1
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Savarese G, Lindberg F, Filippatos G, Butler J, Anker SD. Mineralocorticoid receptor overactivation: targeting systemic impact with non-steroidal mineralocorticoid receptor antagonists. Diabetologia 2024; 67:246-262. [PMID: 38127122 PMCID: PMC10789668 DOI: 10.1007/s00125-023-06031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 12/23/2023]
Abstract
The overactivation of the mineralocorticoid receptor (MR) promotes pathophysiological processes related to multiple physiological systems, including the heart, vasculature, adipose tissue and kidneys. The inhibition of the MR with classical MR antagonists (MRA) has successfully improved outcomes most evidently in heart failure. However, real and perceived risk of side effects and limited tolerability associated with classical MRA have represented barriers to implementing MRA in settings where they have been already proven efficacious (heart failure with reduced ejection fraction) and studying their potential role in settings where they might be beneficial but where risk of safety events is perceived to be higher (renal disease). Novel non-steroidal MRA have distinct properties that might translate into favourable clinical effects and better safety profiles as compared with MRA currently used in clinical practice. Randomised trials have shown benefits of non-steroidal MRA in a range of clinical contexts, including diabetic kidney disease, hypertension and heart failure. This review provides an overview of the literature on the systemic impact of MR overactivation across organ systems. Moreover, we summarise the evidence from preclinical studies and clinical trials that have set the stage for a potential new paradigm of MR antagonism.
Collapse
Affiliation(s)
- Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden.
| | - Felix Lindberg
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gerasimos Filippatos
- Department of Cardiology, University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Internal Medicine, University of Mississippi, Jackson, MS, USA
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany.
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
3
|
Hu JR, Abdullah A, Nanna MG, Soufer R. The Brain-Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease. Curr Cardiol Rep 2023; 25:1745-1758. [PMID: 37994952 PMCID: PMC10908342 DOI: 10.1007/s11886-023-01990-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE OF REVIEW The role of neuroimmune modulation and inflammation in cardiovascular disease has been historically underappreciated. Physiological connections between the heart and brain, termed the heart-brain axis (HBA), are bidirectional, occur through a complex network of autonomic nerves/hormones and cytokines, and play important roles in common disorders. RECENT FINDINGS At the molecular level, advances in the past two decades reveal complex crosstalk mediated by the sympathetic and parasympathetic nervous systems, the renin-angiotensin aldosterone and hypothalamus-pituitary axes, microRNA, and cytokines. Afferent pathways amplify proinflammatory signals via the hypothalamus and brainstem to the periphery, promoting neurogenic inflammation. At the organ level, while stress-mediated cardiomyopathy is the prototypical disorder of the HBA, cardiac dysfunction can result from a myriad of neurologic insults including stroke and spinal injury. Atrial fibrillation is not necessarily a causative factor for cardioembolic stroke, but a manifestation of an abnormal atrial substrate, which can lead to the development of stroke independent of AF. Central and peripheral neurogenic proinflammatory factors have major roles in the HBA, manifesting as complex bi-directional relationships in common conditions such as stroke, arrhythmia, and cardiomyopathy.
Collapse
Affiliation(s)
- Jiun-Ruey Hu
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Ahmed Abdullah
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Michael G Nanna
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Robert Soufer
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA.
- VA Connecticut Healthcare System, 950 Campbell Ave, -111B, West Haven, CT, 06516, USA.
| |
Collapse
|
4
|
Strain MM, Espinoza L, Fedorchak S, Littlejohn EL, Andrade MA, Toney GM, Boychuk CR. Early central cardiovagal dysfunction after high fat diet in a murine model. Sci Rep 2023; 13:6550. [PMID: 37085567 PMCID: PMC10121716 DOI: 10.1038/s41598-023-32492-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
High fat diet (HFD) promotes cardiovascular disease and blunted cardiac vagal regulation. Temporal onset of loss of cardiac vagal control and its underlying mechanism are presently unclear. We tested our hypothesis that reduced central vagal regulation occurs early after HFD and contributes to poor cardiac regulation using cardiovascular testing paired with pharmacology in mice, molecular biology, and a novel bi-transgenic mouse line. Results show HFD, compared to normal fat diet (NFD), significantly blunted cardio/pulmonary chemoreflex bradycardic responses after 15 days, extending as far as tested (> 30 days). HFD produced resting tachycardia by day 3, reflected significant loss of parasympathetic tone. No differences in bradycardic responses to graded electrical stimulation of the distal cut end of the cervical vagus indicated diet-induced differences in vagal activity were centrally mediated. In nucleus ambiguus (NA), surface expression of δ-subunit containing type A gamma-aminobutyric acid receptors (GABAA(δ)R) increased at day 15 of HFD. Novel mice lacking δ-subunit expression in vagal motor neurons (ChAT-δnull) failed to exhibit blunted reflex bradycardia or resting tachycardia after two weeks of HFD. Thus, reduced parasympathetic output contributes to early HFD-induced HR dysregulation, likely through increased GABAA(δ)Rs. Results underscore need for research on mechanisms of early onset increases in GABAA(δ)R expression and parasympathetic dysfunction after HFD.
Collapse
Affiliation(s)
- Misty M Strain
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Erica L Littlejohn
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA.
| |
Collapse
|
5
|
Gomez-Sanchez CE, Gomez-Sanchez EP. The Mineralocorticoid Receptor and the Heart. Endocrinology 2021; 162:6310157. [PMID: 34175946 DOI: 10.1210/endocr/bqab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 01/30/2023]
Affiliation(s)
- Celso E Gomez-Sanchez
- Medical Service, G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Medical Service, G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
6
|
Dyavanapalli J. Novel approaches to restore parasympathetic activity to the heart in cardiorespiratory diseases. Am J Physiol Heart Circ Physiol 2020; 319:H1153-H1161. [PMID: 33035444 DOI: 10.1152/ajpheart.00398.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neural control of the heart is regulated by sympathetic and parasympathetic divisions of the autonomic nervous system, both opposing each other to maintain cardiac homeostasis via regulating heart rate, conduction velocity, force of contraction, and coronary blood flow. Sympathetic hyperactivity and diminished parasympathetic activity are the characteristic features of many cardiovascular disease states including hypertension, myocardial ischemia, and arrhythmias that result in heart failure. Restoring parasympathetic activity to the heart has recently been identified as the promising approach to treat such conditions. However, approaches that used vagal nerve stimulation have been shown to be unsuccessful in heart failure. This review focuses on novel chemogenetic approaches used to identify the cardioprotective nature of activating neural points along the vagal pathway (both central and peripheral) while being selectively therapeutic in heart failure and obstructive sleep apnea.
Collapse
Affiliation(s)
- Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
7
|
Naguib YW, Givens BE, Ho G, Yu Y, Wei SG, Weiss RM, Felder RB, Salem AK. An injectable microparticle formulation for the sustained release of the specific MEK inhibitor PD98059: in vitro evaluation and pharmacokinetics. Drug Deliv Transl Res 2020; 11:182-191. [PMID: 32378175 DOI: 10.1007/s13346-020-00758-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PD98059 is a reversible MEK inhibitor that we are investigating as a potential treatment for neurochemical changes in the brain that drive neurohumoral excitation in heart failure. In a rat model that closely resembles human heart failure, we found that central administration of PD98059 inhibits phosphorylation of ERK1/2 in the paraventricular nucleus of the hypothalamus, ultimately reducing sympathetic excitation which is a major contributor to clinical deterioration. Studies revealed that the pharmacokinetics and biodistribution of PD98059 match a two-compartment model, with drug found in brain as well as other body tissues, but with a short elimination half-life in plasma (approximately 73 min) that would severely limit its potential clinical usefulness in heart failure. To increase its availability to tissues, we prepared a sustained release PD98059-loaded PLGA microparticle formulation, using an emulsion solvent evaporation technique. The average particle size, yield percent, and encapsulation percent were found to be 16.73 μm, 76.6%, and 43%, respectively. In vitro drug release occurred over 4 weeks, with no noticeable burst release. Following subcutaneous injection of the microparticles in rats, steady plasma levels of PD98059 were detected by HPLC for up to 2 weeks. Furthermore, plasma and brain levels of PD98059 in rats with heart failure were detectable by LC/MS, despite expected erratic absorption. These findings suggest that PD98059-loaded microparticles hold promise as a novel therapeutic intervention countering sympathetic excitation in heart failure, and perhaps in other disease processes, including cancers, in which activated MAPK signaling is a significant contributing factor. Graphical abstract.
Collapse
Affiliation(s)
- Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Brittany E Givens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.,Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Giang Ho
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Yang Yu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Francois M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Robert B Felder
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Veterans Affairs Medical Center, Iowa City, IA, 52242, USA.,Francois M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Hay M, Polt R, Heien ML, Vanderah TW, Largent-Milnes TM, Rodgers K, Falk T, Bartlett MJ, Doyle KP, Konhilas JP. A Novel Angiotensin-(1-7) Glycosylated Mas Receptor Agonist for Treating Vascular Cognitive Impairment and Inflammation-Related Memory Dysfunction. J Pharmacol Exp Ther 2019; 369:9-25. [PMID: 30709867 PMCID: PMC6413771 DOI: 10.1124/jpet.118.254854] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that decreased brain blood flow, increased reactive oxygen species (ROS) production, and proinflammatory mechanisms accelerate neurodegenerative disease progression such as that seen in vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer's disease and related dementias. There is a critical clinical need for safe and effective therapies for the treatment and prevention of cognitive impairment known to occur in patients with VCID and chronic inflammatory diseases such as heart failure (HF), hypertension, and diabetes. This study used our mouse model of VCID/HF to test our novel glycosylated angiotensin-(1-7) peptide Ang-1-6-O-Ser-Glc-NH2 (PNA5) as a therapy to treat VCID and to investigate circulating inflammatory biomarkers that may be involved. We demonstrate that PNA5 has greater brain penetration compared with the native angiotensin-(1-7) peptide. Moreover, after treatment with 1.0/mg/kg, s.c., for 21 days, PNA5 exhibits up to 10 days of sustained cognitive protective effects in our VCID/HF mice that last beyond the peptide half-life. PNA5 reversed object recognition impairment in VCID/HF mice and rescued spatial memory impairment. PNA5 activation of the Mas receptor results in a dose-dependent inhibition of ROS in human endothelial cells. Last, PNA5 treatment decreased VCID/HF-induced activation of brain microglia/macrophages and inhibited circulating tumor necrosis factor α, interleukin (IL)-7, and granulocyte cell-stimulating factor serum levels while increasing that of the anti-inflammatory cytokine IL-10. These results suggest that PNA5 is an excellent candidate and "first-in-class" therapy for treating VCID and other inflammation-related brain diseases.
Collapse
Affiliation(s)
- Meredith Hay
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Robin Polt
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Michael L Heien
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Todd W Vanderah
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Kathleen Rodgers
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Torsten Falk
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Mitchell J Bartlett
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Kristian P Doyle
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - John P Konhilas
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| |
Collapse
|
9
|
Specific Inhibition of Brain Angiotensin III Formation as a New Strategy for Prevention of Heart Failure After Myocardial Infarction. J Cardiovasc Pharmacol 2019; 73:82-91. [DOI: 10.1097/fjc.0000000000000638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Li P, Jie Y, YuGen S, Yu W, Yan S. High mobility group box-1 in hypothalamic paraventricular nuclei attenuates sympathetic tone in rats at post-myocardial infarction. Cardiol J 2018; 26:555-563. [PMID: 30338842 DOI: 10.5603/cj.a2018.0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Inflammation is associated with increased sympathetic drive in cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity at post-myocardial infarction (MI). High mobility group box-1 (HMGB1) exhibits inflammatory cytokine like activity in the extracellular space. Inflammation is associated with increased sympathetic drive in cardiovscular diseases. However, the role of HMGB1 in sympathetic nerve activity at post-MI remains unknown. The aim of the present study is to determine the role and mechanism of HMGB1 in the PVN, in terms of sympathetic activity and arrhythmia after MI. METHODS Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce MI. Anti-HMGB1 polyclonal antibody or control IgG was bilaterally microinjected into the PVN (5 μL every second day for seven consecutive days). Then, renal sympathetic nerve activity (RSNA) was recorded. The association between ventricular arrhythmias (VAs) and MI was evaluated using programmed electrophysiological stimulation. After performing electrophysiological experiments in vivo, immunohistochemistry was used to detect the distribution of HMGB1, while Western blot was used to detect the expression of HMGB1 and p-ERK in the PVN of MI rats. RESULTS HMGB1 and p-ERK were upregulated in the PVN in rats at post-MI. Moreover, bilateral PVN microinjection of anti-HMGB1 polyclonal antibody reversed the expression of HMGB1 and p-ERK, and consequently decreased the baseline RSNA and inducible VAs, when compared to those in sham rats. CONCLUSIONS These results suggest that MI causes the translocation of HMGB1 in the PVN, which leads to sympathetic overactivation through the ERK1/2 signaling pathway. The bilateral PVN microinjection of anti-HMGB1 antibody can be an effective therapy for MI-induced arrhythmia.
Collapse
Affiliation(s)
- Pang Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| | - Yin Jie
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shi YuGen
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wang Yu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
11
|
Wszedybyl-Winklewska M, Wolf J, Szarmach A, Winklewski PJ, Szurowska E, Narkiewicz K. Central sympathetic nervous system reinforcement in obstructive sleep apnoea. Sleep Med Rev 2018; 39:143-154. [DOI: 10.1016/j.smrv.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/30/2023]
|
12
|
Hypothalamic and inflammatory basis of hypertension. Clin Sci (Lond) 2017; 131:211-223. [PMID: 28057892 DOI: 10.1042/cs20160001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is a major health problem with great consequences for public health. Despite its role as the primary cause of significant morbidity and mortality associated with cardiovascular disease, the pathogenesis of essential hypertension remains largely unknown. The central nervous system (CNS) in general, and the hypothalamus in particular, are intricately involved in the development and maintenance of hypertension. Over the last several decades, the understanding of the brain's role in the development of hypertension has dramatically increased. This brief review is to summarize the neural mechanisms of hypertension with a focus on neuroendocrine and neurotransmitter involvement, highlighting recent findings that suggest that hypothalamic inflammation disrupts key signalling pathways to affect the central control of blood pressure, and therefore suggesting future development of interventional strategies that exploit recent findings pertaining to the hypothalamic control of blood pressure as well as the inflammatory-sympathetic mechanisms involved in hypertension.
Collapse
|
13
|
Relevance of Immune-Sympathetic Nervous System Interplay for the Development of Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 884:37-43. [PMID: 26453069 DOI: 10.1007/5584_2015_169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Historically, the sympathetic nervous system (SNS) has been mostly associated with the 'fight or flight' response and the regulation of cardiovascular function. However, evidence over the past 30 years suggests that SNS may also influence the function of immune cells. In this review we describe the basic research being done in the area of SNS regulation of immune function. Further, we show that the SNS-immune interplay during circadian rhythm may modulate the robustness of the inflammatory response, critical for survival during periods of increased activity. Finally, new concepts of a close relationship between these systems in the pathogenesis of hypertension are discussed.
Collapse
|
14
|
Han C, Rice MW, Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311:E32-41. [PMID: 27166279 PMCID: PMC4967151 DOI: 10.1152/ajpendo.00012.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interdisciplinary studies in the research fields of endocrinology and immunology show that obesity-associated overnutrition leads to neuroinflammatory molecular changes, in particular in the hypothalamus, chronically causing various disorders known as elements of metabolic syndrome. In this process, neural or hypothalamic inflammation impairs the neuroendocrine and autonomic regulation of the brain over blood pressure and glucose homeostasis as well as insulin secretion, and elevated sympathetic activation has been appreciated as a critical mediator. This review describes the involved physiology and mechanisms, with a focus on glucose and blood pressure balance, and suggests that neuroinflammation employs the autonomic nervous system to mediate the development of diabetes and hypertension.
Collapse
Affiliation(s)
- Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Matthew W Rice
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Abstract
Circulatory homeostasis is associated with interactions between multiple organs, and the disruption of dynamic circulatory homeostasis could be considered as heart failure. The brain is the central unit integrating neural and neurohormonal information from peripheral organs and controlling peripheral organs using the autonomic nervous system. Heart failure is worsened by abnormal sympathoexcitation associated with baroreflex failure and/or chemoreflex activation, and by vagal withdrawal, and autonomic modulation therapies have benefits for heart failure. Recently, we showed that baroreflex failure induces striking volume intolerance independent of left ventricular dysfunction. Many studies have indicated that an overactive renin-angiotensin system, excess oxidative stress and excess inflammation, and/or decreased nitric oxide in the brain cause sympathoexcitation in heart failure. We have demonstrated that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as a vasomotor center, causes prominent sympathoexcitation in heart failure model rats. Interestingly, systemic infusion of angiotensin II directly affects brain AT1R with sympathoexcitation and left ventricular diastolic dysfunction. Moreover, we have demonstrated that targeted deletion of AT1R in astrocytes strikingly improved survival with prevention of left ventricular remodeling and sympathoinhibition in myocardial infarction-induced heart failure. From these results, we believe it is possible that AT1R in astrocytes, not in neurons, have a key role in the pathophysiology of heart failure. We would like to propose a novel concept that the brain works as a central processing unit integrating neural and hormonal input, and that the disruption of dynamic circulatory homeostasis mediated by the brain causes heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine
| |
Collapse
|
16
|
Xu B, Li H. Brain mechanisms of sympathetic activation in heart failure: Roles of the renin‑angiotensin system, nitric oxide and pro‑inflammatory cytokines (Review). Mol Med Rep 2015; 12:7823-9. [PMID: 26499491 PMCID: PMC4758277 DOI: 10.3892/mmr.2015.4434] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/10/2015] [Indexed: 12/14/2022] Open
Abstract
Patients with chronic heart failure (CHF) have an insufficient perfusion to the peripheral tissues due to decreased cardiac output. The compensatory mechanisms are triggered even prior to the occurrence of clinical symptoms, which include activation of the sympathetic nervous system (SNS) and other neurohumoral factors. However, the long‑term activation of the SNS contributes to progressive cardiac dysfunction and has toxic effects on the cardiomyocytes. The mechanisms leading to the activation of SNS include changes in peripheral baroreceptor and chemoreceptor reflexes and the abnormal regulation of sympathetic nerve activity (SNA) in the central nervous system (CNS). Recent studies have focused on the role of brain mechanisms in the regulation of SNA and the progression of CHF. The renin‑angiotensin system, nitric oxide and pro‑inflammatory cytokines were shown to be involved in the abnormal regulation of SNA in the CNS. The alteration of these neurohumoral factors during CHF influences the activity of neurons in the autonomic regions and finally increase the sympathetic outflow. The present review summarizes the brain mechanisms contributing to sympathoexcitation in CHF.
Collapse
Affiliation(s)
- Bin Xu
- Department of Cardiology, Shanghai First People's Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Hongli Li
- Department of Cardiology, Shanghai First People's Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
17
|
Central nervous system circuits modified in heart failure: pathophysiology and therapeutic implications. Heart Fail Rev 2015; 19:759-79. [PMID: 24573960 DOI: 10.1007/s10741-014-9427-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathophysiology of heart failure (HF) is characterized by an abnormal activation of neurohumoral systems, including the sympathetic nervous and the renin-angiotensin-aldosterone systems, which have long-term deleterious effects on the disease progression. Perpetuation of this neurohumoral activation is partially dependent of central nervous system (CNS) pathways, mainly involving the paraventricular nucleus of the hypothalamus and some regions of the brainstem. Modifications in these integrative CNS circuits result in the attenuation of sympathoinhibitory and exacerbation of sympathoexcitatory pathways. In addition to the regulation of sympathetic outflow, these central pathways coordinate a complex network of agents with an established pathophysiological relevance in HF such as angiotensin, aldosterone, and proinflammatory cytokines. Central pathways could be potential targets in HF therapy since the current mainstay of HF pharmacotherapy aims primarily at antagonizing the peripheral mechanisms. Thus, in the present review, we describe the role of CNS pathways in HF pathophysiology and as potential novel therapeutic targets.
Collapse
|
18
|
Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U. Brain inflammation and hypertension: the chicken or the egg? J Neuroinflammation 2015; 12:85. [PMID: 25935397 PMCID: PMC4432955 DOI: 10.1186/s12974-015-0306-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Inflammation of forebrain and hindbrain nuclei controlling the sympathetic nervous system (SNS) outflow from the brain to the periphery represents an emerging concept of the pathogenesis of neurogenic hypertension. Angiotensin II (Ang-II) and prorenin were shown to increase production of reactive oxygen species and pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)) while simultaneously decreasing production of interleukin-10 (IL-10) in the paraventricular nucleus of the hypothalamus and the rostral ventral lateral medulla. Peripheral chronic inflammation and Ang-II activity seem to share a common central mechanism contributing to an increase in sympathetic neurogenic vasomotor tone and entailing neurogenic hypertension. Both hypertension and obesity facilitate the penetration of peripheral immune cells in the brain parenchyma. We suggest that renin-angiotensin-driven hypertension encompasses feedback and feedforward mechanisms in the development of neurogenic hypertension while low-intensity, chronic peripheral inflammation of any origin may serve as a model of a feedforward mechanism in this condition.
Collapse
Affiliation(s)
- Pawel J Winklewski
- Institute of Human Physiology, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland.
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego Str. 3c, 02-106, Warsaw, Poland.
| | | | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Marszalkowska Str. 24, 00-576, Warsaw, Poland.
| |
Collapse
|
19
|
Du D, Jiang M, Liu M, Wang J, Xia C, Guan R, Shen L, Ji Y, Zhu D. Microglial P2X₇ receptor in the hypothalamic paraventricular nuclei contributes to sympathoexcitatory responses in acute myocardial infarction rat. Neurosci Lett 2014; 587:22-8. [PMID: 25524407 DOI: 10.1016/j.neulet.2014.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
Several pieces of evidence indicate that the microglial P2X7 receptor (P2X7R) regulate cardiovascular activities. We explored the possible roles of microglial P2X7R in the PVN mediated sympathoexcitatory responses in acute myocardial infarction (AMI) rat. Sprague-Dawley rats underwent coronary artery ligation to induce AMI. The rats received intraperitoneal administration of the P2X7R antagonist Brilliant Blue-G (BBG, 25 or 50 mg kg(-1), once a day for 5 days) prior to myocardial ischemia. Other rats received bilateral microinjection of P2X7R-siRNA (0.015 or 0.03 nmol 0.1μl per side, once a day for 2 days) targeting P2X7R mRNA into the PVN prior to myocardial ischemia. First, we examined the ATP levels and protein expression P2X7R in the PVN in different ischemia time groups, and we found that the change of P2X7R was positive correlated with the ATP levels in a time-dependent manner. The double-immunofluorescence evidence showed that P2X7R was mainly co-localizated with the microglial marker Iba-1 in the PVN. Second, gene knockdown of P2X7R with P2X7-siRNA or inhibition of P2X7R with BBG reduce the mRNA and protein expression of IL-1β and TNF-α in the PVN of AMI rat. Third, microinjected P2X7-siRNA also suppressed the up-regulation of P2X7R, oxytocin and vasopressin in the PVN of AMI rats. Fourth, P2X7-siRNA and BBG also attenuated the renal sympathetic nerve activity (RSNA) in the AMI rats. Our results indicate that microglial P2X7R activation in PVN mediating the production of proinflammatory cytokines that activate oxytocinergic and vasopressinergic neuron, which augmented the RSNA in the AMI rat.
Collapse
Affiliation(s)
- Dongshu Du
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, PR China
| | - Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Min Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Jin Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, PR China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China.
| |
Collapse
|
20
|
Ruchaya PJ, Antunes VR, Paton JFR, Murphy D, Yao ST. The cardiovascular actions of fractalkine/CX3CL1 in the hypothalamic paraventricular nucleus are attenuated in rats with heart failure. Exp Physiol 2013; 99:111-22. [DOI: 10.1113/expphysiol.2013.075432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Japundžić-Žigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol 2013; 11:218-30. [PMID: 23997756 PMCID: PMC3637675 DOI: 10.2174/1570159x11311020008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/01/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022] Open
Abstract
Vasopressin (VP) and oxytocin (OT) are mainly synthesized in the magnocellular neurons of the paraventricular (PVN) and supraoptic nucleus (SON) of the hypothalamus. Axons from the magnocellular part of the PVN and SON project to neurohypophysis where VP and OT are released in blood to act like hormones. Axons from the parvocellular part of PVN project to extra-hypothalamic brain areas (median eminence, limbic system, brainstem and spinal cord) where VP and OT act like neurotransmitters/modulators. VP and OT act in complementary manner in cardiovascular control, both as hormones and neurotransmitters. While VP conserves water and increases circulating blood volume, OT eliminates sodium. Hyperactivity of VP neurons and quiescence of OT neurons in PVN underlie osmotic adjustment to pregnancy. In most vascular beds VP is a potent vasoconstrictor, more potent than OT, except in the umbilical artery at term. The vasoconstriction by VP and OT is mediated via V1aR. In some vascular beds, i.e. the lungs and the brain, VP and OT produce NO dependent vasodilatation. Peripherally, VP has been found to enhance the sensitivity of the baro-receptor while centrally, VP and OT increase sympathetic outflow, suppresse baro-receptor reflex and enhance respiration. Whilst VP is an important mediator of stress that triggers ACTH release, OT exhibits anti-stress properties. Moreover, VP has been found to contribute considerably to progression of hypertension and heart failure while OT has been found to decrease blood pressure and promote cardiac healing.
Collapse
Affiliation(s)
- Nina Japundžić-Žigon
- Professor of Basic and Clinical Pharmacology and Toxicology, University of Belgrade School of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Dr Subotica 1, Belgrade, Republic of Serbia
| |
Collapse
|
22
|
Jolobe OMP. Evolving strategies for the use of spironolactone in cardiovascular disease. Eur J Intern Med 2013; 24:303-9. [PMID: 23245930 DOI: 10.1016/j.ejim.2012.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 11/11/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Abstract
The evolution of strategies for the use of spironolactone and its analogue, eplerenone, has, over the years, encompassed favourable modification of the natural history of symptomatic heart failure in subjects with subnormal left ventricular ejection fraction (LVEF), and mitigation of the risk of new-onset atrial fibrillation in mildly symptomatic systolic heart failure. Given the fact that these benefits might be attributable, at least in part, to mitigation of severity of diastolic dysfunction when the latter co-exists with subnormal LVEF, what needs to be explored is the possibility of similar benefits from the use of these agents in patients such as those with hypertension, and aortic valve stenosis, in whom left ventricular dysfunction is of the predominantly diastolic subtype.
Collapse
Affiliation(s)
- Oscar M P Jolobe
- Manchester Medical Society, Room 4.54 Simon Building, Brunswick Street, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
23
|
Felgendreger LA, Fluharty SJ, Yee DK, Flanagan-Cato LM. Endogenous angiotensin II-induced p44/42 mitogen-activated protein kinase activation mediates sodium appetite but not thirst or neurohypophysial secretion in male rats. J Neuroendocrinol 2013; 25:97-106. [PMID: 22913624 PMCID: PMC4084568 DOI: 10.1111/j.1365-2826.2012.02376.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/06/2012] [Accepted: 08/19/2012] [Indexed: 11/30/2022]
Abstract
The renin-angiotensin-aldosterone system makes a critical contribution to body fluid homeostasis, and abnormalities in this endocrine system have been implicated in certain forms of hypertension. The peptide hormone angiotensin II (AngII) regulates hydromineral homeostasis and blood pressure by acting on both peripheral and brain targets. In the brain, AngII binds to the angiotensin type 1 receptor (AT1R) to stimulate thirst, sodium appetite and both arginine vasopressin (AVP) and oxytocin (OT) secretion. The present study used an experimental model of endogenous AngII to examine the role of p44/42 mitogen-activated protein kinase (MAPK) as a signalling mechanism to mediate these responses. Animals were given a combined treatment of furosemide and a low dose of captopril (furo/cap), comprising a diuretic and an angiotensin-converting enzyme inhibitor, respectively, to elevate endogenous AngII levels in the brain. Furo/cap induced p44/42 MAPK activation in key brain areas that express AT1R, and this effect was reduced with either a centrally administered AT1R antagonist (irbesartan) or a p44/42 MAPK inhibitor (U0126). Additionally, furo/cap treatment elicited water and sodium intake, and irbesartan markedly reduced both of these behaviours. Central injection of U0126 markedly attenuated furo/cap-induced sodium intake but not water intake. Furthermore, p44/42 MAPK signalling was not necessary for either furo/cap- or exogenous AngII-induced AVP or OT release. Taken together, these results indicate that p44/42 MAPK is required for AngII-induced sodium appetite but not thirst or neurohypophysial secretion. This result may allow for the discovery of more specific downstream targets of p44/42 MAPK to curb sodium appetite, known to exacerbate hypertension, at the same time as leaving thirst and neurohypophysial hormone secretion undisturbed.
Collapse
Affiliation(s)
- L A Felgendreger
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104-6241, USA.
| | | | | | | |
Collapse
|
24
|
Huang BS, Ahmad M, White RA, Marc Y, Llorens-Cortes C, Leenen FHH. Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction. Cardiovasc Res 2012; 97:424-31. [PMID: 23257024 DOI: 10.1093/cvr/cvs420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS In rats post-myocardial infarction (MI), activation of angiotensinergic pathways in the brain contributes to sympathetic hyperactivity and progressive left ventricle (LV) dysfunction. The present study examined whether angiotensin III (Ang III) is one of the main effector peptides of the brain renin-angiotensin system controlling these effects. METHODS AND RESULTS After coronary artery ligation, Wistar rats were infused intracerebroventricularly for 4 weeks via minipumps with vehicle, the aminopeptidase A (APA) inhibitor RB150 (0.3 mg/day), which blocks the formation of brain Ang III, or losartan (0.25 mg/day). Blood pressure (BP), heart rate, and renal sympathetic nerve activity in response to air stress and acute changes in BP were measured, and LV function was evaluated by echocardiography and Millar catheter. At 4 weeks post-MI, brain APA activity was increased, sympatho-excitatory and pressor responses to air stress enhanced, and arterial baroreflex function impaired. LV end-diastolic pressure (LVEDP) was increased and ejection fraction (EF) and maximal first derivative of change in pressure over time (dP/dt(max)) were decreased. Central infusion of RB150 during 4 weeks post-MI normalized brain APA activity and responses to stress and baroreflex function, and improved LVEDP, EF, and dP/dt(max). Central infusion of losartan had similar effects but was somewhat less effective, and had no effect on brain APA activity. CONCLUSION These results indicate that brain APA and Ang III appear to play a pivotal role in the sympathetic hyperactivity and LV dysfunction in rats post-MI. RB150 may be a potential candidate for central nervous system-targeted therapy post-MI.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, H3238, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7
| | | | | | | | | | | |
Collapse
|
25
|
Central mechanisms of abnormal sympathoexcitation in chronic heart failure. Cardiol Res Pract 2012; 2012:847172. [PMID: 22919539 PMCID: PMC3420224 DOI: 10.1155/2012/847172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/24/2012] [Indexed: 12/14/2022] Open
Abstract
It has been recognized that the sympathetic nervous system is abnormally activated in chronic heart failure, and leads to further worsening chronic heart failure. In the treatment of chronic heart failure many clinical studies have already suggested that the inhibition of the abnormal sympathetic hyperactivity by beta blockers is beneficial. It has been classically considered that abnormal sympathetic hyperactivity in chronic heart failure is caused by the enhancement of excitatory inputs including changes in peripheral baroreceptor and chemoreceptor reflexes and chemical mediators that control sympathetic outflow. Recently, the abnormalities in the central regulation of sympathetic nerve activity mediated by brain renin angiotensin system-oxidative stress axis and/or proinflammatory cytokines have been focused. Central renin angiotensin system, proinflammatory cytokines, and the interaction between them have been determined as the target of the sympathoinhibitory treatment in experimental animal models with chronic heart failure. In conclusion, we must recognize that chronic heart failure is a syndrome with an abnormal sympathoexcitation, which is caused by the abnormalities in the central regulation of sympathetic nerve activity.
Collapse
|
26
|
Ufnal M, Drapala A, Sikora M, Szczepanska-Sadowska E. Oral simvastatin reduces the hypertensive response to air-jet stress. Clin Exp Pharmacol Physiol 2012; 39:350-6. [DOI: 10.1111/j.1440-1681.2012.05675.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Marcin Ufnal
- Department of Experimental and Clinical Physiology; Medical University of Warsaw; Warsaw; Poland
| | - Adrian Drapala
- Department of Experimental and Clinical Physiology; Medical University of Warsaw; Warsaw; Poland
| | - Mariusz Sikora
- Department of Experimental and Clinical Physiology; Medical University of Warsaw; Warsaw; Poland
| | - Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology; Medical University of Warsaw; Warsaw; Poland
| |
Collapse
|
27
|
Gomez-Sanchez EP, Gomez-Sanchez CE. Central regulation of blood pressure by the mineralocorticoid receptor. Mol Cell Endocrinol 2012; 350:289-98. [PMID: 21664417 PMCID: PMC3189429 DOI: 10.1016/j.mce.2011.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/19/2011] [Accepted: 05/22/2011] [Indexed: 12/30/2022]
Abstract
Addition of mineralocorticoid receptor (MR) antagonists to standard therapy for heart failure, kidney disease, metabolic syndrome, and diabetes is increasing steadily in response to clinical trials demonstrating clear benefits. In addition to blocking deleterious activity of MR within the heart, vessels and kidneys, MR antagonists target MR in hemodynamic regulatory centers in the brain, thereby decreasing excessive sympathetic nervous system drive, vasopressin release, abnormal baroreceptor function, and circulating and tissue pro-inflammatory cytokines. However, brain MR are also involved with cognition, memory, affect and functions yet to be determined. Understanding specific central mechanisms involved in blood pressure regulation by MR is necessary for the development of agents to target downstream events specific to central hemodynamic regulation, not only to avoid the hypokalemia caused by inhibition of renal tubular MR, but also to avoid untoward long term effects of inhibiting brain MR that are not involved in blood pressure control.
Collapse
Affiliation(s)
- Elise P Gomez-Sanchez
- Research Service, G.V. (Sonny) Montgomery VA Medical Center, 1500 Woodrow Wilson Dr., Jackson, MS 39216, USA.
| | | |
Collapse
|
28
|
Yu Y, Zhang ZH, Wei SG, Weiss RM, Felder RB. Peroxisome proliferator-activated receptor-γ regulates inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorates peripheral manifestations of heart failure. Hypertension 2011; 59:477-84. [PMID: 22083161 DOI: 10.1161/hypertensionaha.111.182345] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR)-γ, a nuclear transcription factor, has been shown to inhibit the production of proinflammatory cytokines and, in peripheral tissues, to downregulate the renin-angiotensin system. PPAR-γ is expressed in key brain areas involved in cardiovascular and autonomic regulation. We hypothesized that activation of central PPAR-γ would reduce sympathetic excitation and ameliorate peripheral manifestations of heart failure (HF) by inhibiting central inflammation and brain renin-angiotensin system activity. Two weeks after coronary artery ligation, HF rats received an intracerebroventricular infusion of the PPAR-γ agonist pioglitazone or vehicle for another 2 weeks. PPAR-γ expression in the paraventricular nucleus of hypothalamus, an important cardiovascular region, was unchanged in HF compared with sham-operated rats. However, PPAR-γ DNA binding activity was reduced, nuclear factor-κB activity was increased, and expression of proinflammatory cytokines and angiotensin II type-1 receptor was augmented in the HF rats. Mean blood pressure response to ganglionic blockade was greater; plasma norepinephrine levels, lung/body weight, right ventricle/body weight, and left ventricular end-diastolic pressure were increased; and maximal left ventricular dP/dt was decreased. All of these findings were ameliorated in HF rats treated with intracerebroventricular pioglitazone, which increased PPAR-γ expression and DNA binding activity in the paraventricular nucleus of hypothalamus. The results demonstrate that cardiovascular and autonomic mechanisms leading to heart failure after myocardial infarction can be modulated by activation of PPAR-γ in the brain. Central PPAR-γ may be a novel target for treatment of sympathetic excitation in myocardial infarction-induced HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Veterans Affairs Medical Center, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
29
|
Zhang ZH, Yu Y, Wei SG, Felder RB. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent. Am J Physiol Heart Circ Physiol 2011; 302:H742-51. [PMID: 22081704 DOI: 10.1152/ajpheart.00856.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, owa City, IA52242, USA.
| | | | | | | |
Collapse
|
30
|
Gao J, Zhong MK, Fan ZD, Yuan N, Zhou YB, Zhang F, Gao XY, Zhu GQ. SOD1 overexpression in paraventricular nucleus improves post-infarct myocardial remodeling and ventricular function. Pflugers Arch 2011; 463:297-307. [PMID: 22006090 DOI: 10.1007/s00424-011-1036-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 02/07/2023]
Abstract
Excessive sympathetic activation contributes to the progression of chronic heart failure. Reactive oxygen species in paraventricular nucleus (PVN) play an important role in the enhanced sympathetic outflow. This study was designed to determine whether superoxide dismutase 1 (SOD1) overexpression in the PVN attenuated the sympathetic activation and cardiac dysfunction in rats after an episode of myocardial infarction (MI). Adenoviral vectors containing human SOD1 (Ad-SOD) or null adenoviral vectors (Ad-null) were immediately microinjected into the PVN of rats with coronary artery ligation or sham operation. At the eighth week, the SOD1 protein level and activity in the PVN increased while the superoxide anions in the PVN decreased in Ad-SOD rats. The SOD1 overexpression in the PVN prevented the increases in left ventricular end-diastolic pressure and volume, and the decreases in ejection fraction and peak velocities of contraction in MI rats. In addition, there was an attenuation of renal sympathetic nerve activity, cardiac sympathetic afferent reflex and plasma norepinephrine level in MI rats. Furthermore, the SOD1 overexpression in the PVN reduced cardiomyocyte size, collagen deposition and the TUNEL-positive cardiomyocytes in MI rats. These results indicate that the SOD1 overexpression in the PVN attenuates the excessive sympathetic activation, myocardial remodeling, cardiomyocyte apoptosis and ventricular dysfunction in MI rats.
Collapse
Affiliation(s)
- Juan Gao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, De W, Zhu GQ. Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 2011; 203:289-97. [PMID: 21624097 DOI: 10.1111/j.1748-1716.2011.02313.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study was to determine the roles of inflammatory cytokines in paraventricular nucleus (PVN) in modulating sympathetic activity, blood pressure and cardiac sympathetic afferent reflex (CSAR). METHODS Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anaesthetized rats with bilateral sinoaortic denervation and vagotomy. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin (BK). The levels of inflammatory cytokines were measured with ELISA. RESULTS The PVN microinjection of pro-inflammatory cytokines (PIC), tumour necrosis factor (TNF)-α or interleukin (IL)-1β, increased the baseline MAP and RSNA, and enhanced the CSAR. Anti-inflammatory cytokines (AIC), IL-4 or IL-13, in the PVN only increased the baseline MAP. In the rats pretreated with TNF-α or IL-1β but not in the rats pretreated with IL-4 or IL-13, sub-response dose of angiotensin II caused significant increases in the MAP and RSNA and enhancement in the CSAR. AT(1) receptor antagonist losartan in the PVN attenuated the effects of angiotensin II, TNF-α and IL-1β, but not the effects of IL-4 and IL-13. Stimulation of cardiac sympathetic afferents with epicardial application of BK increased the levels of TNF-α, IL-1β but not IL-4 in the PVN. CONCLUSION TNF-α or IL-1β in the PVN increases blood pressure and sympathetic outflow and enhances the CSAR, which is partially dependent on the AT(1) receptors, while IL-4 or IL-13 in the PVN only increases blood pressure. There is a synergetic effect of Ang II with TNF-α or IL-1β on blood pressure, sympathetic activity and CSAR.
Collapse
Affiliation(s)
- Z Shi
- Department of Physiology, Nanjing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang ZH, Yu Y, Wei SG, Nakamura Y, Nakamura K, Felder RB. EP₃ receptors mediate PGE₂-induced hypothalamic paraventricular nucleus excitation and sympathetic activation. Am J Physiol Heart Circ Physiol 2011; 301:H1559-69. [PMID: 21803943 DOI: 10.1152/ajpheart.00262.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostaglandin E(2) (PGE(2)), an important mediator of the inflammatory response, acts centrally to elicit sympathetic excitation. PGE(2) acts on at least four E-class prostanoid (EP) receptors known as EP(1), EP(2), EP(3), and EP(4). Since PGE(2) production within the brain is ubiquitous, the different functions of PGE(2) depend on the expression of these prostanoid receptors in specific brain areas. The type(s) and location(s) of the EP receptors that mediate sympathetic responses to central PGE(2) remain unknown. We examined this question using PGE(2), the relatively selective EP receptor agonists misoprostol and sulprostone, and the available selective antagonists for EP(1), EP(3), and EP(4). In urethane-anesthetized rats, intracerebroventricular (ICV) administration of PGE(2), sulprostone or misoprostol increased renal sympathetic nerve activity, blood pressure, and heart rate. These responses were significantly reduced by ICV pretreatment with the EP(3) receptor antagonist; the EP(1) and EP(4) receptor antagonists had little or no effect. ICV PGE(2) or misoprostol increased the discharge of neurons in the hypothalamic paraventricular nucleus (PVN). ICV misoprostol increased the c-Fos immunoreactivity of PVN neurons, an effect that was substantially reduced by the EP(3) receptor antagonist. Real-time PCR detected EP(3) receptor mRNA in PVN, and immunohistochemical studies revealed sparsely distributed EP(3) receptors localized in GABAergic terminals and on a few PVN neurons. Direct bilateral PVN microinjections of PGE(2) or sulprostone elicited sympathoexcitatory responses that were significantly reduced by the EP(3) receptor antagonist. These data suggest that EP(3) receptors mediate the central excitatory effects of PGE(2) on PVN neurons and sympathetic discharge.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zubcevic J, Waki H, Raizada MK, Paton JF. Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. Hypertension 2011; 57:1026-33. [PMID: 21536990 PMCID: PMC3105900 DOI: 10.1161/hypertensionaha.111.169748] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 04/07/2011] [Indexed: 02/07/2023]
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiology and Functional Genomics, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, Kimiidera, Wakayama City, 641-8509, Japan
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Julian F.R. Paton
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS81TD, UK
| |
Collapse
|
34
|
Gomez-Sanchez EP. Mineralocorticoid receptors in the brain and cardiovascular regulation: minority rule? Trends Endocrinol Metab 2011; 22:179-87. [PMID: 21429762 PMCID: PMC3140534 DOI: 10.1016/j.tem.2011.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 01/05/2023]
Abstract
A small proportion of brain mineralocorticoid receptors (MR) mediate control of blood pressure, water and electrolyte balance, sodium appetite, and sympathetic drive to the periphery. Circulating inflammatory cytokines modulate MR-mediated changes in sympathoexcitation. Aldosterone binding to MR in the brain occurs, despite concentrations that are 2-3 orders of magnitude less than those of cortisol and corticosterone, which have similar affinity for the MR. The possible mechanisms for selective MR activation by aldosterone, the cellular mechanisms of MR action and the effects of brain MR on hemodynamic homeostasis are considered in this review. MR antagonists are valuable adjuncts to the treatment of chronic cardiovascular and renal disease; the crucial need to discover targets for development of selective therapy for specific MR functions is also discussed.
Collapse
Affiliation(s)
- Elise P Gomez-Sanchez
- Research Service, G.V. (Sonny) Montgomery VA Medical Center and Department of Medicine, Division of Endocrinology, The University of Mississippi Medical Center, Jackson, MO, USA.
| |
Collapse
|
35
|
Kang YM, Wang Y, Yang LM, Elks C, Cardinale J, Yu XJ, Zhao XF, Zhang J, Zhang LH, Yang ZM, Francis J. TNF-α in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. TOHOKU J EXP MED 2011; 222:251-63. [PMID: 21135513 DOI: 10.1620/tjem.222.251] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proinflammatory cytokines, including tumor necrosis factor (TNF)-α, augment the progression of heart failure (HF) that is characterized by sympathoexcitation. In this study, we explored the role of TNF-α in hypothalamic paraventricular nucleus (PVN) in the exaggerated sympathetic activity observed in HF. Heart failure rats were made by ligating the left anterior descending coronary artery. The expression levels of angiotensin type 1 receptor (AT1-R) and neurotransmitters were analyzed in the PVN of HF rats that received direct PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle. Sham-operated control (SHAM) or HF rats were treated for 4 weeks through PVN infusion with each TNF-α blocker or vehicle. Rats with HF had higher levels of glutamate, norepinephrine, AT1-R and tyrosine hydroxylase (TH), and lower levels of gamma-aminobutyric acid (GABA), neuronal nitric oxide synthase (nNOS) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN when compared to SHAM rats. Plasma levels of cytokines, norepinephrine and angiotensin II and renal sympathetic nerve activity (RSNA) were increased in HF rats. PVN infusion of pentoxifylline or etanercept attenuated the decreases in PVN GABA, nNOS and GAD67, and the increases in RSNA and PVN glutamate, norepinephrine, TH and AT1-R observed in HF rats. We have developed a novel method for chronic and continuous infusion of drugs directly into the PVN and provided evidence that TNF-α in the PVN modulates neurotransmitters and the expression of AT1 receptor, which could account for exaggerated sympathetic activity in HF.
Collapse
Affiliation(s)
- Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Burmeister MA, Young CN, Braga VA, Butler SD, Sharma RV, Davisson RL. In vivo bioluminescence imaging reveals redox-regulated activator protein-1 activation in paraventricular nucleus of mice with renovascular hypertension. Hypertension 2011; 57:289-97. [PMID: 21173341 PMCID: PMC3026319 DOI: 10.1161/hypertensionaha.110.160564] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/15/2010] [Indexed: 02/07/2023]
Abstract
Renovascular hypertension in mice is characterized by an elevation in hypothalamic angiotensin II levels. The paraventricular nucleus (PVN) is a major cardioregulatory site implicated in the neurogenic component of renovascular hypertension. Increased superoxide (O(2)(-·)) production in the PVN is involved in angiotensin II-dependent neurocardiovascular diseases such as hypertension and heart failure. Here, we tested the hypothesis that excessive O(2)(-·) production and activation of the redox-regulated transcription factor activator protein-1 (AP-1) in PVN contributes to the development and maintenance of renovascular hypertension. Male C57BL/6 mice underwent implantation of radiotelemeters, bilateral PVN injections of an adenovirus (Ad) encoding superoxide dismutase (AdCuZnSOD) or a control gene (LacZ), and unilateral renal artery clipping (2-kidney, one-clip [2K1C]) or sham surgery. AP-1 activity was longitudinally monitored in vivo by bioluminescence imaging in 2K1C or sham mice that had undergone PVN-targeted microinjections of an Ad encoding the firefly luciferase (Luc) gene downstream of AP-1 response elements (AdAP-1Luc). 2K1C evoked chronic hypertension and an increase in O(2)(-·) production in the PVN. Viral delivery of CuZnSOD to the PVN not only prevented the elevation in O(2)(-·) but also abolished renovascular hypertension. 2K1C also caused a surge in AP-1 activity in the PVN, which paralleled the rise in O(2)(-·) production in this brain region, and this was prevented by treatment with AdCuZnSOD. Finally, Ad-mediated expression of a dominant-negative inhibitor of AP-1 activity in the PVN prevented 2K1C-evoked hypertension. These results implicate oxidant signaling and AP-1 transcriptional activity in the PVN as key mediators in the pathogenesis of renovascular hypertension.
Collapse
Affiliation(s)
| | - Colin N. Young
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Valdir A. Braga
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Scott D. Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Ram V. Sharma
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
- Cell and Developmental Biology, Weill Cornell Medical College, New York, NY
| | - Robin L. Davisson
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
- Cell and Developmental Biology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
37
|
Zhang ZH, Yu Y, Wei SG, Felder RB. Centrally administered lipopolysaccharide elicits sympathetic excitation via NAD(P)H oxidase-dependent mitogen-activated protein kinase signaling. J Hypertens 2010; 28:806-16. [PMID: 20027123 DOI: 10.1097/hjh.0b013e3283358b6e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The mechanisms by which inflammation activates sympathetic drive in heart failure and hypertension remain ill-defined. In this study, an intracerebroventricular injection of lipopolysaccharide (LPS) was used to induce the expression of cytokines and other inflammatory mediators in the brain, in the absence of other excitatory mediators, and the downstream signaling pathways leading to sympathetic activation were examined using intracerebroventricular injections of blocking or inhibiting agents. METHODS AND RESULTS In anesthetized rats, intracerebroventricular injection of LPS (5 microg) increased (P < 0.05) renal sympathetic nerve activity, blood pressure and heart rate. LPS increased (P < 0.05) hypothalamic mRNA for NAD(P)H oxidase subunits p47 and gp91, NAD(P)H oxidase-dependent superoxide generation, hypothalamic mRNA for tumor necrosis factor-alpha, cyclooxygenase-2 and cerebrospinal fluid levels of tumor necrosis factor-alpha and prostaglandin E2. In the paraventricular nucleus of hypothalamus, dihydroethidium staining for superoxide expression and c-Fos activity (indicating neuronal excitation) increased. The superoxide scavenger tempol significantly (P < 0.05) diminished the expression of inflammatory mediators, as well as superoxide expression and neuronal excitation in paraventricular nucleus. SB203580 (p38 mitogen-activated protein kinase inhibitor) also reduced the expression of inflammatory mediators in hypothalamus and cerebrospinal fluid. Tempol, apocynin [NAD(P)H oxidase inhibitor], SB203580 and NS398 (cyclooxygenase-2 inhibitor) all reduced cerebrospinal fluid prostaglandin E2 and the sympathoexcitatory response to LPS. LPS also increased angiotensin II type 1 receptor mRNA, a response blocked by apocynin and tempol but not by SB203580. CONCLUSION These findings suggest that central inflammation in pathophysiological conditions activates the sympathetic nervous system via NAD(P)H oxidase and p38 mitogen-activated protein kinase-dependent synthesis of prostaglandin E2.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- Medical Service, Department of Veterans Affairs Medical Center, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa52242, USA
| | | | | | | |
Collapse
|
38
|
Yu Y, Zhang ZH, Wei SG, Serrats J, Weiss RM, Felder RB. Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction. Hypertension 2010; 55:652-9. [PMID: 20142564 PMCID: PMC2890291 DOI: 10.1161/hypertensionaha.109.142836] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/11/2009] [Indexed: 12/26/2022]
Abstract
Inflammation is associated with increased sympathetic drive in cardiovascular diseases. Blood-borne proinflammatory cytokines, markers of inflammation, induce cyclooxygenase 2 (COX-2) activity in perivascular macrophages of the blood-brain barrier. COX-2 generates prostaglandin E(2), which may enter the brain and increase sympathetic nerve activity. We examined the contribution of this mechanism to augmented sympathetic drive in rats after myocardial infarction (MI). Approximately 24 hours after acute MI, rats received an intracerebroventricular injection (1 microL/min over 40 minutes) of clodronate liposomes (MI+CLOD) to eliminate brain perivascular macrophages, liposomes alone, or artificial cerebrospinal fluid. A week later, COX-2 immunoreactivity in perivascular macrophages and COX-2 mRNA and protein had increased in hypothalamic paraventricular nucleus of MI rats treated with artificial cerebrospinal fluid or liposomes alone compared with sham-operated rats. In MI+CLOD rats, neither perivascular macrophages nor COX-2 immunoreactivity was seen in the paraventricular nucleus, and COX-2 mRNA and protein levels were similar to those in sham-operated rats. Prostaglandin E(2) in cerebrospinal fluid, paraventricular nucleus neuronal excitation, and plasma norepinephrine were less in MI+CLOD rats than in MI rats treated with artificial cerebrospinal fluid or liposomes alone but more than in sham-operated rats. Intracerebroventricular CLOD had no effect on interleukin 1beta and tumor necrosis factor-alpha mRNA and protein in the paraventricular nucleus or plasma interleukin-1beta and tumor necrosis factor-alpha, which were increased in MI compared with sham-operated rats. In normal rats, pretreatment with intracerebroventricular CLOD reduced (P<0.05) the renal sympathetic, blood pressure, and heart rate responses to intracarotid artery injection of tumor necrosis factor-alpha (0.5 microg/kg); intracerebroventricular liposomes had no effect. The results suggest that proinflammatory cytokines stimulate sympathetic excitation after MI by inducing COX-2 activity and prostaglandin E(2) production in perivascular macrophages of the blood-brain barrier.
Collapse
Affiliation(s)
- Yang Yu
- Department of Veterans' Affairs Medical Center, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|