1
|
Li JJ, Chen ZH, Liang WT, Yang YD, Xie TY, Chen DJ, Yang X, Wu PL, Liang XW, Zou HP, Zhang JH, Shi W, Zhang FX. Xiao-Chai-Hu granule alleviates influenza virus-induced pneumonia by regulating TLR4-PI3K-Akt/p38 MAPK-NF-κB pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119760. [PMID: 40204248 DOI: 10.1016/j.jep.2025.119760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/16/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiao-Chai-Hu granule (XCH) originates from the classical formula Xiao-Chai-Hu decoction, documented in Zhang Zhongjing's Treatise on Febrile and Miscellaneous Diseases (205 AD). Clinically used in China for decades to treat influenza, its mechanism against influenza virus (IFV)-induced pneumonia remains unclear. AIM OF THE STUDY This work aimed to evaluate the anti-influenza viral pneumonia effects and mechanism of XCH. MATERIALS AND METHODS Influenza virus A/PR/8/34 (PR8)-induced pneumonia mouse model was established to evaluate the effects of XCH, including pharmacological indexes of body weight, survival rates after 21 days post-infection, lung index, spleen index, and cytokines in bronchoalveolar lavage fluid (BALF) in day 5. Meanwhile, pathological status of the lung tissue profiled by H&E staining and white blood cells (neutrophils, monocytes, and lymphocytes) in the BALF were measured to assess the host inflammatory state. Chemical components of XCH were profiled using UPLC-Q/TOF MS in vitro and in vivo. Network pharmacology further predicted potential targets and pathways of XCH against influenza based on the identified prototypes. Western blotting analysis was used to verify the mechanism. RESULTS XCH (21 g/kg/day) markedly improved survival rates (40% vs 10%), delayed weight loss, and reduced lung damage (lower lung index and histopathological scores), compared with the PR8 group. Additionally, it increased spleen index, indicating enhanced immune response. XCH treatment significantly suppresses the excessive recruitment of neutrophils and monocytes in the lungs and the high levels of TNF-α, IL-6, IL-1β, IL-17A, IFN-β, IFN-γ in BALF induced by PR8, while significantly increased IL-10 level. Chemical analysis using UPLC-Q/TOF MS identified 197 compounds in XCH and 68 prototypes in vivo. Network pharmacology analysis further revealed that the PI3K-Akt, MAPK, and NF-κB pathways are potential key pathways mediating XCH's anti-influenza effects. Western blotting analysis indicated that XCH markedly down-regulated the levels of NP, TLR4, p-Akt/Akt, p-p38/p38, p-p65/p65, which was in line with the predicted results. CONCLUSIONS TLR4-PI3K-Akt/p38 MAPK-NF-κB pathways is one of the signal pathways for XCH treating influenza virus pneumonia and reducing influenza virus titer in the lung.
Collapse
Affiliation(s)
- Jin-Jin Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Wan-Ting Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Yue-Dan Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Tian-Yun Xie
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - De-Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xia Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Pei-Ling Wu
- Guangdong Engineering Technology Research Center of Geriatric Pharmacotherapy, Guangzhou, 510285, PR China
| | - Xiao-Wen Liang
- Guangdong Engineering Technology Research Center of Geriatric Pharmacotherapy, Guangzhou, 510285, PR China
| | - Hong-Ping Zou
- Guangdong Engineering Technology Research Center of Geriatric Pharmacotherapy, Guangzhou, 510285, PR China
| | - Jun-Hua Zhang
- Guangdong Engineering Technology Research Center of Geriatric Pharmacotherapy, Guangzhou, 510285, PR China.
| | - Wei Shi
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Feng-Xiang Zhang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, PR China.
| |
Collapse
|
2
|
Lv C, Guo J, Luo R, Li Y, Qian B, Zou X, Wang T, Shen B, Sun W, Gao Y. Taurolidine inhibits influenza virus infection and prevents influenza-induced cytokine storm, vasoconstriction and lung damage. Cell Mol Life Sci 2025; 82:201. [PMID: 40369324 PMCID: PMC12078922 DOI: 10.1007/s00018-025-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/12/2025] [Accepted: 02/21/2025] [Indexed: 05/16/2025]
Abstract
Influenza virus causes worldwide outbreaks and seasonal epidemics, posing a severe threat to public health and social development. Effective prevention and treatment of influenza infections remain major challenge for global healthcare. In this study, we observed that taurolidine effectively inhibited the proliferation of several human or animal influenza virus strains and protected mice from lethal-infection. Taurolidine treatment decreased the viral titer in the lungs of infected mice, reduced the ratio of immune cells, and alleviated lung pathology. Additionally, taurolidine treatment attenuated the rise of blood pressure, pulse wave velocity, and pulmonary aortic thickness in a mouse model for influenza virus infection. We also found that taurolidine significantly decreased intracellular Ca2+ concentration and effectively alleviated pulmonary artery vasoconstriction during influenza virus infection. Mechanistically, we observed that vascular smooth muscle contraction signaling pathway was significantly enriched, and taurolidine inhibited the activation of the MLCK/p-MLC pathway. Taking together, these findings confirm the effectiveness of taurolidine as an antiviral agent and highlight its important roles in mitigating host immune cell infiltration and vasoconstriction induced by influenza virus infection.
Collapse
Affiliation(s)
- Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jin Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Bingshuo Qian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaopan Zou
- Breast and Thyroid Surgery, Jilin Province People's Hospital, Changchun, Jilin, 130021, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, China.
| |
Collapse
|
3
|
Bepouka B, Mandina M, Mvibudulu D, Matangila J, Okamba A, Muyeke G, Tawaba D, Mayasi N, Odio O, Mangala D, Lukiana T, Mbula M, Situakibanza H, Longokolo M. Clinical Characteristics and Mortality Trends Among COVID-19 Patients During the First Four Waves in Ngaliema Clinic, Democratic Republic of the Congo. Infect Drug Resist 2025; 18:2525-2536. [PMID: 40384799 PMCID: PMC12085894 DOI: 10.2147/idr.s499371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 05/10/2025] [Indexed: 05/20/2025] Open
Abstract
Background COVID-19 disease has been a deadly pandemic in different waves in the Democratic Republic of Congo. However, knowledge of the clinical characteristics of COVID-19 patients and the factors associated with death during different waves is important. Methods We conducted a retrospective cohort of 410 patients hospitalized during 4 waves of COVID-19, from March 20, 2020, to January 2, 2022, at the Ngaliema clinic in DR Congo. We included any patient hospitalized for COVID-19 with biological confirmation by RT-PCR. Factors associated with death were investigated using logistic regression. Results During the 4 waves of the COVID-19 pandemic at Clinique Ngaliema, complaints on admission were most often fever, cough and physical asthenia. Death was most common in the elderly, hypertensive and diabetic patients, those with elevated CRP and hyper leukocytosis. Mortality was highest in the 1st wave (28%), followed by the 3rd wave (27%), then the 2nd (22%) and 4th waves (21%). Factors associated with death were hyper leukocytosis (ORa: 2.76; CI 95%: 1.25-6.1), severe disease stage (ORa 21.24; CI 95%: 1.87-24). Vitamin C 500 mg twice a day use was protective (ORa: 0.24; CI 95%: 0.08-0.72). Conclusion COVID-19 disease poses a real public health problem, with non-negligible mortality. Factors associated with death were degree of disease severity, hyper leukocytosis and non-use of vitamin C. Taking these factors into account will help clinicians and decision-makers to anticipate future waves of the pandemic.
Collapse
Affiliation(s)
- Ben Bepouka
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
- Office of Infectious Diseases and Global Health Research, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Madone Mandina
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Daniel Mvibudulu
- Faculty of Medicine, Kongo University, Kisantu, Democratic Republic of the Congo
- Emergency Service, Ngaliema Clinic, Kinshasa, Democratic Republic of the Congo
| | - Junior Matangila
- Emergency Service, Ngaliema Clinic, Kinshasa, Democratic Republic of the Congo
| | - Armand Okamba
- Cardiology Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Gertrude Muyeke
- Faculty of Medicine, Kongo University, Kisantu, Democratic Republic of the Congo
| | - Dieudonne Tawaba
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
- Office of Infectious Diseases and Global Health Research, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Nadine Mayasi
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Ossam Odio
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Donat Mangala
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Tuna Lukiana
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Marcel Mbula
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Hippolyte Situakibanza
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Murielle Longokolo
- Infectious and Tropical Diseases Service, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
4
|
Zheng Y, He D, Zuo W, Wang W, Wu K, Wu H, Yuan Y, Huang Y, Li H, Lu Y, Zhao L, Wang X, Wang J, Zhang Y, Zou G, Li H, Wang Z, Cao B. Influenza A virus dissemination and infection leads to tissue resident cell injury and dysfunction in viral sepsis. EBioMedicine 2025; 116:105738. [PMID: 40367638 DOI: 10.1016/j.ebiom.2025.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Severe respiratory viral infections can lead to viral sepsis (VS), a life-threatening condition characterized by lung and extrapulmonary organ dysfunction. However, the pathology of VS is not clear. Specifically, it is unknown how the cytokine storm and direct virus infection contribute to the damage of extrapulmonary organs. METHODS In this study, we established survival and lethal mouse models of VS by intranasally administering different doses of PR8/H1N1 influenza virus in C57BL/6J male mice, as well as model of bacterial sepsis (BS) caused by Streptococcus pneumoniae as references. Viraemia and extrapulmonary dissemination and infection of the virus were examined. Single-cell sequencing of the lungs and livers was performed at different days post-infection (dpi) in three groups. FINDINGS While bacteria can spread and colonize extensively in extrapulmonary organs, causing multiple organ injuries, IAVs mainly replicate and cause damage in pulmonary cells. Live virus can be isolated in the blood and extrapulmonary organs. Disseminating via the bloodstream, IAVs transiently infect the liver and spleen, causing liver dysfunction and spleen atrophy, without affecting kidney function, despite systematically elevated cytokine levels. Compared to BS, a more significant decrease in the proportion of alveolar macrophages, epithelial cells, endothelial cells, and fibroblasts in the lungs, as well as endothelial cells and Kupffer cells in the liver, was observed in VS. This was accompanied by a longer activated PANoptosis pathway and downregulated genes responsible for barrier function and antigen presentation in the epithelial and endothelial cells. INTERPRETATION Our study suggests that H1N1 influenza virus disseminates through the bloodstream and infects extrapulmonary organs to varying extents, which may lead to differential cell death, organ dysfunction, and trigger VS. FUNDING This research was supported by the National Natural Science Foundation of China (82241056, 82170015, 82030002, 82470007, 824B2001), the National Key R&D Program of China (2023YFC2306300), Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2021-I2M-1-048), the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202208), New Cornerstone Science Foundation, National High Level Hospital Clinical Research Funding (2024-NHLHCRF-LX-01-0101, 2024-NHLHCRF-LX-01-0102), Beijing Research Ward Excellence Program (BRWEP2024W114060103), Noncommunicable Chronic Diseases-National Science and Technology Major Project (2023ZD0506200, 2023ZD0506203) and Special Research Fund for Central Universities, Peking Union Medical College (3332024193).
Collapse
Affiliation(s)
- Ying Zheng
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100054, China; National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Di He
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100054, China; National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weiyang Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Kaiwei Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongping Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yingying Yuan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100083, China
| | - Yijiao Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
| | - Hongyan Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yameng Lu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100054, China
| | - Ling Zhao
- Department of Pathology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiuhong Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiaying Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Guming Zou
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haibo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; New Cornerstone Science Laboratory, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Zai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100083, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100054, China; National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China; New Cornerstone Science Laboratory, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
5
|
Allushi B, Chlebicz M, Kumar G, Massey K, Labombarde JG, Turner S, Miller RAJ, Williams AP, Quinn A, Kovats S, Axtell RC. Interferon-β treatment reverses the detrimental effect of B-cell depletion therapy on respiratory virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf085. [PMID: 40334083 DOI: 10.1093/jimmun/vkaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2025] [Indexed: 05/09/2025]
Abstract
Disease-modifying therapies (DMTs) are critical for managing autoimmunity such as multiple sclerosis (MS), yet concerns exist regarding their impact on viral infections. B-cell depletion (α-CD20) and IFN-β are 2 DMTs with seemingly opposing effects on viral infections. Pre-vaccine COVID-19 data linked B-cell depletion to worse outcomes, while IFN-β is believed to offer protection to viral infection. The mechanisms underlying the interactions between these DMTs and infection have yet to be fully elucidated. Our goal was to determine the modulatory effects of α-CD20 and IFN-β, administered individually or in combination, during acute respiratory viral infections in mice. In our study, B-cell depletion was achieved by administering α-CD20 antibodies 3 times every 5 days, starting 7 days before influenza A virus (IAV) infection. IFN-β was administered on days 1 and 2 p.i. α-CD20 administered alone exacerbated infection outcomes. At day 9 postinfection, mice treated with α-CD20 had elevated viral RNA, accompanied by greater weight loss, impaired viral clearance, heightened myeloid cell infiltration in the lungs, and elevated systemic inflammatory cytokines in the blood. Notably, T-cell responses to IAV were not inhibited by α-CD20. IFN-β monotherapy failed to confer significant protection against viral infection, but when combined with α-CD20, it reversed the exacerbated effects of B-cell depletion by reducing viral load, improving morbidity, limiting neutrophil infiltration, and restoring cytokine homeostasis. These findings suggest IFN-β's capacity to counteract the deleterious impacts of α-CD20 on respiratory viral infections, offering potential treatment strategies for autoimmune diseases during viral outbreaks.
Collapse
Affiliation(s)
- Bujana Allushi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Magdalena Chlebicz
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Gaurav Kumar
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kaylea Massey
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jocelyn G Labombarde
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Pathology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Sean Turner
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Reegan A J Miller
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Abigael P Williams
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Amia Quinn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
- Department of Pathology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Yu M, Lin A, Baharom F, Li S, Legendre M, Covés-Datson E, Sohlberg E, Schlisio S, Loré K, Markovitz DM, Smed-Sörensen A. A genetically engineered therapeutic lectin inhibits human influenza A virus infection and sustains robust virus-specific CD8 T cell expansion. PLoS Pathog 2025; 21:e1013112. [PMID: 40333697 PMCID: PMC12057898 DOI: 10.1371/journal.ppat.1013112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Seasonal influenza continues to be a global health problem. Current existing vaccines and antivirals against influenza have limited effectiveness, and typically do not stay ahead of the viral evolutionary curve. Broad-spectrum antiviral agents that are effective therapeutically and prophylactically are much needed. We have created a promising new broad-spectrum anti-influenza agent using molecular engineering of a lectin from bananas, H84T, which is well-tolerated and protective in small animal models. However, the potency and effect of H84T on human immune cells and influenza-specific immune responses are undetermined. We found that H84T efficiently inhibited influenza A virus (IAV) replication in primary human dendritic cells (DCs) isolated from blood and tonsil, preserved DC viability and allowed acquisition and presentation of viral antigen. Excitingly, H84T-treated DCs subsequently initiated effective expansion of IAV-specific CD8 T cells. Furthermore, H84T preserved the capacity of IAV-exposed DCs to present a second non-IAV antigen and induce robust antigen-specific CD8 T cell expansion. Our data support H84T as a potent antiviral in humans as it not only effectively inhibits IAV infection, but also preserves induction of robust pathogen-specific adaptive immune responses against diverse antigens, which likely is clinically beneficial.
Collapse
Affiliation(s)
- Meng Yu
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Faezzah Baharom
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maureen Legendre
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Evelyn Covés-Datson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Schlisio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - David M. Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Programs in Cellular and Molecular Biology, Immunology, and Cancer Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna Smed-Sörensen
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Torres-Méndez CE, Nandi S, Martinovic K, Kühne P, Liu Y, Taylor S, Lysandrou M, Mascarenhas MIBR, Langwallner V, Alonso JES, Jovanovic I, Lüftner M, Gkountana GV, Bern D, Atif AR, Manouchehri Doulabi E, Mestres G, Kamali-Moghaddam M. Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:540-550. [PMID: 40275987 PMCID: PMC12018907 DOI: 10.3762/bjnano.16.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
An electrochemical biosensor based on modified carbon screen-printed electrodes was developed for the detection of hemagglutinin of influenza A H1N1 virus (H1). Gold nanoflowers were electrodeposited on the electrode to increase conductivity and surface area. The electrochemical signal was amplified by functionalization of the gold nanoflowers with 4-aminothiophenol, which resulted in a 100-fold decrease of the charge transfer resistance due to a tunneling effect. Subsequently, monoclonal antibodies against H1 were immobilized on the surface via covalent amide bond formation, followed by blocking with bovine serum albumin to minimize nonspecific hydrophobic binding. The electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy experiments in the presence of [Fe(CN)6]3-/4-. Differential pulse voltammetry was used to measure the change in current across the electrode as a function of H1 concentration. This was performed on a series of samples of artificial saliva containing H1 protein in a clinically relevant concentration range. In these experiments, the biosensor showed a limit of detection of 19 pg/mL. Finally, the biosensor platform was coupled to an automated microfluidics system, and no significant decrease of the electrochemical signal was observed.
Collapse
Affiliation(s)
- Carlos Enrique Torres-Méndez
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Sharmilee Nandi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Klara Martinovic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrizia Kühne
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yifan Liu
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Sam Taylor
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Maria Lysandrou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Viktoria Langwallner
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Ivana Jovanovic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maike Lüftner
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Georgia-Vasiliki Gkountana
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Bern
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Abdul-Raouf Atif
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gemma Mestres
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Wei C, Xu Y, Zheng Y, Hong L, Lyu C, Li H, Cao B. The LTB4-BLT1 axis attenuates influenza-induced lung inflammation by suppressing NLRP3 activation. Cell Death Discov 2025; 11:148. [PMID: 40189592 PMCID: PMC11973165 DOI: 10.1038/s41420-025-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
The mortality associated with influenza A virus (IAV) infection typically results from excessive immune responses, leading to immunopathological lung damage and compromised pulmonary function. Various immunomodulators are seen beneficial when used in conjunction with direct anti-infection treatment. Leukotriene B4 (LTB4) is a derivative of arachidonic acid (AA) and has been shown to be advantageous for numerous infectious diseases, allergies, and autoimmune disorders. Nonetheless, the function of LTB4 in influenza infection remains unclear. This study demonstrates that LTB4 and its primary receptor BLT1, as opposed to the secondary receptor BLT2, act as a protective immune modulator during influenza infection in bone marrow-derived macrophages and mouse models. Mechanistically, LTB4 promotes K27-linked and K48-linked polyubiquitination of the NLRP3 protein at its K886 and K1023 sites via a cAMP/PKA-dependent pathway, which inhibits NLRP3 inflammasome assembly and thereby diminishes subsequent NLRP3 inflammasome activation. The consequent decline in the release of IL-1β and IL-18 leads to a reduction in inflammation caused by viral infection. Furthermore, the administration of a LTB4 treatment in a fatal IAV infection model can mitigate the excessive NLRP3 inflammasome activation and reduce IAV-induced severe pulmonary damage. These findings illustrate the protective function of LTB4 in fatal IAV infection by mitigating the severe inflammation induced by the virus.
Collapse
Affiliation(s)
- Cheng Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yitian Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zheng
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Lizhe Hong
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lyu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Bin Cao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- New Cornerstone Science Laboratory, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
10
|
Marczewska A, Wojciechowska C, Marczewski K, Gospodarczyk N, Dolibog P, Czuba Z, Wróbel K, Zalejska-Fiolka J. Elevated Levels of IL-1Ra, IL-1β, and Oxidative Stress in COVID-19: Implications for Inflammatory Pathogenesis. J Clin Med 2025; 14:2489. [PMID: 40217938 PMCID: PMC11989314 DOI: 10.3390/jcm14072489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Background: The coronavirus-caused disease (COVID-19), first identified in China in December 2019, has spread worldwide becoming a global pandemic. Although people infected with the SARS-CoV-2 virus presented mainly respiratory and gastrointestinal symptoms, an increase in cardiovascular incidents was observed in several scientific studies. SARS-CoV-2 virus has been shown to disrupt the normal immune response leading to a dysregulation of immune system function and massive production of inflammatory cytokines commonly known as "cytokine storm". Methods: 57 patients eventually participated in the study, assigned to non-COVID (24 patients) and COVID (33 patients) groups. After signing consent to participate in the study, each patient was given a self-administered questionnaire to fill out prior to specimen collection, anthropometric measurements were taken and venous blood was collected for the following determinations: pro- and anti-inflammatory cytokines using a Bio-Plex 200 system, oxidative stress markers and basic hematological blood parameters. Results: showed statistically significant higher values of IL-1Ra and IL-1β in the COVID-19 group. Of the oxidative stress markers, only MDA levels were higher in the COVID-19 group. Conclusions: the results of our study provide evidence and support the occurrence of elevated levels of IL-1Ra, IL-1β and MDA in the COVID-19 group of patients, which are associated with a worse course and prognosis of COVID-19. A better understanding of the pathophysiology and dysregulation of the immune system associated with the cytokine storm is essential to select patients at risk and develop effective drugs and vaccines.
Collapse
Affiliation(s)
- Alicja Marczewska
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Kamil Marczewski
- Department of Urology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Plac Medyków 1, 41-200 Sosnowiec, Poland
| | - Natalia Gospodarczyk
- Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Paweł Dolibog
- Department of Biophysics, Faculty of Medical Sciences, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Karolina Wróbel
- Medical Laboratory of Teresa Fryda Katowice, Katowice, Laboratory Branch in Specialist Hospital in Zabrze, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| |
Collapse
|
11
|
Astroth C, Shah KS, Agrawal S, Agrawal A. Weathering the Storm: How Age and Biologics Influence the COVID-19 Cytokine Surge. Pathogens 2025; 14:346. [PMID: 40333142 PMCID: PMC12030216 DOI: 10.3390/pathogens14040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
SARS-CoV-2, first identified in December 2019, caused a global pandemic, resulting in over 6.8 million deaths by March 2023. The elderly, or individuals over 65, accounted for the majority of COVID-19 deaths, with 81% of fatalities in the US in 2020 occurring in this group. Beyond mortality, aging populations are also at higher risk of long-term cardiovascular complications and acute respiratory distress syndrome (ARDS). Although these outcomes may be influenced by comorbidities common in the elderly, age has been found to be a standalone risk factor for severe COVID-19 infection. Therefore, investigating age-related factors in COVID-19 outcomes is crucial in protecting this vulnerable group. Of particular interest is the cytokine storm phenomenon, an excessive inflammatory response that contributes to severe COVID-19 symptoms, including ARDS and cardiovascular damage. Elevated levels of multiple cytokines are common in severe cases of COVID-19. We propose that changes that occur to cytokine profiles as we age may contribute to these aberrant inflammatory responses. This review specifically explored the interleukin class cytokines IL-1, IL-6, IL-17, and IL-23 and considered the potential of biologics targeting these cytokines to alleviate severe outcomes in both COVID-19 and aging individuals.
Collapse
Affiliation(s)
| | | | | | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (C.A.); (K.S.S.); (S.A.)
| |
Collapse
|
12
|
Xie S, Wei J, Wang X. The intersection of influenza infection and autoimmunity. Front Immunol 2025; 16:1558386. [PMID: 40248710 PMCID: PMC12003283 DOI: 10.3389/fimmu.2025.1558386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
The relationship between viral infection and autoimmune manifestations has been emerging as a significant focus of study, underscoring the intricate interplay between viral infections and the immune system. Influenza infection can result in a spectrum of clinical outcomes, ranging from mild illness to severe disease, including mortality. Annual influenza vaccination remains the most effective strategy for preventing infection and its associated complications. The complications arising from acute influenza infection are attributable not only to the direct effects of the viral infection but also to the dysregulated immune response it elicits. Notably, associations between influenza and various autoimmune diseases, such as Guillain-Barré Syndrome (GBS), Type 1 Diabetes (T1D), and antiphospholipid syndrome, have been reported. While viral infections have long been recognized as potential triggers of autoimmunity, the underlying mechanisms remain to be elucidated. Here, we described the pathophysiology caused by influenza infection and the influenza-associated autoimmune manifestations. Current advances on the understanding of the underlying immune mechanisms that lead to the potential strategies were also summarized.
Collapse
Affiliation(s)
| | | | - Xiaohui Wang
- Guangzhou Institute of Paediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Research Center for Child Health, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
LI T, WANG X, XIONG Y, DAI Q, WANG S, JI J. Jinxin oral liquid reduced lung inflammation in influenza A virus infected mice through inhibiting NOD-like receptor protein 3 pathway. J TRADIT CHIN MED 2025; 45:281-290. [PMID: 40151115 PMCID: PMC11955749 DOI: 10.19852/j.cnki.jtcm.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVE To investigate the therapeutic effects of Jinxin oral liquid (, JX) on influenza A virus(H1N1)influenza virus infected mice. METHODS We established a model of by intranasally infecting the mice with H1N1 virus. The mice were then orally administered JX or ribavirin to evaluate their therapeutic effects in vivo. We conducted histologic and immunohistochemical analyses, enzyme linked immunosorbent assay or quantitative real-time polymerase chain reaction to assess lung damage and the expression of inflammatory cytokines. Western blot (WB) experiments was conducted to measure the activation of NOD-like receptor protein 3 (NLRP3) pathway. Flow cytometry was employed to quantify the populations of alveolar macrophages (AMs). To block the NLRP3 pathway, mice were treated with MCC950. For AMs depletion, mice were intranasally administered a single dose of clodronate liposome. RESULTS Administration of JX demonstrated a protective effect against H1N1-induced lung pathology by reducing lung injury, suppressing lung inflammation, and decreasing viral titer. JX significantly inhibited the production of pro-inflammatory cytokines, such as interleukin (IL)-1β and tumor necrosis factor-ɑ, in H1N1-infected mice. JX inhibits the activation of NOD-like receptor protein 3 (NLRP3)/apoptosis-associated speck-like protein containing a caspase recruitment domain/ caspase 1 pathway in the lungs and AMs of H1N1-infected mice. The inhibitory effect of JX on IL-1β secretion was mediated by blocking the NLRP3 pathway activation in AMs. CONCLUSIONS These findings suggest that JX holds promise as a potential therapeutic agent for suppressing the aggressive pro-inflammatory response induced by H1N1 infection. Further research and development are warranted to explore the full potential of JX in the prevention and treatment of H1N1 infection.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Mice
- Drugs, Chinese Herbal/administration & dosage
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H1N1 Subtype/drug effects
- Humans
- Female
- Pneumonia/drug therapy
- Pneumonia/virology
- Pneumonia/genetics
- Pneumonia/immunology
- Male
- Influenza, Human/drug therapy
- Influenza, Human/virology
- Influenza, Human/immunology
- Influenza, Human/genetics
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/genetics
- Signal Transduction/drug effects
- Lung/drug effects
- Lung/immunology
- Lung/virology
- Interleukin-1beta/immunology
- Interleukin-1beta/genetics
Collapse
Affiliation(s)
- Tao LI
- 1 Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- 2 Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xianzheng WANG
- 3 Basic Medical College of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Yingcai XIONG
- 2 Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qigang DAI
- 1 Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shouchuan WANG
- 1 Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jianjian JI
- 2 Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
14
|
Octaviani CP, Huang P, Bi-Hung P, Gray GC, Tseng CTK. Superior replication, pathogenicity, and immune evasion of a Texas dairy cattle H5N1 virus compared to a historical avian isolate. Sci Rep 2025; 15:8797. [PMID: 40087358 PMCID: PMC11909106 DOI: 10.1038/s41598-025-93493-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
The current outbreak of highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype clade 2.3.4.4b in dairy cattle in the United States has affected nearly 900 dairy farms and resulted in at least 39 human infections, putting health authorities and the scientific community on high alert. Here we characterize the virus growth properties and host-pathogen interactions of an isolate obtained from a sick dairy cow in Texas in vitro and in vivo and compare it to an older HPAI isolate. Despite so far being associated with mild disease in human patients, the cattle H5N1 virus showed superior growth capability and rapid replication kinetics in a panel of human lung cell lines in vitro. In vivo, cattle H5N1 exhibited more intense pathogenicity in mice, with rapid lung pathology and high virus titers in the brain, accompanied by high mortality after challenge via different inoculation routes. Additionally, the cattle H5N1 demonstrated efficient antagonism of overexpressed RIG-I- and MDA5-mediated innate antiviral signaling pathways. In summary, this study demonstrates the profound pathogenicity and suggests a potential innate immune escape mechanism of the H5N1 virus isolated from a dairy cow in Texas.
Collapse
Affiliation(s)
- Cassio Pontes Octaviani
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Pinghan Huang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Peng Bi-Hung
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gregory C Gray
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Internal Medicine (Division of Infectious Disease), University of Texas Medical Branch, Galveston, TX, USA
- Department of Global Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Centers for Biodefense and Emerging Diseases, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
15
|
Chakraborty C, Bhattacharya M, Das A, Saha A. Regulation of miRNA in Cytokine Storm (CS) of COVID-19 and Other Viral Infection: An Exhaustive Review. Rev Med Virol 2025; 35:e70026. [PMID: 40032584 DOI: 10.1002/rmv.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
In the initial stage of the COVID-19 pandemic, high case fatality was noted. The case fatality during this was associated with the cytokine storm (CS) or cytokine storm syndrome (CSS). Sometimes, virus infections are due to the excessive secretion of pro-inflammatory cytokines, leading to cytokine storms, which might be directed to ARDS, multi-organ failure, and death. However, it was noted that several miRNAs are involved in regulating cytokines during SARS-CoV-2 and other viruses such as IFNs, ILs, GM-CSF, TNF, etc. The article spotlighted several miRNAs involved in regulating cytokines associated with the cytokine storm caused by SARS-CoV-2 and other viruses (influenza virus, MERS-CoV, SARS-CoV, dengue virus). Targeting those miRNAs might help in the discovery of novel therapeutics, considering CS or CSS associated with different virus infections.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | | | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Abinit Saha
- Deparment of Zoology, J.K. College, Purulia, India
| |
Collapse
|
16
|
Woo HJ, Kwon TK, Heo ST, Yoo JR, Kim M, Oh J, Bae IG, Bae S, Yoon YR, Hyun M, Kim HA, Jung SI, Kwon KT, Hwang S, Kim UJ, Kang G, Kim YJ, Hwang JH, Kim MG. Prognostic nutritional index as an early predictor of mortality in patients with severe fever with thrombocytopenia syndrome: multicenter retrospective study in South Korea. BMC Infect Dis 2025; 25:274. [PMID: 40001073 PMCID: PMC11863440 DOI: 10.1186/s12879-025-10661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND AND AIM Severe fever with thrombocytopenia syndrome (SFTS) is a fatal tick-borne infectious disease lacking effective treatments or vaccines. Early identification of prognostic factors is essential for optimizing clinical management. This study investigated the predictors for mortality in SFTS patients. METHODS We conducted a retrospective multicenter cohort study of 413 SFTS patients hospitalized in South Korea from 2013 to 2024. Clinical and laboratory data were comprehensively analyzed to evaluate associations between in-hospital mortality and various inflammatory, immune, and nutritional biomarkers. Cox regression and time-dependent receiver operating characteristic (ROC) analyses were performed to identify risk factors. RESULTS 413 patients diagnosed with SFTS were included and In-hospital mortality was 17% (70/413). Multivariate Cox regression identified older age (HR: 1.042; 95% CI: 1.014-1.071), elevated PT(INR) (HR: 109.57; 95% CI: 19.79-606.57), and lower prognostic nutritional index (PNI) (HR: 0.937; 95% CI: 0.886-0.990) as early predictors of mortality. Time-dependent ROC analysis demonstrated predictive accuracy, with AUCs of 0.512 for age, 0.857 for PT(INR), and 0.694 for PNI at 30 days. Kaplan-Meier analysis revealed significant survival differences for patients stratified by PNI (< 40.75), PT(INR) (≥ 0.97), and age (≥ 59 years). CONCLUSIONS PNI, PT(INR), and age were identified as key early predictors of mortality in SFTS. PNI, as a novel biomarker, was found to be a useful index for risk level and treatment strategies in SFTS patients. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hyun Ji Woo
- Department of Healthcare Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
- Nanum Space Co., Ltd, Jeonju, Jeonbuk, Republic of Korea
| | - Tae-Kyu Kwon
- Division of Biomedical Engineering, College of Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang Taek Heo
- Division of Infectious Diseases, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Jeong Rae Yoo
- Division of Infectious Diseases, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Misun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Jaeseong Oh
- Department of Pharmacology, Jeju National University School of Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| | - In-Gyu Bae
- Division of Infectious Diseases, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sohyun Bae
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Young-Ran Yoon
- Department of Clinical Pharmacology, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Miri Hyun
- Division of Infectious Diseases, Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyun Ah Kim
- Division of Infectious Diseases, Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sook In Jung
- Division of Infectious Diseases, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ki Tae Kwon
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Soyoon Hwang
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Uh Jin Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University School of Medicine, Gwangju, Republic of Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Young Jun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Republic of Korea
| | - Jeong-Hwan Hwang
- Division of Infectious Diseases, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
| | - Min-Gul Kim
- Nanum Space Co., Ltd, Jeonju, Jeonbuk, Republic of Korea.
- Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
17
|
Wang X, Wang X, Hao X, Gao R, Lu X, Yang W, Chen Y, Hu J, Gu M, Liu X, Hu S, Liu K, Wang X, Liu X. The Novel H10N3 Avian Influenza Virus Triggers Lethal Cytokine Storm by Activating Multiple Forms of Programmed Cell Death in Mammalian Lungs. Int J Mol Sci 2025; 26:1977. [PMID: 40076601 PMCID: PMC11899735 DOI: 10.3390/ijms26051977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
The novel H10N3 avian influenza virus (AIV) has infected four individuals since 2021 and caused severe respiratory damage, posing a significant threat to public health. However, its pathogenic mechanisms remain poorly understood. Our findings revealed that H10N3 infection induces severe lung damage and causes death in mice, even at low doses. The elevated levels of multiple pro-inflammatory factors in the bronchoalveolar lavage fluid were significantly increased during infection, displaying hallmarks of a cytokine storm. Transcriptome sequencing further revealed systematic activation of inflammation-related pathways, predicting that viral infection induces multiple forms of programmed cell death, including apoptosis, pyroptosis, and necroptosis. Protein-level validation showed that the activation of key cell death markers, including Caspase-3, GSDMD, and MLKL, significantly increased as the infection progressed, with their dynamic changes correlating strongly with the expression pattern of viral proteins. This study elucidates the central role of the synergistic effect between the cytokine storm and multiple cell death pathways in H10N3 pathogenesis. These findings not only advance our understanding of the pathogenic mechanisms of AIVs but also provide a critical theoretical basis for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
| | - Xiyue Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
| | - Xiaojuan Hao
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaolong Lu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Yang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yu Chen
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Kaituo Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.W.); (X.H.); (R.G.); (X.L.); (W.Y.); (Y.C.); (J.H.); (M.G.); (X.L.); (S.H.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Gong Z, Hu M, Zhao G, Liang N, Zhang H, Li H, Che Q, Guo J, Song T, Wang Y, Shi N, Liu B. Therapeutic Effects of Alkaloids on Influenza: A Systematic Review and Meta-Analysis of Preclinical Studies. Int J Mol Sci 2025; 26:1823. [PMID: 40076449 PMCID: PMC11899224 DOI: 10.3390/ijms26051823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Experimental evidence suggests that alkaloids have anti-influenza and anti-inflammatory effects. However, the risk of translating existing evidence into clinical practice is relatively high. We conducted a systematic review and meta-analysis of animal studies to evaluate the therapeutic effects of alkaloids in treating influenza, providing valuable references for future studies. Seven electronic databases were searched until October 2024 for relevant studies. The Review Manager 5.2 software was utilized to perform the meta-analysis. Our study was registered within the International Prospective Register of Systematic Reviews (PROSPERO) as number CRD42024607535. Alkaloids are significantly correlated with viral titers, pulmonary inflammation scores, survival rates, lung indices, and body weight. However, alkaloid therapy is not effective in reducing the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, the therapeutic effects of alkaloids may be related to the inhibition of the Toll-like receptor 4 or 7/Nuclear factor (NF)-κB signaling pathway, NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome pathway, and the Antiviral innate immune response receptor RIG-I (RIG-I) pathway. Alkaloids are potential candidates for the prevention and treatment of influenza. However, extensive preclinical studies and clinical studies are needed to confirm the anti-influenza and anti-inflammatory properties of alkaloids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.G.); (M.H.); (G.Z.); (N.L.); (H.Z.); (H.L.); (Q.C.); (J.G.); (T.S.); (Y.W.)
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.G.); (M.H.); (G.Z.); (N.L.); (H.Z.); (H.L.); (Q.C.); (J.G.); (T.S.); (Y.W.)
| |
Collapse
|
19
|
Tang L, Hao G, Zhou D, Fan Y, Wei Z, Li D, Shen Y, Fang H, Lin F, Zhao M, Zhang H. Hepatotoxicity in Carp ( Carassius auratus) Exposed to Perfluorooctane Sulfonate (PFOS): Integrative Histopathology and Transcriptomics Analysis. Animals (Basel) 2025; 15:610. [PMID: 40003090 PMCID: PMC11851982 DOI: 10.3390/ani15040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Perfluorooctane sulfonate (PFOS) contamination poses a significant environmental threat due to its widespread distribution and persistence. However, the hepatotoxic effects of PFOS on key aquatic species, such as crucian carp, remain understudied. This study systematically investigated the hepatotoxicity and underlying molecular mechanisms associated with PFOS exposure in crucian carp over a 21 day period. We determined a 96 h 50% lethal concentration (LC50) of 23.17 mg/L. Histopathological and transcriptomic analyses confirmed PFOS-induced liver damage in the carp, characterized by venous congestion, nucleolar dissolution and cellular vacuolation. Transcriptomic profiling further identified 1036 differentially expressed genes (DEGs), involving critical pathways related to lipid and energy metabolism, immunity, and endocrine regulation. These pathways are integral to the development of nonalcoholic fatty liver disease (NAFLD). Specifically, DEGs related to lipid metabolism showed significant changes, while those involved in energy metabolism indicated disrupted ATP production and mitochondrial function. Genes associated with immune response revealed an upregulation of pro-inflammatory markers, and hormone regulation genes highlighted alterations in endocrine signaling. Our findings emphasized that PFOS exhibits acute toxicity to crucian carp, potentially inducing hepatotoxicity by disrupting multiple physiological systems. This research provides a theoretical foundation for mitigating aquatic pollution and protecting eco-health, contributing to broader ecological and conservation biology discussions.
Collapse
Affiliation(s)
- Lin Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Guijie Hao
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Dongren Zhou
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Yunpeng Fan
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Zihao Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Dongsheng Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Yafang Shen
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Haoyu Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Feng Lin
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Haiqi Zhang
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| |
Collapse
|
20
|
Li Y, Zou H, Ma L, Hu D, Long H, Lin J, Luo Z, Zhou Y, Liao F, Wang X, Meng Y, Wang W, Li G, Zhang Z. Fuzheng Jiedu decoction alleviates H1N1 virus-induced acute lung injury in mice by suppressing the NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119314. [PMID: 39746408 DOI: 10.1016/j.jep.2024.119314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe influenza, marked by excessive cytokine production, is a major contributor to death in hospitalized individuals. Fuzheng Jiedu decoction (FZJDD), an effective traditional Chinese herbal recipe, has demonstrated promising results in combating the COVID-19 pandemic by reducing mortality and improving Symptoms, and has exhibited anti-inflammatory properties in both clinical trials and laboratory research. Given that pneumonia is a common outcome of SARS-CoV-2 and H1N1 virus infections, we hypothesized that FZJDD may also have therapeutic effects on influenza-related pneumonia and acute lung injury (ALI). AIM OF THE STUDY This research sought to explore the impact and underlying mechanisms of FZJDD on ALI caused by the H1N1 virus in mice. MATERIALS AND METHODS FZJDD was characterized using UHPLC-MS/MS. A mouse model infected with H1N1 virus was used to examine the therapeutic and protective benefits of FZJDD in a living organism, by monitoring body weight fluctuations, lung index, histopathological changes, lung injury scores, and survival rates. Lung tissues underwent haematoxylin-eosin staining, western blotting, qRT-PCR and plaque reduction assay. Blood serum was gathered to assess levels of IL-1β, IL-6, TNF-α through ELISA testing. The impact of FZJDD on the NLRP3 inflammasome was further evaluated in macrophages. RESULTS FZJDD treatment significantly mitigated weight loss, reduced lung index, alleviated histopathological injury, and improved the survival rates in mice with H1N1 virus-induced ALI, demonstrating a protective effect against influenza virus infection. qRT-PCR and Western blot assays revealed that FZJDD treatment ameliorated the hyperinflammatory response caused by the H1N1 virus in lung tissue by suppressing NLRP3 inflammasome activation, without impacting viral replication. In vitro experiments additionally verified that FZJDD treatment can suppress the activation of the NLRP3 inflammasome triggered by the H1N1 virus. CONCLUSION Our findings demonstrate that FZJDD treatment can mitigate ALI caused by H1N1 virus and enhance the survival rate in mice, while it doesn't lower viral titers in the lungs. FZJDD achieves these outcomes by curbing excessive inflammation and blocking the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haimei Zou
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lin Ma
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haishan Long
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingnan Lin
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ziqing Luo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ye Zhou
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianyang Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Meng
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenbiao Wang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Zhongde Zhang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
21
|
Paumier A, Verre J, Runel G, Chlasta J, Tribolo S, Chanut S. Anas barbariae 200K Modulates Cell Stiffness and Oxidative Stress in Microglial Cells In Vitro. Int J Mol Sci 2025; 26:1451. [PMID: 40003917 PMCID: PMC11855513 DOI: 10.3390/ijms26041451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Anas barbariae 200K, a homeopathic medicine, is traditionally used for influenza-like illnesses. We investigated the effects of Anas barbariae 200K on microglial cells, a subpopulation of macrophages specific to the central nervous system often used to study the inflammatory processes and oxidative stress generated during influenza-like episodes. The study demonstrates the effect of Anas barbariae 200K on cell stiffness and the reactive oxygen species production using atomic force microscopy and fluorescence microscopy techniques, respectively. Our results showed that Anas barbariae 200K rapidly increased cell stiffness in resting cells by 41% compared with the vehicle. In inflamed cells, cell stiffness was decreased by 21% when treated with Anas barbariae 200K compared with the vehicle. Finally, Anas barbariae 200K caused a reorganisation of filamentous actin, with marked relocation of actin at the cell extremities. Moreover, Anas barbariae 200K significantly decreased the reactive oxygen species (ROS) production in inflamed microglial cells by 40% (total intracellular ROS) and by 67% (mitochondrial ROS) compared with the vehicle. These results strongly suggest an effect of Anas barbariae 200K at a cellular level on cell stiffness and actin cytoskeleton. This sheds light on the biological mechanism of action of this homeopathic preparation.
Collapse
Affiliation(s)
- Anne Paumier
- Laboratoires BOIRON, Research Department, 2 Avenue de l’Ouest Lyonnais, 69510 Messimy, France; (A.P.); (J.V.); (S.C.)
| | - Justine Verre
- Laboratoires BOIRON, Research Department, 2 Avenue de l’Ouest Lyonnais, 69510 Messimy, France; (A.P.); (J.V.); (S.C.)
| | - Gaël Runel
- BioMeca, 60C Avenue Rockfeller, 69008 Lyon, France;
| | | | - Sandra Tribolo
- Laboratoires BOIRON, Research Department, 2 Avenue de l’Ouest Lyonnais, 69510 Messimy, France; (A.P.); (J.V.); (S.C.)
| | - Stéphanie Chanut
- Laboratoires BOIRON, Research Department, 2 Avenue de l’Ouest Lyonnais, 69510 Messimy, France; (A.P.); (J.V.); (S.C.)
| |
Collapse
|
22
|
Wu X, Xu L, Xu G, Xu Y, Liu H, Hu Y, Ye X, Huang Q, Tang C, Duan N, Chen X, Yang XD, Zhang W, Zheng Y. Fei-yan-qing-hua decoction exerts an anti-inflammatory role during influenza by inhibiting the infiltration of macrophages and neutrophils through NF-κB and p38 MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118846. [PMID: 39306208 DOI: 10.1016/j.jep.2024.118846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fei-Yan-Qing-Hua decoction (FYQHD) is an empirical formula that has shown clinical success in treating community-acquired pneumonia (CAP) for two decades. Influenza viral infection is a significant trigger for severe pneumonia, yet the role of FYQHD in treating influenza remains unclear. AIM OF THE STUDY This study aimed to assess the potential efficacy of FYQHD in treating influenza viral infection and to elucidate its underlying mechanisms. MATERIALS AND METHODS The protective effects of FYQHD against influenza were evaluated through survival assessments and pathological analyses. Transcriptomic analysis was performed to identify the genes and pathways influenced by FYQHD in influenza. The anti-inflammatory effects and molecular mechanisms of FYQHD were studied in macrophages stimulated by Toll-like receptor (TLR) 7 ligation in vitro. The key constituents of FYQHD absorbed in mouse sera were identified using untargeted metabolomics, and the anti-inflammatory activity of some of these compounds in macrophages was evaluated using ELISA. RESULTS Our findings demonstrate that FYQHD enhances survival and reduces lung damage in PR8-infected mice, primarily through its anti-inflammatory properties. Lung indexes and organ damage were significantly lower in the PR8 + OSV + FYQHD group compared to the PR8 + OSV group, indicating a potential complementary therapeutic effect of FYQHD and OSV in treating influenza. FYQHD effectively reduced chemokine expression, thereby decreasing the chemotaxis and infiltration of inflammatory monocytes/macrophages and neutrophils in the lungs. The anti-inflammatory effects of FYQHD in macrophages were achieved through the inhibition of NF-κB activation and p38 phosphorylation. The key constituents of FYQHD absorbed in mouse sera were identified, with some, such as wogonin, luteolin, kaempferol, and isorhamnetin, showing anti-inflammatory effects in primary macrophages. CONCLUSION FYQHD demonstrates protective efficacy against influenza and shows promise as an adjuvant therapeutic agent, particularly when used in combination with antiviral drugs like OSV. The potent anti-inflammatory components within FYQHD provide a basis for further exploration in drug research and development aimed at combating influenza.
Collapse
Affiliation(s)
- Xiao Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lirong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guihua Xu
- Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanwu Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - You Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaolan Ye
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qilin Huang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenchen Tang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Naifan Duan
- Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Chen
- Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
23
|
Dochnal SA, Cohen SP, Hutchinson MR, Miller YI, Yaksh TL. Virally-initiated pain states: phenotypes, mechanisms, and future directions. FRONTIERS IN PAIN RESEARCH 2025; 6:1527106. [PMID: 39958365 PMCID: PMC11822861 DOI: 10.3389/fpain.2025.1527106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
The recent SARS-CoV-2 pandemic has underscored the significance of viral infections, affecting billions of lives and costing trillions of dollars globally. Even beyond SARS-CoV-2, common infections with viruses like influenza, HIV, and herpesviruses have profound impacts beyond their typical manifestations, often triggering acute and chronic pain syndromes that can be life-altering. These virally induced pain states can arise through direct viral replication within neurons, or indirectly, via immune responses to infection in both the contexts of afferent signaling in the dorsal root ganglion (DRG) or subsequent higher order integration in intracranial systems. Varicella-zoster virus (VZV), influenza virus, and SARS-CoV-2 each provide a unique lens through which to examine the interplay between viral activity and pain. This perspective paper is not meant to be an exhaustive review of virally-induced neuropathic pain states. It seeks to explore curated aspects of the complexities of these pain states, identify research gaps, and suggest solutions using nanoscale molecular understanding and psychoneuroimmunological and biopsychosocial frameworks. Each subheading is accompanied by a list of related issues for study which we think will lead to advances in our understanding of the vexing pain phenotype associated with viral infection.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Steven P. Cohen
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mark R. Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, Australia
- Davies Livestock Research Centre, University of Adelaide, Adelaide, SA, Australia
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, CA, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| |
Collapse
|
24
|
Liu T, Li S, Wang X, Liu M, Wang Y, Ying J, Zhang S, Lin Y, Wang N, Bai Y, Xie L, Chen T, Feng Q, Xu X. Deciphering the therapeutic effects of Xiyanping injection: insights into pulmonary and gut microbiome modulation, SerpinB2/PAI-2 targeting, and alleviation of influenza a virus-induced lung injury. Virol J 2025; 22:19. [PMID: 39875956 PMCID: PMC11776135 DOI: 10.1186/s12985-025-02636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections. However, its specific effects and mechanisms against IAV remain unclear. In this study, we established an IAV infection mice model, and utilized 16 S rRNA sequencing, RNA sequencing, protein chips, and molecular docking, to investigate the mechanisms of XYP injection on altering pulmonary and gut microbiota, and identifying its target sites. We revealed that XYP injection significantly reduced mortality, weight loss, lung viral titers, and lung pathology in IAV-infected mice. XYP injection down-regulated the activity of malondialdehyde, and the levels of interleukin (IL)-1β, IL-5, IL-6, tumor necrosis factor-α, IL-18, IL-15, granulocyte colony-stimulating factor, IL-9, chemokine (C-C motif) ligand-5, and C-X-C motif chemokine ligand 5, while up-regulated the activities of glutathione peroxidase reactive and superoxide dismutase, and the level of interferon-γ. The diversity of the pulmonary and gut microbiota was altered slightly after XYP injection. The linear discriminant analysis of the gut microbes revealed a higher proportion of potentially beneficial bacteria, including Akkermansia, Parabacteroides goldsteinii, Defluviitaleaceae, Oscillospirales, and Eubacterium_coprostanoligenes_group characterized the XYP group. Peritoneal macrophage RNA sequencing highlighted Serpinb2 as the most significantly regulated gene by XYP injection, along with consistent changes in multiple downstream Th2 structure genes. KEGG pathway analysis indicated significant modifications in genes associated with influenza A, mitogen-activated protein kinase signaling, nuclear factor kappa-B signaling, and apoptosis following XYP injection. Finally, human protein chips and molecular docking were carried out to confirm the binding of the main component of XYP injection, andrographolide, with SERPINB2/PAI-2 protein. Overall, our study provides valuable insights into the therapeutic potential of XYP injection in treating influenza, highlighting its multifaceted effects on host microbiota and immune responses, and pinpointing SerpinB2/PAI-2 as the target for XYP injection in exerting anti-inflammatory and antiviral therapeutic mechanisms.
Collapse
Affiliation(s)
- Tengwen Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Beijing Key Laboratory of Innovative Research on Removing Stasis and Detoxification Theory in Infectious Diseases, Beijing, 100010, China
- Laboratory of Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuchen Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Ying
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Shuwen Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Ning Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Yungjing Bai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Beijing Key Laboratory of Innovative Research on Removing Stasis and Detoxification Theory in Infectious Diseases, Beijing, 100010, China
| | - Lan Xie
- Medical Systems Biology Research Center, Tsinghua University, Beijing, 100084, China
| | - Tengfei Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Beijing Key Laboratory of Innovative Research on Removing Stasis and Detoxification Theory in Infectious Diseases, Beijing, 100010, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Beijing Institute of Chinese Medicine, Beijing, 100010, China.
- Beijing Key Laboratory of Innovative Research on Removing Stasis and Detoxification Theory in Infectious Diseases, Beijing, 100010, China.
- Laboratory of Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
25
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
26
|
Li J, Mao N, Wang Y, Deng S, Chen K. Novel insights into the ROCK-JAK-STAT signaling pathway in upper respiratory tract infections and neurodegenerative diseases. Mol Ther 2025; 33:32-50. [PMID: 39511889 PMCID: PMC11764622 DOI: 10.1016/j.ymthe.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Acute upper respiratory tract infections are a major public health issue, with uncontrolled inflammation triggered by upper respiratory viruses being a significant cause of patient deterioration or death. This study focuses on the Janus kinase-signal transducer and activator of transcription Rho-associated coiled-coil containing protein kinase (JAK-STAT-ROCK) signaling pathway, providing an in-depth analysis of the interplay between uncontrolled inflammation after upper respiratory tract infections and the development of neurodegenerative diseases. It offers a conceptual framework for understanding the lung-brain-related immune responses and potential interactions. The relationship between the ROCK-JAK-STAT signaling pathway and inflammatory immunity is a complex and multi-layered research area and exploring potential common targets could open new avenues for the prevention and treatment of related inflammation.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Naihui Mao
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
27
|
Al-Anbagi U, Nashwan AJ, Isabirye CC. Epstein-Barr Virus-Induced Hemophagocytic Lymphohistiocytosis: A Case Report of a Rare and Life-Threatening Syndrome. Cureus 2024; 16:e76604. [PMID: 39886709 PMCID: PMC11779568 DOI: 10.7759/cureus.76604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 02/01/2025] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening syndrome of excessive immune activation, leading to severe inflammation and organ damage. While more common in infants, HLH can occur at any age and is often triggered by infections such as Epstein-Barr virus (EBV). In this case, a 38-year-old man presented with a three-week history of fevers, night sweats, poor appetite, and severe anemia. Investigations revealed hepatosplenomegaly, extremely elevated ferritin levels, triglycerides, and a positive EBV PCR. Despite treatment, his condition deteriorated, and a bone marrow biopsy confirmed HLH. He received immunosuppressive therapy but ultimately passed away after 64 days in the hospital. This case emphasizes the diagnostic challenges of HLH, particularly when triggered by the EBV. Early diagnosis and prompt treatment are vital, although prognosis can be poor in severe cases, underscoring the importance of clinical vigilance.
Collapse
Affiliation(s)
- Usamah Al-Anbagi
- Internal Medicine Department, Hamad Medical Corporation, Doha, QAT
| | | | | |
Collapse
|
28
|
Valderrábano RJ, Wipper B, Pencina KM, Migaud M, Shang YV, Latham NK, Montano M, Cunningham JM, Wilson L, Peng L, Memish‐Beleva Y, Bhargava A, Swain PM, Lehman P, Lavu S, Livingston DJ, Bhasin S. Dysregulated nicotinamide adenine dinucleotide metabolome in patients hospitalized with COVID-19. Aging Cell 2024; 23:e14326. [PMID: 39354697 PMCID: PMC11634700 DOI: 10.1111/acel.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 10/03/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) depletion has been postulated as a contributor to the severity of COVID-19; however, no study has prospectively characterized NAD+ and its metabolites in relation to disease severity in patients with COVID-19. We measured NAD+ and its metabolites in 56 hospitalized patients with COVID-19 and in two control groups without COVID-19: (1) 31 age- and sex-matched adults with comorbidities, and (2) 30 adults without comorbidities. Blood NAD+ concentrations in COVID-19 group were only slightly lower than in the control groups (p < 0.05); however, plasma 1-methylnicotinamide concentrations were significantly higher in patients with COVID-19 (439.7 ng/mL, 95% CI: 234.0, 645.4 ng/mL) than in age- and sex-matched controls (44.5 ng/mL, 95% CI: 15.6, 73.4) and in healthy controls (18.1 ng/mL, 95% CI 15.4, 20.8; p < 0.001 for each comparison). Plasma nicotinamide concentrations were also higher in COVID-19 group and in controls with comorbidities than in healthy control group. Plasma concentrations of 2-methyl-2-pyridone-5-carboxamide (2-PY), but not NAD+, were significantly associated with increased risk of death (HR = 3.65; 95% CI 1.09, 12.2; p = 0.036) and escalation in level of care (HR = 2.90, 95% CI 1.01, 8.38, p = 0.049). RNAseq and RTqPCR analyses of PBMC mRNA found upregulation of multiple genes involved in NAD+ synthesis as well as degradation, and dysregulation of NAD+-dependent processes including immune response, DNA repair, metabolism, apoptosis/autophagy, redox reactions, and mitochondrial function. Blood NAD+ concentrations are modestly reduced in COVID-19; however, NAD+ turnover is substantially increased with upregulation of genes involved in both NAD+ biosynthesis and degradation, supporting the rationale for NAD+ augmentation to attenuate disease severity.
Collapse
Affiliation(s)
- Rodrigo J. Valderrábano
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Benjamin Wipper
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Karol Mateusz Pencina
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer InstituteUniversity of South AlabamaMobileAlabamaUSA
| | - Yili Valentine Shang
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nancy K. Latham
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Monty Montano
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - James M. Cunningham
- Division of Hematology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Lauren Wilson
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Liming Peng
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yusnie Memish‐Beleva
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Avantika Bhargava
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Phoebe Lehman
- Metro International BiotechWorcesterMassachusettsUSA
| | - Siva Lavu
- Metro International BiotechWorcesterMassachusettsUSA
| | | | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
29
|
Shteinfer-Kuzmine A, Verma A, Bornshten R, Ben Chetrit E, Ben-Ya'acov A, Pahima H, Rubin E, Mograbi Y, Shteyer E, Shoshan-Barmatz V. Elevated serum mtDNA in COVID-19 patients is linked to SARS-CoV-2 envelope protein targeting mitochondrial VDAC1, inducing apoptosis and mtDNA release. Apoptosis 2024; 29:2025-2046. [PMID: 39375263 PMCID: PMC11550248 DOI: 10.1007/s10495-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Mitochondria dysfunction is implicated in cell death, inflammation, and autoimmunity. During viral infections, some viruses employ different strategies to disrupt mitochondria-dependent apoptosis, while others, including SARS-CoV-2, induce host cell apoptosis to facilitate replication and immune system modulation. Given mitochondrial DNAs (mtDNA) role as a pro-inflammatory damage-associated molecular pattern in inflammatory diseases, we examined its levels in the serum of COVID-19 patients and found it to be high relative to levels in healthy donors. Furthermore, comparison of serum protein profiles between healthy individuals and SARS-CoV-2-infected patients revealed unique bands in the COVID-19 patients. Using mass spectroscopy, we identified over 15 proteins, whose levels in the serum of COVID-19 patients were 4- to 780-fold higher. As mtDNA release from the mitochondria is mediated by the oligomeric form of the mitochondrial-gatekeeper-the voltage-dependent anion-selective channel 1 (VDAC1)-we investigated whether SARS-CoV-2 protein alters VDAC1 expression. Among the three selected SARS-CoV-2 proteins, small envelope (E), nucleocapsid (N), and accessory 3b proteins, the E-protein induced VDAC1 overexpression, VDAC1 oligomerization, cell death, and mtDNA release. Additionally, this protein led to mitochondrial dysfunction, as evidenced by increased mitochondrial ROS production and cytosolic Ca2+ levels. These findings suggest that SARS-CoV-2 E-protein induces mitochondrial dysfunction, apoptosis, and mtDNA release via VDAC1 modulation. mtDNA that accumulates in the blood activates the cGAS-STING pathway, triggering inflammatory cytokine and chemokine expression that contribute to the cytokine storm and tissue damage seen in cases of severe COVID-19.
Collapse
Affiliation(s)
| | - Ankit Verma
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rut Bornshten
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Eli Ben Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Ami Ben-Ya'acov
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Hadas Pahima
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ethan Rubin
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | | | - Eyal Shteyer
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
30
|
Zhang WJ, Feng H, Zhang MM, Liu JS, Li LT, Chen HC, Liu ZF. Pseudorabies virus UL13 primes inflammatory response through downregulating heat shock factor 1. Virology 2024; 600:110214. [PMID: 39243656 DOI: 10.1016/j.virol.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudorabies virus is a swine alpha-herpesvirus. We demonstrated that alpha-herpesvirus infection downregulates HSF1, a master transcription factor in the heat shock response. The serine/threonine protein kinase activity of late viral protein UL13 is indispensable for HSF1 depletion and phosphorylation, and UL13 does not degrade HSF1 posttranslationally but inhibits the HSF1 mRNA level. Importantly, UL13 increased HSF1 activity even though it reduced HSF1 mRNA. Furthermore, viral replication markedly decreased in the HSF1 knockout cell line or in the presence of an HSF1-specific inhibitor. Interestingly, HSF1 knockout accelerated the activation of NF-κB and p38MAPK. The K96 loci of UL13 are important to induce high levels of IL-6, TNF-α, and IL-β cytokines while playing a crucial role in promoting mild interstitial pneumonia, liver necrosis, and severe inflammatory cell infiltration in the footpad. Thus, UL13 steers the heat shock response to promote viral replication and the inflammatory response. IMPORTANCE: PRV is a ubiquitous pathogen that infects a variety of mammals, such as pigs, ruminants, carnivores, and rodents as well as human beings, causing enormous economic losses in the swine industry. Here, we employed PRV as a model to determine the relationship between α-herpesvirus and the inflammatory response. Overall, our findings indicated that PRV infection inhibits the level of HSF1 mRNA via the serine/threonine protein kinase activity of UL13. Additionally, we discovered that HSF1 was involved in NF-κB activation upon PRV infection. PRV UL13 orchestrates the level of HSF1 mRNA, HSF1 protein phosphorylation, and priming of the inflammatory response. Our study reveals a novel mechanism employed by UL13 serine/threonine protein kinase activity to promote the inflammatory response, providing novel clues for therapy against alpha-herpesvirus infection.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Feng
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Mei Zhang
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Song Liu
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin-Tao Li
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng-Fei Liu
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Wang Y, Li J, Chen R, Xu Q, Wang D, Mao C, Xiang Z, Wu G, Yu Y, Li J, Zheng Y, Chen K. Emerging concepts in mucosal immunity and oral microecological control of respiratory virus infection-related inflammatory diseases. Microbiol Res 2024; 289:127930. [PMID: 39427450 DOI: 10.1016/j.micres.2024.127930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Oral microecological imbalance is closely linked to oral mucosal inflammation and is implicated in the development of both local and systemic diseases, including those caused by viral infections. This review examines the critical role of the interleukin (IL)-17/helper T cell 17 (Th17) axis in regulating immune responses within the oral mucosa, focusing on both its protective and pathogenic roles during inflammation. We specifically highlight how the IL-17/Th17 pathway contributes to dysregulated inflammation in the context of respiratory viral infections. Furthermore, this review explores the potential interactions between respiratory viruses and the oral microbiota, emphasizing how alterations in the oral microbiome and increased production of proinflammatory factors may serve as early, non-invasive biomarkers for predicting the severity of respiratory viral infections. These findings provide insights into novel diagnostic approaches and therapeutic strategies aimed at mitigating respiratory disease severity through monitoring and modulating the oral microbiome.
Collapse
Affiliation(s)
- Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Qiuyi Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Di Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Chenxi Mao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ziyi Xiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ying Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310063, China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
32
|
Wang X, Pu F, Yang X, Feng X, Zhang J, Duan K, Nian X, Ma Z, Ma XX, Yang XM. Immunosuppressants exert antiviral effects against influenza A(H1N1)pdm09 virus via inhibition of nucleic acid synthesis, mRNA splicing, and protein stability. Virulence 2024; 15:2301242. [PMID: 38170681 PMCID: PMC10854267 DOI: 10.1080/21505594.2023.2301242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza A virus (IAV) poses a threat to patients receiving immunosuppressive medications since they are more susceptible to infection with severe symptoms, and even death. Understanding the direct effects of immunosuppressants on IAV infection is critical for optimizing immunosuppression in these patients who are infected or at risk of influenza virus infection. We profiled the effects of 10 immunosuppressants, explored the antiviral mechanisms of immunosuppressants, and demonstrated the combined effects of immunosuppressants with the antiviral drug oseltamivir in IAV-infected cell models. We found that mycophenolic acid (MPA) strongly inhibits viral RNA replication via depleting cellular guanosine pool. Treatment with 6-Thioguanine (6-TG) promoted viral protein degradation through a proteasomal pathway. Filgotinib blocked mRNA splicing of matrix protein 2, resulting in decreased viral particle assembly. Furthermore, combined treatment with immunosuppressants and oseltamivir inhibits IAV viral particle production in an additive or synergic manner. Our results suggest that MPA, 6-TG, and filgotinib could be the preferential choices for patients who must take immunosuppressants but are at risk of influenza virus infection.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Feiyang Pu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xuanye Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- Wuhan Institute of Biological Products Co, Ltd, Wuhan, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- Wuhan Institute of Biological Products Co, Ltd, Wuhan, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- Wuhan Institute of Biological Products Co, Ltd, Wuhan, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- China National Biotech Group Company Limited, Beijing, China
| |
Collapse
|
33
|
Shrestha R, Johnson PM, Ghimire R, Whitley CJ, Channappanavar R. Differential TLR-ERK1/2 Activity Promotes Viral ssRNA and dsRNA Mimic-Induced Dysregulated Immunity in Macrophages. Pathogens 2024; 13:1033. [PMID: 39770293 PMCID: PMC11676137 DOI: 10.3390/pathogens13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
RNA virus-induced excessive inflammation and impaired antiviral interferon (IFN-I) responses are associated with severe disease. This innate immune response, also referred to as "dysregulated immunity" is caused by viral single-stranded RNA (ssRNA)- and double-stranded-RNA (dsRNA)-mediated exuberant inflammation and viral protein-induced IFN antagonism. However, key host factors and the underlying mechanism driving viral RNA-mediated dysregulated immunity are poorly defined. Here, using viral ssRNA and dsRNA mimics, which activate toll-like receptor 7 (TLR7) and TLR3, respectively, we evaluated the role of viral RNAs in causing dysregulated immunity. We observed that murine bone marrow-derived macrophages (BMDMs), when stimulated with TLR3 and TLR7 agonists, induced differential inflammatory and antiviral cytokine response. TLR7 activation triggered a robust inflammatory cytokine/chemokine induction compared to TLR3 activation, whereas TLR3 stimulation induced significantly increased IFN/IFN stimulated gene (ISG) response relative to TLR7 activation. To define the mechanistic basis for dysregulated immunity, we examined cell-surface and endosomal TLR levels and downstream mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kB) activation. We identified significantly higher cell-surface and endosomal TLR7 levels compared to TLR3, which were associated with early and robust MAPK (p-ERK1/2, p-P38, and p-JNK) and NF-kB activation in TLR7-stimulated macrophages. Furthermore, blocking EKR1/2 and NF-kB activity reduced TLR3/7-induced inflammatory cytokine/chemokine levels, whereas only ERK1/2 inhibition enhanced viral RNA mimic-induced IFN/ISG responses. Collectively, our results illustrate that high cell-surface and endosomal TLR7 expression and robust ERK1/2 activation drive viral ssRNA mimic-induced excessive inflammatory and reduced IFN/ISG response and blocking ERK1/2 activity would likely mitigate viral-RNA/TLR-induced dysregulated immunity.
Collapse
Affiliation(s)
- Rakshya Shrestha
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
| | - Paige Marie Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
| | - Cody John Whitley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.); (P.M.J.); (R.G.); (C.J.W.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
34
|
Gao T, Liu J, Huang N, Zhou Y, Li C, Chen Y, Hong Z, Deng X, Liang X. Sangju Cold Granule exerts anti-viral and anti-inflammatory activities against influenza A virus in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118521. [PMID: 38969152 DOI: 10.1016/j.jep.2024.118521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using plaque reduction and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by Western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-β, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-β, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.
Collapse
Affiliation(s)
- Taotao Gao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbing Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, China; Department of Ultrasound Medicine, Liwan Central Hospital of Guangzhou, 35 Liwan Road, Guangzhou, 510000, Guangdong, China
| | - Nan Huang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yingxuan Zhou
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Conglin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yintong Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zifan Hong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyan Deng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xiaoli Liang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
35
|
Zhai Y, Li H, Xia P, Jiang Y, Tong H, Zhou D, Jiang C, Liu Y, Wang J. Intravenous immunoglobulin‑based adjuvant therapy for severe fever with thrombocytopenia syndrome: A single‑center retrospective cohort study. J Med Virol 2024; 96:e70017. [PMID: 39494463 PMCID: PMC11600480 DOI: 10.1002/jmv.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Intravenous immunoglobulin (IVIG) is frequently administered to patients with severe fever with thrombocytopenia syndrome (SFTS), particularly those with severe manifestations, although its efficacy remains controversial. The study retrospectively analyzed the effects of IVIG administration on SFTS patients in both mild and severe groups. The primary outcome measure was 28-day mortality. Inverse probability of treatment weighting (IPTW) with propensity score was used to account for baseline confounders. A total of SFTS patients with complete data enrolled from January 1, 2015, to August 1, 2023. Death at 28 days occurred for 68 (17.5%) patients. By unadjusted analysis, no difference was observed for 28-day mortality between the IVIG and non-IVIG groups in both the mild and severe groups. Similar results were found by propensity score matching and by IPTW analysis. Although IVIG is frequently used as adjuvant therapy for severe SFTS patients, no significant association was observed between IVIG treatment and reduced mortality in this patient population.
Collapse
Affiliation(s)
- Yu Zhai
- Department of Emergency MedicineNanjing Drum Tower Hospital Clinical College of Xuzhou Medical UniversityNanjingChina
- Department of Emergency MedicineNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Haopeng Li
- Department of Emergency MedicineNanjing Drum Tower Hospital Clinical College of Xuzhou Medical UniversityNanjingChina
| | - Peng Xia
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yunfei Jiang
- Department of Emergency MedicineNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Hanwen Tong
- Department of Emergency MedicineNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Dongming Zhou
- Department of HematologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yun Liu
- Department of Emergency MedicineNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jun Wang
- Department of Emergency MedicineNanjing Drum Tower Hospital Clinical College of Xuzhou Medical UniversityNanjingChina
- Department of Emergency MedicineNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
36
|
Ho TL, Ahn SY, Ko EJ. Adjuvant potential of Peyssonnelia caulifera extract on the efficacy of an influenza vaccine in a murine model. Sci Rep 2024; 14:25353. [PMID: 39455811 PMCID: PMC11512024 DOI: 10.1038/s41598-024-76736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Natural adjuvants have recently garnered interest in the field of vaccinology as their immunostimulatory effects. In this study, we aimed to investigate the potential use of Peyssonnelia caulifera (PC), a marine alga, as a natural adjuvant for an inactivated split A/Puerto Rico/8/1934 H1N1 influenza vaccine (sPR8) in a murine model. We administered PC-adjuvanted vaccines to a murine model via intramuscular prime and boost vaccinations, and subsequently analyzed the induced immunological responses, particularly the production of antigen-specific IgG1 and IgG2a antibodies, memory T and B cell responses, and the protective efficacy against a lethal viral infection. PC extract significantly bolstered the vaccine efficacy, demonstrating balanced Th1/Th2 responses, increased memory T and B cell activities, and improved protection against viral infection. Notably, within 3 days post-vaccination, the PC adjuvant stimulated activation markers on dendritic cells (DCs) and macrophages at the inguinal lymph nodes (ILN), emphasizing its immunostimulatory capabilities. Furthermore, the safety profile of PC was confirmed, showing minimal local inflammation and no significant adverse effects post-vaccination. These findings contribute to our understanding of the immunomodulatory properties of natural adjuvants and suggest the promising roles of natural adjuvants in the development of more effective vaccines for infectious diseases.
Collapse
Affiliation(s)
- Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - So Yeon Ahn
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea.
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
37
|
Wilar G, Suhandi C, Fukunaga K, Kawahata I. Efficacy and safety of tofacitinib on COVID-19 patients: A systematic review and meta-analysis. Heliyon 2024; 10:e38229. [PMID: 39381111 PMCID: PMC11456853 DOI: 10.1016/j.heliyon.2024.e38229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The use of drugs off-label for managing COVID-19 offers a potential approach. Among these potential drugs, tofacitinib, a JAK inhibitor, is strongly implicated in its ability to mitigate mortality by attenuating the cytokine storm syndrome. This study systematically reviewed and quantitatively assessed the effectiveness and safety profile of tofacitinib use through meta-analysis. Through searches of the PubMed, Scopus, and the Cochrane Library databases up to May 31, 2024, six articles meeting inclusion criteria were identified, encompassing 669 patients diagnosed with COVID-19. The review findings indicate that tofacitinib use demonstrates significant clinical efficacy, as evidenced by a reduced risk of mortality (P = 0.003), and a decreased need for invasive mechanical ventilation (P = 0.0002). Furthermore, tofacitinib use is not correlated with an increased risk of adverse drug reactions (P = 0.98), indicating a favorable safety profile. In conclusion, the evidence supports the clinical efficacy of tofacitinib for COVID-19 patients without concomitant risks of adverse effects. Further clinical studies, especially larger-scale randomized controlled trials, are necessary to validate the findings of this study.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
38
|
Xu DW, Tate MD. Taking AIM at Influenza: The Role of the AIM2 Inflammasome. Viruses 2024; 16:1535. [PMID: 39459869 PMCID: PMC11512208 DOI: 10.3390/v16101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A viruses (IAV) are dynamic and highly mutable respiratory pathogens that present persistent public health challenges. Inflammasomes, as components of the innate immune system, play a crucial role in the early detection and response to infections. They react to viral pathogens by triggering inflammation to promote immune defences and initiate repair mechanisms. While a strong response is necessary for early viral control, overactivation of inflammasomes can precipitate harmful hyperinflammatory responses, a defining characteristic observed during severe influenza infections. The Absent in Melanoma 2 (AIM2) inflammasome, traditionally recognised for its role as a DNA sensor, has recently been implicated in the response to RNA viruses, like IAV. Paradoxically, AIM2 deficiency has been linked to both enhanced and reduced vulnerability to IAV infection. This review synthesises the current understanding of AIM2 inflammasome activation during IAV and explores its clinical implications. Understanding the nuances of AIM2's involvement could unveil novel therapeutic avenues for mitigating severe influenza outcomes.
Collapse
Affiliation(s)
- Dianne W. Xu
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
39
|
Yu M, Lin A, Baharom F, Li S, Legendre M, Covés-Datson E, Sohlberg E, Schlisio S, Loré K, Markovitz DM, Smed-Sörensen A. A genetically engineered therapeutic lectin inhibits human influenza A virus infection and sustains robust virus-specific CD8 T cell expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608041. [PMID: 39211151 PMCID: PMC11360990 DOI: 10.1101/2024.08.15.608041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Native banana lectin (BanLec) is antiviral but highly mitogenic, which limits its therapeutic value. In contrast, the genetically engineered H84T BanLec (H84T) is not mitogenic but remains effective against influenza A virus (IAV) infection in mouse models. However, the potency and effect of H84T on human immune cells and IAV-specific immune responses is undetermined. We found that H84T efficiently inhibited IAV replication in human dendritic cells (DCs) from blood and tonsils, which preserved DC viability and allowed acquisition and presentation of viral antigen. Consequently, H84T-treated DCs initiated effective expansion of IAV-specific CD8 T cells. Furthermore, H84T preserved the capacity of IAV-exposed DCs to present a second non-IAV antigen and induce robust CD8 T cell expansion. This supports H84T as a potent antiviral in humans as it effectively inhibits IAV infection without disrupting DC function, and preserves induction of antigen-specific adaptive immune responses against diverse antigens, which likely is clinically beneficial.
Collapse
|
40
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
41
|
Brogaard L, Heegaard PMH, Larsen LE, Skovgaard K. Pulmonary MicroRNA expression after heterologous challenge with swine influenza A virus (H1N2) in immunized and non-immunized pigs. Virology 2024; 596:110117. [PMID: 38797064 DOI: 10.1016/j.virol.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
MicroRNAs (miRNAs) contribute to post-transcriptional modulation of the host response during influenza A virus (IAV) infection and may be involved in shaping disease severity. Differential disease severity was achieved in two groups of pigs by immunization of one group with a commercial swine IAV vaccine prior to heterologous IAV (H1N2) challenge of both groups. Lung tissue was harvested 1, 3, and 14 days after challenge and miRNA expression was quantified. Gene Ontology term enrichment analysis was employed to examine the functional relevance of genes potentially regulated by differentially expressed miRNAs in pigs with varying degrees of disease severity following IAV infection. Results suggested that the miRNA response associated with less severe disease may modulate host mechanisms essential for viral life cycle, e.g. transcription, translation, and protein trafficking. During more severe disease, miRNA-mediated regulation may focus on dampening virus-specific processes e.g. virion assembly and viral protein processing, and controlling host metabolism.
Collapse
Affiliation(s)
- Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Peter M H Heegaard
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
42
|
Xi X, Yan X, Chen Y, Li W, Dong J, Ou X, Tan H. Cytokine release syndrome associated with immune checkpoint inhibitors: a pharmacovigilance study based on spontaneous reports in FAERS. Expert Opin Drug Saf 2024:1-8. [PMID: 39051882 DOI: 10.1080/14740338.2024.2385489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To describe cytokine release syndrome (CRS) associated with immune checkpoint inhibitors (ICIs) reported in the FDA Adverse Event Reporting System (FAERS). METHODS We obtained ICIs adverse event (AE) reports from January 2011 to September 2023 from the FAERS database. The preferred term (PT) 'cytokine release syndrome' from the Medical Dictionary for Regulatory Activities (MedDRA) 26.1 was used to identify cases with ICIs-related CRS. The reporting odds ratio (ROR) of the disproportionality method was performed to quantify the association between CRS and ICIs treatment strategy. RESULTS Three hundred and ninety-five cases were gathered. 42.03% of the patients were aged 18 to 65. Male patients outnumbered female patients (53.67% vs. 34.94%). The prevalent potential cancer types were lung cancer (33.42%) and skin cancer (20.51%). Japanese were responsible for the majority of ICIs-related CRS cases (176 cases). The combination of nivolumab and ipilimumab resulted in the most CRS cases (138 cases), and the ICIs combination therapy had the highest ROR signal value (ROR = 11.95 [10.14-14.06]). ICIs-related CRS had a median time to onset of 14 days (interquartile range [IQR] 7-43.25). CONCLUSIONS ICIs-related CRS is an increasingly important immune-related AE. Our study provided helpful information to help medical professionals learn more about ICIs-related CRS.
Collapse
Affiliation(s)
- Xin Xi
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xida Yan
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Ying Chen
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Dong
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Ou
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Haowen Tan
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| |
Collapse
|
43
|
Wolak T, Dicker D, Shifer Y, Grossman A, Rokach A, Shitrit M, Tal A. A safety evaluation of intermittent high-dose inhaled nitric oxide in viral pneumonia due to COVID-19: a randomised clinical study. Sci Rep 2024; 14:17201. [PMID: 39060420 PMCID: PMC11282178 DOI: 10.1038/s41598-024-68055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
High-dose inhaled Nitric Oxide (iNO) has been shown to have anti-inflammatory, vasodilator, and antimicrobial properties, resulting in improved arterial oxygenation as well as a beneficial therapeutic effect on lower respiratory tract infections. This study evaluated the safety and efficacy of 150-ppm intermittent iNO administered with a novel iNO-generator, for treating adults hospitalised for viral pneumonia. In this prospective, open-label, multicenter study, subjects aged 18-80, diagnosed with viral pneumonia received either standard supportive treatment alone (Control-Group) or combined with iNO for 40 min, 4 times per day up to 7 days (Treatment-Group). Out of 40 recruited subjects, 35 were included in the intention-to-treat population (34 with COVID-19). Adverse Events rate was similar between the groups (56.3% vs. 42.1%; respectively). No treatment-related adverse events were reported, while 2 serious adverse events were accounted for by underlying pre-existing conditions. Among the Treatment-Group, oxygen support duration was reduced by 2.7 days (Hazard Ratio = 2.8; p = 0.0339), a greater number of subjects reached oxygen saturation ≥ 93% within hospitalisation period (Hazard Ratio = 5.4; p = 0.049), and a trend for earlier discharge was demonstrated. Intermittent 150-ppm iNO-treatment is well-tolerated, safe, and beneficial compared to usual care for spontaneously breathing hospitalised adults diagnosed with COVID-19 viral pneumonia.
Collapse
Affiliation(s)
- Talya Wolak
- Department of Internal Medicine D, Shaare Zedek Medical Center, 12 Bait Shmuel St, P.O. Box 3235, 9103102, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - D Dicker
- Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah-Tikva, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Y Shifer
- Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - A Grossman
- Internal Medicine B, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - A Rokach
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - M Shitrit
- Respiratory Therapy Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - A Tal
- Beyond Air, Ltd, Rehovot, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
44
|
Huang Q, Yang G, Tang C, Dou B, Hu Y, Liu H, Wu X, Zhang H, Wang H, Xu L, Yang XD, Xu Y, Zheng Y. Rujin Jiedu decoction protects against influenza virus infection by modulating gut microbiota. Heliyon 2024; 10:e34055. [PMID: 39071618 PMCID: PMC11277438 DOI: 10.1016/j.heliyon.2024.e34055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Background Rujin Jiedu decoction (RJJDD) is a classical prescription of Traditional Chinese Medicine that has long been applied to treat pneumonia caused by external infection, but whether and how it benefits influenza virus therapy remains largely unclear. The aim of this study was to investigate the anti-inflammatory effect of RJJDD on the mouse model of influenza and to explore its potential mechanism. Methods The mice were mock-infected with PBS or infected with PR8 virus followed by treatment with RJJDD or antiviral oseltamivir. The weight loss and morbidity of mice were monitored daily. Network pharmacology is used to explore the potential pathways that RJJDD may modulate. qRT-PCR and ELISA were performed to assess the expression of inflammatory cytokines in the lung tissue and macrophages. The intestinal feces were collected for 16S rDNA sequencing to assess the changes in gut microbiota. Results We demonstrate that RJJDD protects against IAV-induced pneumonia. Comprehensive network pharmacology analyses of the Mass Spec-identified components of RJJDD suggest that RJJDD may act through down-regulating key signaling pathways producing inflammatory cytokines, which was experimentally confirmed by cytokine expression analysis in IAV-infected mouse lung tissues and IAV single-strand RNA mimic R837-induced macrophages. Furthermore, gut microbiota analysis indicates that RJJDD prevented IAV-induced dysbiosis of host intestinal flora, thereby offering a mechanistic explanation for RJJDD's efficacy in influenza pneumonia. Conclusion This study defines a previously uncharacterized role for RJJDD in protecting against influenza likely by maintaining homeostasis of gut microbiota, and provides a new therapeutic option for severe influenza.
Collapse
Affiliation(s)
- Qilin Huang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guizhen Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenchen Tang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Biao Dou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - You Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lirong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanwu Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
45
|
Lorgen-Ritchie M, Chalmers L, Clarkson M, Taylor JF, MacKenzie S, Migaud H, Martin SAM. Impact of freshwater rearing history on Atlantic salmon gill response to viral stimulation post seawater transfer. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109653. [PMID: 38801843 DOI: 10.1016/j.fsi.2024.109653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Land-based recirculating aquaculture systems (RAS) have risen in prevalence in recent years for Atlantic salmon production, enabling intensive production which allows increased growth and environmental control, but also having the potential for reducing water use and eutrophication. The Atlantic salmon has an anadromous life history with juvenile stages in freshwater (FW) and on-growing in seawater (SW), enabled by a transformational process known as smoltification. The timing of smoltification and transfer of smolts from FW to SW is critical under commercial production with high mortalities during this period. The impact of FW rearing system on immune function following seawater transfer (SWT) is not well understood. In this study parr were raised in either RAS or a traditional open-LOCH system until smolting and then transferred to a common marine environment. Two-weeks post-SWT fish were immune stimulated with a viral mimic (poly I:C) for 24 h to assess the ability to mount an antiviral immune response, assessed by whole transcriptome analysis of gill tissue, an important immune organ in fish. We show that unstimulated smolts reared in the LOCH had higher immune gene expression than those reared in RAS as determined by functional analysis. However, following stimulation, smolts reared in the RAS mounted a greater magnitude of response with a suite of immune genes displaying higher fold induction of transcription compared to LOCH reared smolts. We suggest RAS smolts have a lower steady state immune-associated transcriptome likely due to an unvarying environment, in terms of environmental factors and lack of exposure to pathogens, which shows a compensatory mechanism following stimulation allowing immune 'catch-up' with those reared in the LOCH. Alternatively, the RAS fish are experiencing an excessive response to the immune stimulation.
Collapse
Affiliation(s)
- Marlene Lorgen-Ritchie
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Lynn Chalmers
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael Clarkson
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - John F Taylor
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
46
|
Zuo Z, Mu Y, Qi F, Zhang H, Li Z, Zhou T, Guo W, Guo K, Hu X, Yao Z. Influenza Vaccination Mediates SARS-CoV-2 Spike Protein Peptide-Induced Inflammatory Response via Modification of Histone Acetylation. Vaccines (Basel) 2024; 12:731. [PMID: 39066369 PMCID: PMC11281326 DOI: 10.3390/vaccines12070731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024] Open
Abstract
The effectiveness of coronavirus disease 2019 (COVID-19) vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain rapidly wanes over time. Growing evidence from epidemiological studies suggests that influenza vaccination is associated with a reduction in the risk of SARS-CoV-2 infection and COVID-19 severity. However, the underlying mechanisms remain elusive. Here, we investigate the cross-reactive immune responses of influenza vaccination to SARS-CoV-2 spike protein peptides based on in vitro study. Our data indicate enhanced activation-induced-marker (AIM) expression on CD4+ T cells in influenza-vaccination (IV)-treated peripheral blood mononuclear cells (PBMCs) upon stimulation with spike-protein-peptide pools. The fractions of other immune cell subtypes, including CD8+ T cells, monocytes, NK cells, and antigen-presenting cells, were not changed between IV-treated and control PBMCs following ex vivo spike-protein-peptide stimulation. However, the classical antiviral (IFN-γ) and anti-inflammatory (IL-1RA) cytokine responses to spike-protein-peptide stimulation were still enhanced in PBMCs from both IV-immunized adult and aged mice. Decreased expression of proinflammatory IL-1β, IL-12p40, and TNF-α is associated with inhibited levels of histone acetylation in PBMCs from IV-treated mice. Remarkably, prior immunity to SARS-CoV-2 does not result in modification of histone acetylation or hemagglutinin-protein-induced cytokine responses. This response is antibody-independent but can be mediated by manipulating the histone acetylation of PBMCs. These data experimentally support that influenza vaccination could induce modification of histone acetylation in immune cells and reveal the existence of potential cross-reactive immunity to SARS-CoV-2 antigens, which may provide insights for the adjuvant of influenza vaccine to limit COVID-19-related inflammatory responses.
Collapse
Affiliation(s)
- Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; (Z.Z.)
| | - Yating Mu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; (Z.Z.)
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongyang Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihui Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tuo Zhou
- Guangzhou Women and Children’s Medical Center, Guangzhou 510620, China
| | - Wenhai Guo
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kaihua Guo
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; (Z.Z.)
| | - Zhibin Yao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
47
|
Koch-Heier J, Vogel AB, Füll Y, Ebensperger M, Schönsiegel A, Zinser RS, Planz O. MEK-inhibitor treatment reduces the induction of regulatory T cells in mice after influenza A virus infection. Front Immunol 2024; 15:1360698. [PMID: 38979428 PMCID: PMC11228811 DOI: 10.3389/fimmu.2024.1360698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.
Collapse
Affiliation(s)
- Julia Koch-Heier
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | | | | | | | - Annika Schönsiegel
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | - Raphael S. Zinser
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
48
|
Liu X, Chen W, Li K, Sheng J. RNA N6-methyladenosine methylation in influenza A virus infection. Front Microbiol 2024; 15:1401997. [PMID: 38957616 PMCID: PMC11217485 DOI: 10.3389/fmicb.2024.1401997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Influenza A virus (IAV) is a negative-sense single-stranded RNA virus that causes acute lung injury and acute respiratory distress syndrome, posing a serious threat to both animal and human health. N6-methyladenosine (m6A), a prevalent and abundant post-transcriptional methylation of RNA in eukaryotes, plays a crucial regulatory role in IAV infection by altering viral RNA and cellular transcripts to affect viral infection and the host immune response. This review focuses on the molecular mechanisms underlying m6A modification and its regulatory function in the context of IAV infection and the host immune response. This will provide a better understanding of virus-host interactions and offer insights into potential anti-IAV strategies.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
49
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
50
|
Fang LC, Ming XP, Cai WY, Hu YF, Hao B, Wu JH, Tuohuti A, Chen X. Development and validation of a prognostic model for assessing long COVID risk following Omicron wave-a large population-based cohort study. Virol J 2024; 21:123. [PMID: 38822405 PMCID: PMC11140920 DOI: 10.1186/s12985-024-02400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Long coronavirus disease (COVID) after COVID-19 infection is continuously threatening the health of people all over the world. Early prediction of the risk of Long COVID in hospitalized patients will help clinical management of COVID-19, but there is still no reliable and effective prediction model. METHODS A total of 1905 hospitalized patients with COVID-19 infection were included in this study, and their Long COVID status was followed up 4-8 weeks after discharge. Univariable and multivariable logistic regression analysis were used to determine the risk factors for Long COVID. Patients were randomly divided into a training cohort (70%) and a validation cohort (30%), and factors for constructing the model were screened using Lasso regression in the training cohort. Visualize the Long COVID risk prediction model using nomogram. Evaluate the performance of the model in the training and validation cohort using the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS A total of 657 patients (34.5%) reported that they had symptoms of long COVID. The most common symptoms were fatigue or muscle weakness (16.8%), followed by sleep difficulties (11.1%) and cough (9.5%). The risk prediction nomogram of age, diabetes, chronic kidney disease, vaccination status, procalcitonin, leukocytes, lymphocytes, interleukin-6 and D-dimer were included for early identification of high-risk patients with Long COVID. AUCs of the model in the training cohort and validation cohort are 0.762 and 0.713, respectively, demonstrating relatively high discrimination of the model. The calibration curve further substantiated the proximity of the nomogram's predicted outcomes to the ideal curve, the consistency between the predicted outcomes and the actual outcomes, and the potential benefits for all patients as indicated by DCA. This observation was further validated in the validation cohort. CONCLUSIONS We established a nomogram model to predict the long COVID risk of hospitalized patients with COVID-19, and proved its relatively good predictive performance. This model is helpful for the clinical management of long COVID.
Collapse
Affiliation(s)
- Lu-Cheng Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiao-Ping Ming
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wan-Yue Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yi-Fan Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Hao
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiang-Hao Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aikebaier Tuohuti
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|