA2α effectively overcomes anti-HER2 therapy resistance in patient-derived xenografts. Collectively, this study uncovers a druggable signaling cascade that drives resistance to HER2-targeted therapies in HER2+ breast cancer.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanan Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yisheng Fang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Cancer Institute and Blood Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- Reveal Genomics, S.L., Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Cancer Institute and Blood Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- Reveal Genomics, S.L., Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Institute of Oncology-Hospital Quirónsalud, Barcelona, Spain
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Furuya K, Hirata H, Kobayashi T, Ishiguro H, Sokabe M. Volume-regulated anion channels conduct ATP in undifferentiated mammary cells and promote tumorigenesis in xenograft nude mouse. Front Cell Dev Biol 2025; 12:1519642. [PMID: 39882260 PMCID: PMC11774906 DOI: 10.3389/fcell.2024.1519642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
The high interstitial ATP concentration in the cancer microenvironment is a major source of adenosine, which acts as a strong immune suppressor. However, the source of ATP release has not been elucidated. We measured ATP release during hypotonic stress using a real-time ATP luminescence imaging system in breast cell lines and in primary cultured mammary cells. In breast cell lines, ATP was released with a slowly rising diffuse pattern, whereas in primary cultured cells, ATP was intermittently released with transient-sharp peaks. The diffuse ATP release pattern changed to a transient-sharp pattern by cholera toxin treatment and the reverse change was induced by transforming growth factor (TGF) β treatment. DCPIB, an inhibitor of volume-regulated anion channels (VRACs), suppressed the diffuse pattern. The inflammatory mediator sphingosine-1-phosphate (S1P) induced a diffuse ATP release pattern isovolumetrically. Knockdown of the A isoform of leucine-rich repeat-containing protein 8 (LRRC8A), the essential molecular entity of VRACs, using shRNA suppressed the diffuse pattern. In the nude mouse xenograft model, LRRC8A knockdown suppressed the tumorigenesis of subcutaneously implanted breast cancer cells. These results suggest that abundantly expressed VRACs are a conduit of ATP release in undifferentiated cells, including cancer cells.
Collapse
Affiliation(s)
- Kishio Furuya
- Department Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Hirata
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Information Systems Labs, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, Japan
| | - Takeshi Kobayashi
- Department Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Information Systems Labs, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, Japan
| |
Collapse
|
4
|
Liu D, Zuo R, Liu W, He Y, Wang Y, Yue P, Gong W, Cui J, Zhu F, Luo Y, Qi L, Guo Y, Chen L, Li G, Liu Z, Chen P, Guo H. DNAJC24 acts directly with PCNA and promotes malignant progression of LUAD by activating phosphorylation of AKT. FASEB J 2024; 38:e23630. [PMID: 38713100 DOI: 10.1096/fj.202300667rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Heat shock proteins (HSPs) are a group of highly conserved proteins found in a wide range of organisms. In recent years, members of the HSP family were overexpressed in various tumors and widely involved in oncogenesis, tumor development, and therapeutic resistance. In our previous study, DNAJC24, a member of the DNAJ/HSP40 family of HSPs, was found to be closely associated with the malignant phenotype of hepatocellular carcinoma. However, its relationship with other malignancies needs to be further explored. Herein, we demonstrated that DNAJC24 exhibited upregulated expression in LUAD tissue samples and predicted poor survival in LUAD patients. The upregulation of DNAJC24 expression promoted proliferation and invasion of LUAD cells in A549 and NCI-H1299 cell lines. Further studies revealed that DNAJC24 could regulate the PI3K/AKT signaling pathway by affecting AKT phosphorylation. In addition, a series of experiments such as Co-IP and mass spectrometry confirmed that DNAJC24 could directly interact with PCNA and promoted the malignant phenotypic transformation of LUAD. In conclusion, our results suggested that DNAJC24 played an important role in the progression of LUAD and may serve as a specific prognostic biomarker for LUAD patients. The DNAJC24/PCNA/AKT axis may be a potential target for future individualized and precise treatment of LUAD patients.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ran Zuo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yu Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ping Yue
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinfang Cui
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fuyi Zhu
- Department of Oncology Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Luo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lisha Qi
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yan Guo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Cancer Biobank of Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liwei Chen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guangtao Li
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Peng Chen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
5
|
Wang M, Zhang H, Lu Z, Su W, Tan Y, Wang J, Jia X. PSAT1 mediated EMT of colorectal cancer cells by regulating Pl3K/AKT signaling pathway. J Cancer 2024; 15:3183-3198. [PMID: 38706897 PMCID: PMC11064270 DOI: 10.7150/jca.93789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/09/2024] [Indexed: 05/07/2024] Open
Abstract
Background: The metastasis of colorectal cancer (CRC) is one of the significant barriers impeding its treated consequence and bring about high mortality, less surgical resection rate and poor prognosis of CRC patients. PSAT1 is an enzyme involved in serine biosynthesis. The studies showed that PSAT1 plays the part of a crucial character in the regulation of tumor metastasis. And Epithelial-Mesenchymal Transition (EMT) is a process of cell reprogramming in which epithelialcells obtain mesenchymal phenotypes. It is a crucial course in promoting cell metastasis and the progression of malignant tumors. The relationship between PSAT1 and EMT in colorectal cancer, as well as the underlying molecular mechanisms, remains enigmatic and warrants thorough exploration. These findings suggest that PSAT1 may serve as a promising therapeutic target for mitigating colorectal cancer metastasis and holds the potential to emerge as a valuable prognostic biomarker in forthcoming research endeavors. Materials and Methods: Utilizing TCGA dataset in conjunction with clinical CRC specimens, our initial focus was directed towards an in-depth examination of PSAT1 expression within CRC, specifically exploring its potential correlation with the adverse prognostic outcomes experienced by patients. Furthermore, we conducted a comprehensive investigation into the regulatory influence exerted by PSAT1 on CRC through the utilization of siRNA knockdown techniques. In the realm of in vitro experimentation, we meticulously evaluated the impact of PSAT1 on various facets of CRC progression, including cell migration, invasion, proliferation, and colony formation. In order to elucidate the intricate effects in question, we adopted a multifaceted methodology that encompassed a range of assays and analyses. These included wound healing assays, transwell assays, utilization of the Cell Counting Kit-8 (CCK-8) assay, and colony formation assays. By employing this diverse array of investigative techniques, we were able to achieve a comprehensive comprehension of the multifaceted role that PSAT1 plays in the pathogenesis of colorectal cancer. This multifarious analysis greatly contributed to our in-depth understanding of the complex mechanisms at play in colorectal cancer pathogenesis. Using WB and PCR experiments, we found that PSAT1 has a role in regulating EMT development in CRC.In terms of mechanism, we found that PSAT1 affected EMT by Regulating Pl3K/AKT Signaling Pathway. Results: Our investigation revealed a noteworthy down-regulation of PSAT1 expression in CRC specimens. Importantly, this down-regulation exhibited a significant positive correlation with the unfavorable prognosis of patients afflicted with CRC. Functionally, our study showcased that the siRNA-mediated knockdown of PSAT1 markedly enhanced various key aspects of CRC pathogenesis in an in vitro setting. Specifically, this included a substantial promotion of CRC cell migration, invasion, proliferation, and colony formation. Moreover, the silencing of PSAT1 also demonstrated a substantial promotion of the EMT process. Intriguingly, our research unveiled a hitherto unexplored mechanism underlying the regulatory role of PSAT1 in CRC and EMT. We have established, for the first time, that PSAT1 exerts its influence by modulating the activation of the PI3K/AKT Signaling Pathway. This mechanistic insight provides a valuable contribution to the understanding of the molecular underpinnings of CRC progression and EMT induction mediated by PSAT1. Conclusions: In unison, our research findings shed light on the previously uncharted and significant role of the PSAT1/PI3K/AKT axis in the initiation of the EMT process in CRC. Furthermore, our discoveries introduce a novel biomarker with potential implications for the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Mingjin Wang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
- The Key Laboratory of Hepatobiliary Pancreas, Southern District, Anhui Provincial Hospital, The First Affliated Hosnital of USTC, University of Science and Technology of China, 230022 Hefei, Anhui, China
| | - Houshun Zhang
- Department of Pathology, Anhui Provincial Hospital, The First Affliated Hosnital of USTC, University of Science and Technology of China, 230002 Hefei, Anhui, China
| | - Zhiyuan Lu
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| | - Wenrui Su
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| | - Yanan Tan
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| | - Jiayu Wang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| |
Collapse
|
6
|
Mizokami H, Okabe A, Choudhary R, Mima M, Saeda K, Fukuyo M, Rahmutulla B, Seki M, Goh BC, Kondo S, Dochi H, Moriyama-Kita M, Misawa K, Hanazawa T, Tan P, Yoshizaki T, Fullwood MJ, Kaneda A. Enhancer infestation drives tumorigenic activation of inactive B compartment in Epstein-Barr virus-positive nasopharyngeal carcinoma. EBioMedicine 2024; 102:105057. [PMID: 38490101 PMCID: PMC10951899 DOI: 10.1016/j.ebiom.2024.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING The funds are listed in the Acknowledgements section.
Collapse
Affiliation(s)
- Harue Mizokami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Health and Disease Omics Center, Chiba University, Chiba, 260-8670, Japan
| | - Ruchi Choudhary
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Hamamatsu University School of Medicine, Shizuoka, 431-3125, Japan
| | - Kenta Saeda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Hamamatsu University School of Medicine, Shizuoka, 431-3125, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Melissa Jane Fullwood
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, 117599, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Health and Disease Omics Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
7
|
Xu S, Tuo QZ, Meng J, Wu XL, Li CL, Lei P. Thrombin induces ferroptosis in triple-negative breast cancer through the cPLA2α/ACSL4 signaling pathway. Transl Oncol 2024; 39:101817. [PMID: 37939630 PMCID: PMC10652120 DOI: 10.1016/j.tranon.2023.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Ferroptosis is a recently identified form of regulated cell death that plays a crucial role in tumor suppression. In this study, we found that F2 (the gene encoding thrombin) was strongly upregulated in breast cancer (BRCA, TCGA Study Abbreviations) compared with normal samples and that lower F2 levels were associated with poorer prognosis in breast cancer patients. Thrombin induces ferroptosis in triple-negative breast cancer (TNBC) cells by activation of cytosolic phospholipase A2α (cPLA2α) activity to increase the release of arachidonic acid (AA). TNBC in all breast cancer subtypes exhibited the highest levels of PLA2G4A (the gene encoding cPLA2α) and Acsl4, and inhibition of cPLA2α and its downstream enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) reversed thrombin toxicity. In a mouse xenograft model of TNBC, thrombin treatment suppressed breast cancer growth which can be inhibited by ferroptosis inhibitor Liproxstatin-1 (Lip-1). Our study underscores the potential of the thrombin-ACSL4 axis as a promising therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Shuo Xu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Lei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chang-Long Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Li T, Yao L, Hua Y, Wu Q. Comprehensive analysis of prognosis of cuproptosis-related oxidative stress genes in multiple myeloma. Front Genet 2023; 14:1100170. [PMID: 37065484 PMCID: PMC10102368 DOI: 10.3389/fgene.2023.1100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction: Multiple myeloma (MM) is a highly heterogeneous hematologic malignancy. The patients’ survival outcomes vary widely. Establishing a more accurate prognostic model is necessary to improve prognostic precision and guide clinical therapy.Methods: We developed an eight-gene model to assess the prognostic outcome of MM patients. Univariate Cox analysis, Least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analyses were used to identify the significant genes and construct the model. Other independent databases were used to validate the model.Results: The results showed that the overall survival of patients in the high-risk group was signifificantly shorter compared with that of those in the low-risk group. The eight-gene model demonstrated high accuracy and reliability in predicting the prognosis of MM patients.Discussion: Our study provides a novel prognostic model for MM patients based on cuproptosis and oxidative stress. The eight-gene model can provide valid predictions for prognosis and guide personalized clinical treatment. Further studies are needed to validate the clinical utility of the model and explore potential therapeutic targets.
Collapse
|
9
|
Khan SA, Ilies MA. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int J Mol Sci 2023; 24:ijms24021353. [PMID: 36674864 PMCID: PMC9862071 DOI: 10.3390/ijms24021353] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.
Collapse
|
10
|
Chen L, He Y, Han Z, Gong W, Tian X, Guo L, Guo H, Song T, Chen L. The impact of decreased expression of SVEP1 on abnormal neovascularization and poor prognosis in patients with intrahepatic cholangiocarcinoma. Front Genet 2023; 13:1127753. [PMID: 36699464 PMCID: PMC9870246 DOI: 10.3389/fgene.2022.1127753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Intrahepatic cholangiocarcinoma (ICC) is one of the most highly heterogeneous malignant solid tumors; it is generally insensitive to clinical treatment and has a poor prognosis. Evidence suggests that abnormal neovascularization in the tumor microenvironment is an important cause of treatment resistance as well as recurrence and metastasis, but the key regulatory molecules are still largely unknown and should be identified. Method: We assessed the novel extracellular matrix protein (ECM) Sushi, von Willebrand factor type A, EGF and pentraxin containing 1 (SVEP1) expression pattern in the ICC by using immunohistochemistry. Multiplex immunofluorescence and Kaplan-Meier analysis were applied to explore the correlation between the low expression of SVEP1 and abnormal blood vessels and the clinical prognosis of ICC. Results: Our study showed that the expression of SVEP1 in most ICC samples was relatively lower than in the adjacent tissues. Statistical analysis suggested that patients with decreased SVEP1 expression always had shorter overall survival (OS) and disease-free survival (DFS). Moreover, the expression of SVEP1 was negatively correlated with the proportion of abnormal neovascularization in the tumor microenvironment of the ICC. Consistently, the key molecule of promoting vascular normalization, Ang-1, is positively correlated with the SVEP1 expression and prognosis in the ICC. In addition, the proportion of high Ki-67 expression was higher in the ICC samples with low SVEP1 expression, suggesting that the SVEP1 low expressed sample is in a malignant phenotype with high proliferation. Conclusion: This study reveals that SVEP1 is a promising prognostic biomarker for ICC and provides fresh insight into the role and potential new mechanism of abnormal neovascularization in ICC progression.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Han
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wenchen Gong
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiangdong Tian
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lin Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Lu Chen, ; Tianqiang Song,
| | - Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Lu Chen, ; Tianqiang Song,
| |
Collapse
|
11
|
Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022; 11:46. [PMID: 35945203 PMCID: PMC9363460 DOI: 10.1038/s41389-022-00420-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Lipids are essential constituents for malignant tumors, as they are absolutely required for tumor growth and dissemination. Provided by the tumor microenvironment (TME) or by cancer cells themselves through activation of de novo synthesis pathways, they orchestrate a large variety of pro-tumorigenic functions. Importantly, TME cells, especially immune cells, cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs), are also prone to changes in their lipid content, which hinder or promote tumor aggressiveness. In this review, we address the significant findings for lipid contribution in tumor progression towards a metastatic disease and in the poor response to therapeutic treatments. We also highlight the benefits of targeting lipid pathways in preclinical models to slow down metastasis development and overcome chemo-and immunotherapy resistance.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France.
| |
Collapse
|
12
|
Li D, Liang J, Yang W, Guo W, Song W, Zhang W, Wu X, He B. A distinct lipid metabolism signature of acute myeloid leukemia with prognostic value. Front Oncol 2022; 12:876981. [PMID: 35957912 PMCID: PMC9359125 DOI: 10.3389/fonc.2022.876981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy characterized by extensive genetic abnormalities that might affect the prognosis and provide potential drug targets for treatment. Reprogramming of lipid metabolism plays important roles in tumorigenesis and progression and has been newly recognized a new hallmark of malignancy, and some related molecules in the signal pathways could be prognostic biomarkers and potential therapeutic targets for cancer treatment. However, the clinical value of lipid metabolism reprogramming in AML has not been systematically explored. In this study, we aim to explore the clinical value of lipid metabolism reprogramming and develop a prognostic risk signature for AML. Methods We implemented univariate Cox regression analysis to identify the prognosis-related lipid metabolism genes, and then performed LASSO analysis to develop the risk signature with six lipid metabolism-related genes (LDLRAP1, PNPLA6, DGKA, PLA2G4A, CBR1, and EBP). The risk scores of samples were calculated and divided into low- and high-risk groups by the median risk score. Results Survival analysis showed the high-risk group hold the significantly poorer outcomes than the low-risk group. The signature was validated in the GEO datasets and displayed a robust prognostic value in the stratification analysis. Multivariate analysis revealed the signature was an independent prognostic factor for AML patients and could serve as a potential prognostic biomarker in clinical evaluation. Furthermore, the risk signature was also found to be closely related to immune landscape and immunotherapy response in AML. Conclusions Overall, we conducted a comprehensive analysis of lipid metabolism in AML and constructed a risk signature with six genes related to lipid metabolism for the malignancy, prognosis, and immune landscape of AML, and our study might contribute to better understanding in the use of metabolites and metabolic pathways as the potential prognostic biomarkers and therapeutic targets for AML.
Collapse
Affiliation(s)
- Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiaming Liang
- Department of Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Yang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenbin Guo
- Department of Pathology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- *Correspondence: Baoxia He, ; Xuan Wu,
| | - Baoxia He
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Baoxia He, ; Xuan Wu,
| |
Collapse
|
13
|
Zhang X, He Y, Ren P, Chen L, Han Z, Qi L, Chen L, Luo Y, Zhang N, Lu W, Guo H. Low expression and Hypermethylation of ATP2B1 in Intrahepatic Cholangiocarcinoma Correlated With Cold Tumor Microenvironment. Front Oncol 2022; 12:927298. [PMID: 35875160 PMCID: PMC9302110 DOI: 10.3389/fonc.2022.927298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background The efficacy of current therapeutic schedule is limited owing to fibroproliferative tumor microenvironment (TME) of cholangiocarcinoma, compelling a search for new therapeutic targets. Methods Gene expression profiles and methylation profiles were obtained from UCSC Xena. Consensus clustering was performed on the transcriptome data of cholangiocarcinoma to determine the different immune subtypes. The differentially expressed genes (DEGs) between hot tumor and cold tumors were identified. ESTIMATE was used to assess immune score, and the cases were separated into relatively superior and inferior immune score groups. Single-sample gene set enrichment analysis was applied to assess 28 immune cells in the cholangiocarcinoma microenvironment. Unsupervised consensus was applied for methylation profiling to distribute the high and low methylation groups. The correlation between DNA methylation and mRNA expression was investigated, and the relationship between the ATP2B1 gene and the immune microenvironment was explored. Finally, 77 cases of intrahepatic cholangiocarcinoma (ICC) were collected for verification. Results Seven subtypes were related to patient outcomes (P=0.005). The proportions of CD8+ T cells in the “hot” immune type was significantly greater than that in the “cold” immune type (P<0.05). Next, DEGs and DNA methylation-governed genes were intersected, and ATP2B1 was identified as a prognosis factor in ICC (P=0.035). ATP2B1 expression was positively correlated with immune scores (P=0.005, r=0.458), the levels of infiltrating CD8+ T cells (P=0.004, r=0.47), and CD4+ T cells (P=0.027, r=0.37). Immunohistochemistry confirmed that the amounts of CD8+ and CD4+ T cells were significantly higher in ICC tissue samples than in tissues with ATP2B1 overexpression (P<0.05). Conclusions ATP2B1 overexpression can activate immune signals and prompt cold tumor response.
Collapse
Affiliation(s)
- Xiehua Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Infectious Diseases, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Peiqi Ren
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lu Chen
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Han
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ning Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Hua Guo, ; Wei Lu,
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Hua Guo, ; Wei Lu,
| |
Collapse
|
14
|
Mishra S, Charan M, Shukla RK, Agarwal P, Misri S, Verma AK, Ahirwar DK, Siddiqui J, Kaul K, Sahu N, Vyas K, Garg AA, Khan A, Miles WO, Song JW, Bhutani N, Ganju RK. cPLA2 blockade attenuates S100A7-mediated breast tumorigenicity by inhibiting the immunosuppressive tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:54. [PMID: 35135586 PMCID: PMC8822829 DOI: 10.1186/s13046-021-02221-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/11/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Molecular mechanisms underlying inflammation-associated breast tumor growth are poorly studied. S100A7, a pro-inflammatory molecule has been shown to enhance breast cancer growth and metastasis. However, the S100A7-mediated molecular mechanisms in enhancing tumor growth and metastasis are unclear. METHODS Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3 (1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effects of S100A7/cPLA2 inhibition on the recruitment of various immune cells. RESULTS In this study, we found that S100A7 and cPLA2 are highly expressed and correlate with decreased overall survival in breast cancer patients. Further mechanistic studies revealed that S100A7/RAGE signaling promotes the expression of cPLA2 to mediate its oncogenic effects. Pharmacological inhibition of cPLA2 suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models including transgenic and humanized patient-derived xenograft (PDX) mouse models. The attenuation of cPLA2 signaling reduced S100A7-mediated recruitment of immune-suppressive myeloid cells in the tumor microenvironment (TME). Interestingly, we discovered that the S100A7/cPLA2 axis enhances the immunosuppressive microenvironment by increasing prostaglandin E2 (PGE2). Furthermore, CO-Detection by indEXing (CODEX) imaging-based analyses revealed that cPLA2 inhibition increased the infiltration of activated and proliferating CD4+ and CD8+ T cells in the TME. In addition, CD163+ tumor associated-macrophages were positively associated with S100A7 and cPLA2 expression in malignant breast cancer patients. CONCLUSIONS Our study provides new mechanistic insights on the cross-talk between S100A7/cPLA2 in enhancing breast tumor growth and metastasis by generating an immunosuppressive TME that inhibits the infiltration of cytotoxic T cells. Furthermore, our studies indicate that S100A7/cPLA2 could be used as novel prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing aggressive breast cancer.
Collapse
Affiliation(s)
- Sanjay Mishra
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Manish Charan
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Rajni Kant Shukla
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Microbial, Infection & Immunity, The Ohio State University, Columbus, OH 43210 USA
| | - Pranay Agarwal
- grid.168010.e0000000419368956Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Swati Misri
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Ajeet K. Verma
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Dinesh K. Ahirwar
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Jalal Siddiqui
- grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210 USA
| | - Kirti Kaul
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Neety Sahu
- grid.168010.e0000000419368956Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Kunj Vyas
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Ayush Arpit Garg
- grid.261331.40000 0001 2285 7943Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Anum Khan
- grid.168010.e0000000419368956School of Medicine, Cell Science Imaging Facility, Stanford University, Stanford, CA 94305 USA
| | - Wayne O. Miles
- grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210 USA
| | - Jonathan W. Song
- grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Nidhi Bhutani
- grid.168010.e0000000419368956Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Ramesh K. Ganju
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
15
|
Mahammad N, Ashcroft FJ, Feuerherm AJ, Elsaadi S, Vandsemb EN, Børset M, Johansen B. Inhibition of Cytosolic Phospholipase A2α Induces Apoptosis in Multiple Myeloma Cells. Molecules 2021; 26:molecules26247447. [PMID: 34946532 PMCID: PMC8705991 DOI: 10.3390/molecules26247447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Cytosolic phospholipase A2α (cPLA2α) is the rate-limiting enzyme in releasing arachidonic acid and biosynthesis of its derivative eicosanoids. Thus, the catalytic activity of cPLA2α plays an important role in cellular metabolism in healthy as well as cancer cells. There is mounting evidence suggesting that cPLA2α is an interesting target for cancer treatment; however, it is unclear which cancers are most relevant for further investigation. Here we report the relative expression of cPLA2α in a variety of cancers and cancer cell lines using publicly available datasets. The profiling of a panel of cancer cell lines representing different tissue origins suggests that hematological malignancies are particularly sensitive to the growth inhibitory effect of cPLA2α inhibition. Several hematological cancers and cancer cell lines overexpressed cPLA2α, including multiple myeloma. Multiple myeloma is an incurable hematological cancer of plasma cells in the bone marrow with an emerging requirement of therapeutic approaches. We show here that two cPLA2α inhibitors AVX420 and AVX002, significantly and dose-dependently reduced the viability of multiple myeloma cells and induced apoptosis in vitro. Our findings implicate cPLA2α activity in the survival of multiple myeloma cells and support further studies into cPLA2α as a potential target for treating hematological cancers, including multiple myeloma.
Collapse
Affiliation(s)
- Nur Mahammad
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
- Correspondence: (N.M.); (B.J.)
| | - Felicity J. Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
| | - Astrid J. Feuerherm
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
| | - Samah Elsaadi
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
| | - Esten N. Vandsemb
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
| | - Magne Børset
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, 7491 Trondheim, Norway
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
- Correspondence: (N.M.); (B.J.)
| |
Collapse
|
16
|
Narayanankutty A. Phytochemicals as PI3K/ Akt/ mTOR Inhibitors and Their Role in Breast Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 15:188-199. [PMID: 32914720 DOI: 10.2174/1574892815666200910164641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the predominant form of cancer in women; various cellular pathways are involved in the initiation and progression of breast cancer. Among the various types of breast cancer that differ in their growth factor receptor status, PI3K/Akt signaling is a common pathway where all these converge. Thus, the PI3K signaling is of great interest as a target for breast cancer prevention; however, it is less explored. OBJECTIVE The present review is aimed to provide a concise outline of the role of PI3K/Akt/mTOR pathway in breast carcinogenesis and its progression events, including metastasis, drug resistance and stemness. The review emphasizes the role of natural and synthetic inhibitors of PI3K/Akt/m- TOR pathway in breast cancer prevention. METHODS The data were obtained from PubMed/Medline databases, Scopus and Google patent literature. RESULTS PI3K/Akt/mTOR signaling plays an important role in human breast carcinogenesis; it acts on the initiation and progression events associated with it. Numerous molecules have been isolated and identified as promising drug candidates by targeting the signaling pathway. Results from clinical studies confirm their application in the treatment of human breast cancer alone and in combination with classical chemotherapeutics as well as monoclonal antibodies. CONCLUSION PI3K/mTOR signaling blockers have evolved as promising anticancer agents by interfering breast cancer development and progression at various stages. Natural products and bioactive components are emerging as novel inhibitors of PI3K signaling and more research in this area may yield numerous drug candidates.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| |
Collapse
|
17
|
Qu J, Li J, Zhang Y, He R, Liu X, Gong K, Duan L, Luo W, Hu Z, Wang G, Xia C, Luo D. AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway. Cell Biosci 2021; 11:163. [PMID: 34419144 PMCID: PMC8379827 DOI: 10.1186/s13578-021-00677-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/09/2021] [Indexed: 01/14/2023] Open
Abstract
Background Aberrant expression of Aldo-Keto reductase family 1 member B10 (AKR1B10) was associated with tumor size and metastasis of breast cancer in our published preliminary studies. However, little is known about the detailed function and underlying molecular mechanism of AKR1B10 in the pathological process of breast cancer. Methods The relationship between elevated AKR1B10 expression and the overall survival and disease-free survival of breast cancer patients was analyzed by Kaplan–Meier Plotter database. Breast cancer cell lines overexpressing AKR1B10 (MCF-7/AKR1B10) and breast cancer cell lines with knockdown of AKR1B10 (BT-20/shAKR1B10) were constructed to analyze the impact of AKR1B10 expression on cell proliferation and migration of breast cancer. The expression levels of AKR1B10 were detected and compared in the breast cancer cell lines and tissues by RT-qPCR, western blot and immunohistochemistry. The proliferation of breast cancer cells was monitored by CCK8 cell proliferation assay, and the migration and invasion of breast cancer cells was observed by cell scratch test and transwell assay. The proliferation- and EMT-related proteins including cyclinD1, c-myc, Survivin, Twist, SNAI1, SLUG, ZEB1, E-cadherin, PI3K, p-PI3K, AKT, p-AKT, IKBα, p-IKBα, NF-κB p65, p-NF-κB p65 were detected by western blot in breast cancer cells. MCF-7/AKR1B10 cells were treated with LY294002, a PI3K inhibitor, to consider the impact of AKR1B10 overexpression on the PI3K/AKT/NF-κB signal cascade and the presence of NF-κB p65 in nuclear. In vivo tumor xenograft experiments were used to observe the role of AKR1B10 in breast cancer growth in mice. Results AKR1B10 expression was significantly greater in breast cancer tissue compared to paired non-cancerous tissue. The expression of AKR1B10 positively correlated with lymph node metastasis, tumor size, Ki67 expression, and p53 expression, but inversely correlated with overall and disease-free survival rates. Gene Ontology analysis showed that AKR1B10 activity contributes to cell proliferation. Overexpression of AKR1B10 facilitated the proliferation of MCF-7 cells, and induced the migration and invasion of MCF-7 cells in vitro in association with induction of epithelial-mesenchymal transition (EMT). Conversely, knockdown of AKR1B10 inhibited these effects in BT-20 cells. Mechanistically, AKR1B10 activated PI3K, AKT, and NF-κB p65, and induced nuclear translocation of NF-κB p65, and expression of proliferation-related proteins including c-myc, cyclinD1, Survivin, and EMT-related proteins including ZEB1, SLUG, Twist, but downregulated E-cadherin expression in MCF-7 cells. AKR1B10 silencing reduced the phosphorylation of PI3K, AKT, and NF-κB p65, the nuclear translocation of NF-κB p65, and the expression of proliferation- and migration-related proteins in BT-20 cells. LY294002, a PI3K inhibitor, attenuated the phosphorylation of PI3K, AKT, and NF-κB p65, and the nuclear translocation of NF-κB p65. In vivo tumor xenograft experiments confirmed that AKR1B10 promoted breast cancer growth in mice. Conclusions AKR1B10 promotes the proliferation, migration and invasion of breast cancer cells via the PI3K/AKT/NF-κB signaling pathway and represents a novel prognostic indicator as well as a potential therapeutic target in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00677-3.
Collapse
Affiliation(s)
- Jiayao Qu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Nanshan Avenue, Shenzhou, 518000, Guangdong, People's Republic of China.,Center for Laboratory and Pathology, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Southern Medical University, Changsha, 423000, Hunan, People's Republic of China
| | - Jia Li
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Hengyang, 423000, Hunan, People's Republic of China
| | - Yaming Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Hengyang, 423000, Hunan, People's Republic of China
| | - Rongzhang He
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Hengyang, 423000, Hunan, People's Republic of China
| | - Xiangting Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Hengyang, 423000, Hunan, People's Republic of China
| | - Ke Gong
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Hengyang, 423000, Hunan, People's Republic of China
| | - Lili Duan
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Hengyang, 423000, Hunan, People's Republic of China
| | - Weihao Luo
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Hengyang, 423000, Hunan, People's Republic of China
| | - Zheng Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Hengyang, 423000, Hunan, People's Republic of China
| | - Gengsheng Wang
- Center for Laboratory and Pathology, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Southern Medical University, Changsha, 423000, Hunan, People's Republic of China.,Department of Emergency, The Second Affiliation Hospital, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Chenglai Xia
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, Guangdong, People's Republic of China. .,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 520150, Guangdong, People's Republic of China.
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Nanshan Avenue, Shenzhou, 518000, Guangdong, People's Republic of China. .,Center for Laboratory and Pathology, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Southern Medical University, Changsha, 423000, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Rustamadji P, Wiyarta E, Bethania KA, Kusmardi K. Potential of AKT2 expression as a predictor of lymph-node metastasis in invasive breast carcinoma of no special type. J Pathol Transl Med 2021; 55:271-278. [PMID: 34111909 PMCID: PMC8353139 DOI: 10.4132/jptm.2021.04.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/11/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Invasive breast carcinoma of no special type (IBC-NST) is the most common type of breast cancer and mainly causes regional lymph-node metastasis (LNM). We investigated the potential for AKT2 expression as a predictive biomarker for LNM in IBC-NST. METHODS Forty-eight paraffin blocks containing IBC-NST primary tumors were divided into two groups based on presence or absence of LNM. Age, tumor grade, tumor size, lymphovascular invasion (LVI), and AKT expression were assessed. AKT2 expression was assessed based on immunohistochemical staining, while other data were collected from archives. RESULTS Multiple logistic regression results showed that AKT2 expression and LVI were significantly associated with LNM (odds ratio [OR], 5.32; 95% confidence interval [CI], 1.42 to 19.93 and OR, 4.46; 95% CI, 1.17 to 16.97, respectively). AKT2 expression was able to discriminate against LNM (area under the receiver operating characteristic, 0.799 ± 0.063; 95% CI, 0.676 to 0.921) at an H-score cutoff of 104.62 (83.3% sensitivity, 62.5% specificity). CONCLUSIONS AKT2 expression has potential as a predictor of LNM in IBC-NST. The H-score cutoff for AKT2 expression can be used as a classification guide in future studies.
Collapse
Affiliation(s)
- Primariadewi Rustamadji
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Elvan Wiyarta
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kristina Anna Bethania
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kusmardi Kusmardi
- Department of Anatomic Pathology, Drug Development Research Cluster, Human Cancer Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
19
|
Razdan A, Main NM, Chiu V, Shackel NA, de Souza P, Bryant K, Scott KF. Targeting the eicosanoid pathway in hepatocellular carcinoma. Am J Cancer Res 2021; 11:2456-2476. [PMID: 34249410 PMCID: PMC8263695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023] Open
Abstract
Liver cancer has variable incidence worldwide and high mortality. Histologically, the most common subtype of liver cancer is hepatocellular carcinoma (HCC). Approximately 30-40% of HCC patients are diagnosed at an advanced stage, and at present, there are limited treatment options for such patients. The current first-line therapy with tyrosine kinase inhibitors, sorafenib or lenvatinib, prolongs survival by a median of about 2.5-3 months after which the disease normally progresses. Additionally, many patients discontinue the use of tyrosine kinase inhibitors due to toxicity or may not be suitable candidates due to co-morbidity or frailty. It is, therefore, imperative to identify novel therapeutic targets for advanced HCC patients. Persistent injury to the liver as a result of insults such as hepatitis B or C viral (HBV or HCV) infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), results in chronic inflammation, which progresses to hepatic fibrosis and later, cirrhosis, provides the conditions for initiation of HCC. One of the key pathways studied for its role in inflammation and carcinogenesis is the eicosanoid pathway. In this review, we briefly outline the eicosanoid pathway, describe the mechanisms by which some pathway members either facilitate or counter the development of liver diseases, with the focus on NAFLD/hepatic fibrosis/cirrhosis, and HCC. We describe the link between the eicosanoid pathway, inflammation and these liver diseases, and identify components of the eicosanoid pathway that may be used as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Anshuli Razdan
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nathan M Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Vincent Chiu
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nicholas A Shackel
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
- School of Medicine, University of WollongongWollongong, NSW, Australia
| | - Katherine Bryant
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Kieran F Scott
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| |
Collapse
|
20
|
Pan Y, Zhou J, Zhang W, Yan L, Lu M, Dai Y, Zhou H, Zhang S, Yang J. The Sonic Hedgehog signaling pathway regulates autophagy and migration in ovarian cancer. Cancer Med 2021; 10:4510-4521. [PMID: 34076346 PMCID: PMC8267163 DOI: 10.1002/cam4.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background The Sonic Hedgehog (SHH) signaling pathway plays an important role in various types of human cancers including ovarian cancer; however, its function and underlying mechanism in ovarian cancer are still not entirely understood. Methods We detected the expressions of SHH and SQSTM1 in borderline ovarian tumor tissues, epithelial ovarian cancer (EOC) tissues and benign ovarian tumor tissues. Cyclopamine (Cyp, a well‐known inhibitor of SHH signaling pathway) and chloroquine (CQ, the pharmaceutical inhibitor of autophagy) were used in vivo and in vitro (autophagic flux, CCK‐8 assay, wound healing assay, transwell assay, tumor xenograft model). The mechanism of action was explored through Quantitative RT‐PCR and Western Blot. Results We found up‐regulation of SHH and accumulation of SQSTM1/P62 in epithelial ovarian cancer. Cyp induced autophagy through the PI3K/AKT signaling pathway. Moreover, low‐dose Cyp and chloroquine (CQ) significantly promoted the migratory ability of SKOV3 cells. Conclusions Our findings suggest that inhibition of the SHH pathway and autophagy may be a potential and effective therapy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiena Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Yaojiang Township Central Hospital, Zhuji City, Zhejiang Province, China
| | - Weidan Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou City, Zhejiang Province, China
| | - Lili Yan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Beilun district hospital of traditional Chinese medicine, Ningbo city, Zhejiang Province, China
| | - Meifei Lu
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Phospholipase Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983572 DOI: 10.1007/978-981-32-9620-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Breast cancer progression results from subversion of multiple intra- or intercellular signaling pathways in normal mammary tissues and their microenvironment, which have an impact on cell differentiation, proliferation, migration, and angiogenesis. Phospholipases (PLC, PLD and PLA) are essential mediators of intra- and intercellular signaling. They hydrolyze phospholipids, which are major components of cell membrane that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid. Enzymatic processing of phospholipids by phospholipases converts these molecules into lipid mediators that regulate multiple cellular processes, which in turn can promote breast cancer progression. Thus, dysregulation of phospholipases contributes to a number of human diseases, including cancer. This review describes how phospholipases regulate multiple cancer-associated cellular processes, and the interplay among different phospholipases in breast cancer. A thorough understanding of the breast cancer-associated signaling networks of phospholipases is necessary to determine whether these enzymes are potential targets for innovative therapeutic strategies.
Collapse
|
22
|
A cytokine in turmoil: Transforming growth factor beta in cancer. Biomed Pharmacother 2021; 139:111657. [PMID: 34243626 DOI: 10.1016/j.biopha.2021.111657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the debilitating health threats to mankind in view of its incurable nature. Many factors are complicit in the initiation, progression and establishment of cancers. Early detection of cancer is the only window of hope that allows for appreciable management and possible limited survival. However, understanding of cancer biology and knowledge of the key factors that interplay at multi-level in the initiation and progression of cancer may hold possible avenues for cancer treatment and management. In particular, dysregulation of growth factor signaling such as that of transforming growth factor beta (TGF-β) and its downstream mediators play key roles in various cancer subtypes. Expanded understanding of the context/cell type-dependent roles of TGF-β and its downstream signaling mediators in cancer may provide leads for cancer pharmacotherapy. Reliable information contained in original articles, reviews, mini-reviews and expert opinions on TGF-β, cancer and the specific roles of TGF-β signaling in various cancer subtypes were retrieved from major scientific data bases including PubMed, Scopus, Medline, Web of Science core collections just to mention but a sample by using the following search terms: TGF-β in cancer, TGF-β and colorectal cancer, TGF-β and brain cancer, TGF-β in cancer initiation, TGF-β and cell proliferation, TGF-β and cell invasion, and TGF-β-based cancer therapy. Retrieved information and reports were carefully examined, contextualized and synchronized into a coherent scientific content to highlight the multiple roles of TGF-β signaling in normal and cancerous cells. From a conceptual standpoint, development of pharmacologically active agents that exert non-specific inhibitory effects on TGF-β signaling on various cell types will undoubtedly lead to a plethora of serious side effects in view of the multi-functionality and pleiotropic nature of TGF-β. Such non-specific targeting of TGF-β could derail any beneficial therapeutic intention associated with TGF-β-based therapy. However, development of pharmacologically active agents designed specifically to target TGF-β signaling in cancer cells may improve cancer pharmacotherapy. Similarly, specific targeting of downstream mediators of TGF-β such as TGF-β type 1 and II receptors (TβRI and TβRII), receptor-mediated Smads, mitogen activated protein kinase (MAPK) and importing proteins in cancer cells may be crucial for cancer pharmacotherapy.
Collapse
|
23
|
Shang C, Qiao J, Guo H. The dynamic behavior of lipid droplets in the pre-metastatic niche. Cell Death Dis 2020; 11:990. [PMID: 33203856 PMCID: PMC7672095 DOI: 10.1038/s41419-020-03207-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
The pre-metastatic niche is a favorable microenvironment for the colonization of metastatic tumor cells in specific distant organs. Lipid droplets (LDs, also known as lipid bodies or adiposomes) have increasingly been recognized as lipid-rich, functionally dynamic organelles within tumor cells, immune cells, and other stromal cells that are linked to diverse biological functions and human diseases. Moreover, in recent years, several studies have described the indispensable role of LDs in the development of pre-metastatic niches. This review discusses current evidence related to the biogenesis, composition, and functions of LDs related to the following characteristics of the pre-metastatic niche: immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, reprogramming. We also address the function of LDs in mediating pre-metastatic niche formation. The potential of LDs as markers and targets for novel antimetastatic therapies will be discussed.
Collapse
Affiliation(s)
- Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, 100191, Beijing, China. .,National Clinical Research Center for Obstetrics and Gynecology, 100191, Beijing, China. .,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, 100191, Beijing, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, 100191, Beijing, China. .,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, 100191, Beijing, China.
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100191, Beijing, China.
| |
Collapse
|
24
|
Zhou H, Blevins MA, Hsu JY, Kong D, Galbraith MD, Goodspeed A, Culp-Hill R, Oliphant MUJ, Ramirez D, Zhang L, Trinidad-Pineiro J, Mathews Griner L, King R, Barnaeva E, Hu X, Southall NT, Ferrer M, Gustafson DL, Regan DP, D'Alessandro A, Costello JC, Patnaik S, Marugan J, Zhao R, Ford HL. Identification of a Small-Molecule Inhibitor That Disrupts the SIX1/EYA2 Complex, EMT, and Metastasis. Cancer Res 2020; 80:2689-2702. [PMID: 32341035 PMCID: PMC7510951 DOI: 10.1158/0008-5472.can-20-0435] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Metastasis is the major cause of mortality for patients with cancer, and dysregulation of developmental signaling pathways can significantly contribute to the metastatic process. The Sine oculis homeobox homolog 1 (SIX1)/eyes absent (EYA) transcriptional complex plays a critical role in the development of multiple organs and is typically downregulated after development is complete. In breast cancer, aberrant expression of SIX1 has been demonstrated to stimulate metastasis through activation of TGFβ signaling and subsequent induction of epithelial-mesenchymal transition (EMT). In addition, SIX1 can induce metastasis via non-cell autonomous means, including activation of GLI-signaling in neighboring tumor cells and activation of VEGFC-induced lymphangiogenesis. Thus, targeting SIX1 would be expected to inhibit metastasis while conferring limited side effects. However, transcription factors are notoriously difficult to target, and thus novel approaches to inhibit their action must be taken. Here we identified a novel small molecule compound, NCGC00378430 (abbreviated as 8430), that reduces the SIX1/EYA2 interaction. 8430 partially reversed transcriptional and metabolic profiles mediated by SIX1 overexpression and reversed SIX1-induced TGFβ signaling and EMT. 8430 was well tolerated when delivered to mice and significantly suppressed breast cancer-associated metastasis in vivo without significantly altering primary tumor growth. Thus, we have demonstrated for the first time that pharmacologic inhibition of the SIX1/EYA2 complex and associated phenotypes is sufficient to suppress breast cancer metastasis. SIGNIFICANCE: These findings identify and characterize a novel inhibitor of the SIX1/EYA2 complex that reverses EMT phenotypes suppressing breast cancer metastasis.
Collapse
Affiliation(s)
- Hengbo Zhou
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael U J Oliphant
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dominique Ramirez
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennyvette Trinidad-Pineiro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lesley Mathews Griner
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Rebecca King
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Elena Barnaeva
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Xin Hu
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Noel T Southall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Marc Ferrer
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Daniel L Gustafson
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Daniel P Regan
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Samarjit Patnaik
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Juan Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
25
|
Li QH, Liu ZZ, Ge YΝ, Liu X, Xie XD, Zheng ZD, Ma YH, Liu B. Small breast epithelial mucin promotes the invasion and metastasis of breast cancer cells via promoting epithelial‑to‑mesenchymal transition. Oncol Rep 2020; 44:509-518. [PMID: 32627029 PMCID: PMC7336452 DOI: 10.3892/or.2020.7640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to observe the influence of the small breast epithelial mucin (MUCL1) (also known as SBEM) gene on migration and invasion ability of breast cancer cells and to explore the potentially involved mechanism. SBEM‑interference plasmid and SBEM‑overexpressing plasmid were constructed. SBEM‑knockdown or SBEM‑overexpressing MCF‑7 and MDA‑MB‑231 breast cancer cells were established by lentivirus‑mediated stable transfection method. The scratch wound‑healing assay and Transwell chamber experiment were used to detect the influence of the SBEM gene on the migration and invasion abilities of MCF‑7 and MDA‑MB‑231 cells. Real‑time PCR (polymerase chain reaction) and western blotting were used to detect the expression of epithelial‑to‑mesenchymal transition (EMT)‑related markers and regulators. The cell morphology was observed after transfection. The SBEM‑knockdown or SBEM‑overexpressing MCF‑7 and MDA‑MB‑231 cells were established successfully. The migration and invasion abilities were decreased after SBEM was downregulated, and were increased after SBEM was overexpressed both in MCF‑7 and MDA‑MB‑231 cell lines. The mRNA and protein expressions of N‑cadherin, Twist and vimentin were elevated following SBEM overexpression, while the expression of E‑cadherin and claudin‑1 were found to be decreased following SBEM overexpression. In conclusion, SBEM has the potential to promote migration and invasion ability of breast cancer cells via promoting epithelial‑to‑mesenchymal transition.
Collapse
Affiliation(s)
- Qiu-Hua Li
- Oncology Department, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110034, P.R. China
| | - Zhao-Zhe Liu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Ya-Νan Ge
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Xing Liu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Xiao-Dong Xie
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Zhen-Dong Zheng
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yue-Hai Ma
- Oncology Department, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110034, P.R. China
| | - Bin Liu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
26
|
The novel miR-1269b-regulated protein SVEP1 induces hepatocellular carcinoma proliferation and metastasis likely through the PI3K/Akt pathway. Cell Death Dis 2020; 11:320. [PMID: 32371982 PMCID: PMC7200779 DOI: 10.1038/s41419-020-2535-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/05/2022]
Abstract
Decreased intercellular adhesion is a key step in the metastasis and recurrence of many cancers, including hepatocellular carcinoma (HCC). SVEP1 is an important cell adhesion molecule that plays a key role in regulating intercellular adhesion and embryonic lymphatic development. However, the expression patterns and roles of SVEP1 in HCC are still largely unknown. We identified SVEP1 expression by analyzing 220 HCC samples from our cancer center. TCGA and GEO online-databases were used for data calibration and validation. SVEP1 was differentially expressed in two groups of HCCs with different risks of recurrence and was deemed as an independent risk factor for the prognosis of HCC. The expression of SVEP1 is negatively related to the proliferation and metastasis of HCC. Downregulation of SVEP1 expression promoted in vitro HCC cell migration, chemotaxis, invasion and proliferation, as well as in vivo tumor growth, local invasion and metastasis in a mouse model. Bioinformatic analysis and RT-PCR results showed that miR-1269b expression is negatively correlated with the SVEP1 expression and the prognosis of HCC patients. Further experiments showed that miR-1269b directly targets and downregulates the expression of SVEP1, which further induces the phosphorylation of Akt at thr308. These regulatory effects ultimately mediate the proliferation and metastasis of HCC cells. SVEP1 could serve as a promising prognostic marker of HCC. MiR-1269b downregulates SVEP1 expression and promotes HCC proliferation and metastasis likely through the PI3k/Akt signaling pathway.
Collapse
|
27
|
He Y, Xiao M, Fu H, Chen L, Qi L, Liu D, Guo P, Chen L, Luo Y, Xiao H, Zhang N, Guo H. cPLA2α reversibly regulates different subsets of cancer stem cells transformation in cervical cancer. Stem Cells 2020; 38:487-503. [PMID: 32100928 DOI: 10.1002/stem.3157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Cervical cancer stem cells (CCSCs) are considered major causes of chemoresistance/radioresistance and metastasis. Although several cell surface antigens have been identified in CCSCs, these markers vary among tumors because of CSC heterogeneity. However, whether these markers specifically distinguish CCSCs with different functions is unclear. Here, we demonstrated that CCSCs exist in two biologically distinct phenotypes characterized by different levels of cytosolic phospholipase A2α (cPLA2α) expression. Overexpression of cPLA2α results in a CD44+ CD24- phenotype associated with mesenchymal traits, including increased invasive and migration abilities, whereas CCSCs with cPLA2α downregulation express CD133 and show quiescent epithelial characteristics. In addition, cPLA2α regulates the reversible transition between mesenchymal and epithelial CCSC states through PKCζ, an atypical protein kinase C, which governs cancer cell state changes and the maintenance of various embryonic stem cell characteristics, further inhibiting β-catenin-E-cadherin interaction in membrane and promoting β-catenin translocation into the nucleus to affect the transcriptional regulation of stemness signals. We propose that reversible transitions between mesenchymal and epithelial CCSC states regulated by cPLA2α are necessary for cervical cancer metastasis and recurrence. Thus, cPLA2α might be an attractive therapeutic target for eradicating different states of CCSCs to eliminate tumors more effectively.
Collapse
Affiliation(s)
- Yuchao He
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Manyu Xiao
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Hui Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lu Chen
- Department of Hepatobiliary Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Lisha Qi
- The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Dongming Liu
- The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Piao Guo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Liwei Chen
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yi Luo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Huiting Xiao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Ning Zhang
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,The Center for Translational Cancer Research, Peking University First Hospital, Beijing, People's Republic of China
| | - Hua Guo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| |
Collapse
|
28
|
Bai H, Zhou M, Zeng M, Han L. PLA2G4A Is a Potential Biomarker Predicting Shorter Overall Survival in Patients with Non-M3/ NPM1 Wildtype Acute Myeloid Leukemia. DNA Cell Biol 2020; 39:700-708. [PMID: 32077754 DOI: 10.1089/dna.2019.5187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we aimed at exploring and validating the prognostic value of PLA2G4A expression in patients with non-M3/nucleophosmin (NPM1) wildtype (WT) acute myeloid leukemia (AML) by using two independent datasets. Data from the Cancer Genome Atlas-acute myeloid leukemia (TCGA-LAML) and the therapeutically applicable research to generate effective treatments (TARGET)-AML were used to assess the prognostic value of PLA2G4A in NPM1-WT AML cases. Results showed that non-M3 AML cases had significantly increased PLA2G4A expression compared with normal peripheral blood samples. Patients with high PLA2G4A expression (separated by median gene expression) had a significantly shorter overall survival (OS) compared with the group with low PLA2G4A expression, in both TCGA-LAML and TARGET-AML. Multivariate analysis showed that high PLA2G4A expression was independently associated with shorter OS in 97 non-M3/NPM1-WT AML cases in TCGA-LAML (hazard ratio [HR]: 1.946, 95% confidence interval [CI]: 1.094-3.462, q = 0.036). The prognostic value was validated based on 120 primary non-M3/NPM1-WT AML cases in TARGET-AML (HR: 1.518, 95% CI: 1.037-2.223, q = 0.048). Therefore, PLA2G4A expression might serve as an independent prognostic marker in OS in patients with non-M3/NPM1 WT AML. Bioinformatic analysis identified that several proteins physically interacted with PLA2G4A, some of which have well-characterized oncogenic properties in AML, such as RUVBL2, cytoskeleton regulatory protein 1 (CAP1), signal transducer and activator of transcription 3 (STAT3), and MYCBP. Therefore, we hypothesized that PLA2G4A upregulation has multiple effects on the malignant phenotype of AML cells together with its partners. Future molecular studies are required to explore the detailed regulatory network involved.
Collapse
Affiliation(s)
- Hansong Bai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxiu Zhou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zeng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liying Han
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
29
|
Cucchi D, Camacho-Muñoz D, Certo M, Pucino V, Nicolaou A, Mauro C. Fatty acids - from energy substrates to key regulators of cell survival, proliferation and effector function. Cell Stress 2019; 4:9-23. [PMID: 31922096 PMCID: PMC6946016 DOI: 10.15698/cst2020.01.209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Recent advances in immunology and cancer research show that fatty acids, their metabolism and their sensing have a crucial role in the biology of many different cell types. Indeed, they are able to affect cellular behaviour with great implications for pathophysiology. Both the catabolic and anabolic pathways of fatty acids present us with a number of enzymes, receptors and agonists/antagonists that are potential therapeutic targets, some of which have already been successfully pursued. Fatty acids can affect the differentiation of immune cells, particularly T cells, as well as their activation and function, with important consequences for the balance between anti- and pro-inflammatory signals in immune diseases, such as rheumatoid arthritis, psoriasis, diabetes, obesity and cardiovascular conditions. In the context of cancer biology, fatty acids mainly provide substrates for energy production, which is of crucial importance to meet the energy demands of these highly proliferating cells. Fatty acids can also be involved in a broader transcriptional programme as they trigger signals necessary for tumorigenesis and can confer to cancer cells the ability to migrate and generate distant metastasis. For these reasons, the study of fatty acids represents a new research direction that can generate detailed insight and provide novel tools for the understanding of immune and cancer cell biology, and, more importantly, support the development of novel, efficient and fine-tuned clinical interventions. Here, we review the recent literature focusing on the involvement of fatty acids in the biology of immune cells, with emphasis on T cells, and cancer cells, from sensing and binding, to metabolism and downstream effects in cell signalling.
Collapse
Affiliation(s)
- Danilo Cucchi
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health sciences, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health sciences, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| |
Collapse
|
30
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Tunset HM, Feuerherm AJ, Selvik LKM, Johansen B, Moestue SA. Cytosolic Phospholipase A2 Alpha Regulates TLR Signaling and Migration in Metastatic 4T1 Cells. Int J Mol Sci 2019; 20:ijms20194800. [PMID: 31569627 PMCID: PMC6801560 DOI: 10.3390/ijms20194800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/02/2022] Open
Abstract
Metastatic disease is the leading cause of death in breast cancer patients. Disrupting the cancer cell’s ability to migrate may be a strategy for hindering metastasis. Cytosolic phospholipase A2 α (cPLA2α), along with downstream proinflammatory and promigratory metabolites, has been implicated in several aspects of tumorigenesis, as well as metastasis, in various types of cancer. In this study, we aim to characterize the response to reduced cPLA2α activity in metastatic versus non-metastatic cells. We employ an isogenic murine cell line pair displaying metastatic (4T1) and non-metastatic (67NR) phenotype to investigate the role of cPLA2α on migration. Furthermore, we elucidate the effect of reduced cPLA2α activity on global gene expression in the metastatic cell line. Enzyme inhibition is achieved by using a competitive pharmacological inhibitor, cPLA2α inhibitor X (CIX). Our data show that 4T1 expresses significantly higher cPLA2α levels as compared to 67NR, and the two cell lines show different sensitivity to the CIX treatment with regards to metabolism and proliferation. Inhibition of cPLA2α at nontoxic concentrations attenuates migration of highly metastatic 4T1 cells, but not non-metastatic 67NR cells. Gene expression analysis indicates that processes such as interferon type I (IFN-I) signaling and cell cycle regulation are key processes regulated by cPLA2a in metastatic 4T1 cells, supporting the findings from the biological assays. This study demonstrates that two isogenic cancer cell lines with different metastatic potential respond differently to reduced cPLA2α activity. In conclusion, we argue that cPLA2α is a potential therapeutic target in cancer and that enzyme inhibition may inhibit metastasis through an anti-migratory mechanism, possibly involving Toll-like receptor signaling and type I interferons.
Collapse
Affiliation(s)
- Hanna Maja Tunset
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
| | - Astrid Jullumstrø Feuerherm
- Center for Oral Health Services and Research (TkMidt), 7030 Trondheim, Norway.
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Linn-Karina Myrland Selvik
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
- Department of Health Sciences, Nord University, P.O. Box 1490, 8049 Bodø, Norway.
| |
Collapse
|
32
|
Fu Y, Yao N, Ding D, Zhang X, Liu H, Ma L, Shi W, Zhu C, Tang L. TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway. J Cell Physiol 2019; 235:2761-2775. [PMID: 31531884 DOI: 10.1002/jcp.29181] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer (PC) is one of the most deadly digestive cancers world-wide, with a dismal five-year survival rate of <8%. Upregulation of transmembrane protein 158 (TMEM158) is known to facilitate the progression of several carcinomas. However, little is known concerning the potential roles of TMEM158 in PC. Herein, we first found that TMEM158 was significantly upregulated in PC samples as well as PC cell lines. The overexpression of TMEM158 was significantly correlated with advanced clinicopathologic features (including tumor size, TNM stage, and blood vessel invasion) and poorer prognosis of patients with PC in clinic. Evidenced based on a series of loss- and gain-of-function assays uncovered that TMEM158 enhanced PC cell proliferation, migration, and invasion by stimulating the progression of cell cycle, epithelial-mesenchymal transition, and MMP-2/9 production. Furthermore, mechanism-related investigations disclosed that activation of TGFβ1 and PI3K/AKT signal might be responsible for TMEM158-triggered PC aggressiveness. Collectively, TMEM158 was upregulated in PC and promoted PC cell proliferation, migration, and invasion through the activation of TGFβ1 and PI3K/AKT signaling pathways, highlighting its potential as a tumor promoter and a therapeutic target for PC.
Collapse
Affiliation(s)
- Yue Fu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Na Yao
- Department of Thyroid & Breast Surgery, Wuxi City Hospital of TCM, The Affiliated Hospital of Nanjing University of TCM, Wuxi, Jiangsu, China
| | - Dong Ding
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xudong Zhang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hanyang Liu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Le Ma
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Weihai Shi
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Liming Tang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
33
|
Sun R, Liu Z, Qiu B, Chen T, Li Z, Zhang X, Xu Y, Zhang Z. Annexin10 promotes extrahepatic cholangiocarcinoma metastasis by facilitating EMT via PLA2G4A/PGE2/STAT3 pathway. EBioMedicine 2019; 47:142-155. [PMID: 31492557 PMCID: PMC6796529 DOI: 10.1016/j.ebiom.2019.08.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cholangiocarcinoma (CCA), consisting of intrahepatic (IHCCA), perihilar (PHCCA), and distal (DCCA) CCA, is a type of highly aggressive malignancy with a very dismal prognosis. Potential biomarkers and drug targets of CCA are urgently needed. As a new member of the Annexin (ANXA) family, the role of ANXA10 in the progression and prognosis of CCA is unknown. Methods Potential PHCCA biomarkers were screened by transcriptome sequencing of 5 pairs of PHCCA and adjacent tissues. The clinical significance of ANXA10 was evaluated by analyzing its correlation with clinicopathological variables, and the prognostic value of ANXA10 was evaluated with univariate and multivariate analyses. The function of ANXA10 in the epithelial-mesenchymal transition (EMT), proliferation, invasion and metastasis was detected with in vitro and in vivo experiments. Moreover, we screened the key molecule in ANXA10-induced CCA progression by mRNA sequencing and evaluated the correlation between PLA2G4A and ANXA10. The effect of PLA2G4A downstream signaling, including Cyclooxygenase 2, Prostaglandin E2(PGE2) and Signal transducer and activator of transcription 3(STAT3), on EMT and metastasis was further detected with in vitro and in vivo experiments. Findings ANXA10 expression was upregulated in PHCCA and DCCA but not in IHCCA. High ANXA10 expression was significantly associated with poor tumor differentiation and prognosis. ANXA10 promoted the proliferation, migration and invasion of the PHCCA cells. PLA2G4A expression was regulated by ANXA10 and high PLA2G4A predicted poor prognosis in PHCCA and DCCA. ANXA10 facilitated EMT and promoted metastasis by upregulating PLA2G4A expression, thus increasing PGE2 levels and activating STAT3. Interpretation ANXA10 was an independent prognostic biomarker of PHCCA and DCCA but not IHCCA. ANXA10 promoted the progression of PHCCA and facilitated metastasis by promoting the EMT process via the PLA2G4A/PGE2/STAT3 pathway. ANXA10, PLA2G4A and their downstream molecules, such as COX2 and PGE2, may be promising drug targets of PHCCA and DCCA.
Collapse
Affiliation(s)
- Rongqi Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Qiu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhipeng Li
- Department of General Surgery, Shandong Provincial Hospital, Jinan, China
| | - Xiaoming Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
34
|
Mao M, Chen Y, Jia Y, Yang J, Wei Q, Li Z, Chen L, Chen C, Wang L. PLCA8 suppresses breast cancer apoptosis by activating the PI3k/AKT/NF-κB pathway. J Cell Mol Med 2019; 23:6930-6941. [PMID: 31448883 PMCID: PMC6787500 DOI: 10.1111/jcmm.14578] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
The cysteine‐rich lysosomal protein placenta‐specific 8 (PLAC8), also called onzin, has been shown to be involved in many types of cancers, and its role is highly dependent on cellular and physiological contexts. However, the precise function of PLAC8 in breast cancer (BC) progression remains unclear. In this study, we investigated both the clinical significance and biological functions of PLAC8 in BC progression. First, high PLAC8 expression was observed in primary BC tissues compared with adjacent normal tissues through immunohistochemistry analysis. The results of in vitro and in vivo assays further confirmed that PLAC8 overexpression promotes cell proliferation and suppress BC cell apoptosis, whereas PLAC8 silencing has the opposite effect. In addition, the forced expression of PLAC8 greatly induces cell migration, partially by affecting the EMT‐related genes, including down‐regulating E‐cadherin expression and facilitating vimentin expression. Further mechanistic analysis confirmed that PLAC8 contributes to cell proliferation and suppresses cell apoptosis in BC by activating the PI3K/AKT/NF‐κB pathway. The results of our study provide new insights into an oncogenic role of PLAC8 and reveal a novel PLAC8/ PI3K/AKT/NF‐κB pathway as a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qun Wei
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Najafi M, Ahmadi A, Mortezaee K. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol Int 2019; 43:1206-1222. [PMID: 31136035 DOI: 10.1002/cbin.11187] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathway is activated in a wide spectrum of human tumors, exhibiting cardinal oncogenic roles and sustained inhibition of this pathway is considered as a primary goal in clinic. Within this pathway, receptor tyrosine kinases such as epithelial growth factor receptor, mesenchymal-epithelial transition, and AXL act as upstream regulators of RAS/RAF/MEK/extracellular-signal-regulated kinase. MAPK signaling is active in both early and advanced stages of tumorigenesis, and it promotes tumor proliferation, survival, and metastasis. MAPK regulatory effects on cellular constituent of the tumor microenvironment is for immunosuppressive purposes. Cross-talking between MAPK with oncogenic signaling pathways including WNT, cyclooxygenase-2, transforming growth factor-β, NOTCH and (in particular) with phosphatidylinositol 3-kinase is contributed to the multiplication of tumor progression and drug resistance. Developing resistance (intrinsic or acquired) to MAPK-targeted therapy also occurs due to heterogeneity of tumors along with mutations and negative feedback loop of interactions exist between various kinases causing rebound activation of this signaling. Multidrug regimen is a preferred therapeutic avenue for targeting MAPK signaling. To enhance patient tolerance and to mitigate potential adversarial effects related to the combination therapy, determination of a desired dose and drug along with pre-evaluation of cancer-type-specific kinase mutation and sensitivity, especially for patients receiving triplet therapy is an urgent need.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48175-861, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
36
|
Chen B, Hu Z, Li B, Lin X, Luo Z, Hu Z. The expressions of Hedgehog and PI3K-AKT pathway components correlate with invasion and metastasis in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2381-2388. [PMID: 31934065 PMCID: PMC6949613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the expression and clinical significance of Shh, Gli1, FAK, p-FAK and p-AKT in HCC. METHODS Immunohistochemistry was used to measure Shh, Gli1, FAK, p-FAK, and p-AKT expressions in 50 cases of HCC and paracancerous tissues. The Shh, Gli1, and FAK mRNA levels were determined by qRT-PCR in 20 HCCs. The correlations between the expressions of these target genes and the clinicopathological factors were analyzed in HCC. RESULTS The immunohistochemical results showed that the expressions of Shh, Gli1, FAK, p-FAK, and p-AKT in 50 HCC tissues were significantly higher than those of the paracancerous tissues (P < 0.05). Shh and p-FAK expressions were associated with portal vein invasion, capsular integrity, and distant metastasis (P < 0.05). Gli1, FAK, and p-AKT expressions were closely related to tumor diameter, tumor differentiation, portal vein invasion, capsular integrity, TNM stage and distant metastasis (P < 0.05). Shh was related to Gli1 and p-FAK (r = 0.67, 0.30; P = 0.00, 0.03), Gli1 was positively related to p-FAK and p-AKT (r = 0.52, 0.49; P = 0.00, 0.00), and there was a positive correlation between p-FAK and p-AKT (r = 0.36, P = 0.00). Furthermore, the Shh, Gli1, and FAK mRNA levels in the HCC tissues were significantly higher than those in the paracancerous tissues (P < 0.0001), and the high TNM stages (III and IV) or distant metastasis were significantly higher than those in the low TNM stages (I and II) (P < 0.05) or without distant metastasis (P < 0.05). CONCLUSION In HCC, the Hh and PI3K-AKT signaling pathways are both abnormally activated, and Shh, Gli1, FAK, p-FAK and p-AKT can serve as indicators to predict the prognosis of liver cancer.
Collapse
Affiliation(s)
- Bin Chen
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| | - Zeming Hu
- Postgraduate Student, Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| | - Bofei Li
- Department of General Surgery, Rucheng County People’s HospitalChenzhou 424100, Hunan Province, China
| | - Xuan Lin
- Postgraduate Student, Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| | - Zhijiang Luo
- Postgraduate Student, Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| | - Zhiqiang Hu
- Postgraduate Student, Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| |
Collapse
|
37
|
Teasley HE, Jeong MP, Kim TH. A calcium-dependent phospholipase A2 (cPLA2) expression is regulated by MIG-6 during endometrial tumorigenesis. Biochem Biophys Res Commun 2019; 511:129-134. [PMID: 30773264 DOI: 10.1016/j.bbrc.2019.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
The ovarian steroid hormones, estrogen (E2) and progesterone (P4), are essential regulators of uterine biology. The imbalance of these ovarian steroid hormones leads to uterine diseases such as endometrial cancer, endometriosis, and infertility. Mitogen-inducible gene 6 (MIG-6) is an adaptor protein. MIG-6 mediates P4 signaling and acts as a tumor suppressor during endometrial tumorigenesis in both humans and mice. In previous studies, we developed the conditional knockout of Mig-6 in all uterine compartments (Pgrcre/+Mig-6f/f; Mig-6KO) and endometrial epithelial cell-specific Mig-6 knockout (Sprr2fcre/+Mig-6f/f; Mig-6Ep-KO) mice. Both mouse models developed endometrial hyperplasia and E2-dependent endometrial cancer. P4 treatment significantly decreases aberrant epithelial proliferation and AKT signaling in Mig-6Ep-KO mice but not in Mig-6KO mice. In the present study, we identified a calcium-dependent phospholipase A2 (cPla2) as one of the genes down-regulated by Mig-6 in the uterus. We performed immunohistochemistry and Western Blot analysis to investigate the regulation of cPLA2 by MIG-6 as well as determine the expression patterns of cPLA2 in the uterus. While the expression of cPLA2 was stronger at the uterine epithelial cells of Mig-6KO and Mig-6Ep-KO mice compared to control mice, P4 suppressed the expression of cPLA2 in Mig-6Ep-KO mice but not in Mig-6KO mice. To determine the ovarian steroid hormone regulation of cPLA2, we examined the expression of cPLA2 in ovariectomized control, Mig-6KO, Mig-6Ep-KO, and PRKO mice treated with P4 or E2. After P4 treatment, cPLA2 expression was remarkably reduced in Mig-6Ep-KO mice but not in Mig-6KO mice. However, the expression of cPLA2 was not changed in PRKO mice. Our results identified cPLA2 as a novel target of MIG-6 in the murine uterus and identified its important role during endometrial tumorigenesis.
Collapse
Affiliation(s)
- Hanna E Teasley
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Munseok Paul Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
38
|
Xu H, Sun Y, Zeng L, Li Y, Hu S, He S, Chen H, Zou Q, Luo B. Inhibition of cytosolic phospholipase A2 alpha increases chemosensitivity in cervical carcinoma through suppressing β-catenin signaling. Cancer Biol Ther 2019; 20:912-921. [PMID: 30829552 DOI: 10.1080/15384047.2019.1579961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytosolic phospholipase A2alpha (cPLA2α) is a key mediator of tumorigenesis. In this study, by using a combination of pharmacological and genetic approaches in cell models and patient samples, we identify cPLA2α as a selective target to increase chemosensitivity in cervical cancer. We found that transcript and protein levels of cPLA2α but not other forms of cPLA2 (e.g., cPLA2β and cPLA2αδ) were consistently increased in all tested malignant cervical cancer cells and tissues compared to normal counterparts, suggesting that cPLA2α upregulation is a common feature in cervical cancer. We further found that promoting growth and survival rather than invasion were the predominant roles of cPLA2α on cervical cancer. In addition, chemotherapeutic agents achieved ~100% inhibition efficacy in cPLA2α-depleted cervical cancer cells, demonstrating the important role of cPLA2α in chemoresistance. Importantly, we identify that β-catenin is critically involved in the molecular mechanism of cPLA2α's action in cervical cancer. In summary, our work demonstrates the multiple essential roles of cPLA2α in cervical cancer, particularly in chemoresistance, via a β-catenin-dependent manner. Our work also suggests that targeting cPLA2α has a therapeutic value in overcoming chemoresistance in cervical cancer or other cPLA2α-regulated cancers.
Collapse
Affiliation(s)
- Hai Xu
- a Department of Obstetrics and Gynaecology, Huangjiahu Hospital of Hubei University of Chinese Medicine , Wuhan , China
| | - Yuan Sun
- b College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Lan Zeng
- c Clinical College of Chinese Medicine , Hubei University of Chinese Medicine , Wuhan , China
| | - Ying Li
- a Department of Obstetrics and Gynaecology, Huangjiahu Hospital of Hubei University of Chinese Medicine , Wuhan , China
| | - Shan Hu
- a Department of Obstetrics and Gynaecology, Huangjiahu Hospital of Hubei University of Chinese Medicine , Wuhan , China
| | - Shuping He
- a Department of Obstetrics and Gynaecology, Huangjiahu Hospital of Hubei University of Chinese Medicine , Wuhan , China
| | - Haixia Chen
- a Department of Obstetrics and Gynaecology, Huangjiahu Hospital of Hubei University of Chinese Medicine , Wuhan , China
| | - Qing Zou
- d Department of Clinical Medicine, Huangshi Puren Hospital , Huangshi , China
| | - Baoping Luo
- e Department of Oncology , Hubei Provincial Hospital of Traditional Chinese Medicine , Wuhan , China
| |
Collapse
|
39
|
Chen L, Tian X, Gong W, Sun B, Li G, Liu D, Guo P, He Y, Chen Z, Xia Y, Song T, Guo H. Periostin mediates epithelial-mesenchymal transition through the MAPK/ERK pathway in hepatoblastoma. Cancer Biol Med 2019; 16:89-100. [PMID: 31119049 PMCID: PMC6528457 DOI: 10.20892/j.issn.2095-3941.2018.0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective The aim of the present study was to analyze the prognostic factors in patients with hepatoblastoma (HB) in our single center and to evaluate periostin (POSTN) expression in HB and its association with clinicopathological variables. In addition, the underlying mechanism of how POSTN promotes HB progression was discussed. Methods POSTN expression was investigated in HB tumors by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB). The association among POSTN expression, clinicopathological features and overall survival (OS) was also evaluated. The migration and adhesion ability of HB cells were measured using chemotaxis and cell-matrix adhesion assays, respectively. Epithelial-mesenchymal transition (EMT)-associated markers and activation of the ERK pathway were detected by WB. Results HB patients had poor prognosis which displayed lymph node metastasis, vascular invasion, POSTN and vimentin expression. POSTN expression was also associated with lymph node metastasis. Furthermore, overexpressed POSTN promoted migration and the adhesive ability of HB cells in vitro. In addition, we demonstrated that POSTN activated the MAPK/ERK pathway, upregulated the expression of Snail and decreased the expression of OVOL2. Finally, POSTN promoted the expression of EMT-associated markers. Conclusions POSTN might modulate EMT via the ERK signaling pathway, thereby promoting cellular migration and invasion. Our study also suggests that POSTN may serve as a therapeutic biomarker in HB patients.
Collapse
Affiliation(s)
- Lu Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangdong Tian
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenchen Gong
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Sun
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guangtao Li
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Dongming Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Piao Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ziye Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuren Xia
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tianqiang Song
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
40
|
Guo P, He Y, Chen L, Qi L, Liu D, Chen Z, Xiao M, Chen L, Luo Y, Zhang N, Guo H. Cytosolic phospholipase A2α modulates cell-matrix adhesion via the FAK/paxillin pathway in hepatocellular carcinoma. Cancer Biol Med 2019; 16:377-390. [PMID: 31516757 PMCID: PMC6713643 DOI: 10.20892/j.issn.2095-3941.2018.0386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To explore the effect of cytosolic phospholipase A2α (cPLA2α) on hepatocellular carcinoma (HCC) cell adhesion and the underlying mechanisms. Methods Cell adhesion, detachment, and hanging-drop assays were utilized to examine the effect of cPLA2α on the cell-matrix and cell-cell adhesion. Downstream substrates and effectors of cPLA2α were screened via a phospho-antibody microarray. Associated signaling pathways were identified by the functional annotation tool DAVID. Candidate proteins were verified using Western blot and colocalization was investigated via immunofluorescence. Western blot and immunohistochemistry were used to detect protein expression in HCC tissues. Prognosis evaluation was conducted using Kaplan-Meier and Cox-proportional hazards regression analyses.
Results Our findings showed that cPLA2α knockdown decreases cell-matrix adhesion but increases cell-cell adhesion in HepG2 cells. Microarray analysis revealed that phosphorylation of multiple proteins at specific sites were regulated by cPLA2α. These phosphorylated proteins were involved in various biological processes. In addition, our results indicated that the focal adhesion pathway was highly enriched in the cPLA2α-relevant signaling pathway. Furthermore, cPLA2α was found to elevate phosphorylation levels of FAK and paxillin, two crucial components of focal adhesion. Moreover, localization of p-FAK to focal adhesions in the plasma membrane was significantly reduced with the downregulation of cPLA2α. Clinically, cPLA2α expression was positively correlated with p-FAK levels. Additionally, high expression of both cPLA2α and p-FAK predicted the worst prognoses for HCC patients. Conclusions Our study indicated that cPLA2α may promote cell-matrix adhesion via the FAK/paxillin pathway, which partly explains the malignant cPLA2α phenotype seen in HCC.
Collapse
Affiliation(s)
- Piao Guo
- Department of Tumor Cell Biology
| | | | - Lu Chen
- Department of Hepatobiliary Cancer
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | | | | | | | | | - Yi Luo
- Department of Tumor Cell Biology
| | | | - Hua Guo
- Department of Tumor Cell Biology
| |
Collapse
|
41
|
Ahmadi A, Najafi M, Farhood B, Mortezaee K. Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy. J Cell Physiol 2018; 234:12173-12187. [PMID: 30537043 DOI: 10.1002/jcp.27955] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-β is a multitasking cytokine such that its aberrant expression is related to cancer progression and metastasis. TGF-β is produced by a variety of cells within the tumor microenvironment (TME), and it is responsible for regulation of the activity of cells within this milieu. TGF-β is a main inducer of epithelial-mesenchymal transition (EMT), immune evasion, and metastasis during cancer progression. TGF-β exerts most of its functions by acting on TβRI and TβRII receptors in canonical (Smad-dependent) or noncanonical (Smad-independent) pathways. Members of mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and nuclear factor κβ are involved in the non-Smad TGF-β pathway. TGF-β acts by complex signaling, and deletion in one of the effectors in this pathway may influence the outcome in a diverse way by taking even an antitumor role. The stage and the type of tumor (contextual cues from cancer cells and/or the TME) and the concentration of TGF-β are other important factors determining the fate of cancer (progression or repression). There are a number of ways for targeting TGF-β signaling in cancer, among them the special focus is on TβRII suppression.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
42
|
Li S, Xiao X, Han L, Wang Y, Luo G. Renoprotective effect of Zhenwu decoction against renal fibrosis by regulation of oxidative damage and energy metabolism disorder. Sci Rep 2018; 8:14627. [PMID: 30279506 PMCID: PMC6168532 DOI: 10.1038/s41598-018-32115-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/02/2018] [Indexed: 12/27/2022] Open
Abstract
Zhenwu decoction (ZWD) is a promising traditional Chinese prescription against renal fibrosis, while its underlying mechanism remains unclear. Rat model of renal fibrosis were established and divided into control group, model group, ZWD treatment group and enalapril maleate treatment group. Metabolic profiles on serum samples from each group were acquired by using ultra performance liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry. Metabolomics combined with molecular biology were comparatively conducted on samples of various groups. Fifteen potential biomarkers were identified and these biomarkers are mainly phospholipids and fatty acids. The results showed renal fibrosis was associated with oxidative damage and energy metabolism disorder. The results of histopathology, biochemistry and metabolomics demonstrated that ZWD exhibited an efficient renoprotective effect by alleviating oxidative stress, increasing energy metabolism and regulating fibrotic cytokines. This study provided scientific support for the research and development of new drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Shasha Li
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ling Han
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China.
| | - Yiming Wang
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China.,Department of Chemistry, Tsinghua University, No. 30 Shuangqing Road in Haidian Distric, Beijing, 100084, China
| | - Guoan Luo
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China. .,Department of Chemistry, Tsinghua University, No. 30 Shuangqing Road in Haidian Distric, Beijing, 100084, China.
| |
Collapse
|
43
|
Kim W, Son B, Lee S, Do H, Youn B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev 2018; 37:213-225. [DOI: 10.1007/s10555-018-9742-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Khanna P, Lee JS, Sereemaspun A, Lee H, Baeg GH. GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci Rep 2018; 8:9511. [PMID: 29934528 PMCID: PMC6015000 DOI: 10.1038/s41598-018-27864-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulated JAK/STAT signaling has been implicated in breast cancer metastasis, which is associated with high relapse risks. However, mechanisms underlying JAK/STAT signaling-mediated breast tumorigenesis are poorly understood. Here, we showed that GRAMD1B expression is upregulated on IL-6 but downregulated upon treatment with the JAK2 inhibitor AG490 in the breast cancer MDA-MB-231 cells. Notably, Gramd1b knockdown caused morphological changes of the cells, characterized by the formation of membrane ruffling and protrusions, implicating its role in cell migration. Consistently, GRAMD1B inhibition significantly enhanced cell migration, with an increase in the levels of the Rho family of GTPases. We also found that Gramd1b knockdown-mediated pro-migratory phenotype is associated with JAK2/STAT3 and Akt activation, and that JAK2 or Akt inhibition efficiently suppresses the phenotype. Interestingly, AG490 dose-dependently increased p-Akt levels, and our epistasis analysis suggested that the effect of JAK/STAT inhibition on p-Akt is via the regulation of GRAMD1B expression. Taken together, our results suggest that GRAMD1B is a key signaling molecule that functions to inhibit cell migration in breast cancer by negating both JAK/STAT and Akt signaling, providing the foundation for its development as a novel biomarker in breast cancer.
Collapse
Affiliation(s)
- Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, MD10, 4 Medical Drive, 117594, Singapore
| | - Joan Shuying Lee
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, MD10, 4 Medical Drive, 117594, Singapore
| | - Amornpun Sereemaspun
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, MD10, 4 Medical Drive, 117594, Singapore.
| |
Collapse
|
45
|
HCC-derived exosomes elicit HCC progression and recurrence by epithelial-mesenchymal transition through MAPK/ERK signalling pathway. Cell Death Dis 2018; 9:513. [PMID: 29725020 PMCID: PMC5938707 DOI: 10.1038/s41419-018-0534-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
Liver cancer is the second most common cause of cancer-related death worldwide. Approximately 70-90% of primary liver cancers are hepatocellular carcinoma (HCC). Currently, HCC patient prognosis is unsatisfactory due to high metastasis and/or post-surgical recurrence rates. Therefore, new therapeutic methods for inhibiting metastasis and recurrence are urgently needed. Exosomes are small lipid-bilayer vesicles that are implicated in tumour development and metastasis. Rab27a, a small GTPase, regulates exosome secretion by mediating multivesicular endosome docking at the plasma membrane. However, whether Rab27a participates in HCC cell-derived exosome exocytosis is unclear. Epithelial-mesenchymal transition (EMT) frequently initiates metastasis. The role of HCC cell-derived exosomes in EMT remains unknown. We found that exosomes from highly metastatic MHCC97H cells could communicate with low metastatic HCC cells, increasing their migration, chemotaxis and invasion. Rab27a knockdown inhibited MHCC97H-derived exosome secretion, which consequently promoted migration, chemotaxis and invasion in parental MHCC97H cells. Mechanistic studies showed that the biological alterations in HCC cells treated with MHCC97H-derived exosomes or MHCC97H cells with reduced self-derived exosome secretion were caused by inducing EMT via MAPK/ERK signalling. Animal experiments indicated that exosome secretion blockade was associated with enhanced lung and intrahepatic metastasis of parental MHCC97H cells, while ectopic overexpression of Rab27a in MHCC97H cells could rescue this enhancement of metastasis in vivo. Injection of MHCC97H cell-derived exosomes through the tail vein promoted intrahepatic recurrence of HLE tumours in vivo. Clinically, Rab27a was positively associated with serum alpha-fetoprotein (AFP) level, vascular invasion and liver cirrhosis. Our study elucidated the role of exosomes in HCC metastasis and recurrence, suggesting that they are promising therapeutic and prognostic targets for HCC patients.
Collapse
|
46
|
Fibroblast growth factor receptor 1 and 3 expression is associated with regulatory PI3K/AKT kinase activity, as well as invasion and prognosis, in human laryngeal cancer. Cell Oncol (Dordr) 2018; 41:253-268. [DOI: 10.1007/s13402-017-0367-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
|
47
|
Huang LX, Hu CY, Jing L, Wang MC, Xu M, Wang J, Wang Y, Nan KJ, Wang SH. microRNA-219-5p inhibits epithelial-mesenchymal transition and metastasis of colorectal cancer by targeting lymphoid enhancer-binding factor 1. Cancer Sci 2017; 108:1985-1995. [PMID: 28771881 PMCID: PMC5623737 DOI: 10.1111/cas.13338] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/13/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of microRNAs (miRs) has been shown to play a critical role in the pathogenesis and progression of tumors. microRNA‐219‐5p (miR‐219‐5p) has been reported to be abnormally expressed in some types of human tumors. However, the mechanism between miR‐219‐5p and colorectal cancer (CRC) metastasis remains unclear. In the present study, miR‐219‐5p was found to be downregulated in CRC tissue compared with matched normal tissue. Through luciferase reporter assay, we demonstrated lymphoid enhancer‐binding factor 1 (LEF1) as a direct target of miR‐219‐5p. Overexpression of miR‐219‐5p could inhibit motility, migration and invasion of CRC cells, and inhibit epithelial‐mesenchymal transition (EMT). Furthermore, silencing LEF1 phenocopied this metastasis‐suppressive function. The recovery experiment showed that re‐expression of LEF1 rescued this suppressive effect on tumor metastasis and reversed the expression of EMT markers caused by miR‐219‐5p. Additionally, we demonstrated that miR‐219‐5p exerted this tumor‐suppressive function by blocking activation of the AKT and ERK pathways. Finally, a nude mice experiment showed that miR‐219‐5p reduced the lung metastasis ability of CRC cells. Taken together, our findings indicate that miR‐219‐5p inhibits metastasis and EMT of CRC by targeting LEF1 and suppressing the AKT and ERK pathways, which may provide a new antitumor strategy to delay CRC metastasis.
Collapse
Affiliation(s)
- Lan-Xuan Huang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chun-Yan Hu
- Department of Gynecology, North-western Women's and Children's Hospital, Xi'an, Shaanxi Province, China
| | - Li Jing
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Min-Cong Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jing Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ke-Jun Nan
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shu-Hong Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
48
|
Chen Y, Qi C, Xia L, Li G. Identification of novel genetic etiology and key molecular pathways for seminoma via network-based studies. Int J Oncol 2017; 51:1280-1290. [DOI: 10.3892/ijo.2017.4092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/19/2017] [Indexed: 11/05/2022] Open
|
49
|
Kast RE, Skuli N, Cos S, Karpel-Massler G, Shiozawa Y, Goshen R, Halatsch ME. The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy. BREAST CANCER-TARGETS AND THERAPY 2017; 9:495-514. [PMID: 28744157 PMCID: PMC5513700 DOI: 10.2147/bctt.s139963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer metastatic to bone has a poor prognosis despite recent advances in our understanding of the biology of both bone and breast cancer. This article presents a new approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and the added EMT occurring as a response to current treatment modalities. Chemotherapy, radiation, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses 1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling pathways - RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E - that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit both breast cancer EMT and growth. This ensemble was designed to be safe and augment capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, ABC7 warrants a cautious trial.
Collapse
Affiliation(s)
| | - Nicolas Skuli
- INSERM, Centre de Recherches en Cancérologie de Toulouse - CRCT, UMR1037 Inserm/Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), Santander, Spain
| | | | - Yusuke Shiozawa
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ran Goshen
- Eliaso Consulting Ltd., Tel Aviv-Yafo, Israel
| | | |
Collapse
|