1
|
Yamamura Y, Sabiu G, Zhao J, Jung S, Seelam AJ, Li X, Song Y, Shirkey MW, Li L, Piao W, Wu L, Zhang T, Ahn S, Kim P, Kasinath V, Azzi JR, Bromberg JS, Abdi R. CXCL12+ fibroblastic reticular cells in lymph nodes facilitate immune tolerance by regulating T cell-mediated alloimmunity. J Clin Invest 2025; 135:e182709. [PMID: 40309773 PMCID: PMC12043101 DOI: 10.1172/jci182709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025] Open
Abstract
Fibroblastic reticular cells (FRCs) are the master regulators of the lymph node (LN) microenvironment. However, the role of specific FRC subsets in controlling alloimmune responses remains to be studied. Single-cell RNA sequencing (scRNA-Seq) of naive and draining LNs (DLNs) of heart-transplanted mice and human LNs revealed a specific subset of CXCL12hi FRCs that expressed high levels of lymphotoxin-β receptor (LTβR) and are enriched in the expression of immunoregulatory genes. CXCL12hi FRCs had high expression of CCL19, CCL21, indoleamine 2,3-dioxygenase (IDO), IL-10, and TGF-β1. Adoptive transfer of ex vivo-expanded FRCs resulted in their homing to LNs and induced immunosuppressive environments in DLNs to promote heart allograft acceptance. Genetic deletion of LTβR and Cxcl12 in FRCs increased alloreactivity, abrogating the effect of costimulatory blockade in prolonging heart allograft survival. As compared with WT recipients, CXCL12+ FRC-deficient recipients exhibited increased differentiation of CD4+ T cells into Th1 cells. Nano delivery of CXCL12 to DLNs improved allograft survival in heart-transplanted mice. Our study highlights the importance of DLN CXCL12hi FRCs in promoting transplant tolerance.
Collapse
Affiliation(s)
- Yuta Yamamura
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianmarco Sabiu
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhao
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sungwook Jung
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andy J. Seelam
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofei Li
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina W. Shirkey
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lushen Li
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Soyeon Ahn
- R&D Division, IVIM Technology, Seoul, South Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering
- Korea Advanced Institute of Science and Technology Institute for Health Science and Technology, and
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Vivek Kasinath
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Meng L, Lv H, Liu A, Cao Q, Du X, Li C, Li Q, Luo Q, Xiao Y. Albiflorin inhibits inflammation to improve liver fibrosis by targeting the CXCL12/CXCR4 axis in mice. Front Pharmacol 2025; 16:1577201. [PMID: 40371331 PMCID: PMC12074940 DOI: 10.3389/fphar.2025.1577201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis is a common pathological feature of chronic hepatic injury that currently lacks effective therapeutic interventions. Albiflorin (ALB), a pinane-type monoterpene derived from Paeonia lactiflora Pall, has notable anti-inflammatory and hepatoprotective effects. However, the potential role of ALB against liver fibrosis is largely unknown. In this study, we discovered that ALB significantly inhibited CCl4-induced liver fibrosis in mice. This was evidenced by improvements in liver and kidney function indexes, fibrosis indicators, and histopathological findings. In vitro studies also showed that ALB inhibited TGF-β1-induced LX-2 cell activation and reduced the expression of α-SMA and collagen I. Additionally, we found that ALB mitigates inflammation and ameliorates liver fibrosis by targeting the CXCL12/CXCR4 axis, as confirmed using the CXCR4 inhibitor AMD3100 in CCl4-treated mice. Notably, combining ALB with metformin (MET) enhanced the inhibition of liver fibrosis progression. These findings highlight that ALB exerts anti-liver fibrosis effects by targeting the CXCL12/CXCR4 axis, underscoring its potential as a standalone treatment or as an adjuvant therapy.
Collapse
Affiliation(s)
- Lingjie Meng
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huijing Lv
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Anli Liu
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Cao
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinyi Du
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengjin Li
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qinggui Li
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingqing Luo
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Xiao
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Cui J, Luo L, Geng H, Gao Y, Chen Y, Yu Q, Huang X, Wang X, Sun T. Proteomics suggests the role of Cxcl12 secreted by hucMSCs in the treatment of lipopolysaccharide-acute lung injury. Microvasc Res 2025; 160:104815. [PMID: 40311750 DOI: 10.1016/j.mvr.2025.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterized by a high mortality rate, and its treatment is relatively straightforward. The application of human umbilical cord mesenchymal stem cells (hucMSCs) for the treatment of ARDS has emerged as a novel therapeutic approach and has been the subject of extensive research. In this study, a mouse model of acute lung injury (ALI) was established, and hucMSCs were administered via tail vein injection to investigate the pathogenesis of ARDS and the protein alterations following hucMSC treatment. Data-independent acquisition (DIA) was employed for the proteomic analysis of lung tissue, which included the identification of differentially expressed proteins (DEPs) and their associated pathways. The relevant DEPs identified in the lung tissues of the three groups of mice included Arid5a, Mrpl4, Cxcl12, and Rnf121 (P <0.05). Silencing the expression of Cxcl12 in hucMSCs could significantly inhibit the therapeutic effect of hucMSCs in reducing the permeability of lung tissue and endothelial cells (P < 0.05). Additionally, the signaling pathways associated with the relevant DEPs were analyzed. The DEPs and the enriched pathways discussed herein provide valuable insights into the pathogenesis of ARDS and the potential applications of hucMSCs.
Collapse
Affiliation(s)
- Jinfeng Cui
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Liqing Luo
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hongmei Geng
- Medical Insurance Business Center of Bincheng District Medical Security Bureau, Binzhou City, Shandong Province, China
| | - Yunxiu Gao
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yuanyuan Chen
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qilin Yu
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiao Huang
- Department of Medical Technology, Binzhou Polytechnic, Binzhou, Shandong, China
| | - Xiaozhi Wang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Ting Sun
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
4
|
Xing Y, Lin X. Transcriptome associated with single-cell analysis reveal the role of S-palmitoylation in coronary artery disease. Sci Rep 2025; 15:15144. [PMID: 40307438 PMCID: PMC12043807 DOI: 10.1038/s41598-025-99648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Coronary artery disease (CAD), a widespread cardiovascular ailment, exhibits a strong association with palmitoylation. This research aimed to elucidate the role of S-palmitoylation in CAD through bioinformatics, providing novel perspectives on the mechanism underlying CAD. By intersecting differentially expressed genes with weighted gene co-expression network analysis (WGCNA) from the GSE113079 dataset, 534 differentially expressed palmitoylation-related genes (DE-PRGs) were identified. Protein-protein interaction (PPI) network analysis, in conjunction with machine learning algorithms and immune infiltration analysis utilizing CIBERSORT, identified CXCL12, KRTAP4-7, and PPP2R2B as pivotal hub genes in CAD progression with significant immune links. Enrichment analyses revealed their predominant roles in immune regulation. Nomogram and ROC curve analyses revealed robust diagnostic predictive capabilities grounded in the three hub genes. A regulatory network involving the transcription factor HDAC2 and miRNA hsa-mir-23a-3p was predicted. Single-cell sequencing (GSE121893) further highlighted endothelial cells, fibroblasts, and macrophages as central cellular interactors, with significant crosstalk among these populations. These findings positioned CXCL12, KRTAP4-7 and PPP2R2B as key palmitoylated hub genes in CAD, thereby offering dual potential as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
5
|
Zhou Z, Su J, van Os BW, Plug LG, de Jonge-Muller ESM, Brands L, Janson SGT, van de Beek LM, van der Meulen-de Jong AE, Hawinkels LJAC, Barnhoorn MC. Stromal Cell Subsets Show Model-Dependent Changes in Experimental Colitis and Affect Epithelial Tissue Repair and Immune Cell Activation. Inflamm Bowel Dis 2025; 31:1051-1066. [PMID: 40100003 PMCID: PMC11985400 DOI: 10.1093/ibd/izae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 03/20/2025]
Abstract
BACKGROUND Previous work on inflammatory bowel disease (IBD) revealed changes in the abundance of colonic stromal subsets during intestinal inflammation. However, it is currently unknown whether these stromal cell subset changes are also reflected in different IBD mouse models and how commonly used IBD therapies affect stromal cell subset composition. METHODS Stromal subset markers CD55, C-X-C motif chemokine 12 (CXCL12), podoplanin (PDPN), CD90, and CD73 were analyzed by flow cytometry in 3 mouse models for IBD, namely interleukin (IL)-10 knockout (KO), dextran sulfate sodium-induced, and T-cell transfer model for colitis. Next, the effects of IBD therapies on the stromal subset composition were studied. In vitro experiments were performed to study the interaction between stromal cell subsets and epithelial/immune cells. RESULTS The colitis-induced changes in the abundance of stromal cell subsets differed considerably between the 3 colitis mouse models. Interestingly, treatment with IBD medication affected specific stromal subsets in a therapy and model-specific manner. In vitro experiments showed that specific stromal subsets affected epithelial wound healing and/or T-cell activation. CONCLUSIONS The relative abundance changes of stromal cell subsets during experimental colitis differ between 3 established colitis models. Treatment with IBD therapies influences stromal subset abundance, indicating their importance in IBD pathogenesis, possibly through affecting epithelial migration, and T-cell activation.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jie Su
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bram W van Os
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Leonie G Plug
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | | | - Stef G T Janson
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Andrea E van der Meulen-de Jong
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
6
|
Kryukova J, Vales S, Payne M, Smagurauskaite G, Chandra S, Clark CJ, Davies G, Bhattacharya S. Development of chemokine network inhibitors using combinatorial saturation mutagenesis. Commun Biol 2025; 8:549. [PMID: 40181178 PMCID: PMC11969024 DOI: 10.1038/s42003-025-07778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Targeting chemokine-driven inflammation has been elusive due to redundant pathways constituting chemokine-immune cell networks. Tick evasins overcome redundant pathways by broadly targeting either CC or CXC-chemokine classes. Recently identified evasin-derived peptides inhibiting both chemokine classes provide a starting point for developing agents with enhanced potency and breadth of action. Structure-guided and affinity maturation approaches to achieve this are unsuitable when multiple targets are concerned. Here we develop a combinatorial saturation mutagenesis optimisation strategy (CoSMOS). This identifies a combinatorially mutated evasin-derived peptide with significantly enhanced pIC50 against three different inflammatory disease chemokine pools. Using AlphaFold 3 to model peptide - chemokine interactions, we show that the combinatorially mutated peptide has increased total and hydrophobic inter-chain bonding via tryptophan residues and is predicted to sterically hinder chemokine interactions required for immune cell migration. We suggest that CoSMOS-generated promiscuous binding activities could target disease networks where structurally related proteins drive redundant signalling pathways.
Collapse
Affiliation(s)
- Jhanna Kryukova
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Serena Vales
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Megan Payne
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Gintare Smagurauskaite
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Soumyanetra Chandra
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Charlie J Clark
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Graham Davies
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Shoumo Bhattacharya
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
7
|
Valizadeh A, Veenhuis RT, Bradley BA, Xu K. Transcriptomic Alterations Induced by Tetrahydrocannabinol in SIV/HIV Infection: A Systematic Review. Int J Mol Sci 2025; 26:2598. [PMID: 40141240 PMCID: PMC11942185 DOI: 10.3390/ijms26062598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Given the high prevalence of cannabis use among people with HIV (PWH) and its potential to modulate immune responses and reduce inflammation, this systematic review examines preclinical evidence on how tetrahydrocannabinol (THC), a key compound in cannabis, affects gene and micro-RNA expression in simian immunodeficiency virus (SIV)-infected macaques and HIV-infected human cells. Through a comprehensive search, 19 studies were identified, primarily involving SIV-infected macaques, with a pooled sample size of 176, though methodological quality varied across the studies. Pathway analysis of differentially expressed genes (DEGs) and miRNAs associated with THC revealed enrichment in pathways related to inflammation, epithelial cell proliferation, and adhesion. Notably, some DEGs were targets of the differentially expressed miRNAs, suggesting that epigenetic regulation may contribute to THC's effects on gene function. These findings indicate that THC may help mitigate chronic immune activation in HIV infection by altering gene and miRNA expression, suggesting its potential immunomodulatory role. However, the evidence is constrained by small sample sizes and inconsistencies across studies. Further research employing advanced methodologies and larger cohorts is essential to confirm THC's potential as a complementary therapy for PWH and fully elucidate the underlying mechanisms, which could inform targeted interventions to harness its immunomodulatory effects.
Collapse
Affiliation(s)
- Amir Valizadeh
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Brooklyn A. Bradley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
8
|
Fang X, Mo C, Zheng L, Gao F, Xue F, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413364. [PMID: 39836498 PMCID: PMC11923913 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fei Gao
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fu‐Shan Xue
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Xiaochun Zheng
- Department of AnesthesiologyFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical CenterFujian Provincial Key Laboratory of Emergency MedicineFujian Provincial Key Laboratory of Critical MedicineFujian Provincial Co‐constructed Laboratory of “Belt and Road,”FuzhouFujianChina
| |
Collapse
|
9
|
Merza Mohammad TA, Al-Haideri M, Azeez Al-Naqshabandi A. Decoding the immune Response: Analyzing PBMCs in ischemic stroke and Evaluating the effects of Rivaroxaban on gene expression. Hum Immunol 2025; 86:111252. [PMID: 39903995 DOI: 10.1016/j.humimm.2025.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Ischemic stroke (IS) is primarily caused by intricate inflammatory pathways and is a major global reason for mortality and disability. Patients with atrial fibrillation are treated with Rivaroxaban, a direct factor Xa inhibitor, to avoid stroke. This study looks at how certain genes are expressed in individuals with IS and how Rivaroxaban affects these genes and proteins. METHODS Using gene expression data from the GEO database, dysregulated genes in IS patients were found. Peripheral blood mononuclear cells from 50 IS patients were used to measure the expression of CXCL8, CXCL2, and G0S2 90 days before and after Rivaroxaban therapy using RT-PCR and ELISA. The Enrichr online tool was used to perform a functional enrichment analysis. RESULTS GEO2R analysis revealed that CXCL8, CXCL2, and G0S2 were significantly upregulated in IS samples compared to controls. Following Rivaroxaban therapy, the mRNA and protein levels of these genes showed a marked reduction, indicating a potential anti-inflammatory effect. CONCLUSION Rivaroxaban may control inflammatory responses in patients with IS, according to the study, which also reveals important genes implicated in IS. These results demonstrate the possibility of focused treatment approaches to reduce inflammation brought on by stroke.
Collapse
Affiliation(s)
- Talar Ahmad Merza Mohammad
- College of pharmacy Hawler Medical University Kurdistan region Iraq; University of Kurdistan Hewlêr (UKH) School of Medicine/ pharmacy department Kurdistan Region-Erbil Iraq.
| | - Maysoon Al-Haideri
- University of Kurdistan Hewlêr (UKH) School of Medicine/ pharmacy department Kurdistan Region-Erbil Iraq
| | | |
Collapse
|
10
|
Agueda-Oyarzabal M, Isidor MS, Plucińska K, Ingerslev LR, Dmytriyeva O, Petersen PSS, Laftih S, Pontoppidan AB, Henningsen JB, Rupar K, Brown EL, Schwartz TW, Barrès R, Gerhart-Hines Z, Schéele CC, Emanuelli B. Transcriptomic signatures of cold acclimated adipocytes reveal CXCL12 as a Brown autocrine and paracrine chemokine. Mol Metab 2025; 93:102102. [PMID: 39848402 PMCID: PMC11841078 DOI: 10.1016/j.molmet.2025.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025] Open
Abstract
Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications. For this, mRNA levels in mature adipocytes from mouse adipose depots were assessed using RNA sequencing upon chronic cold acclimation, and bioinformatic analysis was used to identify secreted factors. Among 858 cold-sensitive transcripts in BAT adipocytes were 210 secreted factor-encoding genes, and Cxcl12 was the top brown adipocyte-enriched cytokine. Cxcl12 mRNA expression analysis by RT-qPCR and fluorescence in situ hybridization specified Cxcl12 distribution in various cell types, and indicated its enrichment in cold-acclimated brown adipocytes. We found that CXCL12 secretion from BAT was increased after chronic cold, yet its level in plasma remained unchanged, suggesting a local/paracrine function. Cxcl12 knockdown in mature brown adipocytes impaired thermogenesis, as assessed by norepinephrine (NE)-induced glycerol release and mitochondrial respiration. However, knockdown of Cxcl12 did not impact β-adrenergic signaling, suggesting that CXCL12 regulates adipocyte function downstream of the β-adrenergic pathway. Moreover, we provide evidence for CXCL12 to exert intercellular cross-talk via its capacity to promote macrophage chemotaxis and neurite outgrowth. Collectively, our results indicate that CXCL12 is a brown adipocyte-enriched, cold-induced secreted factor involved in adipocyte function and the BAT microenvironment communication network.
Collapse
Affiliation(s)
- Marina Agueda-Oyarzabal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie S Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucińska
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patricia S S Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Laftih
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel B Pontoppidan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jo B Henningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Rupar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla C Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Yin Z, Li L, Zhang Q, Zhang X, Shi R, Xia X, Wang Z, Li S, Ye M, Liu Y, Tan W, Chen Z. PerC B-Cells Activation via Thermogenetics-Based CXCL12 Generator for Intraperitoneal Immunity Against Metastatic Disseminated Tumor Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411731. [PMID: 39865939 DOI: 10.1002/adma.202411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/04/2025] [Indexed: 01/28/2025]
Abstract
During cancer peritoneal metastasis (PM), conventional antigen-presenting cells (dendritic cells, macrophages) promote tumorigenesis and immunosuppression in peritoneal cavity. While intraperitoneal immunotherapy (IPIT) has been used in clinical investigations to relieve PM, the limited knowledge of peritoneal immunocytes has hindered the development of therapeutic IPIT. Here, a dendritic cell-independent, next-generation IPIT is described that activates peritoneal cavity B (PerC B) cell subsets for intraperitoneal anti-tumor immunity via exogenous antigen presentation. The PerC B-cell-involved IPIT framework consists of an isotropic-porous, cell-fitting, thermogenetics-based CXCL12 generator. Such nanoscale thermal-confined generator can programmatically fine-tune the expression of CXCL12 to recruit disseminated tumor cells (DTCs) through CXCL12-CXCR4 axis while avoiding cytokine storm, subsequently release DTC-derived antigen to trigger PerC B-cell-involved immunity. Notably, antigen-presenting B-cell cluster, expressing the regulatory signaling molecules Ptpn6, Ms4a1, and Cd52, is identified playing the key role in the IPIT via single-cell RNA sequencing. Moreover, such IPIT availably assuages peritoneal effusion and PM in an orthotopic gastric cancer and metastatic model. Overall, this work offers a perspective on PerC B-cell-involved antigen-presenting in intraperitoneal immunity and provides a configurable strategy for activating anti-DTC immunity for next-generation IPIT.
Collapse
Affiliation(s)
- Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiaoshen Zhang
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Rui Shi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zhaoxin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
12
|
Son M, Nagahawatta DP, Jo HC, Jeon YJ, Ryu B, Kim DY. Diphlorethohydroxycarmalol inhibits Müller cell gliosis by disrupting CXCR4/CXCL12 interaction in violet-blue light-induced retinal phototoxicity. Heliyon 2025; 11:e42475. [PMID: 40034286 PMCID: PMC11874561 DOI: 10.1016/j.heliyon.2025.e42475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Müller gliosis is a complex process that impairs the ability of retinal Müller glial cells to respond to various forms of retinal injury or disease, leading to retinal damage. Blue light (BL) exposure is a known cause of retinal damage. In this study, we aimed to investigate the potential of DPHC in inhibiting Müller gliosis in models of BL-exposure. We conducted in silico binding analysis to evaluate the binding of DPHC to CXCR4. Then, we developed in vitro and in vivo experimental models to assess the effects of DPHC and BL exposure on Müller gliosis using MIO-M1 cells and zebrafish. Our findings show that DPHC can suppress the Müller gliosis process in BL-exposed MIO-M1 cells in vitro and in BL-exposed zebrafish in vivo. In silico molecular docking, we identified CXCR4 as the target of active site 1 of DPHC. In BL-exposed MIO-M1 cells, DPHC inhibited CXCR4 activity and altered the expression of Müller gliosis markers and NF-κB-related ERK and AKT signaling. In BL-exposed zebrafish, DPHC prevented retinal thickness reduction and inhibited CXCR4 expression and retinal cell apoptosis. This study suggests that DPHC could be a potential therapeutic agent for retinal diseases involving Müller gliosis. By inhibiting CXCR4 activity, DPHC downregulates the ERK/AKT/NF-κB pathway, reducing retinal cell apoptosis and altered expression of Müller gliosis markers. These findings highlight the potential of natural bioactive compounds for treating various diseases, and further research should investigate the therapeutic potential of DPHC and its derivatives.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy & Cell Biology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Brain Health Research Laboratory, Institute of Medical Science, Kangwon National University College of Medicine, Chuncheon, 24341, Republic of Korea
| | | | - Hang-Chan Jo
- Center for Sensor Systems, Inha University, Incheon, 22212, Republic of Korea
- Department of Electrical and Computer Engineering, College of Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Bomi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dae Yu Kim
- Center for Sensor Systems, Inha University, Incheon, 22212, Republic of Korea
- Department of Electrical and Computer Engineering, College of Engineering, Inha University, Incheon, 22212, Republic of Korea
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon, 22212, Republic of Korea
| |
Collapse
|
13
|
Cong T, Morse KW, Sosa BR, Lane JM, Rodeo SA, Greenblatt MB. Skeletal Stem Cells: A Basis for Orthopaedic Pathology and Tissue Repair. J Bone Joint Surg Am 2025; 107:418-426. [PMID: 39693451 PMCID: PMC11839314 DOI: 10.2106/jbjs.24.00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
➢ Skeletal stem cells (SSCs) continually replenish mature cell populations to support skeletal homeostasis.➢ SSCs repopulate by self-renewal, have multilineage potential, and are long-lived in vivo.➢ SSCs express specific combinations of cell surface markers that reflect their lineage identity.➢ SSCs adapt to their anatomic environment to support regional differences in skeletal behavior and pathology.
Collapse
Affiliation(s)
- Ting Cong
- Department of Orthopaedic Surgery, UPMC Sports Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Orthopedic Surgery, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Kyle W Morse
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Branden R Sosa
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Joseph M Lane
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
14
|
Cheng L, Feng B, Xie C, Chen C, Guo L. BMSCs Downregulate CXCL12 by Secreting Exosomal miR-20a-5p to Promote Macrophage M2 Polarization and Alleviate the Development of Sepsis. Immunol Invest 2025; 54:250-270. [PMID: 39624875 DOI: 10.1080/08820139.2024.2434049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
OBJECTIVE Sepsis is a syndrome of the systemic inflammatory response caused by infection that can endanger a patient's life. The aim of this study was to explore the molecular mechanism by which bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exo) carrying miR-20a-5p regulate the progression of sepsis. METHODS Clinical samples from sepsis patients were collected. Mouse and cell models of sepsis were induced by lipopolysaccharide (LPS). The levels of related genes and proteins were determined by RT‒qPCR, Western blotting and ELISA. CCK-8 and flow cytometry assays were used to assess cell viability, apoptosis, and markers of macrophage polarization. RESULTS In septic patients, miR-20a-5p levels were significantly lower and CXCL12 expression was significantly increased. After LPS induction, M2 polarization of macrophages was significantly reduced, the level of inflammatory factors was increased, and apoptosis was increased. The addition of BMSCs-exo increased the miR-20a-5p level and decreased the expression of CXCL12 in macrophages, thereby promoting macrophage M2 polarization and reducing the levels of inflammatory factors. CONCLUSION This study demonstrated for the first time that BMSCs-exo promoted the polarization of M2 macrophages through the miR-20a-5p/CXCL12 axis, thus alleviating the development of sepsis. These findings provide a new theoretical basis for the targeted treatment of sepsis with exosomes or miR-20a-5p.
Collapse
Affiliation(s)
- Liming Cheng
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Bo Feng
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Chao Xie
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Chunyan Chen
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Linghui Guo
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| |
Collapse
|
15
|
Escriche-Navarro B, Garrido E, Clara-Trujillo S, Labernadie A, Sancenon F, García-Fernández A, Martínez-Máñez R. Nanodevice-Mediated Immune Cell Recruitment: Targeting Senescent Cells via MMP-3-Responsive CXCL12-Coated Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5880-5892. [PMID: 39835371 DOI: 10.1021/acsami.4c17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Senescent cells are involved in age-related disorders in different organs and are therapeutic targets for fibrotic and chronic pathologies. Immune-modulating agents, able to enhance senescent cell detection and elimination by endogenous immune cells, have emerged as pharmacological strategies. We report herein a nanoparticle for immune cell-mediated senolytic therapy designed to recruit immune cells in response to specific enzymatic matrix metalloproteinase-3 (MMP-3) activity in the senescence-associated secretory phenotype. For this, mesoporous silica nanoparticles (MSNs) are coated with a peptide substrate of the metalloproteinase MMP-3, and the peptide is decorated with chemokine CXCL12 that enhances immune cell recruitment (NPs@CXCL12). Controlled release studies confirmed the progressive and specific release of CXCL12 in the presence of MMP-3. The ability of immune cell recruitment in response to a senescent microenvironment (senescent WI-38 fibroblasts) is confirmed by Transwell migration assays with green fluorescent Jurkat T-cells, showing NPs@CXCL12 has an enhanced chemotaxis effect toward senescent cells compared to free CXCL12 (2-fold). Moreover, the cytotoxic capacity of human primary natural killer (NK) cells over senescent WI-38 is also confirmed, and their migration trajectories in response to NPs@CXCL12 or free CXCL12 are monitored by using a microfluidic device. Results confirm the ability of NPs@CXCL12 to generate a chemotactic gradient able to attract NK cells. When compared with free CXCL12, the NPs@CXCL12 system showed a reduction of up to 15.56% in the population of NK cells migrating toward free CXCL12 under competitive conditions. This study demonstrates the potential of designing nanoparticles to recruit immune cells under specific responses to eliminate senescent cells. Results confirm that NPs@CXCL12 can effectively establish a chemotactic gradient to attract NK cells.
Collapse
Affiliation(s)
- Blanca Escriche-Navarro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| | - Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Sandra Clara-Trujillo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Anna Labernadie
- Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Félix Sancenon
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| |
Collapse
|
16
|
Zhong L, Li B, Zhang S, Li Q, Xiao G. Computational Identification of Migrating T cells in Spatial Transcriptomics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.23.619870. [PMID: 39484480 PMCID: PMC11526994 DOI: 10.1101/2024.10.23.619870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
T cells are the central players in antitumor immunity, and effective tumor killing depends on their ability to infiltrate into the tumor microenvironment (TME) while maintaining normal cytotoxicity. However, late-stage tumors develop immunosuppressive mechanisms that impede T cell movement and induce exhaustion. Investigating T cell migration in human tumors in vivo could provide novel insights into tumor immune escape, although it remains a challenging task. In this study, we developed ReMiTT, a computational method that leverages spatial transcriptomics data to track T cell migration patterns within tumor tissue. Applying ReMiTT to multiple tumor samples, we identified potential migration trails. On these trails, chemokines that promote T-cell trafficking display an increasing trend. Additionally, we identified key genes and pathways enriched on these migration trails, including those involved in cytoskeleton rearrangement, leukocyte chemotaxis, cell adhesion, leukocyte migration, and extracellular matrix (ECM) remodeling. Furthermore, we characterized the phenotypes of T cells along these trails, showing that the migrating T cells are highly proliferative. Our findings introduce a novel approach for studying T cell migration and interactions within the tumor microenvironment (TME), offering valuable insights into tumor-immune dynamics.
Collapse
|
17
|
许 怀, 翁 丽, 薛 鸿. CXCL12 is a potential therapeutic target for type 2 diabetes mellitus complicated by chronic obstructive pulmonary disease. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:100-109. [PMID: 39819718 PMCID: PMC11744293 DOI: 10.12122/j.issn.1673-4254.2025.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES To identify the key genes and immunological pathways shared by type 2 diabetes mellitus (T2DM) and chronic obstructive pulmonary disease (COPD) and explore the potential therapeutic targets of T2DM complicated by COPD. METHODS GEO database was used for analyzing the gene expression profiles in T2DM and COPD to identify the common differentially expressed genes (DEGs) in the two diseases. A protein-protein interaction network was constructed to identify the candidate hub genes, which were validated in datasets and disease sets to obtain the target genes. The diagnostic accuracy of these target genes was assessed with ROC analysis, and their expression levels and association with pulmonary functions were investigated using clinical data and blood samples of patients with T2DM and COPD. The abundance of 22 immune cells was analyzed with CIBERSORT algorithm, and their relationship with the target genes was examined using correlation analysis. DGIdb database was used for analyzing the drug-gene interactions and the druggable genes followed by gene set enrichment analysis. RESULTS We identified a total of 175 common DEGs in T2DM and COPD, mainly enriched in immune- and inflammation-related pathways. Among these genes, CXCL12 was identified as the final target gene, whose expression was elevated in both T2DM and COPD (P<0.05) and showed good diagnostic efficacy. Immune cell infiltration correlation analysis showed significant correlations of CXCL12 with various immune cells (P<0.01). GESA analysis showed that high CXCL12 expression was significantly correlated with "cytokine-cytokine receptor interaction". Drug-gene analysis showed that most of CXCL12-related drugs were not targeted drugs with significant cytotoxicity. CONCLUSIONS CXCL12 is a potential common key pathogenic gene of COPD and T2DM, and small-molecule targeted drugs against CXCL12 can provide a new strategy for treatment T2DM complicated by COPD.
Collapse
|
18
|
Wang X, Chen L, Li W, He Z, Jiang H. Association of dipeptidyl peptidase-4 with Alzheimer's disease: A new therapeutic prospect. J Alzheimers Dis 2025; 103:319-332. [PMID: 39773090 DOI: 10.1177/13872877241304673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is the most common disease associated with cognitive dysfunction, which is closely associated with type 2 diabetes mellitus (T2DM) in clinical manifestations, pathological changes and prevention. Inhibition of dipeptidyl peptidase 4 (DPP-4) can lower blood glucose levels by stimulating insulin secretion. Besides, it can affect cognitive function through the neuroprotective effect of DPP-4 substrates, such as glucose-dependent insulin peptide and glucagon-like peptide-1, the proteolytic effect on amyloid-β and the protective effect on neuronal structure. This review discusses the relationship between cognitive impairment in T2DM and in AD, summarizes the effect of DPP-4 inhibitor (DPP-4i) on improving cognitive impairment in these two diseases based on the current studies. Given the lack of clinical randomized trials that evaluate the effect of DPP-4i on AD, this review is expected to provide preclinical evidence for DPP-4i as a potential therapy for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li Chen
- Department of Pathology, Northeast Yunnan Regional Central Hospital, Zhaotong, China
| | - Weijian Li
- Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing, China
| | - Zhi He
- Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing, China
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
19
|
Hu H, He R, Liu M, Zhou H, Tan L, Ai Q, Wang Q, Zeng L, Qu W. C-X-C Motif Chemokine 12 Was Identified as a Potential Gene Target in the Treatment of Crohn's Disease. Int J Gen Med 2024; 17:6219-6228. [PMID: 39703796 PMCID: PMC11656194 DOI: 10.2147/ijgm.s487505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Object The present study aimed to identify hub genes associated with the treatment and control of active and inactive Crohn's disease (CD). Methods Differentially expressed genes (DEGs) were identified in normal, active CD, and inactive CD samples from GSE95095 dataset. Intersection genes screened by Venn diagram in DEGs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted on the intersection genes. The protein-protein interaction (PPI) network was used to screen of hub gene. The expression and mRNA levels of CXCL12 in CD and ROC curves in GSE95095 dataset. Signaling pathways of hub genes and their correlation with immune cells were analyzed by gene set enrichment analysis (GSEA), EPIC, and ESTIMATE, respectively. Finally, immunohistochemistry (IHC) and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) were used to detect the expression of the hub gene in normal, inactive, and active CD tissues. Results In GSE95095 dataset, CXCL12 was identified as the most hub gene by limma analysis, Venn diagram and A protein-protein interaction (PPI) network. CXCL12 expression was highest in active CD (p < 0.001) followed by inactive CD (p < 0.01). Subsequently, it was validated through IHC and RT-PCR in normal intestinal mucosal, active CD, and inactive CD. CXCL12 was overexpressed in active and inactive CD (IHC: p < 0.001 and RT-PCR: p < 0.001, respectively). CXCL12 expression in active CD was determined via analysis with receiver operating characteristic (ROC) curves. The specificity and sensitivity were 0.875 and 0.625, respectively, the accuracy was 72.92%, the area under the curve (AUC) was 0.780, and the 95% confidence interval (CI) was in the range of 0.648-0.912. CXCL12 expression was closely correlated with various immune cells. Conclusion CXCL12 is overexpressed in active CD and is closely correlated with various immune cells. We propose that CXCL12 as a potential target genes for the treatment and management of both active and inactive CD.
Collapse
Affiliation(s)
- Hongsai Hu
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Rong He
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Minji Liu
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Hongbing Zhou
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Lin Tan
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Qiongjia Ai
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Qian Wang
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Luwei Zeng
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| | - Weiming Qu
- Department of Gastroenterology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, 412000, People’s Republic of China
| |
Collapse
|
20
|
Tsang CH, Kozielewicz P. Exploring G Protein-Coupled Receptors in Hematological Cancers. ACS Pharmacol Transl Sci 2024; 7:4000-4009. [PMID: 39698279 PMCID: PMC11651347 DOI: 10.1021/acsptsci.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Hematological cancers, such as lymphomas and leukemias, pose significant challenges in oncology, necessitating a deeper understanding of their molecular landscape to enhance therapeutic strategies. This article critically examines and discusses recent research on the roles of G protein-coupled receptors (GPCRs) in myeloma, lymphomas, and leukemias with a particular focus on pediatric acute lymphoblastic (lymphocytic) leukemia (ALL). By utilizing RNA sequencing (RNA-seq), we analyzed GPCR expression patterns in pediatric ALL samples (aged 3-12 years old), with a further focus on Class A orphan GPCRs. Our analysis revealed distinct GPCR expression profiles in pediatric ALL, identifying several candidates with aberrant upregulated expression compared with healthy counterparts. Among these GPCRs, GPR85, GPR65, and GPR183 have varying numbers of studies in the field of hematological cancers and pediatric ALL. Furthermore, we explored missense mutations of pediatric ALL in relation to the RNA gene expression findings, providing insights into the genetic underpinnings of this disease. By integrating both RNA-seq and missense mutation data, this article aims to provide an insightful and broader perspective on the potential correlations between specific GPCR and their roles in pediatric ALL.
Collapse
Affiliation(s)
- Choi Har Tsang
- Molecular Pharmacology of GPCRs, Department Physiology & Pharmacology,
Karolinska Institutet, Biomedicum, 171 65 Stockholm,
Sweden
| | - Pawel Kozielewicz
- Molecular Pharmacology of GPCRs, Department Physiology & Pharmacology,
Karolinska Institutet, Biomedicum, 171 65 Stockholm,
Sweden
| |
Collapse
|
21
|
Chen T, Qiao C, Yinwang E, Wang S, Wen X, Feng Y, Jin X, Li S, Xue Y, Zhou H, Zhang W, Zeng X, Wang Z, Sun H, Jiang L, Li H, Li B, Cai Z, Ye Z, Lin N. Natural lung-tropic T H9 cells: a sharp weapon for established lung metastases. J Immunother Cancer 2024; 12:e009629. [PMID: 39631847 PMCID: PMC11624796 DOI: 10.1136/jitc-2024-009629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Lung metastasis remains the primary cause of tumor-related mortality, with limited treatment options and unsatisfactory efficacy. In preclinical studies, T helper 9 (TH9) cells have shown promise in treating solid tumors. However, it is unclear whether TH9 cells can tackle more challenging situations, such as established lung metastases. Moreover, comprehensive exploration into the nuanced biological attributes of TH9 cells is imperative to further unravel their therapeutic potential. METHODS We adoptively transferred TH1, TH9, and TH17 cells into subcutaneous, in situ, and established lung metastases models of osteosarcoma and triple-negative breast cancer, respectively, comparing their therapeutic efficacy within each distinct model. We employed flow cytometry and an in vivo imaging system to evaluate the accumulation patterns of TH1, TH9, and TH17 cells in the lungs after transfusion. We conducted bulk RNA sequencing on in vitro differentiated TH9 cells to elucidate the chemokine receptor CXCR4, which governs their heightened pulmonary tropism relative to TH1 and TH17 cell counterparts. Using Cd4 cre Cxcr4 flox/flox mice, we investigate the effects of CXCR4 on the lung tropism of TH9 cells. We performed mass spectrometry to identify the E3 ligase responsible for CXCR4 ubiquitination and elucidated the mechanism governing CXCR4 expression within TH9 cellular milieu. Ultimately, we analyzed the tumor immune composition after TH9 cell transfusion and evaluated the therapeutic efficacy of adjunctive anti-programmed cell death protein-1 (PD-1) therapy in conjunction with TH9 cells. RESULTS In this study, we provide evidence that TH9 cells exhibit higher lung tropism than TH1 and TH17 cells, thereby exhibiting exceptional efficacy in combating established lung metastases. CXCR4-CXCL12 axis is responsible for lung tropism of TH9 cells as ablating CXCR4 in CD4+ T cells reverses their lung accumulation. Mechanistically, tumor necrosis factor receptor-associated factor 6 (TRAF6)-driven hyperactivation of NF-κB signaling in TH9 cells inhibited ITCH-mediated ubiquitination of CXCR4, resulting in increased CXCR4 accumulation and enhanced lung tropism of TH9 cells. Besides, TH9 cells' transfusion significantly improved the immunosuppressed microenvironment. TH9 cells and anti-PD-1 exhibit synergistic effects in tumor control. CONCLUSIONS Our findings emphasized the innate lung tropism of TH9 cells driven by the activation of TRAF6, which supports the potential of TH9 cells as a promising therapy for established lung metastases.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxiao Qiao
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Featured Laboratory of Respiratory Immunology and Regenerative Medicine in Universities of Shandong, Jinan Clinical Research Center for Respiratory Disease, Jinan, Shandong, People's Republic of China
| | - Eloy Yinwang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shengdong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xuehuan Wen
- Department of Oncology, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yixuan Feng
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangang Jin
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Shuming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wenkan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xianchang Zeng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hangxiang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Lifeng Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hengyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Binghao Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zhijian Cai
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Nong Lin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Yakushi A, Sugimoto M, Sasaki T. Co-expression network and survival analysis of breast cancer inflammation and immune system hallmark genes. Comput Biol Chem 2024; 113:108204. [PMID: 39270542 DOI: 10.1016/j.compbiolchem.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The tertiary lymphoid structure (TLS) plays a central role in cancer immune response, and its gene expression pattern, called the TLS signature, has shown prognostic value in breast cancer. The formation of TLS and tumor-associated high endothelial venules (TA-HEVs), responsible for lymphocytic infiltration within the TLS, is associated with the expression of cancer hallmark genes (CHGs) related to immunity and inflammation. In this study, we performed co-expression network analysis of immune- and inflammation-related CHGs to identify predictive genes for breast cancer. In total, 382 immune- and inflammation-related CHGs with high expression variance were extracted from the GSE86166 microarray dataset of patients with breast cancer. CHGs were classified into five modules by applying weighted gene co-expression network analysis. The survival analysis results for each module showed that one module comprising 45 genes was statistically significant for relapse-free and overall survival. Four network properties identified key genes in this module with high prognostic prediction abilities: CD34, CXCL12, F2RL2, JAM2, PROS1, RAPGEF3, and SELP. The prognostic accuracy of the seven genes in breast cancer was synergistic and exceeded that of other predictors in both small and large public datasets. Enrichment analysis predicted that these genes had functions related to leukocyte infiltration of TA-HEVs. There was a positive correlation between key gene expression and the TLS signature, suggesting that gene expression levels are associated with TLS density. Co-expression network analysis of inflammation- and immune-related CHGs allowed us to identify genes that share a standard function in cancer immunity and have a high prognostic predictive value. This analytical approach may contribute to the identification of prognostic genes in TLS.
Collapse
Affiliation(s)
- Ayaka Yakushi
- Graduate School of Advanced Mathematical and Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan; Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takanori Sasaki
- Graduate School of Advanced Mathematical and Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan.
| |
Collapse
|
23
|
Du YT, Pan ZG, Chen BC, Sun FY. Carotid artery transplantation of brain endothelial cells enhances neuroprotection and neurorepair in ischaemic stroke rats. Acta Pharmacol Sin 2024; 45:2487-2496. [PMID: 38992118 PMCID: PMC11579341 DOI: 10.1038/s41401-024-01339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024]
Abstract
Brain microvascular endothelial cells (BMECs), an important component of the neurovascular unit, can promote angiogenesis and synaptic formation in ischaemic mice after brain parenchyma transplantation. Since the therapeutic efficacy of cell-based therapies depends on the extent of transplanted cell residence in the target tissue and cell migration ability, the delivery route has become a hot research topic. In this study, we investigated the effects of carotid artery transplantation of BMECs on neuronal injury, neurorepair, and neurological dysfunction in rats after cerebral ischaemic attack. Purified passage 1 endothelial cells (P1-BMECs) were prepared from mouse brain tissue. Adult rats were subjected to transient middle cerebral artery occlusion (MCAO) for 30 min. Then, the rats were treated with 5 × 105 P1-BMECs through carotid artery infusion or tail vein injection. We observed that carotid artery transplantation of BMECs produced more potent neuroprotective effects than caudal injection in MCAO rats, including reducing infarct size and alleviating neurological deficits in behavioural tests. Carotid artery-transplanted BMECs displayed a wider distribution in the ischaemic rat brain. Immunostaining for endothelial progenitor cells and the mature endothelial cell markers CD34 and RECA-1 showed that carotid artery transplantation of BMECs significantly increased angiogenesis. Carotid artery transplantation of BMECs significantly increased the number of surviving neurons, decreased the cerebral infarction volume, and alleviated neurological deficits. In addition, we found that carotid artery transplantation of BMECs significantly enhanced ischaemia-induced hippocampal neurogenesis, as measured by doublecortin (DCX) and Ki67 double staining within 2 weeks after ischaemic injury. We conclude that carotid artery transplantation of BMECs can promote cerebral angiogenesis, neurogenesis, and neurological function recovery in adult rats after ischaemic stroke. Our results suggest that carotid injection of BMECs may be a promising new approach for treating acute brain injuries.
Collapse
Affiliation(s)
- Yi-Ting Du
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Guang Pan
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Hua-Shan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bin-Chi Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Feng-Yan Sun
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Ho SC, Hoi-Yee Li G, Yu-Hung Leung A, Choon-Beng Tan K, Cheung CL. Effects of bone metabolism on hematopoiesis: A Mendelian randomization study. Osteoporos Sarcopenia 2024; 10:151-156. [PMID: 39835327 PMCID: PMC11742307 DOI: 10.1016/j.afos.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 10/13/2024] [Indexed: 01/22/2025] Open
Abstract
Objectives Osteoblast is known to regulate hematopoiesis according to preclinical studies but the causal relationship in human remains uncertain. We aimed to evaluate causal relationships of bone mineral density (BMD) with blood cell traits using genetic data. Methods Summary statistics from the largest available genome-wide association study were retrieved for total body BMD (TBBMD), lumbar spine BMD (LSBMD), femoral neck BMD (FNBMD) and 29 blood cell traits including red blood cell, white blood cell and platelet-related traits. Using two-sample Mendelian randomization (MR) approach, inverse-variance weighted method was adopted as main univariable MR analysis. Multivariable MR (MVMR) analysis was conducted to evaluate whether the casual effect is independent of confounders. Results BMD was positively associated with reticulocyte-related traits, including high light scatter reticulocyte count and percentage, immature reticulocyte fraction, reticulocyte count and percentage, with causal effect estimate (beta) ranging from 0.023 to 0.064. Conversely, inverse association of BMD with hematocrit, hemoglobin, and red blood cell count was observed, with beta ranging from -0.038 to -0.019. The association remained significant in MVMR analysis after adjustment for confounders. For white blood cells, BMD was inversely associated with neutrophil count (beta: 0.029 to -0.019) and white blood cell count (beta: 0.024 to -0.02). Results across TBBMD, LSBMD, and FNBMD were consistent. Conclusions This study suggested bone metabolism had a causal effect on hematopoietic system in humans. Its causal effect on red blood cell traits was independent of confounders. Further studies on how improving bone health can reduce risk of hematological disorders are warranted.
Collapse
Affiliation(s)
- Shun-Cheong Ho
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Gloria Hoi-Yee Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Anskar Yu-Hung Leung
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kathryn Choon-Beng Tan
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- Laboratory of Data Discovery for Health (D4H), Hong Kong Science Park, Pak Shek Kok, Hong Kong
| |
Collapse
|
25
|
Roknuzzaman ASM, Qusar MS, Shahriar M, Ashraful Islam SM, Islam MR. Increased serum EGF but not SDF-1 levels are associated with the pathophysiology and development of generalized anxiety disorder. Sci Rep 2024; 14:27409. [PMID: 39521929 PMCID: PMC11550425 DOI: 10.1038/s41598-024-79166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Generalized anxiety disorder (GAD) is a common and persistent mental illness accompanied by uncontrollable worries for daily staff. Physiological, environmental, genetic, and daily stress from surroundings is involved in developing GAD. Here, we aimed to assess the association of stromal cell-derived factor-1 (SDF-1) and epidermal growth factor (EGF) in the pathophysiology of GAD and their role as diagnostic tools. This case-control study recruited 50 GAD patients from the psychiatry department of a tertiary care teaching hospital in Dhaka city and 38 age-sex-matched healthy controls (HCs) from the surrounding areas. A qualified psychiatrist conducted standardized psychiatric interview to diagnose GAD patients and evaluate HCs by applying the diagnostic and statistical manual for mental disorders, 5th edition (DSM-5) and used the GAD-7 scale to assess the severity of the GAD symptoms. After confirming the inclusion and exclusion criteria, we collected 5 ml blood samples from each participant. We measured serum SDF-1 and EGF levels using ELISA techniques. We observed increased serum levels of EGF in GAD patients compared to HCs (5.91 ± 3.90 ng/ml vs. 1.59 ± 1.08 ng/ml; p < 0.001). Also, this increment is positively associated with the severity of GAD in patients (r = 0.479, p = 0.002). The receiver operating characteristic analysis showed good diagnostic performance (AUC 0.869, p < 0.001) with high sensitivity (82.5%), and specificity (81.1%) at cut off value of 2.31 ng/ml. However, we didn't find significant differences in serum SDF-1 levels between GAD patients and HCs (11.96 ± 4.50 ng/ml vs. 12.70 ± 11.76 ng/ml; p = 0.337). The present study suggests that GAD patients have increased serum EGF levels but not SDF-1 levels compared to HCs and that increased EGF levels are associated with increased GAD symptoms as well. Moreover, EGF levels could serve as a biomarker for GAD However, further interventional studies with larger and homogeneous samples are suggested to confirm and establish these findings.
Collapse
Affiliation(s)
- A S M Roknuzzaman
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Mma Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahabagh, Dhaka, 1000, Bangladesh
| | - Mohammad Shahriar
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh.
| | | | - Md Rabiul Islam
- School of Pharmacy, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka, 1212, Bangladesh.
| |
Collapse
|
26
|
Voos JE, Moyal A, Furdock R, Caplan AI, Bonfield TL, Calcei JG. Culture Expansion Alters Human Bone Marrow-Derived Mesenchymal Stem Cell Production of Osteoarthritis-Relevant Cytokines and Growth Factors. Arthroscopy 2024:S0749-8063(24)00875-2. [PMID: 39505158 DOI: 10.1016/j.arthro.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE The purposes of this study were to characterize the human bone marrow-derived mesenchymal stem cells (BM-MSCs) production of osteoarthritis-relevant cytokines and growth factors as they are purified and multiplied, a process termed culture expansion, and to compare the immunomodulatory potential of BM-MSCs based on source and medium used for culture expansion. METHODS BM-MSCs were obtained from iliac crest bone marrow aspirates of 4 healthy donors. These 4 BM-MSC cell lines underwent 4 rounds, or "passages," of the institutional culture expansion protocol, using institutional culture media. The secretory molecules known to play a role in osteoarthritis-related inflammatory immune response, cartilage degradation, and patient symptoms, together called the BM-MSC "secretome," were measured at each passage. Three lines of commercially available BM-MSCs from healthy donors underwent culture expansion by the same protocol, using commercial culture media. The commercial BM-MSCs secretome and the institutional BM-MSCs secretome were compared at each passage. Significance was set at P < .05. RESULTS Institutional BM-MSCs produced less interleukin-6 at passages 3 (237 ± 113 pg/mL) and 4 (237 ± 113 pg/mL) compared with passages 1 (884 ± 97 pg/mL) and 2 (1071 ± 129 pg/mL; P < .01). Institutional BM-MSCs produced more macrophage inflammatory protein 3-alpha at passage 4 than at passage 1 (106 ± 41 vs 32 ± 7 pg/mL; P < .01). Across passages of culture expansion, institutional BM-MSCs grown on institutional medium expressed more interleukin-6 (P < .001), interleukin-10 (P < .001), interleukin-1 beta (P < .001), tumor necrosis factor alpha (P = .004), and vascular endothelial growth factor C (P = .003) than commercially available BM-MSCs grown on commercial medium. CONCLUSIONS Culture expansion alters key molecules within the BM-MSC secretome. Additionally, differences in BM-MSC source and culture medium alter the BM-MSC secretome and its immunomodulatory potential. CLINICAL RELEVANCE This study characterizes the in-vitro changes in BM-MSC secretome during culture expansion based on the cell source and culture medium. It suggests nonequivalence of culture-expanded BM-MSC therapies obtained from different donors using different culture media, even if delivering equivalent numbers of BM-MSCs.
Collapse
Affiliation(s)
- James E Voos
- University Hospitals Drusinsky Sports Medicine Institute, Cleveland, Ohio, U.S.A.; Case Western Reserve University School of Medicine (CWRU SOM), CWRU College of Arts and Sciences, Cleveland, Ohio, U.S.A
| | - Andrew Moyal
- University Hospitals Drusinsky Sports Medicine Institute, Cleveland, Ohio, U.S.A.; Case Western Reserve University School of Medicine (CWRU SOM), CWRU College of Arts and Sciences, Cleveland, Ohio, U.S.A..
| | - Ryan Furdock
- University Hospitals Drusinsky Sports Medicine Institute, Cleveland, Ohio, U.S.A.; Case Western Reserve University School of Medicine (CWRU SOM), CWRU College of Arts and Sciences, Cleveland, Ohio, U.S.A
| | - Arnold I Caplan
- Case Western Reserve University School of Medicine (CWRU SOM), CWRU College of Arts and Sciences, Cleveland, Ohio, U.S.A.; Department of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A.; Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, U.S.A.; National Center of Regenerative Medicine, Cleveland, Ohio, U.S.A
| | - Tracey L Bonfield
- Case Western Reserve University School of Medicine (CWRU SOM), CWRU College of Arts and Sciences, Cleveland, Ohio, U.S.A.; Department of Biology, Case Western Reserve University, Cleveland, Ohio, U.S.A.; Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, U.S.A.; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, U.S.A.; National Center of Regenerative Medicine, Cleveland, Ohio, U.S.A
| | - Jacob G Calcei
- University Hospitals Drusinsky Sports Medicine Institute, Cleveland, Ohio, U.S.A.; Case Western Reserve University School of Medicine (CWRU SOM), CWRU College of Arts and Sciences, Cleveland, Ohio, U.S.A
| |
Collapse
|
27
|
Zhang H, Li C, Li W, Xin W, Qin T. Research Advances in Adenomyosis-Related Signaling Pathways and Promising Targets. Biomolecules 2024; 14:1402. [PMID: 39595579 PMCID: PMC11591984 DOI: 10.3390/biom14111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Adenomyosis is a benign gynecological condition characterized by the proliferation of the endometrial stroma and glands into the myometrium, uterine volume enlargement, and peripheral smooth muscle hypertrophy. The typical clinical symptoms include chronic pelvic pain, abnormal uterine bleeding, and subfertility, all of which significantly impact quality of life. There are no effective prevention or treatment strategies for adenomyosis, partly due to a limited understanding of the pathological mechanisms underlying the initiation and progression of the disease. Given that signaling pathways play a crucial role in the development of adenomyosis, a better understanding of these signaling pathways is essential for identifying therapeutic targets and advancing drug development. The occurrence and progression of adenomyosis are closely linked to various underlying pathophysiological mechanisms, including proliferation, migration, invasion, fibrosis, angiogenesis, inflammation, oxidative stress, immune response, and epigenetic changes. This review summarizes the signaling pathways and targets associated with the pathogenesis of adenomyosis, including CXCL/CXCR, NLRP3, NF-κB, TGF-β/smad, VEGF, Hippo/YAP, PI3K/Akt/mTOR, JAK/STAT, and other relevant pathways. In addition, it identifies promising future targets for the development of adenomyosis treatment, such as m6A, GSK3β, sphks, etc.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Chaoming Li
- Departmemt of Urology, The First People’s Hospital of Longnan, Longnan 742500, China
| | - Wenyan Li
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Wenhu Xin
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Tiansheng Qin
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
28
|
Osborne OM, Daftari M, Naranjo O, Johar AN, Brooks S, Colbert BM, Torices S, Lewis E, Sendaydiego J, Drexler G, Bashti M, Margetts AV, Tuesta LM, Mason C, Bilbao D, Vontell R, Griswold AJ, Dykxhoorn DM, Toborek M. Post-stroke hippocampal neurogenesis is impaired by microvascular dysfunction and PI3K signaling in cerebral amyloid angiopathy. Cell Rep 2024; 43:114848. [PMID: 39392753 PMCID: PMC11562893 DOI: 10.1016/j.celrep.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Ischemic stroke and cerebral amyloid angiopathy (CAA) pose significant challenges in an aging population, particularly in post-stroke recovery. Using the 5xFAD mouse model, we explore the relationship between CAA, ischemic stroke, and tissue recovery. We hypothesize that amyloid-beta accumulation worsens stroke outcomes by inducing blood-brain barrier (BBB) dysfunction, leading to impaired neurogenesis. Our findings show that CAA exacerbates stroke outcomes, with mice exhibiting constricted BBB microvessels, reduced cerebral blood flow, and impaired tissue recovery. Transcriptional analysis shows that endothelial cells and neural progenitor cells (NPCs) in the hippocampus exhibit differential gene expression in response to CAA and stroke, specifically targeting the phosphatidylinositol 3-kinase (PI3K) pathway. In vitro experiments with human NPCs validate these findings, showing that disruption of the CXCL12-PIK3C2A-CREB3L2 axis impairs neurogenesis. Notably, PI3K pathway activation restores neurogenesis, highlighting a potential therapeutic approach. These results suggest that CAA combined with stroke induces microvascular dysfunction and aberrant neurogenesis through this specific pathway.
Collapse
Affiliation(s)
- Olivia M Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Manav Daftari
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adarsh N Johar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samantha Brooks
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brett M Colbert
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elizabeth Lewis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jet Sendaydiego
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gillian Drexler
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Malek Bashti
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander V Margetts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Luis M Tuesta
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian Mason
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina Vontell
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Brain Endowment Bank, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J Griswold
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek M Dykxhoorn
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
29
|
Wang X, Wang X, Su J, Wang D, Feng W, Wang X, Lu H, Wang A, Liu M, Xia G. A Dual-Function LipoAraN-E5 Coloaded with N4-Myristyloxycarbonyl-1-β-d-arabinofuranosylcytosine (AraN) and a CXCR4 Antagonistic Peptide (E5) for Blocking the Dissemination of Acute Myeloid Leukemia. ACS NANO 2024; 18:27917-27932. [PMID: 39364559 DOI: 10.1021/acsnano.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a high recurrence rate. The interaction of chemokine receptor 4/chemokine ligand 12 (CXCR4/CXCL12) mediates homing and adhesion of AML cells in bone marrow, leading to minimal residual disease in patients, which brings a hidden danger for future AML recurrence. Ara-C is a nonselective chemotherapeutic agent against AML. Due to its short half-life and severe side effects, a lipid-like Ara-C derivative (AraN) was synthesized and a dual-function LipoAraN-E5 (135 nm, encapsulation efficiency 99%) was developed, which coloaded AraN and E5, a peptide of the CXCR4 antagonist. LipoAraN-E5 effectively improved the uptake, enhanced the inhibition of leukemia cell proliferation, migration, and adhesion to stromal cells in bone marrow, and mobilized the leukemia cells from bone marrow to peripheral blood via interfering with the CXCR4/CXCL12 axis. LipoAraN-E5 prolonged the plasma half-life of AraN (8.31 vs 0.56 h) and was highly enriched in peripheral blood (3.67 vs 0.05 μmol/g at 8 h) and bone marrow (379 vs 148 μmol/g at 24 h). LipoAraN-E5 effectively prevented the infiltration of leukemia cells in peripheral blood, bone marrow, spleen, and liver, prolonged the mice survival, and showed outstanding antineoplastic efficacy with negligible toxicity, which were attributed to the ingenious design of AraN, the use of a liposomal delivery carrier, and the introduction of E5. Our work revealed that LipoAraN-E5 may be a promising nanocandidate against AML.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
30
|
Ebrahim N, Kondratyev N, Artyuhov A, Timofeev A, Gurskaya N, Andrianov A, Izrailov R, Volchkov E, Dyuzheva T, Kopantseva E, Kiseleva E, Golimbet V, Dashinimaev E. Human pancreatic islet-derived stromal cells reveal combined features of mesenchymal stromal cells and pancreatic stellate cells. Stem Cell Res Ther 2024; 15:351. [PMID: 39380125 PMCID: PMC11463112 DOI: 10.1186/s13287-024-03963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are recognized for their potential in regenerative medicine, attributed to their multipotent differentiation capabilities and immunomodulatory properties. Despite this potential, the classification and detailed characterization of MSCs, especially those derived from specific tissues like the pancreas, remains challenging leading to a proliferation of terminology in the literature. This study aims to address these challenges by providing a thorough characterization of human pancreatic islets-derived mesenchymal stromal cells (hPD-MSCs). METHODS hPD-MSCs were isolated from donor islets using enzymatic digestion, immortalized through lentiviral transduction of human telomerase reverse transcriptase (hTERT). Cells were characterized by immunostaining, flow cytometry and multilineage differentiation potential into adipogenic and osteogenic lineages. Further a transcriptomic analysis was done to compare the gene expression profiles of hPD-MSCs with other mesenchymal cells. RESULTS We show that hPD-MSCs express the classical MSC features, including morphological characteristics, surface markers expression (CD90, CD73, CD105, CD44, and CD106) and the ability to differentiate into both adipogenic and osteogenic lineages. Furthermore, transcriptomic analysis revealed distinct gene expression profiles, showing notable similarities between hPD-MSCs and pancreatic stellate cells (PSCs). The study also identified specific genes that distinguish hPD-MSCs from MSCs of other origins, including genes associated with pancreatic function (e.g., ISL1) and neural development (e.g., NPTX1, ZNF804A). A novel gene with an unknown function (ENSG00000286190) was also discovered. CONCLUSIONS This study enhances the understanding of hPD-MSCs, demonstrating their unique characteristics and potential applications in therapeutic strategies. The identification of specific gene expression profiles differentiates hPD-MSCs from other mesenchymal cells and opens new avenues for research into their role in pancreatic function and neural development.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia, 141701
| | | | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
- Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, Russia, 117198
| | - Alexei Timofeev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Nadya Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Alexey Andrianov
- Loginov Moscow Clinical Scientific Center, Moscow, Russia, 111123
| | - Roman Izrailov
- Loginov Moscow Clinical Scientific Center, Moscow, Russia, 111123
| | - Egor Volchkov
- Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, Russia, 117198
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev, NMRCPHOI) of Ministry of Healthcare of the Russian Federation, 1, Samory Mashela St, Moscow, Russia, 117997
| | - Tatyana Dyuzheva
- Department of Hospital Surgery, Sklifosovsky Institute for Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119435
| | - Elena Kopantseva
- Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, Russia, 117198
| | - Ekaterina Kiseleva
- Research Institute for Systems Biology and Medicine, Moscow, Russia, 117246
| | - Vera Golimbet
- Mental Health Research Center, Moscow, Russia, 115522
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997.
- Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, Russia, 117198.
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia, 141701.
- Institute of Medicine, Banzarov Buryat State University, Ulan-Ude, Russia, 670000.
| |
Collapse
|
31
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
33
|
Andersson KE, Williams K. Cellular regenerative therapy in stress urinary incontinence: new frontiers?-a narrative review. Transl Androl Urol 2024; 13:1709-1716. [PMID: 39280677 PMCID: PMC11399031 DOI: 10.21037/tau-22-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/10/2023] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Even if treatment with stem cells has been shown to be safe and effective in many patients with stress urinary incontinence (SUI), there is still room for improvement using other regenerative medicine alternatives. Since the beneficial effects of stem cells are probably mediated by secretion of factors rather than by the cells themselves there is a good rationale for further exploring the therapeutic effects of the secretome and/or its components. However, homing factors such as stromal derived growth factor 1 (SDF-1; CXCL12), stimulation of stem cell growth and stem cell mobilization in vivo using low intensity shock wave therapy (Li-ESWT) or regenerative electrical stimulation (RES), are also promising approaches. Methods A literature search was performed based on PubMed, Scopus and Google Scholar. The search criteria included original basic science articles, systematic reviews and randomized control trials. All studies were published between 2000 and 2023. Selected, peer-reviewed studies were further analyzed to identify those of relevance. Keywords searched included: "female stress incontinence", "homing factors", "CXCL12", "secretome", "low intensity shockwave therapy" and "regenerative electrical stimulation". The peer-reviewed publications on the key word subjects that contained a novel addition to the existing body of literature were included. Key Content and Findings There is evidence from studies on non-human primates (NHPs) with experimental urinary sphincter injury that CXCL12 can restore sphincter structure and function. Studies with homing factors in human patients with SUI are still to be performed. A large number of clinical studies on the use of secretome or secretome products from mesenchymal stem cells (MSCs) on indications other than human SUI are already available. However, controlled clinical trials on patients with SUI, have to the best of our knowledge, not yet been performed. Also, RES has not been studied in patients with SUI. In contrast, there is clinical evidence that Li-ESWT may improve female SUI. Conclusions Treatment with homing factors, MSC secretome/secretome components, Li-ESWT and RES are promising frontiers in the treatment of human SUI caused by sphincter damage.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Institute for Laboratory Medicine, Lund University, Lund, Sweden
| | - Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
34
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
35
|
Ahuja S, Lazar IM. Proteomic insights into breast cancer response to brain cell-secreted factors. Sci Rep 2024; 14:19351. [PMID: 39169222 PMCID: PMC11339284 DOI: 10.1038/s41598-024-70386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2 + and TN breast cancers frequently metastasize to the brain and stay potentially dormant for years until favorable conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the early response of HER2 + breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment was simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., endothelial cells, astrocytes, and microglia. Cytokine microarrays were used to investigate the secretome mediators of intercellular communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The cytokines detected in the brain secretomes were supportive of inflammatory conditions, while the SKBR3 cells secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell cultures, indicating that upon exposure the SKBR3 cells may have been deprived of favorable conditions for optimal growth. Altogether, the results suggest that the exposure of SKBR3 cells to the brain cell-secreted factors altered their growth potential and drove them toward a state of quiescence, with broader overall outcomes that affected cellular metabolism, adhesion and immune response processes. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, provide insights into the cellular cross-talk that may lead cancer cells into dormancy, and highlight novel opportunities for the development of metastatic breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Fralin Life Sciences Institute, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Carilion School of Medicine, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Division of Systems Biology/AIS, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
36
|
Pereira RVS, EzEldeen M, Ugarte-Berzal E, Vandooren J, Martens E, Gouwy M, Ganseman E, Van Damme J, Matthys P, Vranckx JJ, Proost P, Opdenakker G. Protection of stromal cell-derived factor-1 SDF-1/CXCL12 against proteases yields improved skin wound healing. Front Immunol 2024; 15:1359497. [PMID: 39156898 PMCID: PMC11327020 DOI: 10.3389/fimmu.2024.1359497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
SDF-1/CXCL12 is a unique chemotactic factor with multiple functions on various types of precursor cells, all carrying the cognate receptor CXCR4. Whereas individual biological functions of SDF-1/CXCL12 have been well documented, practical applications in medicine are insufficiently studied. This is explained by the complex multifunctional biology of SDF-1 with systemic and local effects, critical dependence of SDF-1 activity on aminoterminal proteolytic processing and limited knowledge of applicable modulators of its activity. We here present new insights into modulation of SDF-1 activity in vitro and in vivo by a macromolecular compound, chlorite-oxidized oxyamylose (COAM). COAM prevented the proteolytic inactivation of SDF-1 by two inflammation-associated proteases: matrix metalloproteinase-9/MMP-9 and dipeptidylpeptidase IV/DPPIV/CD26. The inhibition of proteolytic inactivation was functionally measured by receptor-mediated effects, including intracellular calcium mobilization, ERK1/2 phosphorylation, receptor internalization and chemotaxis of CXCR4-positive cells. Protection of SDF-1/CXCL12 against proteolysis was dependent on electrostatic COAM-SDF-1 interactions. By in vivo experiments in mice, we showed that the combination of COAM with SDF-1 delivered through physiological fibrin hydrogel had beneficial effect for the healing of skin wounds. Collectively, we show that COAM protects SDF-1 from proteolytic inactivation, maintaining SDF-1 biological activities. Thus, protection from proteolysis by COAM represents a therapeutic strategy to prolong SDF-1 bioavailability for wound healing applications.
Collapse
Affiliation(s)
- Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- Department of Imaging and Pathology, OMFS-IMPATH Research Group KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Oral Health Sciences, KU Leuven and Pediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Eva Ganseman
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development & Regeneration & Department of Plastic & Reconstructive Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Zhu J, Wang F, Wang L, Dai B, Xu G, Zhao L, Jiang H, Gao W, Zhang T, Zhao C, Li YX, Hu J, Li K. HDAC Inhibition Increases CXCL12 Secretion to Recruit Natural Killer Cells in Peripheral T-cell Lymphoma. Cancer Res 2024; 84:2450-2467. [PMID: 38718305 DOI: 10.1158/0008-5472.can-23-3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024]
Abstract
Peripheral T-cell lymphoma (PTCL) is a heterogeneous and aggressive disease with a poor prognosis. Histone deacetylase (HDAC) inhibitors have shown inhibitory effects on PTCL. A better understanding of the therapeutic mechanism underlying the effects of HDAC inhibitors could help improve treatment strategies. Herein, we found that high expression of HDAC3 is associated with poor prognosis in PTCL. HDAC3 inhibition suppressed lymphoma growth in immunocompetent mice but not in immunodeficient mice. HDAC3 deletion delayed the progression of lymphoma, reduced the lymphoma burden in the thymus, spleen, and lymph nodes, and prolonged the survival of mice bearing N-methyl-N-nitrosourea-induced lymphoma. Furthermore, inhibiting HDAC3 promoted the infiltration and enhanced the function of natural killer (NK) cells. Mechanistically, HDAC3 mediated ATF3 deacetylation, enhancing its transcriptional inhibitory activity. Targeting HDAC3 enhanced CXCL12 secretion through an ATF3-dependent pathway to stimulate NK-cell recruitment and activation. Finally, HDAC3 suppression improved the response of PTCL to conventional chemotherapy. Collectively, this study provides insights into the mechanism by which HDAC3 regulates ATF3 activity and CXCL12 secretion, leading to immune infiltration and lymphoma suppression. Combining HDAC3 inhibitors with chemotherapy may be a promising strategy for treating PTCL. Significance: Targeting HDAC3 suppresses progression of T-cell lymphoma by activating ATF3 to induce secretion of CXCL12 and promote infiltration of NK cells, providing an immunostimulatory approach for treating T-cell lymphoma patients.
Collapse
MESH Headings
- Animals
- Histone Deacetylase Inhibitors/pharmacology
- Mice
- Histone Deacetylases/metabolism
- Histone Deacetylases/genetics
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/immunology
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Humans
- Chemokine CXCL12/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Activating Transcription Factor 3/metabolism
- Activating Transcription Factor 3/genetics
- Cell Line, Tumor
- Female
- Male
- Mice, Inbred C57BL
- Prognosis
Collapse
Affiliation(s)
- Jiayan Zhu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Hematology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Feng Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lining Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Guilin Xu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huimin Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhui Gao
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Xuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiong Hu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Nie M, Tian Y, Xiao Y, Lei S, Wu D. Enhancing high-quality fat survival: A novel strategy using cell-free fat extract. FASEB J 2024; 38:e23733. [PMID: 38995329 DOI: 10.1096/fj.202400523rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
High-quality fat (HQF) improves the survival rate of fat and volumetric filling compared to traditional Coleman fat. However, this HQF strategy inevitably leads to a significant amount of unused fat being wasted. "CEFFE" (cell-free fat extract) is an acellular aqueous-phase liquid, rich in bioactive proteins. The remaining fat from preparing HQF can be further processed into CEFFE to promote the survival of HQF. HQF was obtained and the remaining fat was processed into CEFFE, then HQF was transplanted subcutaneously in nude mice. Animal studies showed that CEFFE significantly improved the survival rate of HQF. Histological analysis revealed that CEFFE improved the survival rate of HQF, by enhancing cell proliferation activity, reducing apoptosis, increasing angiogenesis, and improving the inflammatory state. Under simulated anaerobic conditions, CEFFE also improved the viability of HQF. In vitro, studies demonstrated that CEFFE enhanced the survival rate of HQF through multiple mechanisms. Transcriptomic analysis and qPCR showed that CEFFE increased the expression of angiogenesis-related genes in ADSCs while enhancing their proliferation-related gene expression and suppressing the expression of three differentiation-related genes. Moreover, functional experiments demonstrated that CEFFE-induced ADSCs exhibited stronger proliferation and adipogenic differentiation abilities. Tube formation and migration assays revealed that CEFFE promoted tube formation and migration of HUVECs, indicating its inherent pro-angiogenic properties. CEFFE facilitated the development of M0 to M2 macrophages, suggesting its role in improving the inflammatory state. This innovative clinical strategy optimizes HQF transplantation strategy, minimizing fat wastage and enhancing the efficiency of fat utilization.
Collapse
Affiliation(s)
- Mengqi Nie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Yi Tian
- Department of Plastic and Aesthetic (Burn) Surgery, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yutian Xiao
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Dingyu Wu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| |
Collapse
|
39
|
Urvasizoglu G, Kilic A, Capik O, Gundogdu M, Karatas OF. CXCL14 and miR-4484 serves as potential salivary biomarkers for early detection of peri-implantitis. Odontology 2024; 112:864-871. [PMID: 38087011 DOI: 10.1007/s10266-023-00876-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/16/2023] [Indexed: 07/25/2024]
Abstract
Peri-implantitis develops in 43.3% of implant patients, which affects tissues around the implant that may ultimately cause implant loss if not treated properly. Due to difficulties in detecting peri-implantitis in its early phases, implant failures are constantly on the rise. Therefore, new specific molecular markers need to be identified to prevent or limit disease progression in peri-implantitis patients. We investigated levels of CXCL9, CXCL12, and CXCL14 in saliva samples of 45 patients with commercially pure grade 4/5 Titanium-Aluminum-Vanadium implants. We analyzed the correlation of the chemokine levels using Pearson's Correlation test and investigated their power to discriminate peri-implantitis vs. non-peri-implantitis patients using receiver operating characteristic analysis. Our in silico investigation revealed CXCL9, CXCL12, and CXCL14 as predicted targets of miR-4484, which has been demonstrated as a powerful biomarker candidate for early detection of peri-implantitis in our previous study. We measured high CXCL9 and low CXCL14 levels in the saliva of peri-implantitis patients. We also reported that the CXCL14 level showed a significant positive correlation with miR-4484. Besides, CXCL14 together with miR-4484 in saliva differentiated peri-implantitis patients from non-peri-implantitis individuals with 100% success. We offer differential expressions of CXCL14 and miR-4484 in the saliva of patients with peri-implantitis as potential salivary biomarkers for early detection of this disease.
Collapse
Affiliation(s)
- Gelengul Urvasizoglu
- Department of Oral and Maxillofacial Surgery, Ataturk University, 25240, Erzurum, Turkey.
| | - Ahsen Kilic
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Mustafa Gundogdu
- Prosthodontics Department, Izmir Democracy University, Izmir, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey.
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
40
|
Zhong Q, Wang D, Mai H, Chen R, Xu Y, Lei M, Xie J, Tang Z, Fu J, Chen Y, Wang J, Shi Z, Cheng H. Injectable thermo-responsive Poloxamer hydrogel/methacrylate gelatin microgels stimulates bone regeneration through biomimetic programmed release of SDF-1a and IGF-1. Int J Biol Macromol 2024; 271:132742. [PMID: 38821297 DOI: 10.1016/j.ijbiomac.2024.132742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Injectable hydrogels, offering adaptable drug delivery of growth factors (GFs), hold promise for treating bone defects. To optimize osteogenic efficacy, the release of GFs should mirror the natural bone healing. We developed an injectable thermo-responsive hydrogel/microgels platform for dual GF delivery for bone regeneration. Stromal cell-derived factor-1 alpha (SDF-1a) and the Methacrylate Gelatin (GelMA) microgels which encapsulated insulin-like growth factor-1 (IGF-1) loaded liposomes (Ls) were introduced into Poloxamer 407 (P407) hydrogel matrix. This system achieved the biomimetic release profile of SDF-1a and IGF-1, which covered the early stage from day 1 to 7 and the continuous stage from day 5 to 21, respectively. In vitro study confirmed the enhanced migration, osteogenic biomarker expression, and matrix mineralization of the bone marrow mesenchymal stem cells (BMSCs) co-cultivated with the dual GFs delivering hydrogel/microgels. Transcriptome sequencing revealed that the potential mechanism was associated with mitogen-activated protein kinase (MAPK) signaling activation and its downstream ribosomal protein S6 kinase 2 (RSK2) upregulation. In a critical-sized calvarial defect model in Sprague-Dawley (SD) rats, the injectable hydrogel/microgels system promoted significant bone regeneration. Collectively, our study suggested the current hydrogel/microgels system with the biomimetic release of SDF-1a and IGF-1 efficiently promoted bone regeneration, informing the future development of GF delivery systems intended for bone regeneration therapies.
Collapse
Affiliation(s)
- Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Ding Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Huaming Mai
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Rong Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Yixin Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Mingyuan Lei
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Jiajun Xie
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Zinan Tang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Jinlang Fu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China
| | - Jian Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China.
| | - Zhanjun Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China.
| | - Hao Cheng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 # Guangzhou North Avenue, Guangzhou, Guangdong Province 510515, People's Republic of China.
| |
Collapse
|
41
|
Huang X, Wu F, Ye J, Wang L, Wang X, Li X, He G. Expanding the horizons of targeted protein degradation: A non-small molecule perspective. Acta Pharm Sin B 2024; 14:2402-2427. [PMID: 38828146 PMCID: PMC11143490 DOI: 10.1016/j.apsb.2024.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 06/05/2024] Open
Abstract
Targeted protein degradation (TPD) represented by proteolysis targeting chimeras (PROTACs) marks a significant stride in drug discovery. A plethora of innovative technologies inspired by PROTAC have not only revolutionized the landscape of TPD but have the potential to unlock functionalities beyond degradation. Non-small-molecule-based approaches play an irreplaceable role in this field. A wide variety of agents spanning a broad chemical spectrum, including peptides, nucleic acids, antibodies, and even vaccines, which not only prove instrumental in overcoming the constraints of conventional small molecule entities but also provided rapidly renewing paradigms. Herein we summarize the burgeoning non-small molecule technological platforms inspired by PROTACs, including three major trajectories, to provide insights for the design strategies based on novel paradigms.
Collapse
Affiliation(s)
- Xiaowei Huang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Ye
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Luo RG, Wu YF, Lu HW, Weng D, Xu JY, Wang LL, Zhang LS, Zhao CQ, Li JX, Yu Y, Jia XM, Xu JF. Th2-skewed peripheral T-helper cells drive B-cells in allergic bronchopulmonary aspergillosis. Eur Respir J 2024; 63:2400386. [PMID: 38514095 PMCID: PMC11096668 DOI: 10.1183/13993003.00386-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.
Collapse
Affiliation(s)
- Rong-Guang Luo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Yi-Fan Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Dong Weng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Jia-Yan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Le-Le Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Li-Sha Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Cai-Qi Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Jian-Xiong Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yong Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
43
|
Khan Z, Mehan S, Gupta GD, Narula AS. Immune System Dysregulation in the Progression of Multiple Sclerosis: Molecular Insights and Therapeutic Implications. Neuroscience 2024; 548:9-26. [PMID: 38692349 DOI: 10.1016/j.neuroscience.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Multiple sclerosis (MS), a prevalent neurological disorder, predominantly affects young adults and is characterized by chronic autoimmune activity. The study explores the immune system dysregulation in MS, highlighting the crucial roles of immune and non-neuronal cells in the disease's progression. This review examines the dual role of cytokines, with some like IL-6, TNF-α, and interferon-gamma (IFN-γ) promoting inflammation and CNS tissue injury, and others such as IL-4, IL-10, IL-37, and TGF-β fostering remyelination and protecting against MS. Elevated chemokine levels in the cerebrospinal fluid (CSF), including CCL2, CCL5, CXCL10, CXCL13, and fractalkine, are analyzed for their role in facilitating immune cell migration across the blood-brain barrier (BBB), worsening inflammation and neurodegeneration. The study also delves into the impact of auto-antibodies targeting myelin components like MOG and AQP4, which activate complement cascades leading to further myelin destruction. The article discusses how compromised BBB integrity allows immune cells and inflammatory mediators to infiltrate the CNS, intensifying MS symptoms. It also examines the involvement of astrocytes, microglia, and oligodendrocytes in the disease's progression. Additionally, the effectiveness of immunomodulatory drugs such as IFN-β and CD20-targeting monoclonal antibodies (e.g., rituximab) in modulating immune responses is reviewed, highlighting their potential to reduce relapse rates and delaying MS progression. These insights emphasize the importance of immune system dysfunction in MS development and progression, guiding the development of new therapeutic strategies. The study underscores recent advancements in understanding MS's molecular pathways, opening avenues for more targeted and effective treatments.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
44
|
Mamand DR, Bazaz S, Mohammad DK, Saher O, Wiklander OPB, Sadeghi B, Hassan M, El-Andaloussi S, Abedi-Valugerdi M. Tumor cell derived osteopontin and prostaglandin E2 synergistically promote the expansion of myeloid derived suppressor cells during the tumor immune escape phase. Int Immunopharmacol 2024; 129:111584. [PMID: 38364741 DOI: 10.1016/j.intimp.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The immune escape stage in cancer immunoediting is a pivotal feature, transitioning immune-controlled tumor dormancy to progression, and augmenting invasion and metastasis. Tumors employ diverse mechanisms for immune escape, with generating immunosuppressive cells from skewed hematopoiesis being a crucial mechanism. This led us to suggest that tumor cells with immune escape properties produce factors that induce dysregulations in hematopoiesis. In support of this suggestion, this study found that mice bearing advanced-stage tumors exhibited dysregulated hematopoiesis characterized by the development of splenomegaly, anemia, extramedullary hematopoiesis, production of immunosuppressive mediators, and expanded medullary myelopoiesis. Further ex vivo studies exhibited that conditioned medium derived from EL4lu2 cells could mediate the expansion of myeloid derived suppressor cells (MDSCs) in bone marrow cell cultures. The protein array profiling results revealed the presence of elevated levels of osteopontin (OPN), prostaglandin E2 (PGE2) and interleukin 17 (IL-17) in the culture medium derived from EL4luc2 cells. Accordingly, substantial levels of these factors were also detected in the sera of mice bearing EL4luc2 tumors. Among these factors, only PGE2 alone could increase the number of MDSCs in the BM cell cultures. This effect of PGE2 was significantly potentiated by the presence of OPN but not IL-17. Finally, in vitro treatment of EL4luc2 cells with pioglitazone, a modulator of OPN and cyclooxygenase 2 (COX-2) resulted in a significant reduction in cell proliferation in EL4luc2 cells. Our findings highlight the significant role played by tumor cell-derived OPN and PGE2 in fostering the expansion of medullary MDSCs and in promoting tumor cell proliferation. Furthermore, these intertwined cancer processes could be key targets for pioglitazone intervention.
Collapse
Affiliation(s)
- Doste R Mamand
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Safa Bazaz
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, SE-141 83 Stockholm, Sweden; College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Erbil 44002, Iraq
| | - Osama Saher
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Oscar P B Wiklander
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Moustapha Hassan
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Experimental Cancer Medicine, Karolinska Institutet and Karolinska University Hospital, Huddinge, Sweden
| | - Samir El-Andaloussi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
45
|
Lu G, Qiu Y. SPI1-mediated CXCL12 expression in bladder cancer affects the recruitment of tumor-associated macrophages. Mol Carcinog 2024; 63:448-460. [PMID: 38037991 DOI: 10.1002/mc.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Bladder cancer (BC) originates principally from the epithelial compartment of the bladder. The immune system and its diverse players, chemokines, in particular, have been related to the responses against BC. The goal of the study here was to examine if C-X-C motif chemokine 12 (CXCL12) in BC cells could manipulate protumorigenic properties of tumor-associated macrophages (TAMs) which affects anticancer immunity supporting tumor development in the tumor microenvironment. CXCL12 was found to be overexpressed in BC and predicted poor survival. CXCL12 in BC was associated with multiple immune cell infiltrations, with TAM infiltration playing a key role. CXCL12 elevated chemotaxis of TAMs. CXCL12 downregulation inhibited cellular activity and TAM and suppressed the ability of TAMs to secrete inflammatory factors and MMP9. Furthermore, chromatin immunoprecipitation analysis revealed that SPI1 was localized to the CXCL12 promoter in BC cells, suggesting that CXCL12 serves a direct target of SPI1, which was consistent with the fact that SPI1 reversed the repressive effects of si-CXCL12 on BC cell activity and TAM recruitment in vitro and in vivo. Collectively, these findings suggest that SPI1 is involved in modulating TAM recruitment, representing a new mechanism through which it may influence tumor growth. This may be partly mediated by regulating CXCL12 expression.
Collapse
Affiliation(s)
- Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
46
|
Parwani KK, Branella GM, Burnham RE, Burnham AJ, Bustamante AYS, Foppiani EM, Knight KA, Petrich BG, Horwitz EM, Doering CB, Spencer HT. Directing the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells. Front Immunol 2024; 15:1331322. [PMID: 38487542 PMCID: PMC10937339 DOI: 10.3389/fimmu.2024.1331322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Vγ9Vδ2 T cells represent a promising cancer therapy platform because the implementation of allogenic, off-the-shelf product candidates is possible. However, intravenous administration of human Vγ9Vδ2 T cells manufactured under good manufacturing practice (GMP)-compliant, serum-free conditions are not tested easily in most mouse models, mainly because they lack the ability to migrate from the blood to tissues or tumors. We demonstrate that these T cells do not migrate from the circulation to the mouse bone marrow (BM), the site of many malignancies. Thus, there is a need to better characterize human γδ T-cell migration in vivo and develop strategies to direct these cells to in vivo sites of therapeutic interest. To better understand the migration of these cells and possibly influence their migration, NSG mice were conditioned with agents to clear BM cellular compartments, i.e., busulfan or total body irradiation (TBI), or promote T-cell migration to inflamed BM, i.e., incomplete Freund's adjuvant (IFA), prior to administering γδ T cells. Conditioning with TBI, unlike busulfan or IFA, increases the percentage and number of γδ T cells accumulating in the mouse BM, and cells in the peripheral blood (PB) and BM display identical surface protein profiles. To better understand the mechanism by which cells migrate to the BM, mice were conditioned with TBI and administered γδ T cells or tracker-stained red blood cells. The mechanism by which γδ T cells enter the BM after radiation is passive migration from the circulation, not homing. We tested if these ex vivo-expanded cells can migrate based on chemokine expression patterns and showed that it is possible to initiate homing by utilizing highly expressed chemokine receptors on the expanded γδ T cells. γδ T cells highly express CCR2, which provides chemokine attraction to C-C motif chemokine ligand 2 (CCL2)-expressing cells. IFNγ-primed mesenchymal stromal cells (MSCs) (γMSCs) express CCL2, and we developed in vitro and in vivo models to test γδ T-cell homing to CCL2-expressing cells. Using an established neuroblastoma NSG mouse model, we show that intratumorally-injected γMSCs increase the homing of γδ T cells to this tumor. These studies provide insight into the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells in NSG mice, which is critical to understanding the fundamental properties of these cells.
Collapse
Affiliation(s)
- Kiran K Parwani
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Gianna M Branella
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Rebecca E Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Andre J Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Austre Y Schiaffino Bustamante
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Elisabetta Manuela Foppiani
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Kristopher A Knight
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | | | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
47
|
Wang Y, Yang X, Zhang Y, Hong L, Xie Z, Jiang W, Chen L, Xiong K, Yang S, Lin M, Guo X, Li Q, Deng X, Lin Y, Cao M, Yi G, Fu M. Single-cell RNA sequencing reveals roles of unique retinal microglia types in early diabetic retinopathy. Diabetol Metab Syndr 2024; 16:49. [PMID: 38409074 PMCID: PMC10895757 DOI: 10.1186/s13098-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The pathophysiological mechanisms of diabetic retinopathy (DR), a blinding disease, are intricate. DR was thought to be a microvascular disease previously. However, growing studies have indicated that the retinal microglia-induced inflammation precedes microangiopathy. The binary concept of microglial M1/M2 polarization paradigms during inflammatory activation has been debated. In this study, we confirmed microglia had the most significant changes in early DR using single-cell RNA sequencing. METHODS A total of five retinal specimens were collected from donor SD rats. Changes in various cells of the retina at the early stage of DR were analyzed using single-cell sequencing technology. RESULTS We defined three new microglial subtypes at cellular level, including two M1 types (Egr2+ M1 and Egr2- M1) and one M2 type. We also revealed the anatomical location between these subtypes, the dynamic changes of polarization phenotypes, and the possible activation sequence and mutual activation regulatory mechanism of different cells. Furthermore, we constructed an inflammatory network involving microglia, blood-derived macrophages and other retinal nonneuronal cells. The targeted study of new disease-specific microglial subtypes can shorten the time for drug screening and clinical application, which provided insight for the early control and reversal of DR. CONCLUSIONS We found that microglia show the most obvious differential expression changes in early DR and reveal the changes in microglia in a high-glucose microenvironment at the single-cell level. Our comprehensive analysis will help achieve early reversal and control the occurrence and progression of DR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Xiongyi Yang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuxi Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhuohang Xie
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wenmin Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, People's Republic of China
| | - Lin Chen
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518100, Guangdong, People's Republic of China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Meiping Lin
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Guo
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiumo Li
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoqing Deng
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yanhui Lin
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Mingzhe Cao
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Erheng Road, Yuancun, Tianhe, Guangzhou, Guangdong, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
48
|
Körtge A, Breitrück A, Doß S, Hofrichter J, Nelz SC, Krüsemann H, Wasserkort R, Fitzner B, Hecker M, Mitzner S, Zettl UK. The Utility of Miniaturized Adsorbers in Exploring the Cellular and Molecular Effects of Blood Purification: A Pilot Study with a Focus on Immunoadsorption in Multiple Sclerosis. Int J Mol Sci 2024; 25:2590. [PMID: 38473836 DOI: 10.3390/ijms25052590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Immunoadsorption (IA) has proven to be clinically effective in the treatment of steroid-refractory multiple sclerosis (MS) relapses, but its mechanism of action remains unclear. We used miniaturized adsorber devices with a tryptophan-immobilized polyvinyl alcohol (PVA) gel sorbent to mimic the IA treatment of patients with MS in vitro. The plasma was screened before and after adsorption with regard to disease-specific mediators, and the effect of the IA treatment on the migration of neutrophils and the integrity of the endothelial cell barrier was tested in cell-based models. The in vitro IA treatment with miniaturized adsorbers resulted in reduced plasma levels of cytokines and chemokines. We also found a reduced migration of neutrophils towards patient plasma treated with the adsorbers. Furthermore, the IA-treated plasma had a positive effect on the endothelial cell barrier's integrity in the cell culture model. Our findings suggest that IA results in a reduced infiltration of cells into the central nervous system by reducing leukocyte transmigration and preventing blood-brain barrier breakdown. This novel approach of performing in vitro blood purification therapies on actual patient samples with miniaturized adsorbers and testing their effects in cell-based assays that investigate specific hypotheses of the pathophysiology provides a promising platform for elucidating the mechanisms of action of those therapies in various diseases.
Collapse
Affiliation(s)
- Andreas Körtge
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anne Breitrück
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sandra Doß
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
| | - Jacqueline Hofrichter
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sophie-Charlotte Nelz
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Horst Krüsemann
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
| | - Reinhold Wasserkort
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, 18147 Rostock, Germany
| | - Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, 18147 Rostock, Germany
| | - Steffen Mitzner
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, 18147 Rostock, Germany
| |
Collapse
|
49
|
Wells JA, Kumru K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat Rev Drug Discov 2024; 23:126-140. [PMID: 38062152 DOI: 10.1038/s41573-023-00833-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 02/08/2024]
Abstract
Targeted protein degradation (TPD) has emerged in the past decade as a major new drug modality to remove intracellular proteins with bispecific small molecules that recruit the protein of interest (POI) to an E3 ligase for degradation in the proteasome. Unlike classic occupancy-based drugs, intracellular TPD (iTPD) eliminates the target and works catalytically, and so can be more effective and sustained, with lower dose requirements. Recently, this approach has been expanded to the extracellular proteome, including both secreted and membrane proteins. Extracellular targeted protein degradation (eTPD) uses bispecific antibodies, conjugates or small molecules to degrade extracellular POIs by trafficking them to the lysosome for degradation. Here, we focus on recent advances in eTPD, covering degrader systems, targets, molecular designs and parameters to advance them. Now almost any protein, intracellular or extracellular, is addressable in principle with TPD.
Collapse
Affiliation(s)
- James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaan Kumru
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Jiang G, Liu W, Wang X, Wang Z, Song C, Chen R, He Z, Li H, Zheng M, Mao W. The causality between systemic inflammatory regulators and chronic respiratory diseases: A bidirectional Mendelian-randomization study. Cytokine 2024; 174:156470. [PMID: 38071841 DOI: 10.1016/j.cyto.2023.156470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
INTRODUCTION Accumulative evidence suggests the associations between systemic inflammatory regulators and chronic respiratory diseases (CRDs). However, the intrinsic causation remains implicit. Therefore, this study aimed to examine causative associations by mendelian randomization (MR) and to identify valuable active factors. METHODS Based on data from the GWAS database, we performed MR analyses of 41 serum cytokines from 8,293 Finnish and European descent cohorts from GBMI and UKBB for five major CRDs. We mainly applied inverse variance weighted regression, supplemented by MR-Egger regression, weighted median, maximum likelihood, weighted mode, and simple mode algorithms. Moreover, sensitivity analyses were conducted using Cochrane's Q test, MR-Egger intercept, MR-PRESSO Global test and MR-Steiger filtering. Eventually, the consistency of MR results was assessed by leave-one-out. RESULTS Our results suggest that 12 genetically predicted systemic inflammatory regulators probably participate in the progression of CRDs, including four risk factors (IL-1RA, IL-4, MIP-1A, PDGF-BB) and one protective factor (IL-6) in IPF, two protective factors (SCF, SDF-1A) in COPD, and two protective factors (SCF, SDF-1A) in asthma, two protective factors (GROA, IL-2RA) were also included in asthma, whereas only one factor (HGF) was protective against bronchiectasis. Additionally, two protective factors (FGF-BASIC, G-CSF) were identified in sarcoidosis. Sensitivity analyses showed no horizontal pleiotropy and significant heterogeneity. Finally, based on the findings of inverse MR analysis, no inverse causal association was uncovered, confirming the robustness of results. CONCLUSION Our study unearths potential associations between systemic inflammatory modulators and common CRDs, providing new insights for inflammation-mediated CRD prevention and therapeutic approaches.
Collapse
Affiliation(s)
- Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Xiaokun Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zifeng Wang
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Ruo Chen
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Huixing Li
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Mingfeng Zheng
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| |
Collapse
|