1
|
Koopaie M, Arian-Kia S, Manifar S, Fatahzadeh M, Kolahdooz S, Davoudi M. Expression of Salivary miRNAs, Clinical, and Demographic Features in the Early Detection of Gastric Cancer: A Statistical and Machine Learning Analysis. J Gastrointest Cancer 2024; 56:15. [PMID: 39520622 DOI: 10.1007/s12029-024-01136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Gastric cancer ranks as one of the top five deadliest cancers worldwide and is often diagnosed at late stages. Analysis of saliva may provide a non-invasive approach for detection of malignancies in organs associated with the oral cavity. This research aims to analyze salivary microRNA expression together with clinical and demographic features with the aim of diagnosing gastric cancer. MATERIALS The study included 19 patients with early-stage gastric cancer and 19 healthy controls. Saliva samples were collected and processed for RNA isolation. Salivary expression of miR-223-3p and miR-21-5p were measured using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curves were generated to evaluate the accuracy of diagnostic models. Machine learning algorithms, multiple logistic regression, and principal component analysis (PCA) were used to assess the predictive power of miRNAs in conjunction with clinical-demographic features. RESULTS Significant upregulation of miR-223-3p and downregulation of miR-21-5p in saliva were observed in patients with gastric cancer. The area under ROC curve (AUC) values for salivary miR-21-5p, salivary miR-223-3p, and their multiple logistic regression were determined to be 0.723, 0.791, and 0.850, respectively. The AUC for multiple logistic regression model was 0.919. The PCA model led to the highest diagnostic odds ratio (DOR) of 134.33 (sensitivity = 0.785, specificity = 1.00, AUC = 903). Application of machine learning methods, and in particular a random forest algorithm, showed high accuracy in diagnosing patients with gastric cancer (sensitivity = 1.00, specificity = 0.857, AUC = 0.93). CONCLUSION The application of validated salivary diagnostics in clinical practice could help facilitate earlier diagnosis of gastric cancer and improve medical outcome. Expression of miR-21 and miR-223-3p in saliva together with clinical and demographic features, appears promising in screening for GC.
Collapse
Affiliation(s)
- Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395-433, Po. Code, Tehran, 14399-55991, Iran.
| | - Sasan Arian-Kia
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395-433, Po. Code, Tehran, 14399-55991, Iran
| | - Soheila Manifar
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Fatahzadeh
- Division of Oral Medicine, Department of Oral Medicine, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, 07103, USA
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Davoudi
- Department of Computer Science and Engineering and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Xiao H, Fu J, Liu R, Yan L, Zhou Z, Yuan J. Gastric cancer cell-derived exosomal miR-541-5p induces M2 macrophage polarization through DUSP3/JAK2/STAT3 pathway. BMC Cancer 2024; 24:957. [PMID: 39103776 PMCID: PMC11302208 DOI: 10.1186/s12885-024-12672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE Exosomal microRNAs have been identified as important mediators of communication between tumor cells and macrophages in the microenvironment. miR-541-5p was reported to be involved in hepatocellular carcinoma progression, but its role in gastric cancer (GC) and in GC cell-macrophage crosstalk is unknown. METHODS Cell proliferation, migration and invasion were respectively assessed by CCK-8 assay, scratch and Transwell assays. RT-qPCR was used to detect the level of miR-541-5p, macrophage markers and DUSP3. The percentage of CD11b+CD206+ cell population was analyzed by flow cytometry. Western blotting was employed to evaluate DUSP3-JAK2/STAT3 pathway proteins and exosome markers. The interaction between miR-541-5p and DUSP3 was verified by luciferase assay. RESULTS The results showed that miR-541-5p was upregulated in GC tissues and cells, and stimulated GC cell growth, migration and invasion in vitro. GC cells induce M2 macrophage polarization by secreting the exosomal miR-541-5p. Exosomal miR-541-5p maintained JAK2/STAT3 pathway activation in macrophages by targeting negative regulation of DUSP3. Inhibiting miR-541-5p significantly limited tumor growth in vivo. CONCLUSION In conclusion, miR-541-5p promotes GC cell progression. GC cells may induce macrophage M2 polarization through the exosomal miR-541-5p-mediated DUSP3/JAK2/STAT3 pathway. miR-541-5p may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Haimin Xiao
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jia Fu
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Ruiting Liu
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Likun Yan
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Zheqi Zhou
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jinyan Yuan
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Beilin District, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
3
|
Matsuoka T, Yashiro M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. Int J Mol Sci 2024; 25:5880. [PMID: 38892067 PMCID: PMC11172243 DOI: 10.3390/ijms25115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. Most patients are diagnosed at the progressive stage of the disease, and current anticancer drug advancements are still lacking. Therefore, it is crucial to find relevant biomarkers with the accurate prediction of prognoses and good predictive accuracy to select appropriate patients with GC. Recent advances in molecular profiling technologies, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have enabled the approach of GC biology at multiple levels of omics interaction networks. Systemic biological analyses, such as computational inference of "big data" and advanced bioinformatic approaches, are emerging to identify the key molecular biomarkers of GC, which would benefit targeted therapies. This review summarizes the current status of how bioinformatics analysis contributes to biomarker discovery for prognosis and prediction of therapeutic efficacy in GC based on a search of the medical literature. We highlight emerging individual multi-omics datasets, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics, for validating putative markers. Finally, we discuss the current challenges and future perspectives to integrate multi-omics analysis for improving biomarker implementation. The practical integration of bioinformatics analysis and multi-omics datasets under complementary computational analysis is having a great impact on the search for predictive and prognostic biomarkers and may lead to an important revolution in treatment.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| |
Collapse
|
4
|
Ju Y, Choi GE, Lee MW, Jeong M, Kwon H, Kim DH, Kim J, Jin H, Lee KE, Hyun KY, Jang A. Identification of miR-143-3p as a diagnostic biomarker in gastric cancer. BMC Med Genomics 2023; 16:135. [PMID: 37328880 PMCID: PMC10273760 DOI: 10.1186/s12920-023-01554-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is among the most common types of gastrointestinal cancers and has a high incidence and mortality around the world. To suppress the progression of GC, it is essential to develop diagnostic markers. MicroRNAs regulate GC development, but a clearer insight into their role is needed before they can be applied as a molecular markers and targets. METHODS In this study, we assessed the diagnostic value of differentially expressed microRNAs as potential diagnostic biomarkers for GC using data for 389 tissue samples from the Cancer Genome Atlas (TCGA) and 21 plasma samples from GC patients. RESULTS The expression of hsa-miR-143-3p (also known as hsa-miR-143) was significantly downregulated in GC according to the TCGA data and plasma samples. The 228 potential target genes of hsa-miR-143-3p were analyzed using a bioinformatics tool for miRNA target prediction. The target genes correlated with extracellular matrix organization, the cytoplasm, and identical protein binding. Furthermore, the pathway enrichment analysis of target genes showed that they were involved in pathways in cancer, the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, and proteoglycans in cancer. The hub genes in the protein-protein interaction (PPI) network, were matrix metallopeptidase 2 (MMP2), CD44 molecule (CD44), and SMAD family member 3 (SMAD3). CONCLUSIONS This study suggests that hsa-miR-143-3p may be used as a diagnostic marker for GC, contributing via the pathways involved in the development of GC.
Collapse
Affiliation(s)
- Yeongdon Ju
- Medical Science Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Moon Won Lee
- Division of Gastroenterology, Pusan National University Hospital, Busan, 49241, Republic of Korea
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, 49241, Republic of Korea
| | - Myeongguk Jeong
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Hyeokjin Kwon
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Dong Hyeok Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Hyunwoo Jin
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Kyung Eun Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, 47340, Republic of Korea.
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
5
|
Zheng W, Pu M, Li X, Du Z, Jin S, Li X, Zhou J, Zhang Y. Deep learning model accurately classifies metastatic tumors from primary tumors based on mutational signatures. Sci Rep 2023; 13:8752. [PMID: 37253775 PMCID: PMC10229594 DOI: 10.1038/s41598-023-35842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/24/2023] [Indexed: 06/01/2023] Open
Abstract
Metastatic propagation is the leading cause of death for most cancers. Prediction and elucidation of metastatic process is crucial for the treatment of cancer. Even though somatic mutations have been linked to tumorigenesis and metastasis, it is less explored whether metastatic events can be identified through genomic mutational signatures, which are concise descriptions of the mutational processes. Here, we developed MetaWise, a Deep Neural Network (DNN) model, by applying mutational signatures as input features calculated from Whole-Exome Sequencing (WES) data of TCGA and other metastatic cohorts. This model can accurately classify metastatic tumors from primary tumors and outperform traditional machine learning (ML) models and a deep learning (DL) model, DiaDeL. Signatures of non-coding mutations also have a major impact on the model's performance. SHapley Additive exPlanations (SHAP) and Local Surrogate (LIME) analyses identify several mutational signatures which are directly correlated to metastatic spread in cancers, including APOBEC-mutagenesis, UV-induced signatures, and DNA damage response deficiency signatures.
Collapse
Affiliation(s)
- Weisheng Zheng
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Mengchen Pu
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Xiaorong Li
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
- Minzu University of China, Beijing, China
| | - Zhaolan Du
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
- Beijing University of Technology, Beijing, China
| | - Sutong Jin
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
- Harbin Institute of Technology, Weihai, Shandong, China
| | - Xingshuai Li
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Jielong Zhou
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Yingsheng Zhang
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China.
| |
Collapse
|
6
|
Shen X, Zhu X, Hu P, Ji T, Qin Y, Zhu J. Knockdown circZNF131 Inhibits Cell Progression and Glycolysis in Gastric Cancer Through miR-186-5p/PFKFB2 Axis. Biochem Genet 2022; 60:1567-1584. [PMID: 35059934 DOI: 10.1007/s10528-021-10165-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Gastric cancer (GC) is a prevalent and heterogeneous malignancy in the digestive system. Increasing studies have suggested that circular RNAs are implicated in GC pathogenesis. This study aimed to explore the biological role and underlying mechanism of circRNA zinc finger protein 131 (circZNF131) in GC. The expression pattern of circZNF131, microRNA-186-5p (miR-186-5p), and 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) mRNA in GC tissues and cells was detected by quantitative real-time polymerase chain reaction. The stability of circZNF131 was verified using ribonuclease R assay. Functional experiments were performed by colony formation assay for cloning ability analysis, transwell assay and wounding healing assay for cell metastasis, and flow cytometry for cell apoptosis. Glycolysis metabolism was investigated by determining the levels of glucose uptake and lactate production. The protein detection of apoptosis- or glycolysis-associated markers, PFKFB2, and Ki-67 was implemented by western blot or immunohistochemistry. Dual-luciferase reporter assay was conducted to identify the interaction between miR-186-5p and circZNF131 or PFKFB2. The role of circZNF131 on tumor growth in nude mice was investigated via xenograft tumor assay. Expression analysis indicated that circZNF131 was upregulated in GC tissues and cells in a stable structure. Functional analyses showed that circZNF131 knockdown suppressed GC cell colony formation ability, migration, invasion and glycolysis metabolism, and induced cell apoptosis. Mechanically, miR-186-5p was a target of circZNF131, and miR-186-5p could bind to PFKFB2. Rescue experiments presented that miR-186-5p inhibition reversed the effects of circZNF131 knockdown on GC cell growth and glycolysis, and PFKFB2 overexpression abolished the impacts of miR-186-5p restoration on GC cell progression. Moreover, circZNF131 could positively modulate PFKFB2 expression via sponging miR-186-5p. In vivo, circZNF131 knockdown hindered GC tumor growth by regulating the miR-186-5p/PFKFB2 axis. circZNF131 could exert an oncogenic role in GC malignant development through the miR-186-5p/PFKFB2 axis, which might provide novel targets for GC treatment.
Collapse
Affiliation(s)
- Xingjie Shen
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China.
| | - Xiaoyan Zhu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Peixin Hu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Tingting Ji
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Ying Qin
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Jingyu Zhu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| |
Collapse
|
7
|
Ding L, Gosh A, Lee DJ, Emri G, Huss WJ, Bogner PN, Paragh G. Prognostic biomarkers of cutaneous melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:418-434. [PMID: 34981569 DOI: 10.1111/phpp.12770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Melanomas account for only approximately 4% of diagnosed skin cancers in the United States but are responsible for the majority of deaths caused by skin cancer. Both genetic factors and ultraviolet (UV) radiation exposure play a role in the development of melanoma. Although melanomas have a strong propensity to metastasize when diagnosed late, melanomas that are diagnosed and treated early pose a low mortality risk. In particular, the identification of patients with increased metastatic risk, who may benefit from early adjuvant therapies, is crucial, especially given the advent of new melanoma treatments. However, the accuracy of classic clinical and histological variables, including the Breslow thickness, presence of ulceration, and lymph node status, might not be sufficient to identify such individuals. Thus, there is a need for the development of additional prognostic melanoma biomarkers that can improve early attempts to stratify melanoma patients and reliably identify high-risk subgroups with the aim of providing effective personalized therapies. METHODS In our current work, we discuss and assess emerging primary melanoma tumor biomarkers and prognostic circulating biomarkers. RESULTS Several promising biomarkers show prognostic value (eg, exosomal MIA (ie, melanoma inhibitory activity), serum S100B, AMLo signatures, and mRNA signatures); however, the scarcity of reliable data precludes the use of these biomarkers in current clinical applications. CONCLUSION Further research is needed on several promising biomarkers for melanoma. Large-scale studies are warranted to facilitate the clinical translation of prognostic biomarker applications for melanoma in personalized medicine.
Collapse
Affiliation(s)
- Liang Ding
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Buffalo General Medical Center, State University of New York, Buffalo, New York, USA
| | - Alexandra Gosh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
8
|
miR-4735-3p inhibits cell migration and invasion of gastric cancer by downregulating NEDD9. Oncol Lett 2022; 24:253. [PMID: 35765282 PMCID: PMC9219032 DOI: 10.3892/ol.2022.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) comprises the 3rd cause of cancer-related death worldwide. Increased expression of neural precursor cell expressed, developmentally downregulated 9 (NEDD9) is commonly observed in GC, however, its underlying molecular mechanism in GC remains unknown. The potential interaction between miR-4735-3p and NEDD9 was predicted by TargetScan 7.1. Expression profiles of miR-4735-3p and NEDD9 were examined between GC tissues and normal tissues by reverse transcription-quantitative (RT-q) PCR. The relationship between miR-4735-3p and NEDD9 was validated by RT-qPCR, western blotting, dual luciferase reporter assay and RNA immunoprecipitation assay. Biological relationship between miR-4735-3p and NEDD9 was evidenced by the cell invasion and cell migration assays. NEDD9 level was negatively associated with miR-4735-3p level in GC tissues. miR-4735-3p suppressed NEDD9 levels in GC cells. NEDD9 was revealed to be a target gene of miR-4735-3p. miR-4735-3p overexpression suppressed cell migration and invasion of GC cells, which were antagonized by overexpression of NEDD9. Moreover, miR-4735-3p mimic decreased the levels of matrix metalloproteinases 2/9, increased the level of E-cadherin, which were reversed by overexpression of NEDD9. Collectively, the present study provided a potential mechanism for the tumor suppressor role of miR-4735-3p in GC by targeting NEDD9.
Collapse
|
9
|
Kang D, Kim IH. Molecular Mechanisms and Potential Rationale of Immunotherapy in Peritoneal Metastasis of Advanced Gastric Cancer. Biomedicines 2022; 10:biomedicines10061376. [PMID: 35740397 PMCID: PMC9220323 DOI: 10.3390/biomedicines10061376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Peritoneal metastasis (PM) is one of the most frequent metastasis patterns of gastric cancer (GC), and the prognosis of patients with PM is very dismal. According to Paget’s theory, disseminated free cancer cells are seeded and survive in the abdominal cavity, adhere to the peritoneum, invade the subperitoneal tissue, and proliferate through angiogenesis. In these sequential processes, several key molecules are involved. From a therapeutic point of view, immunotherapy with chemotherapy combination has become the standard of care for advanced GC. Several clinical trials of newer immunotherapy agents are ongoing. Understanding of the molecular process of PM and the potential rationale of immunotherapy for PM treatment is necessary. Beyond understanding of the molecular aspect of PM, many studies have been conducted on the modality of treatment of PM. Notably, intraperitoneal approaches, including chemotherapy or immunotherapy, have been conducted, because systemic treatment of PM has limitations. In this study, we reviewed the molecular mechanisms and immunologic aspects of PM, and intraperitoneal approaches under investigation for treating PM.
Collapse
Affiliation(s)
- Donghoon Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
10
|
Wang Q, Zhang C, Cao S, Zhao H, Jiang R, Li Y. Tumor-derived exosomes orchestrate the microRNA-128-3p/ELF4/CDX2 axis to facilitate the growth and metastasis of gastric cancer via delivery of LINC01091. Cell Biol Toxicol 2022:10.1007/s10565-022-09728-y. [PMID: 35674868 DOI: 10.1007/s10565-022-09728-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
It has been manifested that tumor-derived exosomes (Exos) can deliver long noncoding RNAs to participate in gastric cancer (GC) progression. In this research, we intended to dissect out whether tumor-derived Exos carried LINC01091 to afflict the growth and metastasis of GC. GC tissues and human GC cells were attained for RNA and protein quantification. Accordingly, LINC01091, ELF4, and CDX2 were abundant but microRNA (miR)-128-3p was underexpressed in GC tissues and cells. Exos were isolated from LINC01091-silenced GC cells (Exo-sh-LINC01091). GC cells were co-cultured with Exo-sh-LINC01091 or manipulated with miR mimic, inhibitor, or overexpressing or silencing plasmids. Exo-sh-LINC01091, LINC01091, ELF4 or CDX2 silencing, or miR-128-3p upregulation augmented GC cell proliferative, migrating, and invasive properties. In addition, luciferase, RNA pull-down, and ChIP assays offered evidence supporting the mechanism that LINC01091 bound to miR-128-3p that inversely targeted ELF4, and ELF4 transcriptionally activated CDX2 by binding to its promoter in GC cells. Moreover, Exo-sh-LINC01091 modulated the miR-128-3p/ELF4/CDX2 axis and restrained the tumorigenesis and metastasis in vivo. Conclusively, LINC01091 shuttled by tumor-derived Exos might expedite GC development by activating the ELF4/CDX2 axis via miR-128-3p downregulation.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Radiotherapy, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou, 221005, People's Republic of China
| | - Chunmei Zhang
- Department of Medical Oncology, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shengya Cao
- Clinical Laboratory, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou, 221005, People's Republic of China
| | - Hongying Zhao
- Department of Medical Oncology, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, No. 131, Huancheng Road, Xuzhou, 221005, People's Republic of China.
| | - Rongke Jiang
- Department of Hematology and Oncology, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou, 221005, People's Republic of China
| | - Yanfang Li
- Department of Medical Oncology, Xuzhou Cancer Hospital, Xuzhou Third People's Hospital, No. 131, Huancheng Road, Xuzhou, 221005, People's Republic of China
| |
Collapse
|
11
|
Hao J, Zhou Y, Yu W, Li H, He D. Silencing of LncRNA KCNQ1OT1 confers an inhibitory effect on renal fibrosis through repressing miR-124-3p activity. Bioengineered 2022; 13:10399-10411. [PMID: 35443864 PMCID: PMC9161840 DOI: 10.1080/21655979.2022.2056816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LncRNA have been increasingly shown that plays pivotal roles in the development of various diseases, including renal fibrosis. Nevertheless, the pathological function of Long non-coding RNA KCNQ1OT1 (KCNQ1OT1) in the renal fibrosis remains obscure. Unilateral ureteral obstruction (UUO) was used to induce renal fibrosis. We detected the expression levels of KCNQ1OT1 in the TGF-β1-induced HK-2 cells via RT-qPCR analysis. The functions of KCNQ1OT1 on the progression of renal fibrosis were examined by CCK-8, EdU, dual-luciferase reporter, and immunofluorescence analyses. In the present study, we found that sh-KCNQ1OT1 obviously attenuated UUO-induced renal fibrosis. Moreover, production of extracellular matrix (ECM), including α-SMA and Fibronectin levels, was significantly increased in kidney and HK-2 cells after UUO or TGF-β stimulation. Knockdown of KCNQ1OT1 inhibited cell proliferation and inhibits the α-SMA and Fibronectin expression of TGF-β1-induced HK-2 cells. In addition, bioinformatics analysis and dual-luciferase reporter assay indicated that miR-124-3p was a target gene of KCNQ1OT1. Mechanistically, silencing miR-124-3p abolished the repressive effects of KCNQ1OT1 on TGF-β1-induced HK-2 cells. In conclusion, KCNQ1OT1 knockdown plays an anti-fibrotic effect through promotion of miR-124-3p expression in renal fibrosis, which provides a promising therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Jian Hao
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China
| | - Yun Zhou
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Weimin Yu
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China
| | - Hui Li
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China
| | - Dandan He
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
12
|
Lee M, Cho HJ, Park KS, Jung HY. ELK3 Controls Gastric Cancer Cell Migration and Invasion by Regulating ECM Remodeling-Related Genes. Int J Mol Sci 2022; 23:ijms23073709. [PMID: 35409069 PMCID: PMC8998440 DOI: 10.3390/ijms23073709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Current therapeutic strategies for gastric cancer, including surgery and chemotherapy improve patient survival; however, the survival rate of patients with metastatic gastric cancer is very low. The molecular mechanisms underlying the dissemination of gastric cancer cells to distant organs are currently unknown. Here, we demonstrate that the E26 transformation-specific (ETS) transcription factor ELK3 (ELK3) gene is required for the migration and invasion of gastric cancer cells. The ELK3 gene modulates the expression of extracellular matrix (ECM) remodeling-related genes, such as bone morphogenetic protein (BMP1), lysyl oxidase like 2 (LOXL2), Snail family transcriptional repressor 1 (SNAI1), serpin family F member 1 (SERPINF1), decorin (DCN), and nidogen 1 (NID1) to facilitate cancer cell dissemination. Our in silico analyses indicated that ELK3 expression was positively associated with these ECM remodeling-related genes in gastric cancer cells and patient samples. The high expressions of ELK3 and other ECM remodeling-related genes were also closely associated with a worse prognosis of patients with gastric cancer. Collectively, these findings suggest that ELK3 acts as an important regulator of gastric cancer cell dissemination by regulating ECM remodeling.
Collapse
Affiliation(s)
| | | | - Kyung-Soon Park
- Correspondence: (K.-S.P.); (H.-Y.J.); Tel.: +82-31-881-7144 (K.-S.P.); Fax: +82-31-881-7249 (K.-S.P.)
| | - Hae-Yun Jung
- Correspondence: (K.-S.P.); (H.-Y.J.); Tel.: +82-31-881-7144 (K.-S.P.); Fax: +82-31-881-7249 (K.-S.P.)
| |
Collapse
|
13
|
Huang Z, Keramat S, Izadirad M, Chen ZS, Soukhtanloo M. The Potential Role of Exosomes in the Treatment of Brain Tumors, Recent Updates and Advances. Front Oncol 2022; 12:869929. [PMID: 35371984 PMCID: PMC8968044 DOI: 10.3389/fonc.2022.869929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Exosomes are small endosomal derived membrane extracellular vesicles that contain cell-specific cargos such as lipid, protein, DNA, RNA, miRNA, long non-coding RNA, and some other cell components that are released into surrounding body fluids upon the fusion of multivesicular bodies (MVB) and the plasma membrane. Exosomes are a one-of-a-kind cell-to-cell communication mechanism that might pave the way for target therapy. The use of exosomes as a therapeutic potential in a variety of cancers has been and is still being investigated. One of the most important of these has been the use of exosomes in brain tumors therapy. Exosome contents play a crucial role in brain tumor progression by providing a favorable niche for tumor cell proliferation. Also, exosomes that are secreted from tumor cells, lead to the protection of tumor cells and their proliferation in the tumor environment by reducing the inflammatory response and suppression of the immune system. Although some treatment protocols such as surgery, chemotherapy, and radiotherapy are common in brain tumors, they do not result in complete remission in the treatment of some malignant and metastatic brain tumors. Identifying, targeting, and blocking exosomes involved in the progression of brain tumors could be a promising way to reduce brain tumor progression. On the other way, brain tumor therapy with effective therapeutic components such as siRNAs, mRNAs, proteins, could be developed. Finally, our research suggested that exosomes of nanoscale sizes might be a useful tool for crossing the blood-brain barrier and delivering effective content. However, further research is needed to fully comprehend the potential involvement of the exosome in brain tumor therapy protocols.
Collapse
Affiliation(s)
- Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shayan Keramat
- Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St John’s University, New York, NY, United States
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Zhang C, Yang J, Chen Y, Jiang F, Liao H, Liu X, Wang Y, Kong G, Zhang X, Li J, Gao J, Shen L. miRNAs derived from plasma small extracellular vesicles predict organo-tropic metastasis of gastric cancer. Gastric Cancer 2022; 25:360-374. [PMID: 35031872 DOI: 10.1007/s10120-021-01267-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Peritoneum, liver and lymph node are the most common metastatic sites of gastric cancer (GC). Biomarkers for GC's organo-tropic metastasis remained largely unknown, which was investigated in this study from the perspective of small extracellular vesicle (sEV)-derived miRNAs. METHODS Plasma from treatment-naïve GC patients including no metastasis (M0), peritoneal metastasis (PM), hepatic metastasis (HM) and distant lymph node metastasis (dLNM)) were divided into one discovery (N = 40), one training (N = 40) and one validating cohort (N = 86), then assessed by sEV-miRNA-sequencing and sEV-miRNA-qPCR. Functional explorations were also performed for verification. RESULTS The expression profiles of sEV-miRNAs varied greatly across different metastatic patterns. Based on logistic regression models, we constructed signatures for M0 (hsa-miR-186-5p/hsa-miR-200c-3p/hsa-miR-429/hsa-miR-5187-5p/hsa-miR-548ae-5p), PM (hsa-miR-200c-3p/hsa-miR-429), HM (hsa-miR-200c-3p/hsa-miR-429) and dLNM (hsa-miR-324-5p/hsa-miR-374a-5p/hsa-miR-429/hsa-miR-548ae-5p). These signatures vigorously characterized organo-tropic metastasis (all displaying AUC > 0.8, consistency ≥ 75%), and effectively conjectured the risk of future metastasis within 5 years (accuracy 45.5% for occurrence, 70% for organotropism, P = 0.002 for prognostic diversity). Additionally, we explored these seven biomarker miRNAs' impact on GC's in vitro motility and discussed their potential involvement in cancer-related biological processes and pathways. CONCLUSIONS Our work highlighted that plasma sEV-miRNAs powerfully characterized and predicted the organo-tropic metastasis of GC and provided new insight into the applications of sEV-based liquid biopsy in clinical practice.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jing Yang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Fangli Jiang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Haiyan Liao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Xiang Liu
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Yuan Wang
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Guanyi Kong
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
15
|
Zhang X, Dai X, Zhao X, Wang J, Dou J, Zhuang H, Chen N, Zhao H. MiR-874-3p represses the migration and invasion yet promotes the apoptosis and cisplatin sensitivity via being sponged by long intergenic non-coding RNA 00922 (LINC00922) and targeting Glycerophosphodiester Phosphodiesterase Domain Containing 5 (GDPD5) in gastric cancer cells. Bioengineered 2022; 13:7082-7104. [PMID: 35282764 PMCID: PMC9208458 DOI: 10.1080/21655979.2022.2045831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Our study mainly reports the specific mechanisms of microRNA (miR)-874-3p on drug resistance in gastric cancer (GC). Clinical specimen was collected. The upstream long non-coding RNA (lncRNA) and the downstream gene of miR-874-3p were predicted using bioinformatic analysis with the results being ascertained with dual-luciferase reporter assay. The viability, apoptosis, migration and invasion of transfected GC cells with or without cisplatin (DDP) treatment were evaluated by Cell Counting Kit-8 (CCK-8), flow cytometric, Scratch, and Transwell assays. An animal xenograft model was constructed. Expressions of long intergenic non-coding RNA 00922 (LINC00922), miR-874-3p and potential target genes were quantified by quantitative real-time polymerase-chain reaction (qRT-PCR) and Western blot. MiR-874-3p, which was lower-expressed in drug-resistant GC tissues and cells, was upregulated to repress the viability, migration and invasion but enhance the apoptosis and sensitivity in GC cells with or without DDP resistance. Downregulation of miR-874-3p eliminated the effects of silenced LINC00922, a upstream lncRNA of miR-874-3p, on cell viability, apoptosis, migration and invasion, as well as the expressions of Glycerophosphodiester Phosphodiesterase Domain Containing 5 (GDPD5) and the downstream gene of miR-874-3p in DDP-resistant GC cells. GDPD5 silencing diminished the effects of miR-874-3p downregulation on GDPD5 expression, viability, migration and invasion of DDP-resistant GC cells. Additionally, LINC00922 silencing enhanced the inhibitory effect of DDP on tumor growth, whereas reversing the effects of DDP on LINC00922, miR-874-3p and GDPD5 expressions in tumors. MiR-874-3p, an miRNA, which is sponged by LINC00922 and targets GDPD5, inhibits the GC progression yet enhances the DDP sensitivity in GC.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Xudong Dai
- Department of General Surgery, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xin Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Jian Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Jin Dou
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Haiwen Zhuang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Ning Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Haijian Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| |
Collapse
|
16
|
Yerukala Sathipati S, Tsai MJ, Carter T, Allaire P, Shukla SK, Beheshti A, Ho SY. Survival estimation in patients with stomach and esophageal carcinoma using miRNA expression profiles. Comput Struct Biotechnol J 2022; 20:4490-4500. [PMID: 36051876 PMCID: PMC9421182 DOI: 10.1016/j.csbj.2022.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Identifying a miRNA signature associated with survival will open a new window for developing miRNA-targeted treatment strategies in stomach and esophageal cancers (STEC). Here, using data from The Cancer Genome Atlas on 516 patients with STEC, we developed a Genetic Algorithm-based Survival Estimation method, GASE, to identify a miRNA signature that could estimate survival in patients with STEC. GASE identified 27 miRNAs as a survival miRNA signature and estimated the survival time with a mean squared correlation coefficient of 0.80 ± 0.01 and a mean absolute error of 0.44 ± 0.25 years between actual and estimated survival times, and showed a good estimation capability on an independent test cohort. The miRNAs of the signature were prioritized and analyzed to explore their roles in STEC. The diagnostic ability of the identified miRNA signature was analyzed, and identified some critical miRNAs in STEC. Further, miRNA-gene target enrichment analysis revealed the involvement of these miRNAs in various pathways, including the somatotrophic axis in mammals that involves the growth hormone and transforming growth factor beta signaling pathways, and gene ontology annotations. The identified miRNA signature provides evidence for survival-related miRNAs and their involvement in STEC, which would aid in developing miRNA-target based therapeutics.
Collapse
Affiliation(s)
- Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
- Corresponding author.
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Tonia Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Patrick Allaire
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
17
|
SENCAR L, YILMAZ DM, GÖKTÜRK D, ÖZANDAÇ POLAT S, COŞKUN G, ŞAKER D, SAPMAZ T, KARA S, ÇELENK A, POLAT S. Glioblastoma hücre hattında (U87) siklopamin ve temozolomid kombine tedavisinin miR-20a ekspresyonu üzerine etkileri. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.996520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Williams MR, Stedtfeld RD, Stedtfeld TM, Crawford RB, Kuwahara T, Kaminski NE, Tiedje JM, Hashsham SA. MicroRNA-based host response to toxicant exposure is influenced by the presence of gut microbial populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149130. [PMID: 34311349 PMCID: PMC8464502 DOI: 10.1016/j.scitotenv.2021.149130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Segmented filamentous bacteria (SFB) and Bacteroides fragilis are known to interact with the host immune response through the aryl hydrocarbon receptor (Ahr). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental toxicant and a high-affinity Ahr ligand has the potential to modify the effect of SFB and B. fragilis. MicroRNAs (miRNA) with their role in regulating gene expression post-transcriptionally, may potentially be used to observe such interactions between SFB, B. fragilis, and TCDD. However, little is known regarding the impact of gut microbial members on miRNA expression or its modulation in the presence of an environmental toxicant. This information is important in understanding toxicant-mediated dysbiosis in gut microbiome and the resulting human health impacts. In this study, C57BL/6 germ-free (GF) mice were colonized with SFB and B. fragilis and administered 30 μg/kg TCDD every 4 d for 28 d and miRNA were measured. Compared to GF mice, colonization with SFB resulted in an increase in up- and down-regulated Ileal miRNAs. TCDD treatment of this group decreased the number of upregulated miRNA and increased the number of down-regulated miRNAs. Association with SFB and B. fragilis together had a similar but less pronounced effect in response to TCDD treatment. TCDD treatment of GF mice had no miRNA expression response. Immune and inflammatory responses and T-cell differentiation were the key functions impacted by these miRNAs. Overall, these results reveal that the host response to toxicants may also depend on the presence of specific gut microbial populations.
Collapse
Affiliation(s)
- Maggie R Williams
- School of Engineering & Technology, Institute for Great Lakes Research, Central Michigan University, Mt Pleasant, MI, USA
| | | | | | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI 48824, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Syed A Hashsham
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Department of Civil and Environmental Engineering, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Yu Y, Li H, Wu C, Li J. Circ_0021087 acts as a miR-184 sponge and represses gastric cancer progression by adsorbing miR-184 and elevating FOSB expression. Eur J Clin Invest 2021; 51:e13605. [PMID: 34076278 DOI: 10.1111/eci.13605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Gastric cancer (GC) ranks third among the causes of cancer-related deaths in the world. Circular RNA hsa_circ_0021087 (circ_0021087) plays a repressive role in GC. Nevertheless, the mechanism by which circ_0021087 constrains GC advancement is unclear. MATERIALS AND METHODS Expression patterns of circ_0021087, microRNA (miR)-184 and FBJ murine osteosarcoma viral oncogene homolog B (FOSB) mRNA were assessed by quantitative real-time polymerase chain reaction (RT-qPCR). Gain-of-function experiments were conducted to verify the biological function of circ_0021087 in vitro and in vivo, including cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell and xenograft assays. Protein levels were analysed by Western blotting and immunohistochemistry (IHC). The regulatory mechanism of circ_0021087 was analysed by bioinformatics analysis, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS AND CONCLUSION Circ_0021087 and FOSB were lowly expressed in GC, whereas miR-184 had an opposite result. Circ_0021087 overexpression repressed GC cell proliferation and epithelial-mesenchymal transition (EMT) in xenograft models in vivo and induced GC cell apoptosis, repressed GC cell proliferation, EMT, migration and invasion in vitro. Circ_0021087 could elevate FOSB expression by adsorbing miR-184. MiR-184 mimic reversed the inhibitory influence of circ_0021087 overexpression on GC cell malignancy. Also, FOSB knockdown offset the suppressive impact of miR-184 silencing on GC cell malignancy. In conclusion, circ_0021087 played a repressive influence on GC progression by elevating FOSB expression by adsorbing miR-184, offering a new mechanism for circ_0021087 to inhibit the progression of GC.
Collapse
Affiliation(s)
- Yin Yu
- School of Basic Medicine, Zhengzhou University, Zhengzhou City, China
| | - Hong Li
- Department of Radiology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| | - Chunhua Wu
- Department of Oncology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| | - Jinfeng Li
- Department of Obstetrics and Gynecology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| |
Collapse
|
20
|
Yong W, Zhang K, Deng Y, Tang W, Tao R. miR-511-5p Suppresses Cell Migration, Invasion and Epithelial-Mesenchymal Transition Through Targeting PAK2 in Gastric Cancer. Biochem Genet 2021; 60:899-913. [PMID: 34542739 DOI: 10.1007/s10528-021-10126-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
As a malignant tumor, gastric cancer (GC) is closely related with gastric mucosa and has a high mortality in the world. Since microRNA (miRNA) has become more and more important in tumor research, we intend to find out the functional role and mechanism of miR-511-5p in GC. Firstly, miR-511-5p level was examined in human GC cell lines and tissues, and its effect on cell migration and invasion of BGC-823 or HGC-27 cells was tested by migration assay and transwell assay. Then, we confirmed the association between miR-511-5p and p21 activated kinase 2 (PAK2) by the luciferase reporter assay, and further assessed their role in cell migration and invasion. Moreover, we verified the function of miR-511-5p and PAK2 in epithelial-mesenchymal transition (EMT). In our study, miR-511-5p was downregulated in GC cell lines and tissues, and inversely associated with PAK2. Luciferase reporter assay confirmed that miR-511-5p could bind to PAK2. MiR-511-5p mimics significantly upregulated E-cadherin and downregulated N-cadherin, Vimentin and Snail, and consequently inhibited cell migration and invasion. However, reintroduction of PAK2 reversed the inhibitory function of miR-511-5p on BGC-823 and HGC-27 cells. Our research suggested that tumor-suppressive function of miR-511-5p in GC was inhibited by PAK2, and miR-511-5p/PAK2 axis may serve as a new strategy in GC management.
Collapse
Affiliation(s)
- Wenjing Yong
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ke Zhang
- Department of Essential Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Youming Deng
- Department of Essential Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Weisen Tang
- Department of Essential Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ran Tao
- Department of Essential Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
21
|
Abstract
Background Gastric cell carcinoma (GCC) is a common and high-incidence malignant gastrointestinal cancer that seriously threatens human life and safety. Evidences suggest that microRNAs (miRNAs) exhibit an essential role in regulating the occurrence and development of GCC, while the effects and possible mechanisms remain to be further explored. Objective This study was designed to explore whether miR-200c-3p exerted its functional role in the growth and metastasis of GCC, and investigate the possible mechanisms. Methods The expression levels of miR-200c-3p in GCC tissues and cell lines were detected by qRT-PCR analysis. The functional role of miR-200c-3p in the viability, proliferation, migration and invasion of GCC cells were evaluated by CCK-8, EdU, wound healing and Transwell assays. In addition, the candidate targets of miR-200c-3p was predicted and confirmed by dual-luciferase reporter assay. Moreover, the relationship between miR-200c-3p and target (Krüppel like factor 6, KLF6) was assessed by qRT-PCR and western blot assays. Besides, the expression levels of KLF6 in GCC cells were determined by qRT-PCR and western blot assays. Furthermore, the role of KLF6 in the viability, proliferation, migration and invasion of GCC cells mediated with miR-200c-3p mimics was evaluated by CCK-8, EdU, wound healing and Transwell assays. Results In the present study, a new tumor promoting function of miR-200c-3p was disclosed in GCC. We found that the expression of miR-200c-3p was obviously increased in clinic GCC tissues and cell lines. In addition, down-regulation of miR-200c-3p suppressed cell viability, proliferation, migration, and invasion in GCC cells. Moreover, KLF6 was verified as a direct target of miR-200c-3p by binding its 3’-UTR. Additionally, KLF6 was remarkably decreased and was negatively associated with the miR-200c-3p expression in GCC cell lines. Furthermore, over-expression of KLF6 retarded the effects of miR-200c-3p on the growth and metastasis of GCC cell lines. Conclusions MiR-200c-3p potentially played a tumor-promoting role in the occurrence and development of GCC, which may be achieved by targeting KLF6. Graphic abstract ![]()
Collapse
|
22
|
Dai W, Liu S, Zhang J, Pei M, Xiao Y, Li J, Hong L, Lin J, Wang J, Wu X, Liu G, Chen Y, Wang Y, Lin Z, Yang Q, Zhi F, Li G, Tang W, Li A, Xiang L, Wang J. Vorinostat triggers miR-769-5p/3p-mediated suppression of proliferation and induces apoptosis via the STAT3-IGF1R-HDAC3 complex in human gastric cancer. Cancer Lett 2021; 521:196-209. [PMID: 34481934 DOI: 10.1016/j.canlet.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022]
Abstract
Previous reports have shown that histone deacetylase inhibitors (HDACi) can alter miRNA expression in a range of cancers. Both the 5p-arm and 3p-arm of mature miRNAs can be expressed from the same precursor and involved in cancer progress. Nevertheless, the detailed mechanism by which vorinostat (SAHA), a HDACi, triggers miR-769-5p/miR-769-3p-mediated suppression of proliferation and induces apoptosis in gastric cancer (GC) cells remains elusive. Here, we showed that the miRNA-seq analysis of GC cells treated with SAHA identified seven differentially expressed miRNAs with both strands of the miRNA duplex. miR-769-5p/miR-769-3p expression was downregulated in GC tissues compared with normal tissues. Functionally, high expression of miR-769-5p/miR-769-3p blocked the malignant abilities of GC cells. Mechanistically, miR-769-5p/miR-769-3p targeted IGF1R and IGF1R overexpression rescued the effects of miR-769-5p/miR-769-3p on GC cells growth and metastasis. Moreover, STAT3 bound to the promoter of miR-769. Furthermore, miR-769-5p/miR-769-3p expression was negatively regulated by the STAT3-IGF1R-HDAC3 complex. Besides, miR-769-5p/miR-769-3p synergized with SAHA to promote GC cells apoptosis. Our studies suggest that miR-769-5p/miR-769-3p acts as a tumor suppressor by the STAT3-IGF1R-HDAC3 complex. Moreover, SAHA triggers miR-769-5p/miR-769-3p-mediated inhibition of proliferation and induces apoptosis in GC cells.
Collapse
Affiliation(s)
- Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjiao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China
| | - Jing Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guangnan Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaying Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yusi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, The Second Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, 518172, China.
| |
Collapse
|
23
|
Wu G, Zhang A, Yang Y, Wu D. Circ-RNF111 aggravates the malignancy of gastric cancer through miR-876-3p-dependent regulation of KLF12. World J Surg Oncol 2021; 19:259. [PMID: 34461926 PMCID: PMC8404246 DOI: 10.1186/s12957-021-02373-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background The aberrant expression of circular RNAs (circRNAs) plays vital roles in the advancement of human cancers, including gastric cancer (GC). In this study, the functions of circRNA ring finger protein 111 (circ-RNF111) in GC were investigated. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed for the levels of circ-RNF111, microRNA-876-3p (miR-876-3p) and krueppel-like factor 12 (KLF12) mRNA. RNase R assay was conducted for the feature of circ-RNF111. Cell Counting Kit-8 (CCK-8) assay, colony formation assay, wound-healing assay, and transwell assay were applied for cell viability, colony formation, migration, and invasion, respectively. Flow cytometry analysis was used to analyze cell apoptosis and cell cycle process. The glycolysis level was examined using specific commercial kits. Western blot assay was carried out to measure the protein levels of hexokinase 2 (HK-2) and KLF12. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to verify the combination between miR-876-3p and circ-RNF111 or KLF12. Murine xenograft model was constructed for the role of circ-RNF111 in vivo. Immunohistochemistry (IHC) was used for KLF12 level. Results Circ-RNF111 was higher expressed in GC tissues and cells than normal tissues and cells. Silencing of circ-RNF111 restrained cell viability, colony formation, migration, invasion, cell cycle process and glycolysis and induced apoptosis in GC cells in vitro. Circ-RNF111 positively regulated KLF12 expression via absorbing miR-876-3p. MiR-876-3p downregulation reversed the impacts of circ-RNF111 silencing on GC cell malignant phenotypes. MiR-876-3p overexpression repressed GC cell growth, metastasis and glycolysis, inhibited apoptosis and arrested cell cycle, while KLF12 elevation weakened the effects. Besides, circ-RNF111 knockdown inhibited tumor growth in vivo. Conclusion Circ-RNF111 knockdown relieved the development of GC by regulating miR-876-3p/KLF12 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02373-5.
Collapse
Affiliation(s)
- Guoxian Wu
- Department of General Surgery, the First People's Hospital of Xiaoshan, No. 199 Shixin South Road, Chengxiang Street, Xiaoshan District, Hangzhou, Zhejiang, China.
| | - Aimin Zhang
- Department of General Surgery, the First People's Hospital of Xiaoshan, No. 199 Shixin South Road, Chengxiang Street, Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yinglin Yang
- Department of General Surgery, the First People's Hospital of Xiaoshan, No. 199 Shixin South Road, Chengxiang Street, Xiaoshan District, Hangzhou, Zhejiang, China
| | - Dongping Wu
- Department of General Surgery, the First People's Hospital of Xiaoshan, No. 199 Shixin South Road, Chengxiang Street, Xiaoshan District, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Kang B, Qiu C, Zhang Y. The Effect of lncRNA SNHG3 Overexpression on Lung Adenocarcinoma by Regulating the Expression of miR-890. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1643788. [PMID: 34306585 PMCID: PMC8285187 DOI: 10.1155/2021/1643788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
The lncRNA small nucleolar host gene 3 (SNHG3) was discovered to play an important role in the occurrence and development of lung adenocarcinoma (LUAD). However, the underlying molecular mechanism of SNHG3 in LUAD remains unclear. In the present study, SNHG3 expression levels in LUAD tissues and cell lines were analyzed using reverse transcription-quantitative PCR. The effects of SNHG3 on the proliferation, apoptosis, migration, and invasion of LUAD cells were determined using Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and Transwell chamber assays, respectively. The specific underlying mechanism of SNHG3 in LUAD was investigated using bioinformatics analysis and a dual luciferase reporter assay. The results revealed that SNHG3 expression levels were downregulated in LUAD tissues and cell lines. Functionally, SNHG3 overexpression suppressed the proliferation, migration, and invasion of LUAD cells, while promoting apoptosis. Mechanistically, microRNA- (miR-) 890 was identified as a potential target of SNHG3, and its expression was negatively regulated by SNHG3. Notably, SNHG3 was found to promote LUAD progression by targeting miR-890. In conclusion, the findings of the present study revealed that lncRNA SNHG3 promoted the occurrence and progression of LUAD by regulating miR-890 expression.
Collapse
Affiliation(s)
- Baojie Kang
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang City, Shandong, China
| | - Caihong Qiu
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang City, Shandong, China
| | - Ying Zhang
- Department of ICU, Zibo Central Hospital, Zibo City, Shandong, China
| |
Collapse
|
25
|
Yadav P, Bandyopadhayaya S, Ford BM, Mandal C. Interplay between DNA Methyltransferase 1 and microRNAs During Tumorigenesis. Curr Drug Targets 2021; 22:1129-1148. [PMID: 33494674 DOI: 10.2174/1389450122666210120141546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 01/18/2023]
Abstract
Cancer is a genetic disease resulting from genomic changes; however, epigenetic alterations act synergistically with these changes during tumorigenesis and cancer progression. Epigenetic variations are gaining more attention as an important regulator in tumor progression, metastasis and therapy resistance. Aberrant DNA methylation at CpG islands is a central event in epigeneticmediated gene silencing of various tumor suppressor genes. DNA methyltransferase 1 (DNMT1) predominately methylates at CpG islands on hemimethylated DNA substrates in proliferation of cells. DNMT1 has been shown to be overexpressed in various cancer types and exhibits tumor-promoting potential. The major drawbacks to DNMT1-targeted cancer therapy are the adverse effects arising from nucleoside and non-nucleoside based DNMT1 inhibitors. This paper focuses on the regulation of DNMT1 by various microRNAs (miRNAs), which may be assigned as future DNMT1 modulators, and highlights how DNMT1 regulates various miRNAs involved in tumor suppression. Importantly, the role of reciprocal inhibition between DNMT1 and certain miRNAs in tumorigenic potential is approached in this review. Hence, this review seeks to project an efficient and strategic approach using certain miRNAs in conjunction with conventional DNMT1 inhibitors as a novel cancer therapy. It has also been pinpointed to select miRNA candidates associated with DNMT1 regulation that may not only serve as potential biomarkers for cancer diagnosis and prognosis, but may also predict the existence of aberrant methylation activity in cancer cells.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| | - Bridget M Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX 78209, United States
| | - Chandi Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| |
Collapse
|
26
|
Ma D, Zhu Y, Zhang X, Zhang J, Chen W, Chen X, Qian Y, Zhao Y, Hu T, Yao Z, Zhao W, Zhang Y, Liu F. Long Non-coding RNA RUNDC3A-AS1 Promotes Lung Metastasis of Thyroid Cancer via Targeting the miR-182-5p/ADAM9. Front Cell Dev Biol 2021; 9:650004. [PMID: 34046406 PMCID: PMC8147562 DOI: 10.3389/fcell.2021.650004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been identified as influential indicators in variety of malignancies. Among which, LncRNA RUNDC3A-AS1 is reported to upregulate in thyroid cancer. However, the expression pattern and the pathological function of lncRNA RUNDC3A-AS1 in thyroid cancer is unclear. In this study, we examined the expression levels of lncRNA RUNDC3A-AS1 in the thyroid cancer tissues and cell lines via RT-qPCR analysis. The effects of RUNDC3A-AS1 on thyroid cancer cell metastasis were detected by transwell chamber assay, scratch assay in vitro and lung metastasis model in vivo. The results indicated that RUNDC3A-AS1 was highly expressed in the thyroid cancer tissues and cell lines. Functionally, knockdown of RUNDC3A-AS1 could repress the migration and invasion of thyroid cancer cells in vitro, and inhibit thyroid cancer metastasis to lung in vivo. Mechanistically, RUNDC3A-AS1 served as an inhibitor of miR-182-5p in tumor tissues and cell lines. RUNDC3A-AS1 inhibited the expression of miR-182-5p to increase the expression level of ADAM9, thus further aggravating the malignancy of thyroid cancer. Therefore, the RUNDC3A-AS1/miR-182-5p/ADAM9 axis may be a potential therapeutic target for the treatment of thyroid cancer metastasis.
Collapse
Affiliation(s)
- Dawei Ma
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yan Zhu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- The Key Laboratory of Antibody Technology, National Health Commission and Nanjing Medical University, Nanjing, China
| | - Jia Zhang
- Department of Positron Emission Tomography/Computed Tomography (PET/CT) Center, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wei Chen
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xinyuan Chen
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yichun Qian
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yanbin Zhao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Tingting Hu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhangyu Yao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Yuan Zhang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fangzhou Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
27
|
Hu L, Huang M, Yuan Q, Kong F. Prognostic and clinicopathological significance of miR-638 in cancer patients: A meta-analysis. Medicine (Baltimore) 2021; 100:e25441. [PMID: 33847647 PMCID: PMC8052089 DOI: 10.1097/md.0000000000025441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION MiR-638 is believed to be involved in human cancers. However, the prognostic value of miR-638 in human carcinomas is controversial and inconclusive. Therefore, we conducted this meta-analysis to investigate the association between miR-638 expression and clinical outcomes in the patients with various cancers. METHODS We searched Pubmed, Embase, Wanfang, and the China National Knowledge Infrastructure (CNKI) up to September 1, 2020 to identify relevant studies. Hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were used to correlate expression of miR-638 with prognosis and clinicopathological features. RESULTS A total of 18 studies involving 1886 patients were included in the meta-analysis. The results revealed that low miR-638 expression was significantly correlated with poor overall survival (OS) (HR = 2.09, 95% CI: 1.46-2.98, P < .001), but not with disease-free survival (DFS) (HR = 1.71, 95% CI: 0.31-9.56, P = .540). Subgroup analysis found that low miR-638 expression was associated with worse OS in patients with digestive system cancer (HR = 2.47, 95% CI: 1.85-3.30, P < .001), the reported directly from articles group (HR = 2.12, 95% CI: 1.34-3.33, P < .001), survival curves group (HR = 2.02, 95% CI: 1.07-3.80, P = .029), in studies with sample size ≥100 (HR = 2.12, 95% CI: 1.34-3.35, P = .001), and in studies with sample size <100 (HR = 2.02, 95%CI: 1.09-3.75, P = .025). Moreover, cancer patients with low miR-638 expression were prone to tumor size (OR = 1.47, 95% CI: 1.03-2.09, P = .035), earlier lymph node metastasis (present vs absent, OR = 2.26, 95% CI: 1.63-3.14, P < .001), earlier distant metastasis (present vs absent, OR = 2.60, 95% CI: 1.45-4.67, P < .001), TNM stage (III-IV vs I-II, OR = 2.01, 95% CI: 1.35-2.99, P = .001), and portal vein invasion (present vs absent, OR = 4.39, 95% CI:2.23-8.64, P < .001), but not associated with age, gender, tumor differentiation, and vascular invasion. CONCLUSIONS MiR-638 may serve as a promising indicator in the prediction of prognosis and clinicopathological features in patients with different kinds of cancers.
Collapse
|
28
|
Xu X, Xie Q, Xie M, Zeng Y, Liu Q. LncRNA SNHG8 Serves as an Oncogene in Breast Cancer Through miR-634/ZBTB20 Axis. Cancer Manag Res 2021; 13:3017-3028. [PMID: 33854372 PMCID: PMC8039051 DOI: 10.2147/cmar.s270128] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background Small nucleolus RNA Host Gene 8 (SNHG8) belongs to a subgroup with long non-coding RNAs. LncRNA SNHG8 presents up-regulated in miscellaneous cancers, like gastric cancer, liver cancer, and esophageal squamous cell cancer. Nevertheless, the expression pattern and the pathological function of lncRNA SNHG8 in breast cancer remain obscure. Methods We examined the expression levels of lncRNA SNHG8 in the tissue samples and cell lines from breast cancer via RT-qPCR in the present study. The functions of lncRNA SNHG8 on the progression of breast cancer cell were examined by CCK-8, EdU, Transwell chamber assays, and flow cytometry analyses. The expression of proteins was assessed using Western blot assay. Results We found that proliferation, migration, and invasion of breast cancer cells were significantly inhibited due to knockdown of lncRNA SNHG8, while inducing apoptosis of these cells. Mechanistically, SNHG8 functioned as an inhibitor of miR-634 in tumor tissues. Conclusion LncRNA SNHG8 sponged the miR-634 to increase the expression level of ZBTB20, thus further aggravating the malignancy of breast cancer. Hence, the lncRNA SNHG8-miR-634-ZBTB20 axis may be a promising therapeutic target to treat breast cancers.
Collapse
Affiliation(s)
- Xianyun Xu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Jiangxi Provincial Clinical Research Center for Vascular Anomalies, Basic Medical School, Gannan Medical University, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Qiongjun Xie
- Basic Medical School, Gannan Medical University, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Mingfeng Xie
- Department of Pediatric Surgery, Jiangxi Provincial Clinical Research Center for Vascular Anomalies, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, The First Affiliate Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Yong Zeng
- Department of Pediatric Surgery, Jiangxi Provincial Clinical Research Center for Vascular Anomalies, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, The First Affiliate Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Qian Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Jiangxi Provincial Clinical Research Center for Vascular Anomalies, Basic Medical School, Gannan Medical University, Ganzhou, Jiangxi, 341000, People's Republic of China
| |
Collapse
|
29
|
miR-96-5p enhances cell proliferation and invasion via targeted regulation of ZDHHC5 in gastric cancer. Biosci Rep 2021; 40:222436. [PMID: 32202303 PMCID: PMC7160376 DOI: 10.1042/bsr20191845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/13/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: To explore the biological function and mechanism of miR-96-5p in gastric cancer. Methods: The expression of differently expressed microRNAs (DEMs) related to gastric adenocarcinoma (GAC) prognosis was identified in GAC tumor samples and adjacent normal samples by qRT-PCR. A target gene miR-96-5p was selected using TargetScan, miRTarBase, miRDB databases. The combination of miR-96-5p and ZDHHC5 was verified by luciferase receptor assay. To further study the function and mechanism of miR-96-5p, we treated MGC-803 cells with miR-96-5p inhibitor and si-ZDHHC5, then detected cell viability, apoptosis, migration and invasion ability, as well as the expression of ZDHHC5, Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, and COX-2 by Western blot. Results: Compared with adjacent normal samples, the levels of miR-96-5p, miR-222-5p, and miR-652-5p were remarkably increased, while miR-125-5p, miR-145-3p, and miR-379-3p were significantly reduced in GAC tumor samples (P<0.01), which were consistent with bioinformatics analysis. Furthermore, ZDHHC5 was defined as a direct target gene of miR-96-5p. miR-96-5p silence significantly reduced cell viability, increased cell apoptosis, and suppressed cell migration and invasion, as well as inhibited the expression of Bcl-2 and COX-2 and promoted Bax, cleaved caspase-3 and cleaved caspase-9 level in MGC-803 cells (P<0.01). Notably, ZDHHC5 silence reversed the inhibiting effects of miR-96-5p on MGC-803 cells growth and metastasis Conclusion: Our findings identified six microRNAs (miRNAs; miR-96-5p, miR-222-5p, miR-652-5p, miR-125-5p, miR-145-3p, and miR-379-3p) related to GAC prognosis, and suggested that down-regulated miR-96-5p might inhibit tumor cell growth and metastasis via increasing ZDHHC5 expression enhance MGC-803 cell apoptosis, as well as decrease MGC-803 cell metastasis.
Collapse
|
30
|
MiR-10a in Pancreatic Juice as a Biomarker for Invasive Intraductal Papillary Mucinous Neoplasm by miRNA Sequencing. Int J Mol Sci 2021; 22:ijms22063221. [PMID: 33809988 PMCID: PMC8004614 DOI: 10.3390/ijms22063221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
New biomarkers are needed to further stratify the risk of malignancy in intraductal papillary mucinous neoplasm (IPMN). Although microRNAs (miRNAs) are expected to be stable biomarkers, they can vary owing to a lack of definite internal controls. To identify universal biomarkers for invasive IPMN, we performed miRNA sequencing using tumor-normal paired samples. A total of 19 resected tissues and 13 pancreatic juice samples from 32 IPMN patients were analyzed for miRNA expression by next-generation sequencing with a two-step normalization of miRNA sequence data. The miRNAs involved in IPMN associated with invasive carcinoma were identified from this tissue analysis and further verified with the pancreatic juice samples. From the tumor-normal paired tissue analysis of the expression levels of 2792 miRNAs, 20 upregulated and 17 downregulated miRNAs were identified. In IPMN associated with invasive carcinoma (INV), miR-10a-5p and miR-221-3p were upregulated and miR-148a-3p was downregulated when compared with noninvasive IPMN. When these findings were further validated with pancreatic juice samples, miR-10a-5p was found to be elevated in INV (p = 0.002). Therefore, three differentially expressed miRNAs were identified in tissues with INV, and the expression of miR-10a-5p was also elevated in pancreatic juice samples with INV. MiR-10a-5p is a promising additional biomarker for invasive IPMN.
Collapse
|
31
|
Yang C, Nan B, Ye H, Yan H, Wang M, Yuan Y. MiR-193b-5p protects BRL-3A cells from acrylamide-induced cell cycle arrest by targeting FoxO3. Food Chem Toxicol 2021; 150:112059. [PMID: 33582169 DOI: 10.1016/j.fct.2021.112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/16/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Acrylamide (AA), an important by-product of the Maillard reaction, has been reported to be genotoxic and carcinogenic. The present study employed miRNAs to investigate the toxic mechanism of AA and their role against AA toxicity. Deep sequencing of small RNA libraries was performed and miR-193b-5p was applied for further study. AA significantly reduced the level of miR-193b-5p and its ectopic expression promoted cell cycle G1/S transition and cell proliferation by upregulating the cyclin-dependent kinase regulator Cyclin D1 and downregulating the cyclin-dependent kinase inhibitor p21, while miR-193b-5p inhibitor led to the opposite results. Dual luciferase assay demonstrated miR-193b-5p regulated the expression of FoxO3 by directly targeting the FoxO3 3'-untranslated region (3'-UTR). Knockdown of FoxO3 induced cell cycle G1/S transition and cell proliferation, which was suppressed by the inhibition of miR-193b-5p but promoted by miR-193b-5p mimics. MiR-193b-5p inhibitor strengthened the effect of FoxO3, contrary to the effect of miR-193b-5p mimics. In conclusion, miR-193b-5p acted as a regulator of cell cycle G1/S transition and cell proliferation by targeting FoxO3 to mediate the expression of p21 and Cyclin D1.
Collapse
Affiliation(s)
- Chaoyue Yang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Minghua Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
32
|
Tao HF, Shen JX, Hou ZW, Chen SY, Su YZ, Fang JL. lncRNA FOXP4‑AS1 predicts poor prognosis and accelerates the progression of mantle cell lymphoma through the miR‑423‑5p/NACC1 pathway. Oncol Rep 2021; 45:469-480. [PMID: 33416160 PMCID: PMC7757101 DOI: 10.3892/or.2020.7897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Long non‑coding RNA (lncRNA) forkhead box P4 antisense RNA 1 (FOXP4‑AS1) has been determined to function as an oncogene in various types of cancer. However, the biological function and the underlying mechanisms of FOXP4‑AS1 in mantle cell lymphoma (MCL) remain to be uncovered. The expression and the associated clinicopathological characteristics and prognostic significance of FOXP4‑AS1 were explored in MCL clinical samples. The effects of FOXP4‑AS1 on MCL cellular behaviors, including proliferation, migration and invasion were analyzed using CCK‑8, crystal violet and Transwell assays. The downstream molecules of FOXP4‑AS1 were explored using bioinformatics analysis and dual luciferase assay. Our results showed that FOXP4‑AS1 expression was upregulated in MCL patients, and that the high expression of FOXP4‑AS1 was correlated with the unfavorable prognosis of patients. Functionally, while FOXP4‑AS1 downregulation inhibited proliferation, migration and invasion of MCL cells, FOXP4‑AS1 overexpression had promotive effects on these cellular processes. Mechanistically, FOXP4‑AS1 was found to act as a competing endogenous (ce)RNA for miR‑423‑5p to regulate the expression of nucleus accumbens‑associated 1 (NACC1). The negative regulation of FOXP4‑AS1 on miR‑423‑5p compared to that of miR‑423‑5p on NACC1 was determined at the mRNA or protein levels in MCL cells. Moreover, an inverse expression correlation between FOXP4‑AS1 and miR‑423‑5p, and that between miR‑423‑5p and NACC1 was confirmed in MCL clinical samples. In addition, rescue assay showed that miR‑423‑5p upregulation or NACC1 knockdown abolished the promoting effects of FOXP4‑AS1 on MCL cell proliferation, migration and invasion. In conclusion, FOXP4‑AS1 promotes MCL progression through the upregulation of NACC1 expression by inhibiting miR‑423‑5p. FOXP4‑AS1 may serve as a novel therapeutic target for patients with MCL.
Collapse
Affiliation(s)
- Hong-Fang Tao
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jia-Xin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Zhan-Wen Hou
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shao-Yan Chen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yong-Zhong Su
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jian-Lin Fang
- Department of Intervention Therapy, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Jian-Lin Fang, Department of Intervention Therapy, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Jinping, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
33
|
Huang X, Liu F, Jiang Z, Guan H, Jia Q. CREB1 Suppresses Transcription of microRNA-186 to Promote Growth, Invasion and Epithelial-Mesenchymal Transition of Gastric Cancer Cells Through the KRT8/HIF-1α Axis. Cancer Manag Res 2020; 12:9097-9111. [PMID: 33061604 PMCID: PMC7526476 DOI: 10.2147/cmar.s265187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background The cAMP response element-binding protein 1 (CREB1) was initiated as a potential target for cancer treatment. This research was conducted to probe the effect of CREB1 in the progression of gastric cancer (GC) and the molecules involved. Materials and Methods CREB1 expression in GC tissues and cell lines (AGS and MKN-45) as well as that in normal tissues and in gastric mucosa cell line (GES-1) was detected. The correlation between CREB1 expression and prognosis of GC patients was determined. Artificial silencing of CREB1 was introduced to evaluate its effect on biological behaviors of GC cells. The target microRNA (miRNA) of CREB1 and the target mRNA of miR-186 were predicted and validated. Altered expression of miR-186, KRT8 and HIF-1α was introduced to confirm their functions in GC progression. Results CREB1 was abundantly expressed in GC tissues and cells and linked to dismal prognosis in patients. Silencing of CREB1 or upregulation of miR-186 suppressed the malignant behaviors such as growth, epithelial-mesenchymal transition (EMT) and invasion of GC cells, while artificial overexpression of KRT8 led to reversed trends. KRT8 was a target mRNA of miR-186, and CREB1 transcriptionally suppressed miR-186 expression to further up-regulate KRT8. KRT8 was also found to increase HIF-1α expression. Upregulation of HIF-1α was found to block the suppressing role of CREB1 silencing in GC cell malignancy. Conclusion This study evidenced that silencing of CREB1 inhibits growth, invasion, EMT and resistance to apoptosis of GC cells involving the upregulation of miR-186 and the following downregulation of KRT8 and HIF-1α.
Collapse
Affiliation(s)
- Xue Huang
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| | - Fujian Liu
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| | - Zhiyong Jiang
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| | - Hang Guan
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| | - Qiuhong Jia
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| |
Collapse
|
34
|
Lazaridou MF, Massa C, Handke D, Mueller A, Friedrich M, Subbarayan K, Tretbar S, Dummer R, Koelblinger P, Seliger B. Identification of microRNAs Targeting the Transporter Associated with Antigen Processing TAP1 in Melanoma. J Clin Med 2020; 9:jcm9092690. [PMID: 32825219 PMCID: PMC7563967 DOI: 10.3390/jcm9092690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The underlying molecular mechanisms of the aberrant expression of components of the HLA class I antigen processing and presentation machinery (APM) in tumors leading to evasion from T cell-mediated immune surveillance could be due to posttranscriptional regulation mediated by microRNAs (miRs). So far, some miRs controlling the expression of different APM components have been identified. Using in silico analysis and an miR enrichment protocol in combination with small RNA sequencing, miR-26b-5p and miR-21-3p were postulated to target the 3′ untranslated region (UTR) of the peptide transporter TAP1, which was confirmed by high free binding energy and dual luciferase reporter assays. Overexpression of miR-26b-5p and miR-21-3p in melanoma cells downregulated the TAP1 protein and reduced expression of HLA class I cell surface antigens, which could be reverted by miR inhibitors. Moreover, miR-26b-5p overexpression induced a decreased T cell recognition. Furthermore, an inverse expression of miR-26b-5p and miR-21-3p with TAP1 was found in primary melanoma lesions, which was linked with the frequency of CD8+ T cell infiltration. Thus, miR-26-5p and miR-21-3p are involved in the HLA class I-mediated immune escape and might be used as biomarkers or therapeutic targets for HLA class Ilow melanoma cells.
Collapse
Affiliation(s)
- Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Reinhard Dummer
- Institute of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital Salzburg, 5020 Salzburg, Austria;
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|
35
|
Shao Z, Gao D, Chen L, Ding W, Yu Q. Non‑coding RNAs that regulate the Wnt/β‑catenin signaling pathway in gastric cancer: Good cop, bad cop? (Review). Oncol Rep 2020; 44:1314-1321. [PMID: 32945460 DOI: 10.3892/or.2020.7705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer‑related mortality worldwide. Despite remarkable progress in the diagnosis and treatment of GC, a large number of cases are diagnosed as advanced GC, and treatment failure occurs. Emerging evidence has shown that non‑coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non‑coding RNAs (lncRNAs), play a vital role in the tumorigenesis and development of GC. Moreover, the pathogenesis of GC is closely related to aberrant activation of the Wnt (Wingless‑type MMTV integration site family) signaling pathway. ncRNAs serve as potential novel biomarkers in the clinical examination, prognosis and therapeutic targeting of GC. Furthermore, dysregulation of ncRNAs has been demonstrated to affect tumor initiation, epithelial‑mesenchymal transition (EMT), angiogenesis, tumor development, invasion, metastasis and resistance to therapy via the Wnt/β‑catenin signaling pathway. This review focuses on the role of ncRNAs in modulating the Wnt/β‑catenin signaling pathway in the pathogenesis of GC, which may provide a reference for the clinical diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Zhaozhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
36
|
Lazaridou MF, Gonschorek E, Massa C, Friedrich M, Handke D, Mueller A, Jasinski-Bergner S, Dummer R, Koelblinger P, Seliger B. Identification of miR-200a-5p targeting the peptide transporter TAP1 and its association with the clinical outcome of melanoma patients. Oncoimmunology 2020; 9:1774323. [PMID: 32923135 PMCID: PMC7458634 DOI: 10.1080/2162402x.2020.1774323] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/23/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor escape is often associated with abnormalities in the surface expression of the human leukocyte antigen class I (HLA-I) antigens thereby limiting CD8+ cytotoxic T cell responses. This impaired HLA-I surface expression can be mediated by deficient expression of components of the antigen processing and presentation machinery (APM) due to epigenetic, transcriptional and/or post-transcriptional processes. Since a discordant mRNA and protein expression pattern of APM components including the peptide transporter associated with antigen processing 1 (TAP1) has been frequently described in tumors of distinct origin, a post-transcriptional control of APM components caused by microRNAs (miR) was suggested. Using an in silico approach, miR-200a-5p has been identified as a candidate miR binding to the 3' untranslated region (UTR) of TAP1. Luciferase reporter assays demonstrated a specific binding of miR-200a-5p to the TAP1 3'-UTR. Furthermore, the miR-200a-5p expression is inversely correlated with the TAP1 protein expression in HEK293T cells and in a panel of melanoma cell lines as well as in primary melanoma lesions. High levels of miR-200a-5p expression were associated with a shorter overall survival of melanoma patients. Overexpression of miR-200a-5p reduced TAP1 levels, which was accompanied by a decreased HLA-I surface expression and an enhanced NK cell sensitivity of melanoma cells. These data show for the first time a miR-mediated control of the peptide transporter subunit TAP1 in melanoma thereby leading to a reduced HLA-I surface expression accompanied by an altered immune recognition and reduced patients' survival. Abbreviations Ab: antibody; ACTB: β-actin; APM: antigen processing and presentation machinery; ATCC: American tissue culture collection; β2-m: β2-microglobulin; BSA: bovine serum albumin; CTL: cytotoxic T lymphocyte; FCS: fetal calf serum; FFL: firefly luciferase; FFPE: formalin-fixed paraffin-embedded; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HC: heavy chain; HLA: human leukocyte antigen; HLA-I: HLA class I; HRP: horseradish peroxidase; IFN: interferon; im-miR: immune modulatory miRNA; LMP: low molecular weight protein; luc: luciferase; MFI: mean fluorescence intensity; MHC: major histocompatibility complex; miR: microRNA; NC: negative control; NK: natural killer; NSCLC: non-small cell lung carcinoma; OS: overall survival; PBMC: peripheral blood mononuclear cells; RBP: RNA-binding proteins; RL: Renilla; RLU: relative light units; TAP: transporter associated with antigen processing; tpn: tapasin; UTR: untranslated region.
Collapse
Affiliation(s)
| | - Evamaria Gonschorek
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Reinhard Dummer
- Institute of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital Salzburg, Salzburg, Austria
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
37
|
Mu G, Liu Q, Wu S, Xia Y, Fang Q. Long noncoding RNA HAGLROS promotes the process of mantle cell lymphoma by regulating miR-100/ATG5 axis and involving in PI3K/AKT/mTOR signal. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3649-3656. [PMID: 31498006 DOI: 10.1080/21691401.2019.1645151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This research planned to grab the expression and impact of lncRNA HAGLROS in the biology and progression of mantle cell lymphoma. HAGLROS level in mantle cell lymphoma cell lines was detected, followed by investigation of the influences of HAGLROS silencing on Mino cell biological performances. Afterwards, the express patterns of HAGLROS vs. miR-100, as well as miR-100 vs. ATG5, were investigated. Furthermore, whether HAGLROS could regulate the signals of PI3K/AKT/mTOR was analyzed. HAGLROS level was high in mantle cell lymphoma cell lines. Silencing of HAGLROS inhibited Mino cell viability, increased apoptosis and decreased autophagy by sponging miR-100. Moreover, miR-100 targeted ATG5 fixed. Furthermore, HAGLROS suppression resulted in inhibition on the briskness of PI3K/AKT/mTOR signals. Concurrently HAGLROS suppression and miR-100 inhibitor markedly changed the impacts of HAGLROS down-regulation alone on activating PI3K/AKT/mTOR signals, which could further change after co-transfection of si-HAGLROS + miR-100 inhibitor + siATG5. Our findings point out that expression of HAGLROS is increased in mantle cell lymphoma cells and may function as an oncogene in mantle cell lymphoma. HAGLROS may promote tumour development by regulating miR-100/ATG5/PI3K/AKT/mTOR axis.
Collapse
Affiliation(s)
- Guangfu Mu
- Department of Hematology, The Third Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Qian Liu
- Department of Blood Transfusion, Affiliated Hospital of Xiangnan University , Chenzhou , Hunan , China
| | - Si Wu
- Department of Blood Transfusion, Affiliated Hospital of Xiangnan University , Chenzhou , Hunan , China
| | - Yong Xia
- Department of Blood Transfusion, Affiliated Hospital of Xiangnan University , Chenzhou , Hunan , China
| | - Qing Fang
- Department of Hematology, The Third Xiangya Hospital, Central South University , Changsha , Hunan , China
| |
Collapse
|
38
|
Wu J, Yang Y, Cheng L, Wu J, Xi L, Ma Y, Zhang P, Xu X, Zhang D, Li S. GCdiscrimination: identification of gastric cancer based on a milliliter of blood. Brief Bioinform 2020; 22:536-544. [PMID: 32010933 DOI: 10.1093/bib/bbaa006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) continues to be one of the major causes of cancer deaths worldwide. Meanwhile, liquid biopsies have received extensive attention in the screening and detection of cancer along with better understanding and clinical practice of biomarkers. In this work, 58 routine blood biochemical indices were tentatively used as integrated markers, which further expanded the scope of liquid biopsies and a discrimination system for GC consisting of 17 top-ranked indices, elaborated by random forest method was constructed to assist in preliminary assessment prior to histological and gastroscopic diagnosis based on the test data of a total of 2951 samples. The selected indices are composed of eight routine blood indices (MO%, IG#, IG%, EO%, P-LCR, RDW-SD, HCT and RDW-CV) and nine blood biochemical indices (TP, AMY, GLO, CK, CHO, CK-MB, TG, ALB and γ-GGT). The system presented a robust classification performance, which can quickly distinguish GC from other stomach diseases, different cancers and healthy people with sensitivity, specificity, total accuracy and area under the curve of 0.9067, 0.9216, 0.9138 and 0.9720 for the cross-validation set, respectively. Besides, this system can not only provide an innovative strategy to facilitate rapid and real-time GC identification, but also reveal the remote correlation between GC and these routine blood biochemical parameters, which helped to unravel the hidden association of these parameters with GC and serve as the basis for subsequent studies of the clinical value in prevention program and surveillance management for GC. The identification system, called GC discrimination, is now available online at http://lishuyan.lzu.edu.cn/GC/.
Collapse
Affiliation(s)
| | | | | | | | - Lili Xi
- First Hospital of Lanzhou University
| | - Ying Ma
- physician in Gansu Provincial Maternity and Child-care Hospital
| | | | - Xiaoying Xu
- physician of First Hospital of Lanzhou University
| | | | | |
Collapse
|
39
|
Tang B, Yang S. Involvement of Heparanase in Gastric Cancer Progression and Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:351-363. [PMID: 32274717 DOI: 10.1007/978-3-030-34521-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparanase is upregulated in various tumors, and its expression is closely associated with tumor growth, angiogenesis and metastasis, which accomplishes this mainly through degrading heparan sulfate and releasing heparin-binding growth factors thereby influencing multiple signaling pathways. In addition to its enzymatic degrading activity, heparanase can act via its non-enzymatic mechanisms that directly regulate various signaling. This review mainly focuses on the expression levels and role of heparanase in gastric cancer, and multiple genes and mechanisms regulating heparanase expression in gastric cancer. Furthermore, the development of heparanase-targeted immunotherapy and its potential application for treating gastric cancer are discussed.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
40
|
Sexton RE, Hallak MNA, Uddin MH, Diab M, Azmi AS. Gastric Cancer Heterogeneity and Clinical Outcomes. Technol Cancer Res Treat 2020; 19:1533033820935477. [PMID: 32799763 PMCID: PMC7432987 DOI: 10.1177/1533033820935477] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Gastric adenocarcinoma is a highly aggressive disease with poor overall survival. The aggressive nature of this disease is in part due to the high intra and inter tumoral heterogeneity and also due to the late diagnosis at presentation. Once progression occurs, treatment is more difficult due to the adaptation of tumors, which acquires resistance to commonly used chemotherapeutics. In this report, using publicly available data sets and pathway analysis, we highlight the vast heterogeneity of gastric cancer by investigating genes found to be significantly perturbed. We found several upregulated genes in the diffuse gastric cancer subtypes share similarity to gastric cancer as a whole which can be explained by the increase in this subtype of gastric cancer throughout the world. We report significant downregulation of genes that are underrepresented within the literature, such as ADH7, GCNT2, and LIF1, while other genes have not been explored within gastric cancer to the best of our knowledge such as METTL7A, MAL, CWD43, and SLC2A12. We identified gender to be another heterogeneous component of this disease and suggested targeted treatment strategies specific to this heterogeneity. In this study, we provide an in-depth exploration of the molecular landscape of gastric cancer in order to shed light onto novel areas of gastric cancer research and explore potential new therapeutic targets.
Collapse
Affiliation(s)
- Rachel E. Sexton
- Department of Oncology, Wayne State University School of
Medicine, Detroit, MI, USA
| | | | - Md. Hafiz Uddin
- Department of Oncology, Wayne State University School of
Medicine, Detroit, MI, USA
| | - Maria Diab
- Department of Oncology, Wayne State University School of
Medicine, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Oncology, Wayne State University School of
Medicine, Detroit, MI, USA
| |
Collapse
|
41
|
Zhang Z, Wang C, Zhang Y, Yu S, Zhao G, Xu J. CircDUSP16 promotes the tumorigenesis and invasion of gastric cancer by sponging miR-145-5p. Gastric Cancer 2020; 23:437-448. [PMID: 31776711 PMCID: PMC7165161 DOI: 10.1007/s10120-019-01018-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) as a novel subgroup of non-coding RNAs act a critical role in the pathogenesis of gastric cancer (GC). However, the underlying mechanisms by which hsa_circ_0003855 (circDUSP16) contributes to GC are still undocumented. MATERIALS The differentially expressed circRNAs were identified by GEO database. The association of circDUSP16 or miR-145-5p expression with clinicopathological features and prognosis in GC patients was analyzed by FISH and TCGA-seq data set. Loss- and gain-of-function experiments as well as a xenograft tumor model were performed to assess the role of circDUSP16 in GC cells. circDUSP16-specific binding with miR-145-5p was confirmed by bioinformatic analysis, luciferase reporter, and RNA immunoprecipitation assays. RESULTS The expression levels of circDUSP16 were markedly increased in GC tissue samples and acted as an independent prognostic factor of poor survival in patients with GC. Knockdown of circDUSP16 repressed the cell viability, colony formation, and invasive potential in vitro and in vivo, but ectopic expression of circDUSP16 reversed these effects. Moreover, circDUSP16 possessed a co-localization with miR-145-5p in the cytoplasm, and acted as a sponge of miR-145-5p, which attenuated circDUSP16-induced tumor-promoting effects and IVNS1ABP expression in GC cells. MiR-145-5p had a negative correlation with circDUSP16 expression and its low expression was associated with poor survival in GC patients. CONCLUSIONS CircDUSP16 facilitates the tumorigenesis and invasion of GC cells by sponging miR-145-5p, and may provide a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127 China
| | - Chaojie Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127 China
| | - Yeqian Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127 China
| | - Site Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127 China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127 China
| | - Jia Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pu Jian Road, Shanghai, 200127 China
| |
Collapse
|
42
|
Zhou HY, Wu CQ, Bi EX. MiR-96-5p inhibition induces cell apoptosis in gastric adenocarcinoma. World J Gastroenterol 2019; 25:6823-6834. [PMID: 31885423 PMCID: PMC6931005 DOI: 10.3748/wjg.v25.i47.6823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric adenocarcinoma (GAC) mortality rates have remained relatively changed over the past 30 years, and it continues to be one of the leading causes of cancer-related death.
AIM To search for novel miRNAs related to GAC prognosis and further investigate the effect of miR-96-5p on MGC-803 cells.
METHODS The miRNA expression profile data of GAC based on The Cancer Genome Atlas were obtained and used to screen differently expressed miRNAs (DEMs) and DEMs related to GAC prognosis. Then, the expression of DEMs related to GAC prognosis was identified in GAC tumor samples and adjacent normal samples by qRT-PCR. The target gene, ZDHHC5, of miR-96-5p was predicted using TargetScan, miRTarBase, and miRDB databases and confirmed by luciferase reporter assay. Furthermore, MGC-803 cells were transfected with inhibitor NC, miR-96-5p inhibitor, si-ZDHHC5, or miR-96-5p inhibitor + si-ZDHHC5, and then cell apoptosis was detected by flow cytometry. The expression of ZDHHC5, Bcl-2, and COX-2 was detected using western blotting.
RESULTS A total of 299 DEMs and 35 DEMs related to GAC prognosis were screened based on The Cancer Genome Atlas. Then compared with adjacent normal samples, the levels of miR-96-5p, miR-222-5p, and miR-652-5p were remarkably increased, while miR-125-5p, miR-145-3p, and miR-379-3p levels were reduced in GAC tumor samples (P < 0.01), which were consistent with bioinformatics analysis. Furthermore, ZDHHC5 was defined as a direct target gene of miR-96-5p. miR-96-5p inhibition increased the number of apoptotic cells as well as promoted the expression of ZDHHC5, Bcl-2, and COX-2 in MGC-803 cells (P < 0.01). After ZDHHC5 inhibition, the number of apoptotic cells and the expression of ZDHHC5, Bcl-2, and COX-2 were reduced. The addition of an miR-96-5p inhibitor partly reversed these effects (P < 0.01).
CONCLUSION Our findings identified six miRNAs related to GAC prognosis and suggested that downregulated miR-96-5p might induce cell apoptosis via upregulating ZDHHC5 expression in MGC-803 cells.
Collapse
Affiliation(s)
- He-Ying Zhou
- Department of General Surgery, Jinan Seventh People's Hospital, Jinan 251400, Shandong Province, China
| | - Chun-Qi Wu
- Department of General Surgery, Jinan Seventh People's Hospital, Jinan 251400, Shandong Province, China
| | - En-Xu Bi
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao 266555, Shandong Province, China
| |
Collapse
|
43
|
Hu XH, Dai J, Shang HL, Zhao ZX, Hao YD. miR-1285-3p is a potential prognostic marker in human osteosarcoma and functions as a tumor suppressor by targeting YAP1. Cancer Biomark 2019; 25:1-10. [PMID: 31006663 DOI: 10.3233/cbm-180013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite the major advances in the treatment, the overall survival of osteosarcoma remains poor. MicroRNAs (miRNAs) are involved in tumorigenesis and progression though modulating their target genes. In the present study, the roles of miR-1285-3p in osteosarcoma was investigated. METHODS Microarray profiling was applied to distinguish the up and down regulated microRNAs in osteosarcoma. Quantitative real-time PCR (qRT-PCR) assay was performed to detect the expression of miR-1285-3p and YAP1 expression. MTT and transwell assays were carried out to determine the cells proliferation and invasion respectively. Moreover, dual luciferase reporter assay was performed to evaluate the binding efficiency between miR-1285-3p and the 3'UTR of YAP1. RESULTS MiR-1285-3p was down regulated in osteosarcoma tissues and cell lines and the reduction of miR-1285-3p expression predicted a poor overall survival of osteosarcoma patients. Ectopic expression of miR-1285-3p inhibited osteosarcoma cell proliferation, colony formation and invasion. In addition, YAP1 was further demonstrated as a direct target of miR-1285-3p. Moreover, overexpression of YAP1 reversed the inhibitory effects of miR-1285-3p on osteosarcoma cells proliferation and invasion. CONCLUSIONS MiR-1285-3p which was low expressed in osteosarcoma inhibited the proliferation and invasion of osteosarcoma cells via direct targeting YAP1. These results suggested that miR-1285-3p might be a potential therapeutic targets and biomarker in osteosarcoma.
Collapse
|
44
|
Rossi T, Tedaldi G, Petracci E, Abou Khouzam R, Ranzani GN, Morgagni P, Saragoni L, Monti M, Calistri D, Ulivi P, Molinari C. E-cadherin Downregulation and microRNAs in Sporadic Intestinal-Type Gastric Cancer. Int J Mol Sci 2019; 20:ijms20184452. [PMID: 31509966 PMCID: PMC6769612 DOI: 10.3390/ijms20184452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
CDH1 gene, encoding E-cadherin, is a tumor suppressor gene frequently altered in gastric cancers (GCs) of both diffuse (DGC) and intestinal (IGC) histotypes, albeit through different mechanisms. The study aimed to characterize CDH1 expression in sporadic IGC and to investigate whether microRNAs (miRs) are involved in its transcriptional control. We evaluated CDH1 expression by quantitative real-time PCR (RT-qPCR) in 33 IGC patients and found a significant downregulation in tumor tissues compared to normal counterparts (p-value = 0.025). Moreover, 14 miRs, predicted to be involved in CDH1 regulation in both a direct and indirect manner, were selected and analyzed by RT-qPCR in an independent case series of 17 IGCs and matched normal tissues. miR-101, miR-26b, and miR-200c emerged as significantly downregulated and were confirmed in the case series of 33 patients (p-value < 0.001). Finally, we evaluated EZH2 expression, a target of both miR-101 and miR-26b, which showed significant upregulation in IGCs (p-value = 0.005). A significant inverse correlation was observed between EZH2 overexpression and CDH1, miR-101, and miR-26b levels (p-value < 0.001). Our results reinforce the link between CDH1 and IGC, highlighting the role of miRs in its transcriptional control and improving our understanding of GC subtypes and biomarkers.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Gianluca Tedaldi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Raefa Abou Khouzam
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | | | - Paolo Morgagni
- General and Oncologic Surgery, Department of Surgery, G.B. Morgagni L.Pierantoni General Hospital, AUSL Romagna, 47121 Forlì, Italy.
| | - Luca Saragoni
- Department of Pathology, AUSL Romagna, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy.
| | - Manlio Monti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| |
Collapse
|
45
|
Li H, He C, Wang X, Wang H, Nan G, Fang L. MicroRNA-183 affects the development of gastric cancer by regulating autophagy via MALAT1-miR-183-SIRT1 axis and PI3K/AKT/mTOR signals. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3163-3171. [PMID: 31352788 DOI: 10.1080/21691401.2019.1642903] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huiying Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xuekui Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hai Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Guangxian Nan
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Fang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
46
|
Zhang Z, Dong Y, Hua J, Xue H, Hu J, Jiang T, Shi L, Du J. A five-miRNA signature predicts survival in gastric cancer using bioinformatics analysis. Gene 2019; 699:125-134. [DOI: 10.1016/j.gene.2019.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
|
47
|
Yu C, Tian F, Liu J, Su M, Wu M, Zhu X, Qian W. Circular RNA cMras inhibits lung adenocarcinoma progression via modulating miR-567/PTPRG regulatory pathway. Cell Prolif 2019; 52:e12610. [PMID: 31012177 PMCID: PMC6536402 DOI: 10.1111/cpr.12610] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives Circular RNA, a type of RNA formed by a covalently closed loop, possesses sophisticated abilities of gene regulation in tumorigenesis and metastasis. However, the role of circRNAs on lung adenocarcinoma (LUAD) remains largely unknown. Materials and methods The role of cMras was examined both in vitro and in vivo. cMras expression in LUAD tissues was determined by quantitative real‐time PCR (qRT‐PCR). Downstream targets of cMras were predicted by bioinformatics tools and confirmed by RNA immunoprecipitation assay and luciferase assay. qRT‐PCR and western blot assay were used to detect the expression of specific targets. Results Thirty‐six paired LUAD and healthy tissues were collected and cMras resulted significantly downregulated in cancerous tissues. Its expression was negatively associated with tumour stages. cMras overexpression suppressed LUAD growth and metastasis, while endogenous cMras silencing resulted in the opposite effects. Bioinformatics analysis and experimental evidence confirmed that cMras was a sponge of miRNA‐567 and released its direct target, PTPRG. cMras overexpression decreased miR‐567 expression and subsequently increased PTPRG expression, while increased miRNA‐567 expression blocked the effects induced by cMras. Moreover, PTPRG was downregulated in LUAD and patients with low PTPRG expression exhibited significantly poor prognosis. These results suggested that cMras/miR‐567/PTPRG regulatory pathway might be associated to LUAD tumorigenesis and development. Conclusions A novel circular RNA cMras and its functions were identified, discovering a cMras/miR‐567/PTPRG regulatory pathway in LUAD tumorigenesis and development.
Collapse
Affiliation(s)
- Chengtao Yu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Tian
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jun Liu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minhui Su
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Min Wu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuejun Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wang Qian
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
48
|
Xu XZ, Li XA, Luo Y, Liu JF, Wu HW, Huang G. MiR-9 promotes synovial sarcoma cell migration and invasion by directly targeting CDH1. Int J Biochem Cell Biol 2019; 112:61-71. [PMID: 30959202 DOI: 10.1016/j.biocel.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Invasion and metastasis of synovial sarcoma is the leading cause of death in patients. Epithelial mesenchymal transition (EMT) accelerates tumor cell invasion and metastasis. MiR-9 promotes tumor metastasis by inducing EMT. However, the role of miR-9 in synovial sarcoma is still not clear. METHODS Overexpression or knockdown of miR-9 in human synovial sarcoma (HSS) cell lines was carried out by miR-9 mimics or miR-9 inhibitors transfection. Cell proliferation, apoptosis, migration and invasion were detected using MTS and colony formation assays, flow cytometry, wound healing and transwell assays, respectively. Luciferase reporter assay was applied to study the interaction between miR-9 and CDH1. Nude mice xenograft model was established, and immunohistochemistry staining assessed Ki-67 level. The related mRNA and protein expression levels were evaluated by qRT-PCR and Western blotting. RESULTS The bioinformatics analyses and luciferase reporter assay showed that miR-9 can target CDH1 3'-UTR. Moreover, miR-9 could induce EMT of HSS cells via targeting CDH1. The negative regulation of miR-9 on CDH1 expression was also confirmed in a mouse xenograft model of synovial sarcoma. Furthermore, miR-9 was observed to induce HSS cell proliferation, migration and invasion and inhibit apoptosis. MAPK/ERK and Wnt/β-catenin signal pathways were activated by the miR-9 overexpression in HSS cells, and then further enhancing tumorigenesis of HSS, which was further confirmed in the mouse model. CONCLUSION MiR-9 induces EMT by targeting CDH1, and activates MAPK/ERK and Wnt/β-catenin signal pathways, thus promoting HSS tumorigenesis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Movement
- Epithelial-Mesenchymal Transition/genetics
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sarcoma, Synovial/genetics
- Sarcoma, Synovial/metabolism
- Sarcoma, Synovial/pathology
Collapse
Affiliation(s)
- Xue-Zheng Xu
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Xian-An Li
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yi Luo
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Jian-Fan Liu
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Hong-Wei Wu
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Gang Huang
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
49
|
Man Z, Chen T, Zhu Z, Zhang H, Ao L, Xi L, Zhou J, Tang Z. High expression of TRIM36 is associated with radiosensitivity in gastric cancer. Oncol Lett 2019; 17:4401-4408. [PMID: 30944633 PMCID: PMC6444413 DOI: 10.3892/ol.2019.10122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Radiotherapy is one of the main adjuvant treatments for gastric cancer (GC) that can effectively reduce local recurrence and improve survival rates. However, radiotherapy may result in cytotoxicity and not benefit all patients. This highlights the requirement for identifying potential radiosensitivity genes in GC. The current study investigated the association between tripartite motif containing 36 (TRIM36) status and the prognosis of patients with GC receiving radiotherapy. A total of 371 patients with GC were selected from The Cancer Genome Atlas and randomly divided into test and the validation groups. The results revealed that TRIM36 expression was not associated with the overall survival (OS) rate. Patients who received radiotherapy with high TRIM36 expression had an improved OS rate compared with patients who did not receive radiotherapy in the test group, as demonstrated by univariate analysis [hazard ratio (HR), 0.062; 95% confidence interval (CI), 0.008–0.462; P=0.007] and multivariate analysis (HR, 0.095; 95% CI, 0.012–0.748; P=0.025). In the validation group, patients with high TRIM36 expression had decreased mortality risk when they received radiotherapy compared with patients who did not receive radiotherapy, as determined by univariate analysis (HR, 0.190; 95% CI, 0.067–0.540; P=0.002) and multivariate analysis (HR, 0.075; 95% CI, 0.020–0.276; P<0.001). However, for patients with low expression, no significant difference was identified in the overall survival rates between the radiotherapy and non-radiotherapy groups. Chi-squared analysis revealed that the expression status of TRIM36 was an independent factor and was not associated with clinicopathological factors. The results indicated that patients with high TRIM36 expression receiving radiotherapy exhibited an improved OS rate. TRIM36 may therefore be an important factor affecting the clinical prognosis of patients with GC receiving radiotherapy and may be considered as a potential radiosensitivity gene signature.
Collapse
Affiliation(s)
- Zhongsong Man
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tao Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhongwei Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haitao Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lei Ao
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liting Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
50
|
Zhang H, Wang J, Chen X, Kang L, Lin M. Overexpression of c‐Ski promotes cell proliferation, invasion and migration of gastric cancer associated fibroblasts. Kaohsiung J Med Sci 2019; 35:214-221. [PMID: 30896889 DOI: 10.1002/kjm2.12042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Hui Zhang
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| | - Jin‐Si Wang
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| | - Xiao‐Geng Chen
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| | - Li Kang
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| | - Meng‐Bo Lin
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| |
Collapse
|