1
|
Asante JJ, Barger SW. P-glycoprotein and Alzheimer's Disease: Threats and Opportunities. ASN Neuro 2025; 17:2495632. [PMID: 40264334 DOI: 10.1080/17590914.2025.2495632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 50 million people worldwide. One of the hallmark features of AD is the accumulation of amyloid β-peptide (Aβ) protein in the brain. P-glycoprotein (P-gp) is a membrane-bound protein expressed in various tissues, including the cerebrovascular endothelium. It plays a crucial role in the efflux of toxic substances, including Aβ, from the brain. Aberrations in P-gp levels or activity have been implicated in the pathogenesis of AD by promoting the accumulation of Aβ in the brain. Therefore, modulating the P-gp function represents a promising therapeutic strategy for treating AD. P-gp has multiple substrate binding sites, creating the potential for substrates to fall into complementation groups based on these sites; two substrates in the same complementation group may compete with one other, but two substrates in different groups may exhibit cooperativity. Thus, a given P-gp substrate may interfere with Aβ efflux whereas another may promote clearance. These threats and opportunities, as well as other aspects of P-gp relevance to AD, are discussed here.
Collapse
Affiliation(s)
- Joseph Jr Asante
- Graduate Program in Bioinformatics, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neuroscience, Little Rock, AR, USA
- Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
2
|
Hammarlund-Udenaes M, Loryan I. Assessing central nervous system drug delivery. Expert Opin Drug Deliv 2025; 22:421-439. [PMID: 39895003 DOI: 10.1080/17425247.2025.2462767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Delivering drugs to the central nervous system (CNS) remains a major challenge due to the blood-brain barrier, restricting the entry of drugs into the brain. This limitation contributes to the ongoing lack of effective treatments for CNS diseases. To improve the process of drug discovery and development, it is crucial to streamline methods that measure clinically relevant parameters, allowing for good selection of drug candidates. AREA COVERED In this paper, we discuss the essential prerequisites for successful CNS drug delivery and review relevant methods. We emphasize the need for closer collaboration between in vitro and in vivo scientists to improve the relevance of these methods and increase the success rate of developing effective CNS therapies. While our focus is on small molecule drugs, we also touch on some aspects of larger molecules. EXPERT OPINION Significant progress has been made in recent years in method development and their application. However, there is still work to be done before the use of in silico models, in vitro cell systems, and AI can consistently offer meaningful correlations and relationships to clinical data. This gap is partly due to limited patient data, but a lot can be achieved through in vivo research in animal models.
Collapse
Affiliation(s)
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Gülave B, Lesmana A, de Lange EC, van Hasselt JGC. Do P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier impact morphine brain distribution? J Pharmacokinet Pharmacodyn 2025; 52:11. [PMID: 39776000 PMCID: PMC11706904 DOI: 10.1007/s10928-024-09957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
P-glycoprotein (P-gp) is a key efflux transporter and may be involved in drug-drug interactions (DDIs) at the blood-brain barrier (BBB), which could lead to changes in central nervous system (CNS) drug exposure. Morphine is a P-gp substrate and therefore a potential victim drug for P-gp mediated DDIs. It is however unclear if P-gp inhibitors can induce clinically relevant changes in morphine CNS exposure. Here, we used a physiologically-based pharmacokinetic (PBPK) model-based approach to evaluate the potential impact of DDIs on BBB transport of morphine by clinically relevant P-gp inhibitor drugs.The LeiCNS-PK3.0 PBPK model was used to simulate morphine distribution at the brain extracellular fluid (brainECF) for different clinical intravenous dosing regimens of morphine, alone or in combination with a P-gp inhibitor. We included 34 commonly used P-gp inhibitor drugs, with inhibitory constants and expected clinical P-gp inhibitor concentrations derived from literature. The DDI impact was evaluated by the change in brainECF exposure for morphine alone or in combination with different inhibitors. Our analysis demonstrated that P-gp inhibitors had a negligible effect on morphine brainECF exposure in the majority of simulated population, caused by low P-gp inhibition. Sensitivity analyses showed neither major effects of increasing the inhibitory concentration nor changing the inhibitory constant on morphine brainECF exposure. In conclusion, P-gp mediated DDIs on morphine BBB transport for the evaluated P-gp inhibitors are unlikely to induce meaningful changes in clinically relevant morphine CNS exposure. The developed CNS PBPK modeling approach provides a general approach for evaluating BBB transporter DDIs in humans.
Collapse
Affiliation(s)
- Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Ariel Lesmana
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Elizabeth Cm de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - J G Coen van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|
4
|
Watari R, Tamura N, Yoshida S, Kido Y, Matsuzaki T. Minimal Involvement of P-gp and BCRP in Oral Absorption of Ensitrelvir, An Oral SARS-CoV-2 3C-like Protease Inhibitor, in a Non-Clinical Investigation. J Pharm Sci 2024; 113:2871-2878. [PMID: 38885812 DOI: 10.1016/j.xphs.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are important transporters causing drug-drug interaction (DDI). Here, we investigated the involvement of P-gp and BCRP in the oral absorption of ensitrelvir in non-clinical studies and estimated the DDI risk mediated by P-gp and BCRP inhibition in humans. Although ensitrelvir is an in vitro P-gp and BCRP substrate, it demonstrated high bioavailability in rats and monkeys after oral administration. Plasma exposures of ensitrelvir following oral administration were comparable in wild type (WT) and Bcrp (-/-) mice. On the other hand, the area under the plasma concentration-time curve (AUC) ratio of ensitrelvir in the Mdr1a/1b (-/-) mice to the WT mice was 1.92, indicating that P-gp, but not BCRP, was involved in the oral absorption of ensitrelvir. Based on our previous retrospective analyses, such a low AUC ratio (<3) in the Mdr1a/1b (-/-) mice indicates a minimal impact of P-gp on the oral absorption in humans. In conclusion, our studies demonstrate that the involvement of both P-gp and BCRP in the oral absorption of ensitrelvir is minimal, and suggest that ensitrelvir has a low risk for DDIs mediated by P-gp and BCRP inhibition in humans.
Collapse
Affiliation(s)
- Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd..
| | - Naomi Tamura
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | - Shinpei Yoshida
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | - Yasuto Kido
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | | |
Collapse
|
5
|
Lentzas A, de Gooijer MC, Zuidema S, Meurs A, Çitirikkaya CH, Venekamp N, Beijnen JH, van Tellingen O. ATP-binding cassette transporter inhibitor potency and substrate drug affinity are critical determinants of successful drug delivery enhancement to the brain. Fluids Barriers CNS 2024; 21:62. [PMID: 39103921 DOI: 10.1186/s12987-024-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Pharmacotherapy for brain diseases is severely compromised by the blood-brain barrier (BBB). ABCB1 and ABCG2 are drug transporters that restrict drug entry into the brain and their inhibition can be used as a strategy to boost drug delivery and pharmacotherapy for brain diseases. METHODS We employed elacridar and tariquidar in mice to explore the conditions for effective inhibition at the BBB. Abcg2;Abcb1a/b knockout (KO), Abcb1a/b KO, Abcg2 KO and wild-type (WT) mice received a 3 h i.p. infusion of a cocktail of 8 typical substrate drugs in combination with elacridar or tariquidar at a range of doses. Abcg2;Abcb1a/b KO mice were used as the reference for complete inhibition, while single KO mice were used to assess the potency to inhibit the remaining transporter. Brain and plasma drug levels were measured by LC-MS/MS. RESULTS Complete inhibition of ABCB1 at the BBB is achieved when the elacridar plasma level reaches 1200 nM, whereas tariquidar requires at least 4000 nM. Inhibition of ABCG2 is more difficult. Elacridar inhibits ABCG2-mediated efflux of weak but not strong ABCG2 substrates. Strikingly, tariquidar does not enhance the brain uptake of any ABCG2-subtrate drug. Similarly, elacridar, but not tariquidar, was able to inhibit its own brain efflux in ABCG2-proficient mice. The plasma protein binding of elacridar and tariquidar was very high but similar in mouse and human plasma, facilitating the translation of mouse data to humans. CONCLUSIONS This work shows that elacridar is an effective pharmacokinetic-enhancer for the brain delivery of ABCB1 and weaker ABCG2 substrate drugs when a plasma concentration of 1200 nM is exceeded.
Collapse
Affiliation(s)
- Aristeidis Lentzas
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M1 3WE, UK
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Stefanie Zuidema
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Amber Meurs
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Ceren H Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Nikkie Venekamp
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
- Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Vanachayangkul P, Kodchakorn C, Ta-aksorn W, Im-erbsin R, Tungtaeng A, Tipthara P, Tarning J, Lugo-Roman LA, Wojnarski M, Vesely BA, Kobylinski KC. Safety, pharmacokinetics, and potential neurological interactions of ivermectin, tafenoquine, and chloroquine in Rhesus macaques. Antimicrob Agents Chemother 2024; 68:e0018124. [PMID: 38742896 PMCID: PMC11620492 DOI: 10.1128/aac.00181-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Ivermectin (IVM) could be used for malaria control as treated individuals are lethal to blood-feeding Anopheles, resulting in reduced transmission. Tafenoquine (TQ) is used to clear the liver reservoir of Plasmodium vivax and as a prophylactic treatment in high-risk populations. It has been suggested to use ivermectin and tafenoquine in combination, but the safety of these drugs in combination has not been evaluated. Early derivatives of 8-aminoquinolones (8-AQ) were neurotoxic, and ivermectin is an inhibitor of the P-glycoprotein (P-gp) blood brain barrier (BBB) transporter. Thus, there is concern that co-administration of these drugs could be neurotoxic. This study aimed to evaluate the safety and pharmacokinetic interaction of tafenoquine, ivermectin, and chloroquine (CQ) in Rhesus macaques. No clinical, biochemistry, or hematological outcomes of concern were observed. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was employed to assess potential neurological deficits following drug administration. Some impairment was observed with tafenoquine alone and in the same monkeys with subsequent co-administrations. Co-administration of chloroquine and tafenoquine resulted in increased plasma exposure to tafenoquine. Urine concentrations of the 5,6 orthoquinone TQ metabolite were increased with co-administration of tafenoquine and ivermectin. There was an increase in ivermectin plasma exposure when co-administered with chloroquine. No interaction of tafenoquine on ivermectin was observed in vitro. Chloroquine and trace levels of ivermectin, but not tafenoquine, were observed in the cerebrospinal fluid. The 3''-O-demethyl ivermectin metabolite was observed in macaque plasma but not in urine or cerebrospinal fluid. Overall, the combination of ivermectin, tafenoquine, and chloroquine did not have clinical, neurological, or pharmacological interactions of concern in macaques; therefore, this combination could be considered for evaluation in human trials.
Collapse
Affiliation(s)
- Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanikarn Kodchakorn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Winita Ta-aksorn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rawiwan Im-erbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Anchalee Tungtaeng
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Luis A. Lugo-Roman
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A. Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kevin C. Kobylinski
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
7
|
El Biali M, Wölfl‐Duchek M, Jackwerth M, Mairinger S, Weber M, Bamminger K, Poschner S, Rausch I, Schindler N, Lozano IH, Jäger W, Nics L, Tournier N, Hacker M, Zeitlinger M, Bauer M, Langer O. St. John's wort extract with a high hyperforin content does not induce P-glycoprotein activity at the human blood-brain barrier. Clin Transl Sci 2024; 17:e13804. [PMID: 38700454 PMCID: PMC11067874 DOI: 10.1111/cts.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.
Collapse
Affiliation(s)
- Myriam El Biali
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Division of Clinical Pharmacology and ToxicologyGeneva University HospitalsGenevaSwitzerland
| | - Michael Wölfl‐Duchek
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Matthias Jackwerth
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Severin Mairinger
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Maria Weber
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Karsten Bamminger
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Stefan Poschner
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Natalie Schindler
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | | | - Walter Jäger
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Lukas Nics
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BIOMAPS)Université Paris‐Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric JoliotOrsayFrance
| | - Marcus Hacker
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Markus Zeitlinger
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Martin Bauer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Oliver Langer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Department of Biomedical Imaging und Image‐guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| |
Collapse
|
8
|
Doron O, Patel AB, Hawryluk GWJ. Neurovascular Interventions for Neurotrauma: From Treatment of Injured Vessels to Treatment of the Injured Brain? Oper Neurosurg (Hagerstown) 2024; 26:247-255. [PMID: 37976141 DOI: 10.1227/ons.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/17/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic brain injury is often associated with a direct or secondary neurovascular pathology. In this review, we present recent advancements in endovascular neurosurgery that enable accurate and effective vessel reconstruction with emphasis on its role in early diagnosis, the expanding use of flow diversion in pseudoaneurysms, and traumatic arteriovenous fistulas. In addition, future directions in which catheter-based interventions could potentially affect traumatic brain injury are described: targeting blood brain barrier integrity using the advantages of intra-arterial drug delivery of blood brain barrier stabilizers to prevent secondary brain edema, exploring the impact of endovascular venous access as a means to modulate venous outflow in an attempt to reduce intracranial pressure and augment brain perfusion, applying selective intra-arterial hypothermia as a neuroprotection method mitigating some of the risks conferred by systemic cooling, trans-vessel wall delivery of regenerative therapy agents, and shifting attention using multimodal neuromonitoring to post-traumatic vasospasm to further characterize the role it plays in secondary brain injury. Thus, we believe that the potential of endovascular tools can be expanded because they enable access to the "highways" governing perfusion and flow and call for further research focused on exploring these routes because it may contribute to novel endovascular approaches currently used for treating injured vessels, harnessing them for treatment of the injured brain.
Collapse
Affiliation(s)
- Omer Doron
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston , Massachusetts , USA
- Department of Biomedical Engineering, The Aldar and Iby Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv , Israel
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Gregory W J Hawryluk
- Department of Neurosurgery, Akron General Neuroscience Institute, Cleveland Clinic, Akron , Ohio , USA
| |
Collapse
|
9
|
Ronaldson PT, Davis TP. Blood-brain barrier transporters: a translational consideration for CNS delivery of neurotherapeutics. Expert Opin Drug Deliv 2024; 21:71-89. [PMID: 38217410 PMCID: PMC10842757 DOI: 10.1080/17425247.2024.2306138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Successful neuropharmacology requires optimization of CNS drug delivery and, by extension, free drug concentrations at brain molecular targets. Detailed assessment of blood-brain barrier (BBB) physiological characteristics is necessary to achieve this goal. The 'next frontier' in CNS drug delivery is targeting BBB uptake transporters, an approach that requires evaluation of brain endothelial cell transport processes so that effective drug accumulation and improved therapeutic efficacy can occur. AREAS COVERED BBB permeability of drugs is governed by tight junction protein complexes (i.e., physical barrier) and transporters/enzymes (i.e., biochemical barrier). For most therapeutics, a component of blood-to-brain transport involves passive transcellular diffusion. Small molecule drugs that do not possess acceptable physicochemical characteristics for passive permeability may utilize putative membrane transporters for CNS uptake. While both uptake and efflux transport mechanisms are expressed at the brain microvascular endothelium, uptake transporters can be targeted for optimization of brain drug delivery and improved treatment of neurological disease states. EXPERT OPINION Uptake transporters represent a unique opportunity to optimize brain drug delivery by leveraging the endogenous biology of the BBB. A rigorous understanding of these transporters is required to improve translation from the bench to clinical trials and stimulate the development of new treatment paradigms for neurological diseases.
Collapse
Affiliation(s)
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona College of Medicine
| |
Collapse
|
10
|
Mairinger S, Leterrier S, Filip T, Löbsch M, Pahnke J, Hernández-Lozano I, Stanek J, Tournier N, Zeitlinger M, Hacker M, Langer O, Wanek T. [ 11C]metoclopramide is a sensitive radiotracer to measure moderate decreases in P-glycoprotein function at the blood-brain barrier. J Cereb Blood Flow Metab 2024; 44:142-152. [PMID: 37728771 PMCID: PMC10905639 DOI: 10.1177/0271678x231202336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
The efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier limits the cerebral uptake of various xenobiotics. To assess the sensitivity of [11C]metoclopramide to measure decreased cerebral P-gp function, we performed [11C]metoclopramide PET scans without (baseline) and with partial P-gp inhibition by tariquidar in wild-type, heterozygous Abcb1a/b(+/-) and homozygous Abcb1a/b(-/-) mice as models with controlled levels of cerebral P-gp expression. Brains were collected to quantify P-gp expression with immunohistochemistry. Brain uptake of [11C]metoclopramide was expressed as the area under the brain time-activity curve (AUCbrain) and compared with data previously obtained with (R)-[11C]verapamil and [11C]N-desmethyl-loperamide. Abcb1a/b(+/-) mice had intermediate P-gp expression compared to wild-type and Abcb1a/b(-/-) mice. In baseline scans, all three radiotracers were able to discriminate Abcb1a/b(-/-) from wild-type mice (2.5- to 4.6-fold increased AUCbrain, p ≤ 0.0001). However, only [11C]metoclopramide could discriminate Abcb1a/b(+/-) from wild-type mice (1.46-fold increased AUCbrain, p ≤ 0.001). After partial P-gp inhibition, differences in [11C]metoclopramide AUCbrain between Abcb1a/b(+/-) and wild-type mice (1.39-fold, p ≤ 0.001) remained comparable to baseline. There was a negative correlation between baseline [11C]metoclopramide AUCbrain and ex-vivo-measured P-gp immunofluorescence (r = -0.9875, p ≤ 0.0001). Our data suggest that [11C]metoclopramide is a sensitive radiotracer to measure moderate, but (patho-)physiologically relevant decreases in cerebral P-gp function without the need to co-administer a P-gp inhibitor.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sarah Leterrier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Thomas Filip
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
- Institute of Animal Breeding and Genetics & Biomodels Austria, University of Veterinary Medicine, Vienna, Austria
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology Research, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- Drug Development and Chemical Biology Lab, Lübeck Institute of Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Johann Stanek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Wanek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Zhang W, Oh JH, Zhang W, Rathi S, Le J, Talele S, Sarkaria JN, Elmquist WF. How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors. Pharm Res 2023; 40:2731-2746. [PMID: 37589827 PMCID: PMC10841221 DOI: 10.1007/s11095-023-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Goutal S, Novell A, Leterrier S, Breuil L, Selingue E, Gerstenmayer M, Marie S, Saubaméa B, Caillé F, Langer O, Truillet C, Larrat B, Tournier N. Imaging the impact of blood-brain barrier disruption induced by focused ultrasound on P-glycoprotein function. J Control Release 2023; 361:483-492. [PMID: 37562557 DOI: 10.1016/j.jconrel.2023.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The P-glycoprotein (P-gp/ABCB1) is a major efflux transporter which impedes the brain delivery of many drugs across the blood-brain barrier (BBB). Focused ultrasound with microbubbles (FUS) enables BBB disruption, which immediate and delayed impact on P-gp function remains unclear. Positron emission tomography (PET) imaging using the radiolabeled substrate [11C]metoclopramide provides a sensitive and translational method to study P-gp function at the living BBB. A FUS protocol was devised in rats to induce a substantial and targeted disruption of the BBB in the left hemisphere. BBB disruption was confirmed by the Evan's Blue extravasation test or the minimally-invasive contrast-enhanced MRI. The expression of P-gp was measured 24 h or 48 h after FUS using immunostaining and fluorescence microscopy. The brain kinetics of [11C]metoclopramide was studied by PET at baseline, and both immediately or 24 h after FUS, with or without half-maximum P-gp inhibition (tariquidar 1 mg/kg). In each condition (n = 4-5 rats per group), brain exposure of [11C]metoclopramide was estimated as the area-under-the-curve (AUC) in regions corresponding to the sonicated volume in the left hemisphere, and the contralateral volume. Kinetic modeling was performed to estimate the uptake clearance ratio (R1) of [11C]metoclopramide in the sonicated volume relative to the contralateral volume. In the absence of FUS, half-maximum P-gp inhibition increased brain exposure (+135.0 ± 12.9%, p < 0.05) but did not impact R1 (p > 0.05). Immediately after FUS, BBB integrity was selectively disrupted in the left hemisphere without any detectable impact on the brain kinetics of [11C]metoclopramide compared with the baseline group (p > 0.05) or the contralateral volume (p > 0.05). 24 h after FUS, BBB integrity was fully restored while P-gp expression was maximally down-regulated (-45.0 ± 4.5%, p < 0.001) in the sonicated volume. This neither impacted AUC nor R1 in the FUS + 24 h group (p > 0.05). Only when P-gp was inhibited with tariquidar were the brain exposure (+130 ± 70%) and R1(+29.1 ± 15.4%) significantly increased in the FUS + 24 h/tariquidar group, relative to the baseline group (p < 0.001). We conclude that the brain kinetics of [11C]metoclopramide specifically depends on P-gp function rather than BBB integrity. Delayed FUS-induced down-regulation of P-gp function can be detected. Our results suggest that almost complete down-regulation is required to substantially enhance the brain delivery of P-gp substrates.
Collapse
Affiliation(s)
- Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Anthony Novell
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Sarah Leterrier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France; Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Erwan Selingue
- Neurospin, Institut Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Matthieu Gerstenmayer
- Neurospin, Institut Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Solène Marie
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Bruno Saubaméa
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Benoît Larrat
- Neurospin, Institut Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France.
| |
Collapse
|
13
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Witta S, Collins KP, Ramirez DA, Mannheimer JD, Wittenburg LA, Gustafson DL. Vinblastine pharmacokinetics in mouse, dog, and human in the context of a physiologically based model incorporating tissue-specific drug binding, transport, and metabolism. Pharmacol Res Perspect 2023; 11:e01052. [PMID: 36631976 PMCID: PMC9834611 DOI: 10.1002/prp2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Vinblastine (VBL) is a vinca alkaloid-class cytotoxic chemotherapeutic that causes microtubule disruption and is typically used to treat hematologic malignancies. VBL is characterized by a narrow therapeutic index, with key dose-limiting toxicities being myelosuppression and neurotoxicity. Pharmacokinetics (PK) of VBL is primarily driven by ABCB1-mediated efflux and CYP3A4 metabolism, creating potential for drug-drug interaction. To characterize sources of variability in VBL PK, we developed a physiologically based pharmacokinetic (PBPK) model in Mdr1a/b(-/-) knockout and wild-type mice by incorporating key drivers of PK, including ABCB1 efflux, CYP3A4 metabolism, and tissue-specific tubulin binding, and scaled this model to accurately simulate VBL PK in humans and pet dogs. To investigate the capability of the model to capture interindividual variability in clinical data, virtual populations of humans and pet dogs were generated through Monte Carlo simulation of physiologic and biochemical parameters and compared to the clinical PK data. This model provides a foundation for predictive modeling of VBL PK. The base PBPK model can be further improved with supplemental experimental data identifying drug-drug interactions, ABCB1 polymorphisms and expression, and other sources of physiologic or metabolic variability.
Collapse
Affiliation(s)
- Sandra Witta
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Keagan P. Collins
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | | | - Joshua D. Mannheimer
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Luke A. Wittenburg
- Department of Surgical and Radiological SciencesUniversity of CaliforniaDavisCaliforniaUSA
- University of CaliforniaDavis Comprehensive Cancer CenterSacramentoCaliforniaUSA
| | - Daniel L. Gustafson
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
- Developmental Therapeutics ProgramUniversity of Colorado Cancer CenterAuroraColoradoUSA
- Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
15
|
Chatterjee S, Deshpande AA, Shen H. Recent advances in the in vitro and in vivo methods to assess impact of P-glycoprotein and breast cancer resistance protein transporters in central nervous system drug disposition. Biopharm Drug Dispos 2023; 44:7-25. [PMID: 36692150 DOI: 10.1002/bdd.2345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 01/25/2023]
Abstract
One challenge in central nervous system (CNS) drug discovery has been ensuring the blood-brain barrier (BBB) penetration of compounds at an efficacious concentration that provides suitable safety margins for clinical investigation. Research providing for the accurate prediction of brain penetration of compounds during preclinical discovery is important to a CNS program. In the BBB, P-glycoprotein (P-gp) (ABCB1) and breast cancer resistance protein (BCRP) (ABCG2) transporters have been demonstrated to play a major role in the active efflux of endogenous compounds and xenobiotics out of the brain microvessel cells and back to the systemic circulation. In the past 10 years, there has been significant technological improvement in the sensitivity of quantitative proteomics methods, in vivo imaging, in vitro methods of organoid and microphysiological systems, as well as in silico quantitative physiological based pharmacokinetic and systems pharmacology models. Scientists continually leverage these advancements to interrogate the distribution of compounds in the CNS which may also show signals of substrate specificity of P-gp and/or BCRP. These methods have shown promise toward predicting and quantifying the unbound concentration(s) within the brain relevant for efficacy or safety. In this review, the authors have summarized the in vivo, in vitro, and proteomics advancements toward understanding the contribution of P-gp and/or BCRP in restricting the entry of compounds to the CNS of either healthy or special populations. Special emphasis has been provided on recent investigations on the application of a proteomics-informed approach to predict steady-state drug concentrations in the brain. Moreover, future perspectives regarding the role of these transporters in newer modalities are discussed.
Collapse
Affiliation(s)
- Sagnik Chatterjee
- Drug Metabolism and Pharmacokinetics, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Anup Arunrao Deshpande
- Drug Metabolism and Pharmacokinetics, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd, Bangalore, India
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| |
Collapse
|
16
|
Cox B, Nicolaï J, Williamson B. The role of the efflux transporter, P-glycoprotein, at the blood-brain barrier in drug discovery. Biopharm Drug Dispos 2023; 44:113-126. [PMID: 36198662 DOI: 10.1002/bdd.2331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
The blood-brain barrier (BBB) expresses a high abundance of transporters, particularly P-glycoprotein (P-gp), that regulate endogenous and exogenous molecule uptake and removal of waste. This review discusses key drug metabolism and pharmacokinetic considerations for the efflux transporter P-gp at the BBB in drug discovery and development. We highlight the differences in P-gp expression and protein levels across species but the limited observations of species-specific substrates. Given the impact of age and disease on BBB biology, we summarise the modulation of P-gp for several neurological disorders and ageing and exemplify several disease-specific hurdles or opportunities for drug exposure in the brain. Furthermore, the review includes observations of CNS-related drug-drug interactions due to the inhibition or induction of P-gp at the BBB in animal studies and humans and the need for continued evaluation especially for compounds with a narrow therapeutic window. This review focusses primarily on small molecules but also considers the impact of new chemical entities, particularly beyond Ro5 molecules and their potential to be recognised as P-gp substrates as well as advanced drug delivery systems which offer an alternative approach to achieve and sustain central nervous system exposure.
Collapse
Affiliation(s)
- Benoit Cox
- DMPK, Development Sciences, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Johan Nicolaï
- DMPK, Janssen Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Beerse, Belgium
| | | |
Collapse
|
17
|
Di L. Special issue on applications of in vitro, in vivo, and modeling and simulation tools for central nervous system drug disposition. Biopharm Drug Dispos 2023; 44:3-6. [PMID: 36547228 DOI: 10.1002/bdd.2342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Di
- Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
18
|
Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 2022; 189:114485. [PMID: 35970274 DOI: 10.1016/j.addr.2022.114485] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
The main limitation to the success of central nervous system (CNS) therapies lies in the difficulty for drugs to cross the blood-brain barrier (BBB) and reach the brain. Regarding its structure and enzymatic complexity, crossing the BBB is a challenge, although several alternatives have been identified. For instance, the use of drugs encapsulated in lipid nanoparticles has been described as one of the most efficient approaches to bypass the BBB, as they allow the passage of drugs through this barrier, improving brain bioavailability. In particular, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been a focus of research related to drug delivery to the brain. These systems provide protection of lipophilic drugs, improved delivery and bioavailability, having a major impact on treatments outcomes. In addition, the use of lipid nanoparticles administered via routes that transport drugs directly into the brain seems a promising solution to avoid the difficulties in crossing the BBB. For instance, the nose-to-brain route has gained considerable interest, as it has shown efficacy in 3D human nasal models and in animal models. This review addresses the state of the art on the use of lipid nanoparticles to modify the pharmacokinetics of drugs employed in the management of neurological disorders. A description of the structural components of the BBB, the role of the neurovascular unit and limitations for drugs to entry into the CNS is first addressed, along with the developments to increase drug delivery to the brain, with a special focus on lipid nanoparticles. In addition, the obstacle of BBB complexity in the creation of new effective drugs for the treatment of the most prevalent neurological disorders is also addressed. Finally, the proposed strategies for lipid nanoparticles to reach the CNS, crossing or circumventing the BBB, are described. Although promising results have been reported, especially with the nose-to-brain route, they are still ongoing to assess its real efficacy in vivo in the management of neurological disorders.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A R Monteiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Pólo I), Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - J M Sousa Lobo
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A C Silva
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249 004 Porto, Portugal.
| |
Collapse
|
19
|
Taskar KS, Yang X, Neuhoff S, Patel M, Yoshida K, Paine MF, Brouwer KL, Chu X, Sugiyama Y, Cook J, Polli JW, Hanna I, Lai Y, Zamek-Gliszczynski M. Clinical Relevance of Hepatic and Renal P-gp/BCRP Inhibition of Drugs: An International Transporter Consortium Perspective. Clin Pharmacol Ther 2022; 112:573-592. [PMID: 35612761 PMCID: PMC9436425 DOI: 10.1002/cpt.2670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
The role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in drug-drug interactions (DDIs) and limiting drug absorption as well as restricting the brain penetration of drugs with certain physicochemical properties is well known. P-gp/BCRP inhibition by drugs in the gut has been reported to increase the systemic exposure to substrate drugs. A previous International Transporter Consortium (ITC) perspective discussed the feasibility of P-gp/BCRP inhibition at the blood-brain barrier and its implications. This ITC perspective elaborates and discusses specifically the hepatic and renal P-gp/BCRP (referred as systemic) inhibition of drugs and whether there is any consequence for substrate drug disposition. This perspective summarizes the clinical evidence-based recommendations regarding systemic P-gp and BCRP inhibition of drugs with a focus on biliary and active renal excretion pathways. Approaches to assess the clinical relevance of systemic P-gp and BCRP inhibition in the liver and kidneys included (i) curation of DDIs involving intravenously administered substrates or inhibitors; (ii) in vitro-to-in vivo extrapolation of P-gp-mediated DDIs at the systemic level; and (iii) curation of drugs with information available about the contribution of biliary excretion and related DDIs. Based on the totality of evidence reported to date, this perspective supports limited clinical DDI risk upon P-gp or BCRP inhibition in the liver or kidneys.
Collapse
Affiliation(s)
- Kunal S. Taskar
- Drug Metabolism and Pharmacokinetics, IVIVT, GlaxoSmithKline, Stevenage, UK
| | - Xinning Yang
- Office of Clinical Pharmacology, Center of Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Sibylle Neuhoff
- Certara UK Ltd, Simcyp Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, UK
| | - Mitesh Patel
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kenta Yoshida
- Clinical Pharmacology, Genentech Early Research and Development, South San Francisco, CA 94080, USA
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Xiaoyan Chu
- Department of ADME and Discovery Toxicology, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033 USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Kioicho campus, Josai International University, Tokyo 102-0093, Japan
| | - Jack Cook
- Clinical Pharmacology, Global Product Development, Pfizer Inc., Groton, Connecticut, USA
| | - Joseph W. Polli
- Global Medical Sciences, ViiV Healthcare, Research Triangle Park NC USA
| | - Imad Hanna
- Pharmacokinetic Sciences-Oncology, Novartis Institute for Biomedical Research, East Hanover, NJ
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc. Foster City, CA USA
| | | |
Collapse
|
20
|
Dorninger F, Vaz FM, Waterham HR, Klinken JBV, Zeitler G, Forss-Petter S, Berger J, Wiesinger C. Ether lipid transfer across the blood-brain and placental barriers does not improve by inactivation of the most abundant ABC transporters. Brain Res Bull 2022; 189:69-79. [PMID: 35981629 DOI: 10.1016/j.brainresbull.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
Phospholipid transport from the periphery to the brain is an understudied topic. When certain lipid species are deficient due to impaired synthesis, though, transfer across the blood-brain barrier is essential for replenishing lipids in the brain. For example, the deficiency in plasmalogens, the most abundant ether lipids in mammals, has detrimental effects on the brain, which is a major issue in inherited peroxisomal disorders but also contributes to more common disorders like Alzheimer's disease. Oral administration of alkylglycerols like batyl alcohol, which carry a pre-formed ether bond, enables replenishment of ether lipids in various peripheral tissues. However, plasmalogen deficiency in the brain cannot be overcome by this approach. Here, we tried to increase cerebral plasmalogen uptake by modulating the efflux transport across the blood-brain barrier. We hypothesized, based on previous literature, that at least some ether lipid species readily enter endothelial cells of the barrier through the transporter MFSD2A but are re-exported by ATP-binding cassette (ABC) transporters. By crossbreeding Mdr1a-/-/Mdr1b-/-/Bcrp-/- and ether lipid-deficient Gnpat-/- mice as well as pharmacological inhibition with MK-571 to inactivate the major ABC transporters at the blood-brain barrier, we evaluated the potential of combined ABC transporter inhibition and oral batyl alcohol administration for the treatment of plasmalogen deficiency. We found that even in the absence of the most abundant ABC transporters, batyl alcohol supplementation did not restore plasmalogen levels in the brain, despite the presence of a wide spectrum of ether lipid subspecies in the plasma as demonstrated by lipidomic analysis. Surprisingly, batyl alcohol treatment of pregnant Gnpat+/- dams had beneficial effects on the plasmalogen levels of Gnpat-/- offspring with defective ether lipid biosynthesis, independently of ABC transporter status at the placental barrier. Our results underline the autonomy of brain lipid homeostasis and indicate that peripheral supplementation of ether lipids is not sufficient to supply the brain with larger amounts of plasmalogens. Yet, the findings suggest that alkylglycerol treatment during pregnancy may pose a viable option to ameliorate some of the severe developmental defects of inborn ether lipid deficiency.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Hans R Waterham
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Jan B van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
21
|
Breuil L, Goutal S, Marie S, Del Vecchio A, Audisio D, Soyer A, Goislard M, Saba W, Tournier N, Caillé F. Comparison of the Blood-Brain Barrier Transport and Vulnerability to P-Glycoprotein-Mediated Drug-Drug Interaction of Domperidone versus Metoclopramide Assessed Using In Vitro Assay and PET Imaging. Pharmaceutics 2022; 14:pharmaceutics14081658. [PMID: 36015284 PMCID: PMC9412994 DOI: 10.3390/pharmaceutics14081658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Domperidone and metoclopramide are widely prescribed antiemetic drugs with distinct neurological side effects. The impact of P-glycoprotein (P-gp)-mediated efflux at the blood−brain barrier (BBB) on brain exposure and BBB permeation was compared in vitro and in vivo using positron emission tomography (PET) imaging in rats with the radiolabeled analogs [11C]domperidone and [11C]metoclopramide. In P-gp-overexpressing cells, the IC50 of tariquidar, a potent P-gp inhibitor, was drastically different using [11C]domperidone (221 nM [198−248 nM]) or [11C]metoclopramide (4 nM [2−8 nM]) as the substrate. Complete P-gp inhibition led to a 1.8-fold higher increase in the cellular uptake of [11C]domperidone compared with [11C]metoclopramide (p < 0.0001). Brain PET imaging revealed that the baseline brain exposure (AUCbrain) of [11C]metoclopramide was 2.4-fold higher compared with [11C]domperidone (p < 0.001), consistent with a 1.8-fold higher BBB penetration (AUCbrain/AUCplasma). The maximal increase in the brain exposure (2.9-fold, p < 0.0001) and BBB penetration (2.9-fold, p < 0.0001) of [11C]metoclopramide was achieved using 8 mg/kg of tariquidar. In comparison, neither 8 nor 15 mg/kg of tariquidar increased the brain exposure of [11C]domperidone (p > 0.05). Domperidone is an avid P-gp substrate that was in vitro compared with metoclopramide. Domperidone benefits from a lower brain exposure and a limited risk for P-gp-mediated drug−drug interaction involving P-gp inhibition at the BBB.
Collapse
Affiliation(s)
- Louise Breuil
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
- Pharmacy Department, Robert-Debré Hospital, AP-HP, Université Paris Cité, 75019 Paris, France
| | - Sébastien Goutal
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Solène Marie
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
- Pharmacy Department, Bicêtre Hospital, AP-HP, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Antonio Del Vecchio
- CEA, Département Médicaments et Technologies pour la Santé, SCBM, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Davide Audisio
- CEA, Département Médicaments et Technologies pour la Santé, SCBM, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Amélie Soyer
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Maud Goislard
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Wadad Saba
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
- Correspondence:
| | - Fabien Caillé
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| |
Collapse
|
22
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
23
|
Loryan I, Reichel A, Feng B, Bundgaard C, Shaffer C, Kalvass C, Bednarczyk D, Morrison D, Lesuisse D, Hoppe E, Terstappen GC, Fischer H, Di L, Colclough N, Summerfield S, Buckley ST, Maurer TS, Fridén M. Unbound Brain-to-Plasma Partition Coefficient, K p,uu,brain-a Game Changing Parameter for CNS Drug Discovery and Development. Pharm Res 2022; 39:1321-1341. [PMID: 35411506 PMCID: PMC9246790 DOI: 10.1007/s11095-022-03246-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (Kp,uu,brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, Kp,uu,brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. METHODS To understand the importance and impact of the Kp,uu,brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. RESULTS AND CONCLUSIONS From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of Kp,uu,brain as compared to other parameters related to brain exposure. Adoption of the Kp,uu,brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of Kp,uu,brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for Kp,uu,brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.
Collapse
Affiliation(s)
- Irena Loryan
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden.
| | | | - Bo Feng
- DMPK, Vertex Pharmaceuticals, Boston, Massachusetts, 02210, USA
| | | | - Christopher Shaffer
- External Innovation, Research & Development, Biogen Inc., Cambridge, Massachusetts, USA
| | - Cory Kalvass
- DMPK-BA, AbbVie, Inc., North Chicago, Illinois, USA
| | - Dallas Bednarczyk
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | | | | | - Edmund Hoppe
- DMPK, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Holger Fischer
- Translational PK/PD and Clinical Pharmacology, Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | | | - Scott Summerfield
- Bioanalysis Immunogenicity and Biomarkers, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK
| | | | - Tristan S Maurer
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Markus Fridén
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
24
|
Zhang L, Liu Q, Huang SM, Lionberger R. Transporters in Regulatory Science: Notable Contributions from Dr. Giacomini in the Past Two Decades. Drug Metab Dispos 2022; 50:DMD-MR-2021-000706. [PMID: 35768075 PMCID: PMC9488972 DOI: 10.1124/dmd.121.000706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism, and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. Dr. Kathy Giacomini from the University of California, San Francisco is one of the world leaders in transporters and pharmacogenetics with key contributions to transporter science. Her contributions to transporter science are noteworthy. This review paper will summarize Dr. Giacomini's key contributions and influence on transporters in regulatory science in the past two decades. Regulatory science research highlighted in this review covers various aspects of transporter science including understanding the effect of renal impairment on transporters, transporter ontogeny, biomarkers for transporters, and interactions of excipients with transporters affecting drug absorption. Significance Statement This review paper highlights Dr. Giacomini's key contributions and influence on transporters in regulatory science in the past two decades. She has been at the cutting edge of science pertaining to drug transport, drug disposition, and regulatory science, leading to new era of translational sciences pertaining to drug disposition and transporter biology. Her research has and will continue to bring enormous impact on gaining new knowledge in guiding drug development and inspire scientists from all sectors in the field.
Collapse
Affiliation(s)
- Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, FDA, United States
| | - Qi Liu
- Office of Clinical Pharmacology, Office of Translational Sciences, FDA, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, FDA, United States
| | - Robert Lionberger
- Office of Research and Standards, Office of Generic Drugs, FDA, United States
| |
Collapse
|
25
|
Talele S, Zhang W, Oh JH, Burgenske DM, Mladek AC, Dragojevic S, Sarkaria JN, Elmquist WF. Central Nervous System Delivery of the Catalytic Subunit of DNA-Dependent Protein Kinase Inhibitor Peposertib as Radiosensitizer for Brain Metastases. J Pharmacol Exp Ther 2022; 381:217-228. [PMID: 35370138 PMCID: PMC9190234 DOI: 10.1124/jpet.121.001069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 07/22/2023] Open
Abstract
Cytotoxic effects of chemotherapy and radiation therapy (RT) used for the treatment of brain metastases results from DNA damage within cancer cells. Cells rely on highly evolved DNA damage response (DDR) pathways to repair the damage caused by these treatments. Inhibiting these repair pathways can further sensitize cancer cells to chemotherapy and RT. The catalytic subunit of DNA-dependent protein kinase, in a complex with Ku80 and Ku70, is a pivotal regulator of the DDR, and peposertib is a potent inhibitor of this catalytic subunit. The characterization of central nervous system (CNS) distributional kinetics of peposertib is critical in establishing a therapeutic index in the setting of brain metastases. Our studies demonstrate that the delivery of peposertib is severely restricted into the CNS as opposed to peripheral organs, by active efflux at the blood-brain barrier (BBB). Peposertib has a low free fraction in the brain and spinal cord, further reducing the active concentration, and distributes to the same degree within different anatomic regions of the brain. However, peposertib is heterogeneously distributed within the metastatic tumor, where its concentration is highest within the tumor core (with disrupted BBB) and substantially lower within the invasive tumor rim (with a relatively intact BBB) and surrounding normal brain. These findings are critical in guiding the potential clinical deployment of peposertib as a radiosensitizing agent for the safe and effective treatment of brain metastases. SIGNIFICANCE STATEMENT: Effective radiosensitization of brain metastases while avoiding toxicity to the surrounding brain is critical in the development of novel radiosensitizers. The central nervous system distribution of peposertib, a potent catalytic subunit of DNA-dependent protein kinase inhibitor, is restricted by active efflux in the normal blood-brain barrier (BBB) but can reach significant concentrations in the tumor core. This finding suggests that peposertib may be an effective radiosensitizer for intracranial tumors with an open BBB, while limited distribution into normal brain will decrease the risk of enhanced radiation injury.
Collapse
Affiliation(s)
- Surabhi Talele
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Ju-Hee Oh
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Danielle M Burgenske
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Ann C Mladek
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Sonja Dragojevic
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Jann N Sarkaria
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| |
Collapse
|
26
|
Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L, Bendayan R. Transporters in drug development: International transporter consortium update on emerging transporters of clinical importance. Clin Pharmacol Ther 2022; 112:485-500. [PMID: 35561119 DOI: 10.1002/cpt.2644] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
During its 4th transporter workshop in 2021, the International Transporter Consortium (ITC) provided updates on emerging clinically relevant transporters for drug development. Previously highlighted and new transporters were considered based on up-to-date clinical evidence of their importance in drug-drug interactions and potential for altered drug efficacy and safety, including drug-nutrient interactions leading to nutrient deficiencies. For the first time, folate transport pathways (PCFT, RFC, and FRα) were examined in-depth as a potential mechanism of drug-induced folate deficiency and related toxicities (e.g., neural tube defects, megaloblastic anemia). However, routine toxicology studies conducted in support of drug development appear sufficient to flag such folate deficiency toxicities, while prospective prediction from in vitro folate metabolism and transport inhibition is not well enough established to inform drug development. Previous suggestion of retrospective study of intestinal OATP2B1 inhibition to explain unexpected decreases in drug exposure were updated. Furthermore, when the absorption of a new molecular entity is more rapid and extensive than can be explained by passive permeability, evaluation of OATP2B1 transport may be considered. Emerging research on hepatic and renal OAT2 is summarized, but current understanding of the importance of OAT2 was deemed insufficient to justify specific consideration for drug development. Hepatic, renal, and intestinal MRPs (MRP2, MRP3, MRP4) were revisited. MRPs may be considered when they are suspected to be the major determinant of drug disposition (e.g., direct glucuronide conjugates); MRP2 inhibition as a mechanistic explanation for drug-induced hyperbilirubinemia remains justified. There were no major changes in recommendations from previous ITC whitepapers.
Collapse
Affiliation(s)
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Hong Shen
- Drug Metabolism and PK, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Bo Feng
- Drug Metabolism and PK, Vertex Pharmaceuticals, Inc, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manthena V S Varma
- PK, Dynamics and Metabolism, Medicine Design, Pfizer Inc, Worldwide R&D, Groton, CT, 06340, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Josai International University, Kioicho Campus, Tokyo, 102-0093, Japan
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | |
Collapse
|
27
|
Mirian A, Moszczynski A, Soleimani S, Aubert I, Zinman L, Abrahao A. Breached Barriers: A Scoping Review of Blood-Central Nervous System Barrier Pathology in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2022; 16:851563. [PMID: 35431812 PMCID: PMC9009245 DOI: 10.3389/fncel.2022.851563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Recent studies have implicated changes in the blood-central nervous system barriers (BCNSB) in amyotrophic lateral sclerosis (ALS). The objective of this scoping review is to synthesize the current evidence for BCNSB structure and functional abnormalities in ALS studies and propose how BCNSB pathology may impact therapeutic development. Methods A literature search was conducted using Ovid Medline, EMBASE, and Web of Science, from inception to November 2021 and limited to entries in English language. Simplified search strategy included the terms ALS/motor neuron disease and [BCNSB or blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB)]. Henceforth, BCNSB is used as a term that is inclusive of the BBB and BSCB. Four independent reviewers conducted a title and abstract screening, hand-searched the reference lists of review papers, and performed a full text review of eligible studies. Included studies were original peer-reviewed full text publications, evaluating the structure and function of the BCNSB in preclinical models of ALS, clinical ALS, or postmortem human ALS tissue. There was no restriction on study design. The four reviewers independently extracted the data. Results The search retrieved 2,221 non-duplicated articles and 48 original studies were included in the synthesis. There was evidence that the integrity of the BCNSB is disrupted throughout the course of the disease in rodent models, beginning prior to symptom onset and detectable neurodegeneration. Increased permeability, pharmacoresistance with upregulated efflux transporters, and morphological changes in the supporting cells of the BCNSB, including pericytes, astrocytes, and endothelial cells were observed in animal models. BCNSB abnormalities were also demonstrated in postmortem studies of ALS patients. Therapeutic interventions targeting BCNSB dysfunction were associated with improved motor neuron survival in animal models of ALS. Conclusion BCNSB structural and functional abnormalities are likely implicated in ALS pathophysiology and may occur upstream to neurodegeneration. Promising therapeutic strategies targeting BCNSB dysfunction have been tested in animals and can be translated into ALS clinical trials.
Collapse
Affiliation(s)
- Ario Mirian
- Clinical Neurological Sciences, Western University, London Health Sciences, London, ON, Canada
| | | | - Serena Soleimani
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
28
|
Vodovar D, Chevillard L, Caillé F, Risède P, Pottier G, Auvity S, Mégarbane B, Tournier N. Mechanisms of respiratory depression induced by the combination of buprenorphine and diazepam in rats. Br J Anaesth 2022; 128:584-595. [PMID: 34872716 DOI: 10.1016/j.bja.2021.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The safety profile of buprenorphine has encouraged its widespread use. However, fatalities have been attributed to benzodiazepine/buprenorphine combinations, by poorly understood mechanisms of toxicity. Mechanistic hypotheses include (i) benzodiazepine-mediated increase in brain buprenorphine (pharmacokinetic hypothesis); (ii) benzodiazepine-mediated potentiation of buprenorphine interaction with opioid receptors (receptor hypothesis); and (iii) combined effects of buprenorphine and benzodiazepine on respiratory parameters (pharmacodynamic hypothesis). METHODS We studied the neuro-respiratory effects of buprenorphine (30 mg kg-1, i.p.), diazepam (20 mg kg-1, s.c.), and diazepam/buprenorphine combination in rats using arterial blood gas analysis, plethysmography, and diaphragm electromyography. Pretreatments with various opioid and gamma-aminobutyric acid receptor antagonists were tested. Diazepam impact on brain 11C-buprenorphine kinetics and binding to opioid receptors was studied using positron emission tomography imaging. RESULTS In contrast to diazepam and buprenorphine alone, diazepam/buprenorphine induced early-onset sedation (P<0.05) and respiratory depression (P<0.001). Diazepam did not alter 11C-buprenorphine brain kinetics or binding to opioid receptors. Diazepam/buprenorphine-induced effects on inspiratory time were additive, driven by buprenorphine (P<0.0001) and were blocked by naloxonazine (P<0.01). Diazepam/buprenorphine-induced effects on expiratory time were non-additive (P<0.001), different from buprenorphine-induced effects (P<0.05) and were blocked by flumazenil (P<0.01). Diazepam/buprenorphine-induced effects on tidal volume were non-additive (P<0.01), different from diazepam- (P<0.05) and buprenorphine-induced effects (P<0.0001) and were blocked by naloxonazine (P<0.05) and flumazenil (P<0.05). Compared with buprenorphine, diazepam/buprenorphine decreased diaphragm contraction amplitude (P<0.01). CONCLUSIONS Pharmacodynamic parameters and antagonist pretreatments indicate that diazepam/buprenorphine-induced respiratory depression results from a pharmacodynamic interaction between both drugs on ventilatory parameters.
Collapse
Affiliation(s)
- Dominique Vodovar
- Inserm UMRS-1144, Paris, France; Université de Paris, Paris, France; Université Paris-Saclay - CEA - CNRS - Inserm - BioMaps, Orsay, France; Paris Poison Center, Assistance Publique - Hôpitaux de Paris, Paris, France; Department of Medical and Toxicological Critical Care, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Lucie Chevillard
- Inserm UMRS-1144, Paris, France; Université de Paris, Paris, France
| | - Fabien Caillé
- Université Paris-Saclay - CEA - CNRS - Inserm - BioMaps, Orsay, France
| | | | - Géraldine Pottier
- Université Paris-Saclay - CEA - CNRS - Inserm - BioMaps, Orsay, France
| | - Sylvain Auvity
- Université Paris-Saclay - CEA - CNRS - Inserm - BioMaps, Orsay, France
| | - Bruno Mégarbane
- Inserm UMRS-1144, Paris, France; Université de Paris, Paris, France; Department of Medical and Toxicological Critical Care, Assistance Publique - Hôpitaux de Paris, Paris, France.
| | - Nicolas Tournier
- Université Paris-Saclay - CEA - CNRS - Inserm - BioMaps, Orsay, France
| |
Collapse
|
29
|
Eneberg E, Jones C, Jensen T, Langthaler K, Bundgaard C. Practical Application of Rodent Transporter Knockout Models to assess Brain Penetration in Drug Discovery. Drug Metab Lett 2022; 15:12-21. [PMID: 35196975 DOI: 10.2174/1872312815666220222091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Compound X is a drug candidate for the treatment of neurodegenerative diseases. Its brain distribution was evaluated as part of the lead identification and optimization of early drug discovery. METHODS The brain distribution of compound X was studied in genetic transporter knockout rodent models, in vivo models with a chemical inhibitor and in vitro transporter cell systems. RESULTS Compound X was found to be a substrate for human Breast Cancer-Resistance Protein (BCRP) in vitro (efflux ratio 8.1) and rodent Bcrp in vivo (Kp,uuKO/Kp,uuWT = 0.15/0.057 = 2.7, p < 0.05) but not a substrate for human P-glycoprotein (P-gp) in vitro (efflux ratio 1.0) nor rodent P-gp in vivo (Kp,uuKO/Kp,uuWT = 0.056/0.051 = 1.1, p > 0.05). When both transporters were knocked out in vivo, Kp,uu increased to 0.51 ± 0.02. Similar patterns observed across compounds with related chemistry corroborated structure-activity relationship. CONCLUSION While in vitro assays showed compound X to be a substrate for human BCRP and not P-gp, in vivo studies indicated a synergistic effect between rodent efflux transporters. However, this only accounted for ~50% of restricted BBB-transport, suggesting involvement from other efflux transporters. Given Kp,uu is a key criterion for assessing technical quality of CNS candidates before progression into clinical development, it is important to identify relevant screening assays for a better understanding of low Kp,uu and brain distribution in pre-clinical models for translation to humans.
Collapse
Affiliation(s)
- Elin Eneberg
- Translational DMPK, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Christopher Jones
- Translational DMPK, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Thomas Jensen
- Medicinal Chemistry, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | | | | |
Collapse
|
30
|
Blood-Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23031898. [PMID: 35163820 PMCID: PMC8836701 DOI: 10.3390/ijms23031898] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.
Collapse
|
31
|
Carvalho DM, Richardson PJ, Olaciregui N, Stankunaite R, Lavarino C, Molinari V, Corley EA, Smith DP, Ruddle R, Donovan A, Pal A, Raynaud FI, Temelso S, Mackay A, Overington JP, Phelan A, Sheppard D, Mackinnon A, Zebian B, Al-Sarraj S, Merve A, Pryce J, Grill J, Hubank M, Cruz O, Morales La Madrid A, Mueller S, Carcaboso AM, Carceller F, Jones C. Repurposing Vandetanib plus Everolimus for the Treatment of ACVR1-Mutant Diffuse Intrinsic Pontine Glioma. Cancer Discov 2022; 12:416-431. [PMID: 34551970 PMCID: PMC7612365 DOI: 10.1158/2159-8290.cd-20-1201] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/17/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Somatic mutations in ACVR1 are found in a quarter of children with diffuse intrinsic pontine glioma (DIPG), but there are no ACVR1 inhibitors licensed for the disease. Using an artificial intelligence-based platform to search for approved compounds for ACVR1-mutant DIPG, the combination of vandetanib and everolimus was identified as a possible therapeutic approach. Vandetanib, an inhibitor of VEGFR/RET/EGFR, was found to target ACVR1 (K d = 150 nmol/L) and reduce DIPG cell viability in vitro but has limited ability to cross the blood-brain barrier. In addition to mTOR, everolimus inhibited ABCG2 (BCRP) and ABCB1 (P-gp) transporters and was synergistic in DIPG cells when combined with vandetanib in vitro. This combination was well tolerated in vivo and significantly extended survival and reduced tumor burden in an orthotopic ACVR1-mutant patient-derived DIPG xenograft model. Four patients with ACVR1-mutant DIPG were treated with vandetanib plus an mTOR inhibitor, informing the dosing and toxicity profile of this combination for future clinical studies. SIGNIFICANCE: Twenty-five percent of patients with the incurable brainstem tumor DIPG harbor somatic activating mutations in ACVR1, but there are no approved drugs targeting the receptor. Using artificial intelligence, we identify and validate, both experimentally and clinically, the novel combination of vandetanib and everolimus in these children based on both signaling and pharmacokinetic synergies.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Diana M Carvalho
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | | | - Nagore Olaciregui
- Laboratory of Molecular Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Reda Stankunaite
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Valeria Molinari
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Elizabeth A Corley
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | | | - Ruth Ruddle
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Adam Donovan
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Akos Pal
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Florence I Raynaud
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Sara Temelso
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Alan Mackay
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | | | | | | | - Andrew Mackinnon
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
- Atkinson Morley Regional Neuroscience Centre, St George's Hospital NHS Trust, London, United Kingdom
| | - Bassel Zebian
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, Kings College Hospital NHS Trust, London, United Kingdom
| | - Ashirwad Merve
- Institute of Neurology, University College London Hospitals, London, United Kingdom
| | - Jeremy Pryce
- South West London Pathology, St George's Hospital NHS Trust, London, United Kingdom
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit U891, Team "Genomics and Oncogenesis of Pediatric Brain Tumors," Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Michael Hubank
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Ofelia Cruz
- Paediatric Oncology, Neuro-Oncology Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Sabine Mueller
- University Children's Hospital, Zurich, Switzerland
- University of California, San Francisco, San Francisco, California
| | - Angel M Carcaboso
- Laboratory of Molecular Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Fernando Carceller
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom.
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
32
|
Breuil L, Marie S, Goutal S, Auvity S, Truillet C, Saba W, Langer O, Caillé F, Tournier N. Comparative vulnerability of PET radioligands to partial inhibition of P-glycoprotein at the blood-brain barrier: A criterion of choice? J Cereb Blood Flow Metab 2022; 42:175-185. [PMID: 34496661 PMCID: PMC8721783 DOI: 10.1177/0271678x211045444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Only partial deficiency/inhibition of P-glycoprotein (P-gp, ABCB1) function at the blood-brain barrier (BBB) is likely to occur in pathophysiological situations or drug-drug interactions. This raises questions regarding the sensitivity of available PET imaging probes to detect moderate changes in P-gp function at the living BBB. In vitro, the half-maximum inhibitory concentration (IC50) of the potent P-gp inhibitor tariquidar in P-gp-overexpressing cells was significantly different using either [11C]verapamil (44 nM), [11C]N-desmethyl-loperamide (19 nM) or [11C]metoclopramide (4 nM) as substrate probes. In vivo PET imaging in rats showed that the half-maximum inhibition of P-gp-mediated efflux of [11C]metoclopramide, achieved using 1 mg/kg tariquidar (in vivo IC50 = 82 nM in plasma), increased brain exposure by 2.1-fold for [11C]metoclopramide (p < 0.05, n = 4) and 2.4-fold for [11C]verapamil (p < 0.05, n = 4), whereby cerebral uptake of the "avid" substrate [11C]N-desmethyl-loperamide was unaffected (p > 0.05, n = 4). This comparative study points to differences in the "vulnerability" to P-gp inhibition among radiolabeled substrates, which were apparently unrelated to their "avidity" (maximal response to P-gp inhibition). Herein, we advocate that partial inhibition of transporter function, in addition to complete inhibition, should be a primary criterion of evaluation regarding the sensitivity of radiolabeled substrates to detect moderate but physiologically-relevant changes in transporter function in vivo.
Collapse
Affiliation(s)
- Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France.,Pharmacy Department, Robert-Debré Hospital, AP-HP, Université de Paris, Paris, France
| | - Solène Marie
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France.,Pharmacy Department, Bicêtre Hospital, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Sylvain Auvity
- Pharmacy Department, Necker Hospital, AP-HP, UMR-S 1144, Université de Paris, Paris, France
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Wadad Saba
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay France
| |
Collapse
|
33
|
Fang Z, Chen L, Moser MAJ, Zhang W, Qin Z, Zhang B. Electroporation-Based Therapy for Brain Tumors: A Review. J Biomech Eng 2021; 143:100802. [PMID: 33991087 DOI: 10.1115/1.4051184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/21/2022]
Abstract
Electroporation-based therapy (EBT), as a high-voltage-pulse technology has been prevalent with favorable clinical outcomes in the treatment of various solid tumors. This review paper aims to promote the clinical translation of EBT for brain tumors. First, we briefly introduced the mechanism of pore formation in a cell membrane activated by external electric fields using a single cell model. Then, we summarized and discussed the current in vitro and in vivo preclinical studies, in terms of (1) the safety and effectiveness of EBT for brain tumors in animal models, and (2) the blood-brain barrier (BBB) disruption induced by EBT. Two therapeutic effects could be achieved in EBT for brain tumors simultaneously, i.e., the tumor ablation induced by irreversible electroporation (IRE) and transient BBB disruption induced by reversible electroporation (RE). The BBB disruption could potentially improve the uptake of antitumor drugs thereby enhancing brain tumor treatment. The challenges that hinder the application of EBT in the treatment of human brain tumors are discussed in the review paper as well.
Collapse
Affiliation(s)
- Zheng Fang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon SK S7N 5A9, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9, Canada
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Bing Zhang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
34
|
Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, Munafo A. Review of Transporter Substrate, Inhibitor, and Inducer Characteristics of Cladribine. Clin Pharmacokinet 2021; 60:1509-1535. [PMID: 34435310 PMCID: PMC8613159 DOI: 10.1007/s40262-021-01065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Cladribine is a nucleoside analog that is phosphorylated in its target cells (B- and T-lymphocytes) to its active adenosine triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®) administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years) are used to treat patients with relapsing multiple sclerosis. The ATP-binding cassette, solute carrier, and nucleoside transporter substrate, inhibitor, and inducer characteristics of cladribine are reviewed in this article. Available evidence suggests that the distribution of cladribine across biological membranes is facilitated by a number of uptake and efflux transporters. Among the key ATP-binding cassette efflux transporters, only breast cancer resistance protein has been shown to be an efficient transporter of cladribine, while P-glycoprotein does not transport cladribine well. Intestinal absorption, distribution throughout the body, and intracellular uptake of cladribine appear to be exclusively mediated by equilibrative and concentrative nucleoside transporters, specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Renal excretion of cladribine appears to be most likely driven by breast cancer resistance protein, ENT1, and P-glycoprotein. The latter may play a role despite its poor cladribine transport efficiency in view of the renal abundance of P-glycoprotein. There is no evidence that solute carrier uptake transporters such as organic anion transporting polypeptides, organic anion transporters, and organic cation transporters are involved in the transport of cladribine. Available in vitro studies examining the inhibitor characteristics of cladribine for a total of 13 major ATP-binding cassette, solute carrier, and CNT transporters indicate that in vivo inhibition of any of these transporters by cladribine is unlikely.
Collapse
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance (cr.appliance), Heinrich-Vingerhut-Weg 3, 63571, Gelnhausen, Germany.
| | | | | | | | | | | | - Alain Munafo
- Institute of Pharmacometrics, an Affiliate of Merck KGaA, Lausanne, Switzerland
| |
Collapse
|
35
|
Hernández-Lozano I, Mairinger S, Traxl A, Sauberer M, Filip T, Stanek J, Kuntner C, Wanek T, Langer O. Assessing the Functional Redundancy between P-gp and BCRP in Controlling the Brain Distribution and Biliary Excretion of Dual Substrates with PET Imaging in Mice. Pharmaceutics 2021; 13:1286. [PMID: 34452247 PMCID: PMC8399697 DOI: 10.3390/pharmaceutics13081286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are co-localized at the blood-brain barrier, where they display functional redundancy to restrict the brain distribution of dual P-gp/BCRP substrate drugs. We used positron emission tomography (PET) with the metabolically stable P-gp/BCRP substrates [11C]tariquidar, [11C]erlotinib, and [11C]elacridar to assess whether a similar functional redundancy as at the BBB exists in the liver, where both transporters mediate the biliary excretion of drugs. Wild-type, Abcb1a/b(-/-), Abcg2(-/-), and Abcb1a/b(-/-)Abcg2(-/-) mice underwent dynamic whole-body PET scans after i.v. injection of either [11C]tariquidar, [11C]erlotinib, or [11C]elacridar. Brain uptake of all three radiotracers was markedly higher in Abcb1a/b(-/-)Abcg2(-/-) mice than in wild-type mice, while only moderately changed in Abcb1a/b(-/-) and Abcg2(-/-) mice. The transfer of radioactivity from liver to excreted bile was significantly lower in Abcb1a/b(-/-)Abcg2(-/-) mice and almost unchanged in Abcb1a/b(-/-) and Abcg2(-/-) mice (with the exception of [11C]erlotinib, for which biliary excretion was also significantly reduced in Abcg2(-/-) mice). Our data provide evidence for redundancy between P-gp and BCRP in controlling both the brain distribution and biliary excretion of dual P-gp/BCRP substrates and highlight the utility of PET as an upcoming tool to assess the effect of transporters on drug disposition at a whole-body level.
Collapse
Affiliation(s)
| | - Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
| | - Alexander Traxl
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Center of Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Kuntner
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
36
|
El Biali M, Karch R, Philippe C, Haslacher H, Tournier N, Hacker M, Zeitlinger M, Schmidl D, Langer O, Bauer M. ABCB1 and ABCG2 Together Limit the Distribution of ABCB1/ABCG2 Substrates to the Human Retina and the ABCG2 Single Nucleotide Polymorphism Q141K (c.421C> A) May Lead to Increased Drug Exposure. Front Pharmacol 2021; 12:698966. [PMID: 34220523 PMCID: PMC8242189 DOI: 10.3389/fphar.2021.698966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
The widely expressed and poly-specific ABC transporters breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1) are co-localized at the blood-brain barrier (BBB) and have shown to limit the brain distribution of several clinically used ABCB1/ABCG2 substrate drugs. It is currently not known to which extent these transporters, which are also expressed at the blood-retinal barrier (BRB), may limit drug distribution to the human eye and whether the ABCG2 reduced-function single-nucleotide polymorphism (SNP) Q141K (c.421C > A) has an impact on retinal drug distribution. Ten healthy male volunteers (five subjects with the c.421CC and c.421CA genotype, respectively) underwent two consecutive positron emission tomography (PET) scans after intravenous injection of the model ABCB1/ABCG2 substrate [11C]tariquidar. The second PET scan was performed with concurrent intravenous infusion of unlabelled tariquidar to inhibit ABCB1 in order to specifically reveal ABCG2 function.In response to ABCB1 inhibition with unlabelled tariquidar, ABCG2 c.421C > A genotype carriers showed significant increases (as compared to the baseline scan) in retinal radiotracer influx K 1 (+62 ± 57%, p = 0.043) and volume of distribution V T (+86 ± 131%, p = 0.043), but no significant changes were observed in subjects with the c.421C > C genotype. Our results provide the first evidence that ABCB1 and ABCG2 may together limit the distribution of systemically administered ABCB1/ABCG2 substrate drugs to the human retina. Functional redundancy between ABCB1 and ABCG2 appears to be compromised in carriers of the c.421C > A SNP who may therefore be more susceptible to transporter-mediated drug-drug interactions at the BRB than non-carriers.
Collapse
Affiliation(s)
- Myriam El Biali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Rudolf Karch
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, VIE, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, VIE, Austria
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| |
Collapse
|
37
|
Stanković T, Ranđelović T, Dragoj M, Stojković Burić S, Fernández L, Ochoa I, Pérez-García VM, Pešić M. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resist Updat 2021; 55:100753. [PMID: 33667959 DOI: 10.1016/j.drup.2021.100753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The poor response of glioblastoma to current treatment protocols is a consequence of its intrinsic drug resistance. Resistance to chemotherapy is primarily associated with considerable cellular heterogeneity, and plasticity of glioblastoma cells, alterations in gene expression, presence of specific tumor microenvironment conditions and blood-brain barrier. In an attempt to successfully overcome chemoresistance and better understand the biological behavior of glioblastoma, numerous tri-dimensional (3D) biomimetic models were developed in the past decade. These novel advanced models are able to better recapitulate the spatial organization of glioblastoma in a real time, therefore providing more realistic and reliable evidence to the response of glioblastoma to therapy. Moreover, these models enable the fine-tuning of different tumor microenvironment conditions and facilitate studies on the effects of the tumor microenvironment on glioblastoma chemoresistance. This review outlines current knowledge on the essence of glioblastoma chemoresistance and describes the progress achieved by 3D biomimetic models. Moreover, comprehensive literature assessment regarding the influence of 3D culturing and microenvironment mimicking on glioblastoma gene expression and biological behavior is also provided. The contribution of the blood-brain barrier as well as the blood-tumor barrier to glioblastoma chemoresistance is also reviewed from the perspective of 3D biomimetic models. Finally, the role of mathematical models in predicting 3D glioblastoma behavior and drug response is elaborated. In the future, technological innovations along with mathematical simulations should create reliable 3D biomimetic systems for glioblastoma research that should facilitate the identification and possibly application in preclinical drug testing and precision medicine.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Teodora Ranđelović
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Luis Fernández
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Victor M Pérez-García
- Departamento de Matemáticas, E.T.S.I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
38
|
Nanotechnology and Nanocarrier-Based Drug Delivery as the Potential Therapeutic Strategy for Glioblastoma Multiforme: An Update. Cancers (Basel) 2021; 13:cancers13020195. [PMID: 33430494 PMCID: PMC7827410 DOI: 10.3390/cancers13020195] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) are among the most lethal tumors. The highly invasive nature and presence of GBM stem cells, as well as the blood brain barrier (BBB) which limits chemotherapeutic drugs from entering the tumor mass, account for the high chance of treatment failure. Recent developments have found that nanoparticles can be conjugated to liposomes, dendrimers, metal irons, or polymeric micelles, which enhance the drug-loaded compounds to efficiently penetrate the BBB, thus offering new possibilities for overcoming GBM stem cell-mediated resistance to chemotherapy and radiation therapy. In addition, there have been new emerging strategies that use nanocarriers for successful GBM treatment in animal models. This review highlights the recent development of nanotechnology and nanocarrier-based drug delivery for treatment of GBMs, which may be a promising therapeutic strategy for this tumor entity. Abstract Glioblastoma multiforme (GBM) is the most common and malignant brain tumor with poor prognosis. The heterogeneous and aggressive nature of GBMs increases the difficulty of current standard treatment. The presence of GBM stem cells and the blood brain barrier (BBB) further contribute to the most important compromise of chemotherapy and radiation therapy. Current suggestions to optimize GBM patients’ outcomes favor controlled targeted delivery of chemotherapeutic agents to GBM cells through the BBB using nanoparticles and monoclonal antibodies. Nanotechnology and nanocarrier-based drug delivery have recently gained attention due to the characteristics of biosafety, sustained drug release, increased solubility, and enhanced drug bioactivity and BBB penetrability. In this review, we focused on recently developed nanoparticles and emerging strategies using nanocarriers for the treatment of GBMs. Current studies using nanoparticles or nanocarrier-based drug delivery system for treatment of GBMs in clinical trials, as well as the advantages and limitations, were also reviewed.
Collapse
|
39
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
40
|
Wanek T, Zoufal V, Brackhan M, Krohn M, Mairinger S, Filip T, Sauberer M, Stanek J, Pekar T, Pahnke J, Langer O. Brain Distribution of Dual ABCB1/ABCG2 Substrates Is Unaltered in a Beta-Amyloidosis Mouse Model. Int J Mol Sci 2020; 21:E8245. [PMID: 33153231 PMCID: PMC7663372 DOI: 10.3390/ijms21218245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein) are co-localized at the blood-brain barrier (BBB), where they restrict the brain distribution of many different drugs. Moreover, ABCB1 and possibly ABCG2 play a role in Alzheimer's disease (AD) by mediating the brain clearance of beta-amyloid (Aβ) across the BBB. This study aimed to compare the abundance and activity of ABCG2 in a commonly used β-amyloidosis mouse model (APP/PS1-21) with age-matched wild-type mice. METHODS The abundance of ABCG2 was assessed by semi-quantitative immunohistochemical analysis of brain slices of APP/PS1-21 and wild-type mice aged 6 months. Moreover, the brain distribution of two dual ABCB1/ABCG2 substrate radiotracers ([11C]tariquidar and [11C]erlotinib) was assessed in APP/PS1-21 and wild-type mice with positron emission tomography (PET). [11C]Tariquidar PET scans were performed without and with partial inhibition of ABCG2 with Ko143, while [11C]erlotinib PET scans were only performed under baseline conditions. RESULTS Immunohistochemical analysis revealed a significant reduction (by 29-37%) in the number of ABCG2-stained microvessels in the brains of APP/PS1-21 mice. Partial ABCG2 inhibition significantly increased the brain distribution of [11C]tariquidar in APP/PS1-21 and wild-type mice, but the brain distribution of [11C]tariquidar did not differ under both conditions between the two mouse strains. Similar results were obtained with [11C]erlotinib. CONCLUSIONS Despite a reduction in the abundance of cerebral ABCG2 and ABCB1 in APP/PS1-21 mice, the brain distribution of two dual ABCB1/ABCG2 substrates was unaltered. Our results suggest that the brain distribution of clinically used ABCB1/ABCG2 substrate drugs may not differ between AD patients and healthy people.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/toxicity
- Amyloidosis/diagnostic imaging
- Amyloidosis/metabolism
- Amyloidosis/pathology
- Animals
- Blood-Brain Barrier/metabolism
- Brain/diagnostic imaging
- Brain/metabolism
- Disease Models, Animal
- Female
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Positron-Emission Tomography
- Quinolines/pharmacokinetics
- Tissue Distribution
Collapse
Affiliation(s)
- Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (V.Z.); (S.M.); (T.F.); (M.S.); (J.S.); (O.L.)
| | - Viktoria Zoufal
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (V.Z.); (S.M.); (T.F.); (M.S.); (J.S.); (O.L.)
| | - Mirjam Brackhan
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), 0424 Oslo, Norway; (M.B.); (M.K.); (J.P.)
| | - Markus Krohn
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), 0424 Oslo, Norway; (M.B.); (M.K.); (J.P.)
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (V.Z.); (S.M.); (T.F.); (M.S.); (J.S.); (O.L.)
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (V.Z.); (S.M.); (T.F.); (M.S.); (J.S.); (O.L.)
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (V.Z.); (S.M.); (T.F.); (M.S.); (J.S.); (O.L.)
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (V.Z.); (S.M.); (T.F.); (M.S.); (J.S.); (O.L.)
| | - Thomas Pekar
- Biomedical Analytics, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, Austria;
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), 0424 Oslo, Norway; (M.B.); (M.K.); (J.P.)
- LIED, University of Lübeck, 23562 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1586 Rīga, Latvia
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (V.Z.); (S.M.); (T.F.); (M.S.); (J.S.); (O.L.)
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
41
|
Imagerie TEP pour l’étude des répercussions fonctionnelles de la P-glycoprotéine en neuropharmacocinétique. Therapie 2020; 75:623-632. [DOI: 10.1016/j.therap.2020.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/03/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022]
|
42
|
Miklja Z, Yadav VN, Cartaxo RT, Siada R, Thomas CC, Cummings JR, Mullan B, Stallard S, Paul A, Bruzek AK, Wierzbicki K, Yang T, Garcia T, Wolfe I, Leonard M, Robertson PL, Garton HJ, Wahl DR, Parmar H, Sarkaria JN, Kline C, Mueller S, Nicolaides T, Glasser C, Leary SE, Venneti S, Kumar-Sinha C, Chinnaiyan AM, Mody R, Pai MP, Phoenix TN, Marini BL, Koschmann C. Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. J Clin Invest 2020; 130:5313-5325. [PMID: 32603316 PMCID: PMC7524471 DOI: 10.1172/jci133310] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/24/2020] [Indexed: 12/26/2022] Open
Abstract
Pediatric and adult high-grade gliomas (HGGs) frequently harbor PDGFRA alterations. We hypothesized that cotreatment with everolimus may improve the efficacy of dasatinib in PDGFRα-driven glioma through combinatorial synergism and increased tumor accumulation of dasatinib. We performed dose-response, synergism, P-glycoprotein inhibition, and pharmacokinetic studies in in vitro and in vivo human and mouse models of HGG. Six patients with recurrent PDGFRα-driven glioma were treated with dasatinib and everolimus. We found that dasatinib effectively inhibited the proliferation of mouse and human primary HGG cells with a variety of PDGFRA alterations. Dasatinib exhibited synergy with everolimus in the treatment of HGG cells at low nanomolar concentrations of both agents, with a reduction in mTOR signaling that persisted after dasatinib treatment alone. Prolonged exposure to everolimus significantly improved the CNS retention of dasatinib and extended the survival of PPK tumor-bearing mice (mutant TP53, mutant PDGFRA, H3K27M). Six pediatric patients with glioma tolerated this combination without significant adverse events, and 4 patients with recurrent disease (n = 4) had a median overall survival of 8.5 months. Our results show that the efficacy of dasatinib treatment of PDGFRα-driven HGG was enhanced with everolimus and suggest a promising route for improving targeted therapy for this patient population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hemant Parmar
- Department of Radiology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jann N. Sarkaria
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Cassie Kline
- Department of Pediatrics and
- Department of Neurology, UCSF, San Francisco, California, USA
| | - Sabine Mueller
- Department of Pediatrics and
- Department of Neurology, UCSF, San Francisco, California, USA
| | - Theodore Nicolaides
- Division of Pediatric Hematology/Oncology, NYU Langone Medical Center, New York, New York, USA
| | - Chana Glasser
- Division of Pediatric Hematology/Oncology, NYU Winthrop Hospital, Mineola, New York, USA
| | - Sarah E.S. Leary
- Seattle Children’s Hospital/University of Washington (UW), Seattle, Washington, USA
| | | | | | - Arul M. Chinnaiyan
- Department of Pathology
- Department of Urology
- Michigan Center for Translational Pathology
- Howard Hughes Medical Institute
- Rogel Cancer Center, and
| | | | - Manjunath P. Pai
- College of Pharmacy, Michigan Medicine, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
43
|
Sudsakorn S, Bahadduri P, Fretland J, Lu C. 2020 FDA Drug-drug Interaction Guidance: A Comparison Analysis and Action Plan by Pharmaceutical Industrial Scientists. Curr Drug Metab 2020; 21:403-426. [DOI: 10.2174/1389200221666200620210522] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022]
Abstract
Background:
In January 2020, the US FDA published two final guidelines, one entitled “In vitro Drug
Interaction Studies - Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry”
and the other entitled “Clinical Drug Interaction Studies - Cytochrome P450 Enzyme- and Transporter-Mediated
Drug Interactions Guidance for Industry”. These were updated from the 2017 draft in vitro and clinical DDI
guidance.
Methods:
This study is aimed to provide an analysis of the updates along with a comparison of the DDI guidelines
published by the European Medicines Agency (EMA) and Japanese Pharmaceuticals and Medical Devices Agency
(PMDA) along with the current literature.
Results:
The updates were provided in the final FDA DDI guidelines and explained the rationale of those changes
based on the understanding from research and literature. Furthermore, a comparison among the FDA, EMA, and
PMDA DDI guidelines are presented in Tables 1, 2 and 3.
Conclusion:
The new 2020 clinical DDI guidance from the FDA now has even higher harmonization with the
guidance (or guidelines) from the EMA and PMDA. A comparison of DDI guidance from the FDA 2017, 2020,
EMA, and PMDA on CYP and transporter based DDI, mathematical models, PBPK, and clinical evaluation of DDI
is presented in this review.
Collapse
Affiliation(s)
- Sirimas Sudsakorn
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Praveen Bahadduri
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Jennifer Fretland
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Chuang Lu
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| |
Collapse
|
44
|
Song D, Sun L, DuBois DC, Almon RR, Meng S, Jusko WJ. Physiologically Based Pharmacokinetics of Dexamethasone in Rats. Drug Metab Dispos 2020; 48:811-818. [PMID: 32601175 PMCID: PMC7448200 DOI: 10.1124/dmd.120.091017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Blood and multitissue concentration-time profiles for dexamethasone (DEX), a synthetic corticosteroid, were measured in male rats after subcutaneous bolus and infusion dosing. A physiologically based pharmacokinetics (PBPK) model was applied for 12 measured tissues. Tissue partition coefficients (K p ) and metabolic clearance were assessed from infusion studies. Blood cell to plasma partitioning (0.664) and plasma free fraction (0.175) for DEX were found to be moderate. DEX was extensively partitioned into liver (K p = 6.76), whereas the calculated K p values of most tissues ranged between 0.1 and 1.5. Despite the moderate lipophilicity of DEX (log P = 1.8), adipose exhibited very limited distribution (K p = 0.17). Presumably due to P-glycoprotein-mediated efflux, DEX concentrations were very low in brain compared with its expected high permeability. Infusion studies yielded K p values from male and female rats at steady state that were similar. In silico K p values calculated for different tissues by using GastroPlus software were similar to in vivo values except for adipose and liver. Glucocorticoid receptors are found in diverse tissues, and these PBPK modeling results may help provide exposure profiles driving pharmacodynamic effects of DEX. SIGNIFICANCE STATEMENT: Our physiologically based pharmacokinetics model describes the experimentally determined tissue and plasma dexamethasone (DEX) pharmacokinetics (PK) profiles in rats reasonably well. This model can serve for further investigation of DEX tissue distribution in rats as the PK driving force for PD effects in different tissues. No major sex differences were found for DEX tissue distribution. Knowledge gained in this study may be translatable to higher-order species including humans.
Collapse
Affiliation(s)
- Dawei Song
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - Le Sun
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - Shengnan Meng
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - William J Jusko
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| |
Collapse
|
45
|
Zamek-Gliszczynski MJ, Patel M, Yang X, Lutz JD, Chu X, Brouwer KLR, Lai Y, Lee CA, Neuhoff S, Paine MF, Sugiyama Y, Taskar KS, Galetin A. Intestinal P-gp and Putative Hepatic OATP1B Induction: International Transporter Consortium Perspective on Drug Development Implications. Clin Pharmacol Ther 2020; 109:55-64. [PMID: 32460379 DOI: 10.1002/cpt.1916] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
There is an increasing interest in transporter induction (i.e., decreased systemic drug exposure due to increased efflux-limited absorption or transporter-mediated clearance) as a mechanism of drug-drug interactions (DDIs), although evidence of clinical relevance is still evolving. Intestinal P-glycoprotein (P-gp) and hepatic organic anion transporting polypeptides 1B (OATP1B) can be important determinants of drug absorption and disposition, as well as targets for DDIs. Current data indicate that intestinal P-gp protein levels can be induced up to threefold to fourfold in humans primarily with pregnane X receptor (PXR) activators, and that this induction can decrease the systemic exposure of drugs with P-gp efflux-limited absorption (e.g., ≤ 67% decrease in the exposure of total dabigatran following rifampin multiple oral dosing). Evaluation of the clinical relevance of P-gp induction as a DDI mechanism must consider the induction potential of the perpetrator drug for P-gp and attenuation of exposure of the victim drug in the context of its therapeutic window. Practical drug development recommendations are provided herein. Reports are contradictory on OATP1B induction by PXR activators in human hepatocytes and liver biopsies. Some clinical investigations demonstrated that rifampin pretreatment decreased exposure of OATP1B substrates, while other studies found no differences, and the potential involvement of other mechanisms in these observed DDIs cannot be definitively ruled out. Thus, further studies are needed to understand hepatic OATP1B induction and potential involvement of other mechanisms contributing to reduced exposure of OATP1B substrates. This review critically summarizes the state-of-the-art on intestinal P-gp and hepatic OATP1B induction, and highlights implications for drug development.
Collapse
Affiliation(s)
| | - Mitesh Patel
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Justin D Lutz
- Department of Clinical Pharmacology, Gilead Sciences, Inc, Foster City, California, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & CO., Inc, Kenilworth, New Jersey, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences, Inc., Foster City, California, USA
| | - Caroline A Lee
- Nonclinical Development and Clinical Pharmacology, Arena Pharmaceuticals, San Diego, California, USA
| | | | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone, Program, RIKEN Cluster for Science, RIKEN, Yokohama, Kanagawa, Japan
| | - Kunal S Taskar
- Drug Meabolism and Pharmacokinetics, GlaxoSmithKline, Ware, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
46
|
Achour B, Al-Majdoub ZM, Rostami-Hodjegan A, Barber J. Mass Spectrometry of Human Transporters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:223-247. [PMID: 32084322 DOI: 10.1146/annurev-anchem-091719-024553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transporters are key to understanding how an individual will respond to a particular dose of a drug. Two patients with similar systemic concentrations may have quite different local concentrations of a drug at the required site. The transporter profile of any individual depends upon a variety of genetic and environmental factors, including genotype, age, and diet status. Robust models (virtual patients) are therefore required and these models are data hungry. Necessary data include quantitative transporter profiles at the relevant organ. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is currently the most powerful method available for obtaining this information. Challenges include sourcing the tissue, isolating the hydrophobic membrane-embedded transporter proteins, preparing the samples for MS (including proteolytic digestion), choosing appropriate quantification methodology, and optimizing the LC-MS/MS conditions. Great progress has been made with all of these, especially within the last few years, and is discussed here.
Collapse
Affiliation(s)
- Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
- Certara, Princeton, New Jersey 08540, USA
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
47
|
Williams EI, Betterton RD, Davis TP, Ronaldson PT. Transporter-Mediated Delivery of Small Molecule Drugs to the Brain: A Critical Mechanism That Can Advance Therapeutic Development for Ischemic Stroke. Pharmaceutics 2020; 12:pharmaceutics12020154. [PMID: 32075088 PMCID: PMC7076465 DOI: 10.3390/pharmaceutics12020154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022] Open
Abstract
Ischemic stroke is the 5th leading cause of death in the United States. Despite significant improvements in reperfusion therapies, stroke patients still suffer from debilitating neurocognitive deficits. This indicates an essential need to develop novel stroke treatment paradigms. Endogenous uptake transporters expressed at the blood-brain barrier (BBB) provide an excellent opportunity to advance stroke therapy via optimization of small molecule neuroprotective drug delivery to the brain. Examples of such uptake transporters include organic anion transporting polypeptides (OATPs in humans; Oatps in rodents) and organic cation transporters (OCTs in humans; Octs in rodents). Of particular note, small molecule drugs that have neuroprotective properties are known substrates for these transporters and include 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (i.e., statins) for OATPs/Oatps and 1-amino-3,5-dimethyladamantane (i.e., memantine) for OCTs/Octs. Here, we review current knowledge on specific BBB transporters that can be targeted for improvement of ischemic stroke treatment and provide state-of-the-art perspectives on the rationale for considering BBB transport properties during discovery/development of stroke therapeutics.
Collapse
|
48
|
Role of P-glycoprotein in the brain disposition of seletalisib: Evaluation of the potential for drug-drug interactions. Eur J Pharm Sci 2020; 142:105122. [PMID: 31678424 DOI: 10.1016/j.ejps.2019.105122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
Seletalisib is an orally bioavailable selective inhibitor of phosphoinositide 3-kinase delta (PI3Kδ) in clinical development for the treatment of immune-mediated inflammatory diseases. The present study investigated the role of P-gp in seletalisib disposition, especially brain distribution, and the associated risks of interactions. Seletalisib was found to be actively transported by rodent and human P-gp in vitro (transfected LLC-PK1 cells; Km of ca. 20 µM), with minimal or no affinity for the other tested transporters. A distribution study in knockout rats (single oral dosing at 750 mg kg-1) showed that P-gp restricts the brain disposition of seletalisib while having minimal effect on its intestinal absorption. Restricted brain penetration was also observed in cynomolgus monkeys (single oral dosing at 30 mg kg-1) using brain microdialysis and cerebrospinal fluid sampling (Kp,uu of 0.09 and 0.24, respectively). These findings opened the question of potential pharmacokinetic interaction between seletalisib and P-gp inhibitors. In vitro, CsA inhibited the active transport of seletalisib with an IC50 of 0.13 µM. In rats, co-administration of high doses of CsA (bolus iv followed by continuous infusion) increased the brain distribution of seletalisib (single oral dosing at 5 mg kg-1). The observed data were found aligned with those predicted by in vitro-in vivo extrapolation. Based on the same extrapolation method combined with literature data, only very few P-gp inhibitors (i.e. CsA, quinine, quinidine) were predicted to increase the brain disposition of seletalisib in the clinical setting (maximal 3-fold changes).
Collapse
|
49
|
Lu C, Di L. In vitro
and
in vivo
methods to assess pharmacokinetic drug– drug interactions in drug discovery and development. Biopharm Drug Dispos 2020; 41:3-31. [DOI: 10.1002/bdd.2212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Chuang Lu
- Department of DMPKSanofi Company Waltham MA 02451
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismPfizer Worldwide Research & Development Groton CT 06340
| |
Collapse
|
50
|
Unger MS, Mudunuru J, Schwab M, Hopf C, Drewes G, Nies AT, Zamek-Gliszczynski MJ, Reinhard FBM. Clinically Relevant OATP2B1 Inhibitors in Marketed Drug Space. Mol Pharm 2020; 17:488-498. [PMID: 31834804 DOI: 10.1021/acs.molpharmaceut.9b00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OATP2B1 is an intestinal and hepatic drug uptake transporter. Intestinal OATP2B1 has been elucidated as the mechanism of unexpected clinical drug-drug interactions (DDIs), where drug exposure was unexpectedly decreased with unchanged half-life. Hepatic OATP2B1 may be an understudied clinical DDI mechanism. The aim of the present work was to understand the prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors in marketed drug space. HEK293 cells stably overexpressing human OATP2B1 or vector control were generated and cultured for 72 h in a 96-well format. OATP2B1-mediated uptake of dibromofluorescein (DBF) was found to be optimal at 10 μM concentration and 30 min incubation time. A total of 294 drugs (top 300 marketed drugs, excluding biologics and restricted drugs, supplemented with ∼100 small-molecule drugs) were screened for OATP2B1 inhibition at 10 μM. Drugs demonstrating ≥50% inhibition in this screen were advanced for IC50 determination, which was extrapolated to clinical intestinal and hepatic OATP2B1 inhibition as per 2017 FDA DDI guidance. Of the 294 drugs screened, 67 elicited ≥50% inhibition of OATP2B1-mediated DBF uptake at 10 μM screening concentration. For the 67 drugs flagged in the single-concentration inhibition screen, upon evaluation of a full concentration range, IC50 values could be determined for 58 drugs. OATP2B1 IC50 values established for these 58 drugs were extrapolated as potentially clinically relevant at the intestinal level for 38 orally administered drugs (Igut/IC50 ≥ 10), and 17 were flagged as potential clinical inhibitors of hepatic OATP2B1 uptake (1 + Iin,max,u/IC50 ≥ 1.1). This analysis of 294 drugs demonstrated prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors to be 13 and 6%, respectively. As OATP2B1-inhibitor drugs are not exceedingly rare, these results suggest that clinical OATP2B1 DDIs have been rarely observed because OATP2B1 is uncommonly the predominant determinant of drug disposition.
Collapse
Affiliation(s)
- Melissa S Unger
- Cellzome, a GlaxoSmithKline Company , 69117 Heidelberg , Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) and Institute of Medical Technology , Heidelberg University and Mannheim University of Applied Sciences , 68163 Mannheim , Germany
| | - Jennypher Mudunuru
- Drug Metabolism and Disposition , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , University of Tübingen , 70376 Stuttgart , Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry , University of Tübingen , 72074 Tübingen , Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) and Institute of Medical Technology , Heidelberg University and Mannheim University of Applied Sciences , 68163 Mannheim , Germany
| | - Gerard Drewes
- Cellzome, a GlaxoSmithKline Company , 69117 Heidelberg , Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , University of Tübingen , 70376 Stuttgart , Germany
| | | | | |
Collapse
|