1
|
Huang X, Yin T, Yu M, Zhu G, Hu X, Yu H, Zhao W, Chen J, Du J, Wu Q, Zhang W, Liu L, Du M. Decidualization-associated recruitment of cytotoxic memory CD8 +T cells to the maternal-fetal interface for immune defense. Mucosal Immunol 2025; 18:366-379. [PMID: 39675728 DOI: 10.1016/j.mucimm.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Decidual CD8+T (dCD8+T) cells are pivotal in the maintenance of the delicate balance between immune tolerance towards the fetus and immune resistance against pathogens. The endometrium and decidua represent the uterine environments before and during pregnancy, respectively, yet the composition and phenotypic alterations of uterine CD8+T cells in these tissues remain unclear. Using flow cytometry and analysis of transcriptome profiles, we demonstrated that human dCD8+T and endometrial CD8+T (eCD8+T) cells exhibited similar T cell differentiation statuses and phenotypes of tissue infiltrating or residency, compared to peripheral CD8+T (pCD8+T) cells. However, dCD8+T cells showed decreased expression of coinhibitory marker (PD-1), chemotaxis marker (CXCR3), and tissue-resident markers (CD69 and CD103), along with increased expression of granzyme B and granulysin, compared to eCD8+T cells. In vitro cytotoxicity assays further demonstrated that dCD8+T cells had greater effector functions than eCD8+T cells. Additionally, both in vitro and in vivo chemotaxis assays confirmed the recruitment of non-resident effector memory T cell subsets to the pregnant decidua, contributing to the dCD8+T cell-mediated anti-infection mechanism at the maternal-fetal interface. This work demonstrates dCD8+T cells replenished from the circulation retain their cytotoxic capacity, which may serve as an enhanced defense mechanism against infection during pregnancy.
Collapse
Affiliation(s)
- Xixi Huang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Tingxuan Yin
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Min Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Guohua Zhu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xianyang Hu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Hailin Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Weijie Zhao
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity Child Institute of Shantou University Medical College, Shenzhen 518172, China
| | - Jiajia Chen
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jiangyuan Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Meirong Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, 200434, China.
| |
Collapse
|
2
|
Eallonardo SJ, Freitag NE. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells 2023; 13:88. [PMID: 38201292 PMCID: PMC10778170 DOI: 10.3390/cells13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Vertically transmitted infections are a significant cause of fetal morbidity and mortality during pregnancy and pose substantial risks to fetal development. These infections are primarily transmitted to the fetus through two routes: (1) direct invasion and crossing the placenta which separates maternal and fetal circulation, or (2) ascending the maternal genitourinary tact and entering the uterus. Only two bacterial species are commonly found to cross the placenta and infect the fetus: Listeria monocytogenes and Treponema pallidum subsp. pallidum. L. monocytogenes is a Gram-positive, foodborne pathogen found in soil that acutely infects a wide variety of mammalian species. T. pallidum is a sexually transmitted spirochete that causes a chronic infection exclusively in humans. We briefly review the pathogenesis of these two very distinct bacteria that have managed to overcome the placental barrier and the role placental immunity plays in resisting infection. Both organisms share characteristics which contribute to their transplacental transmission. These include the ability to disseminate broadly within the host, evade immune phagocytosis, and the need for a strong T cell response for their elimination.
Collapse
Affiliation(s)
- Samuel J. Eallonardo
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Yüzen D, Urbschat C, Schepanski S, Thiele K, Arck PC, Mittrücker H. Pregnancy-induced transfer of pathogen-specific T cells from mother to fetus in mice. EMBO Rep 2023; 24:e56829. [PMID: 37610043 PMCID: PMC10561172 DOI: 10.15252/embr.202356829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Neonatal health is determined by the transfer of maternal antibodies from the mother to the fetus. Besides antibodies, maternal cells cross the placental barrier and seed into fetal organs. Contrary to maternal antibodies, maternal microchimeric cells (MMc) show a high longevity, as they can persist in the offspring until adulthood. Recent evidence highlights that MMc leukocytes promote neonatal immunity against early-life infections in mice and humans. As shown in mice, this promotion of immunity was attributable to an improved fetal immune development. Besides this indirect effect, MMc may be pathogen-specific and thus, directly clear pathogen threats in the offspring postnatally. By using ovalbumin recombinant Listeria monocytogenes (LmOVA), we here provide evidence that OVA-specific T cells are transferred from the mother to the fetus, which is associated with increased activation of T cells and a milder course of postnatal infection in the offspring. Our data highlight that maternally-derived passive immunity of the neonate is not limited to antibodies, as MMc have the potential to transfer immune memory between generations.
Collapse
Affiliation(s)
- Dennis Yüzen
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of ImmunologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christopher Urbschat
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steven Schepanski
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kristin Thiele
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Petra C Arck
- Division of Experimental Feto‐Maternal Medicine, Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | |
Collapse
|
4
|
Hardardottir L, Bazzano MV, Glau L, Gattinoni L, Köninger A, Tolosa E, Solano ME. The New Old CD8+ T Cells in the Immune Paradox of Pregnancy. Front Immunol 2021; 12:765730. [PMID: 34868016 PMCID: PMC8635142 DOI: 10.3389/fimmu.2021.765730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
CD8+ T cells are the most frequent T cell population in the immune cell compartment at the feto-maternal interface. Due to their cytotoxic potential, the presence of CD8+ T cells in the immune privileged pregnant uterus has raised considerable interest. Here, we review our current understanding of CD8+ T cell biology in the uterus of pregnant women and discuss this knowledge in relation to a recently published immune cell Atlas of human decidua. We describe how the expansion of CD8+ T cells with an effector memory phenotype often presenting markers of exhaustion is critical for a successful pregnancy, and host defense towards pathogens. Moreover, we review new evidence on the presence of long-lasting immunological memory to former pregnancies and discuss its impact on prospective pregnancy outcomes. The formation of fetal-specific memory CD8+ T cell subests in the uterus, in particular of tissue resident, and stem cell memory cells requires further investigation, but promises interesting results to come. Advancing the knowledge of CD8+ T cell biology in the pregnant uterus will be pivotal for understanding not only tissue-specific immune tolerance but also the etiology of complications during pregnancy, thus enabling preventive or therapeutic interventions in the future.
Collapse
Affiliation(s)
- Lilja Hardardottir
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Maria Victoria Bazzano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Gattinoni
- Department of Functional Immune Cell Modulation, Regensburg Center for Interventional Immunology, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Angela Köninger
- Department of Obstetrics and Gynecology of the University of Regensburg at the St. Hedwig Hospital of the Order of St. John, Regensburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Emilia Solano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Wang Z, Tao X, Liu S, Zhao Y, Yang X. An Update Review on Listeria Infection in Pregnancy. Infect Drug Resist 2021; 14:1967-1978. [PMID: 34079306 PMCID: PMC8165209 DOI: 10.2147/idr.s313675] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes (LM) is an intracellular, aerobic and facultative anaerobic, Gram-positive bacterium, which is primarily transmitted to humans orally via food. LM could occur in asymptomatic pregnant women; however, fetal infection is a serious condition, entailing premature birth, abortion, sepsis, central nervous system (CNS) involvement, or even death. If a pregnant woman exhibits symptoms, the performance is almost like influenza, such as fever, headache, diarrhea, myalgia, or other digestive-related symptoms. This review collected clinical and empirical results regarding the mechanism, clinical manifestations, obstetrical outcome, diagnosis, treatment, vertical transmission, neonatal infection, and prevention of listeriosi according to articles published in PubMed from January 1, 1980, to March 20, 2021. The early detection and diagnosis of pregnancy-associated listeriosis are significant since sensitive antibiotics are effective at enhancing the prognosis of newborns. Listeriosis can be diagnosed using positive cultures from maternal or neonatal blood, neonatal cerebrospinal fluid (CSF), amniotic fluid, intrauterine mucosa, or the placenta. Two weeks of high-dose intravenous amoxicillin (more than 6 g/day) is recommended for LM pregnant women without allergy. Terminating the pregnancy to save the mother’s life should be considered if maternal and fetal conditions aggravate. Neonatal Listeria infection is primarily transmitted through the placenta, which is a critical illness associated with a high mortality rate. The necessary dietary guidance for pregnant women can reduce the incidence rate of pregnancy-related listeriosis.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaojing Tao
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shan Liu
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yutong Zhao
- Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
6
|
Stout A, Van Stelten-Carlson A, Marquis H, Ballou M, Reilly B, Loneragan GH, Nightingale K, Ivanek R. Public health impact of foodborne exposure to naturally occurring virulence-attenuated Listeria monocytogenes: inference from mouse and mathematical models. Interface Focus 2020; 10:20190046. [PMID: 31897288 PMCID: PMC6936009 DOI: 10.1098/rsfs.2019.0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Listeriosis is a clinically severe foodborne disease caused by Listeria monocytogenes (Lm). However, approximately 45% of Lm isolates in food carry a virulence-attenuating single-nucleotide polymorphism in inlA, which normally facilitates crossing the intestinal barrier during the initial stages of infection. We hypothesized that (i) natural exposure to virulence-attenuated (vA) Lm strains through food can confer protective immunity against listeriosis attributable to fully virulent (fV) strains and (ii) current food safety measures to minimize exposure to both Lm strains may have adverse population-level outcomes. To test these hypotheses, we evaluated the host response to Lm in a mouse infection model and through mathematical modelling in a human population. After oral immunization with a murinized vA Lm strain, we demonstrated the elicitation of a CD8+ T-cell response and protection against subsequent challenge with an fV strain. A two-strain compartmental mathematical model of human exposure to Lm with cross-protective immunity was also developed. If food safety testing strategies preferentially identify and remove food contaminated by vA strains (potentially due to their common occurrence in foods and higher concentration in food compared to fV strains), the model predicted minimal public health benefit to potentially adverse effects. For example, reducing vA exposures by half, while maintaining fV exposures results in an approximately 6% rise in annual incidence.
Collapse
Affiliation(s)
- Alison Stout
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | | | - Hélène Marquis
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
| | - Brian Reilly
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Immunology and Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guy H. Loneragan
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Kendra Nightingale
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Morris AB, Adams LE, Ford ML. Influence of T Cell Coinhibitory Molecules on CD8 + Recall Responses. Front Immunol 2018; 9:1810. [PMID: 30135685 PMCID: PMC6092517 DOI: 10.3389/fimmu.2018.01810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
T cell co-signaling molecules play an important role in fine-tuning the strength of T cell activation during many types of immune responses, including infection, cancer, transplant rejection, and autoimmunity. Over the last few decades, intense research into these cosignaling molecules has provided rich evidence to suggest that cosignaling molecules may be harnessed for the treatment of immune-related diseases. In particular, coinhibitory molecules such as programmed-death 1, 2B4, BTLA, TIGIT, LAG-3, TIM-3, and CTLA-4 inhibit T cell responses by counteracting TCR and costimulatory signals, leading to the inhibition of proliferation and effector function and the downregulation of activation and adhesion molecules at the cell surface. While many reviews have focused on the role of coinhibitory molecules in modifying primary CD8+ T cell responses, in this review, we will consider the complex role of coinhibitory molecules in altering CD8+ T cell recall potential. As memory CD8+ T cell responses are critical for protective memory responses in infection and cancer and contribute to potentially pathogenic memory responses in transplant rejection and autoimmunity, understanding the role of coinhibitory receptor control of memory T cells may illuminate important aspects of therapeutically targeting these pathways.
Collapse
Affiliation(s)
- Anna B Morris
- Department of Surgery, Emory University, Atlanta, GA, United States
| | - Layne E Adams
- Department of Surgery, Emory University, Atlanta, GA, United States
| | - Mandy L Ford
- Department of Surgery, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Listeria Monocytogenes: A Model Pathogen Continues to Refine Our Knowledge of the CD8 T Cell Response. Pathogens 2018; 7:pathogens7020055. [PMID: 29914156 PMCID: PMC6027175 DOI: 10.3390/pathogens7020055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection. In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation and contraction as well as the signals that regulate these processes during Lm infection will be explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus from the intravenous infection model to a natural oral infection model as the humanized mouse and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell responses to oral infection using murinized Lm will be explored throughout the review. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational vaccine design.
Collapse
|
9
|
Mixed signature of activation and dysfunction allows human decidual CD8 + T cells to provide both tolerance and immunity. Proc Natl Acad Sci U S A 2017; 115:385-390. [PMID: 29259116 DOI: 10.1073/pnas.1713957115] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding how decidual CD8+ T cell (CD8+ dT) cytotoxicity is regulated and how these cells integrate the competing needs for maternal-fetal tolerance and immunity to infection is an important research and clinical goal. Gene-expression analysis of effector-memory CD8+ dT demonstrated a mixed transcriptional signature of T cell dysfunction, activation, and effector function. High protein expression of coinhibitory molecules PD1, CTLA4, and LAG3, accompanied by low expression of cytolytic molecules suggests that the decidual microenvironment reduces CD8+ dT effector responses to maintain tolerance to fetal antigens. However, CD8+ dT degranulated, proliferated, and produced IFN-γ, TNF-α, perforin, and granzymes upon in vitro stimulation, demonstrating that CD8+ dT are not permanently suppressed and retain the capacity to respond to proinflammatory events, such as infections. The balance between transient dysfunction of CD8+ dT that are permissive of placental and fetal development, and reversal of this dysfunctional state, is crucial in understanding the etiology of pregnancy complications and prevention of congenital infections.
Collapse
|
10
|
Turner LH, Kinder JM, Wilburn A, D’Mello RJ, Braunlin MR, Jiang TT, Pham G, Way SS. Preconceptual Zika virus asymptomatic infection protects against secondary prenatal infection. PLoS Pathog 2017; 13:e1006684. [PMID: 29145516 PMCID: PMC5689831 DOI: 10.1371/journal.ppat.1006684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Pregnant women, and their fetal offspring, are uniquely susceptible to Zika virus and other microbial pathogens capable of congenital fetal infection. Unavoidable exposure to Zika virus in endemic areas underscores the need for identifying at-risk individuals, and protecting expecting mothers and their fetal offspring against prenatal infection. Here we show that primary Zika virus asymptomatic infection in mice confers protection against re-infection, and that these protective benefits are maintained during pregnancy. Zika virus recovery was sharply reduced in maternal tissues and amongst fetal concepti after prenatal challenge in mothers with resolved subclinical infection prior to pregnancy compared with mice undergoing primary prenatal infection. These benefits coincide with expanded accumulation of viral-specific antibodies in maternal serum and fetal tissues that protect against infection by the identical or heterologous Zika virus genotype strains. Thus, preconceptual infection primes Zika virus-specific antibodies that confer cross-genotype protection against re-infection during pregnancy.
Collapse
Affiliation(s)
- Lucien H. Turner
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Jeremy M. Kinder
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Adrienne Wilburn
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rahul J. D’Mello
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Makayla R. Braunlin
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Tony T. Jiang
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Giang Pham
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| |
Collapse
|
11
|
GNP-GAPDH 1-22 nanovaccines prevent neonatal listeriosis by blocking microglial apoptosis and bacterial dissemination. Oncotarget 2017; 8:53916-53934. [PMID: 28903312 PMCID: PMC5589551 DOI: 10.18632/oncotarget.19405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/01/2017] [Indexed: 12/12/2022] Open
Abstract
Clinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers Listeria monocytogenes (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013–2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH1-22 titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios. Therefore, we developed a nanovaccine with gold glyco-nanoparticles conjugated to LM peptide 1-22 of GAPDH (Lmo2459), GNP-GAPDH1-22 nanovaccinesformulated with a pro-inflammatory Toll-like receptor 2/4-targeted adjuvant. Neonates born to non-vaccinated pregnant mice with listeriosis, showed brain and vascular diseases and significant microglial dysfunction by induction of TNF-α-mediated apoptosis. This programmed TNF-mediated suicide explains LM dissemination in brains and livers and blocks production of early pro-inflammatory cytokines such as IL-1β and interferon-α/β. In contrast, neonates born to GNP-GAPDH1–22-vaccinated mothers before LM infection, did not develop listeriosis or brain diseases and had functional microglia. In nanovaccinated mothers, immune responses shifted towards Th1/IL-12 pro-inflammatory cytokine profiles and high production of anti-GAPDH1–22 antibodies, suggesting good induction of LM-specific memory.
Collapse
|
12
|
Crespo ÂC, van der Zwan A, Ramalho-Santos J, Strominger JL, Tilburgs T. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections. J Reprod Immunol 2017; 119:85-90. [PMID: 27523927 PMCID: PMC5290261 DOI: 10.1016/j.jri.2016.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022]
Abstract
To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses.
Collapse
Affiliation(s)
- Ângela C Crespo
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; PhD Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Anita van der Zwan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - João Ramalho-Santos
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, Portugal
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Calderón-Gonzalez R, Terán-Navarro H, Frande-Cabanes E, Ferrández-Fernández E, Freire J, Penadés S, Marradi M, García I, Gomez-Román J, Yañez-Díaz S, Álvarez-Domínguez C. Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities. NANOMATERIALS 2016; 6:nano6080151. [PMID: 28335280 PMCID: PMC5224619 DOI: 10.3390/nano6080151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 07/26/2016] [Accepted: 08/12/2016] [Indexed: 01/12/2023]
Abstract
Listeriosis is a fatal infection for fetuses and newborns with two clinical main morbidities in the neonatal period, meningitis and diffused cutaneous lesions. In this study, we vaccinated pregnant females with two gold glyconanoparticles (GNP) loaded with two peptides, listeriolysin peptide 91-99 (LLO91-99) or glyceraldehyde-3-phosphate dehydrogenase 1-22 peptide (GAPDH1-22). Neonates born to vaccinated mothers were free of bacteria and healthy, while non-vaccinated mice presented clear brain affections and cutaneous diminishment of melanocytes. Therefore, these nanoparticle vaccines are effective measures to offer pregnant mothers at high risk of listeriosis interesting therapies that cross the placenta.
Collapse
Affiliation(s)
- Ricardo Calderón-Gonzalez
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| | - Héctor Terán-Navarro
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| | - Elisabet Frande-Cabanes
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| | - Eva Ferrández-Fernández
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Cantabria, Spain.
| | - Soledad Penadés
- CIC-biomaGUNE. P de Miramon, 20009 San Sebastian, Gipuzcoa, Spain.
- Biomedical Research Networking Center in Bioingeneering, Nanomaterials and Nanomedine (CIBER-BBN), P de Miramon 182, 20009 San Sebastian, Gipuzkoa, Spain.
| | - Marco Marradi
- CIC-biomaGUNE. P de Miramon, 20009 San Sebastian, Gipuzcoa, Spain.
- Biomedical Research Networking Center in Bioingeneering, Nanomaterials and Nanomedine (CIBER-BBN), P de Miramon 182, 20009 San Sebastian, Gipuzkoa, Spain.
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Cantabria, Spain.
| | - Isabel García
- CIC-biomaGUNE. P de Miramon, 20009 San Sebastian, Gipuzcoa, Spain.
- Biomedical Research Networking Center in Bioingeneering, Nanomaterials and Nanomedine (CIBER-BBN), P de Miramon 182, 20009 San Sebastian, Gipuzkoa, Spain.
| | - Javier Gomez-Román
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Cantabria, Spain.
| | - Sonsoles Yañez-Díaz
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla 25, 39008 Santander, Cantabria, Spain.
| | - Carmen Álvarez-Domínguez
- Grupo de Nanovacunas y Vaculas Celulares Basadas en Listeria y Sus Aplicaciones en Biomedicina, Instituto de Investigación Marqués de Valdecilla, Avda. Cardenal Herrera Oria S/N, 39011 Santander, Cantabria, Spain.
| |
Collapse
|
14
|
Chaturvedi V, Ertelt JM, Jiang TT, Kinder JM, Xin L, Owens KJ, Jones HN, Way SS. CXCR3 blockade protects against Listeria monocytogenes infection-induced fetal wastage. J Clin Invest 2015; 125:1713-25. [PMID: 25751061 DOI: 10.1172/jci78578] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 01/22/2015] [Indexed: 01/27/2023] Open
Abstract
Mammalian pregnancy requires protection against immunological rejection of the developing fetus bearing discordant paternal antigens. Immune evasion in this developmental context entails silenced expression of chemoattractant proteins (chemokines), thereby preventing harmful immune cells from penetrating the maternal-fetal interface. Here, we demonstrate that fetal wastage triggered by prenatal Listeria monocytogenes infection is driven by placental recruitment of CXCL9-producing inflammatory neutrophils and macrophages that promote infiltration of fetal-specific T cells into the decidua. Maternal CD8+ T cells with fetal specificity upregulated expression of the chemokine receptor CXCR3 and, together with neutrophils and macrophages, were essential for L. monocytogenes-induced fetal resorption. Conversely, decidual accumulation of maternal T cells with fetal specificity and fetal wastage were extinguished by CXCR3 blockade or in CXCR3-deficient mice. Remarkably, protection against fetal wastage and in utero L. monocytogenes invasion was maintained even when CXCR3 neutralization was initiated after infection, and this protective effect extended to fetal resorption triggered by partial ablation of immune-suppressive maternal Tregs, which expand during pregnancy to sustain fetal tolerance. Together, our results indicate that functionally overriding chemokine silencing at the maternal-fetal interface promotes the pathogenesis of prenatal infection and suggest that therapeutically reinforcing this pathway represents a universal approach for mitigating immune-mediated pregnancy complications.
Collapse
MESH Headings
- Adoptive Transfer
- Ampicillin/therapeutic use
- Animals
- Anti-Bacterial Agents/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Chemokine CXCL9/biosynthesis
- Chemokine CXCL9/genetics
- Chemokine CXCL9/physiology
- Chemokines/metabolism
- Crosses, Genetic
- Decidua/immunology
- Female
- Fetal Death/etiology
- Fetal Death/prevention & control
- Fetal Resorption/immunology
- Fetal Resorption/prevention & control
- Listeriosis/drug therapy
- Listeriosis/immunology
- Macrophages/immunology
- Male
- Maternal-Fetal Exchange
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neutrophils/immunology
- Ovalbumin/genetics
- Ovalbumin/immunology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Pregnancy
- Pregnancy Complications, Infectious/drug therapy
- Pregnancy Complications, Infectious/immunology
- Receptors, CXCR3/antagonists & inhibitors
- Receptors, CXCR3/biosynthesis
- Receptors, CXCR3/deficiency
- Receptors, CXCR3/genetics
- Receptors, CXCR3/physiology
- Spleen/immunology
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/immunology
- Up-Regulation
- Virulence
Collapse
|
15
|
Croy BA. Reproductive immunology issue 2: cellular and molecular biology. Cell Mol Immunol 2014; 11:503-5. [PMID: 25263487 DOI: 10.1038/cmi.2014.98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 09/14/2014] [Indexed: 12/19/2022] Open
|