1
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
2
|
Fan L, Zhu Z, Lin X, Shen X, Yang T, Wang H, Zhou X. Comparative Genomic Analysis of PEBP Genes in Cucurbits Explores the Interactors of Cucumber CsPEBPs Related to Flowering Time. Int J Mol Sci 2024; 25:3815. [PMID: 38612626 PMCID: PMC11011414 DOI: 10.3390/ijms25073815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The family of phosphatidylethanolamine-binding proteins (PEBPs) participates in various plant biological processes, mainly flowering regulation and seed germination. In cucurbit crops, several PEBP genes have been recognized to be responsible for flowering time. However, the investigation of PEBP family members across the genomes of cucurbit species has not been reported, and their conservation and divergence in structure and function remain largely unclear. Herein, PEBP genes were identified from seven cucurbit crops and were used to perform a comparative genomics analysis. The cucurbit PEBP proteins could be classified into MFT, FT, TFL, and PEBP clades, and further, the TFL clade was divided into BFT-like, CEN-like, and TFL1-like subclades. The MFT-like, FT-like, and TFL-like proteins were clearly distinguished by a critical amino acid residue at the 85th position of the Arabidopsis FT protein. In gene expression analysis, CsaPEBP1 was highly expressed in flowers, and its expression levels in females and males were 70.5 and 89.2 times higher, respectively, than those in leaves. CsaPEBP5, CsaPEBP6, and CsaPEBP7 were specifically expressed in male flowers, with expression levels 58.1, 17.3, and 15.7 times higher, respectively, than those of leaves. At least five CsaPEBP genes exhibited the highest expression during the later stages of corolla opening. Through clustering of time-series-based RNA-seq data, several potential transcription factors (TFs) interacting with four CsaPEBPs were identified during cucumber corolla opening. Because of the tandem repeats of binding sites in promoters, NF-YB (Csa4G037610) and GATA (Csa7G64580) TFs appeared to be better able to regulate the CsaPEBP2 and CsaPEBP5 genes, respectively. This study would provide helpful information for further investigating the roles of PEBP genes and their interacting TFs in growth and development processes, such as flowering time regulation in cucurbit crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuyan Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.F.); (Z.Z.); (X.L.); (X.S.); (T.Y.); (H.W.)
| |
Collapse
|
3
|
Gambirasi M, Safa A, Vruzhaj I, Giacomin A, Sartor F, Toffoli G. Oral Administration of Cancer Vaccines: Challenges and Future Perspectives. Vaccines (Basel) 2023; 12:26. [PMID: 38250839 PMCID: PMC10821404 DOI: 10.3390/vaccines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer vaccines, a burgeoning strategy in cancer treatment, are exploring innovative administration routes to enhance patient and medical staff experiences, as well as immunological outcomes. Among these, oral administration has surfaced as a particularly noteworthy approach, which is attributed to its capacity to ignite both humoral and cellular immune responses at systemic and mucosal tiers, thereby potentially bolstering vaccine efficacy comprehensively and durably. Notwithstanding this, the deployment of vaccines through the oral route in a clinical context is impeded by multifaceted challenges, predominantly stemming from the intricacy of orchestrating effective oral immunogenicity and necessitating strategic navigation through gastrointestinal barriers. Based on the immunogenicity of the gastrointestinal tract, this review critically analyses the challenges and recent advances and provides insights into the future development of oral cancer vaccines.
Collapse
Affiliation(s)
- Marta Gambirasi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Amin Safa
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Idris Vruzhaj
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Aurora Giacomin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Franca Sartor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| |
Collapse
|
4
|
Fattahi P, Salehi N, Azizi Z, Mohammadi J, Norouzy A, Moazzeni SM. Fluorescence labeling of anchor-modified Mart-1 peptide for increasing its affinity for HLA-A*0201: Hit two targets with one arrow. J Pept Sci 2023; 29:e3480. [PMID: 36662516 DOI: 10.1002/psc.3480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
One of the most successful strategies in designing peptide-based cancer vaccines is modifying natural epitope peptides to increase their binding strength to human leukocyte antigens (HLAs). Anchor-modified Mart-1 peptide (ELAGIGILTV) is among the artificial epitope peptides with the highest binding affinity for HLA-A*0201. In this study, by fluorescence labeling of its either C- or N-terminus with Nε -(5-carboxyfluorescein)-l-lysine, we not only made it traceable but also drastically increased its binding strength to HLA-A*0201. HLA streptamer, for the first time, is introduced for measuring the binding constants (Ka ) of the labeled peptides. The affinity of the labeled peptides for the HLA-A*201 of the MCF-7 cells was extraordinarily high and co-incubating them with the highest possible amount of the unlabeled peptide, as a competitor, did not significantly prohibit them from binding to the HLA. The reproducibility of the obtained results was confirmed by using the T2 cell line. The HLA-deficient K562 cell line was used as the negative control. With in silico simulations, we found two hydrophobic pockets on both sides of HLA-A*0201 for anchoring the C- or N-terminal 5-carboxyfluorescein probe, which can explain the extraordinary affinity of the labeled peptides for the HLA-A*0201.
Collapse
Affiliation(s)
- Pooya Fattahi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Salehi
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Amir Norouzy
- Bioprocess Engineering Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Shi R, Zhou X, Pang L, Wang M, Li Y, Chen C, Ning H, Zhang L, Yue G, Qiu L, Zhao W, Qi Y, Wu Y, Gao Y. Peptide vaccine from cancer-testis antigen ODF2 can potentiate the cytotoxic T lymphocyte infiltration through IL-15 in non-MSI-H colorectal cancer. Cancer Immunol Immunother 2023; 72:985-1001. [PMID: 36251028 DOI: 10.1007/s00262-022-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 03/20/2023]
Abstract
About 85% of patients with colorectal cancer (CRC) have the non-microsatellite instability-high (non-MSI-H) subtype, and many cannot benefit from immune checkpoint blockade. A potential reason for this is that most non-MSI-H colorectal cancers are immunologically "cold" due to poor CD8+ T cell infiltration. In the present study, we screened for potential cancer-testis antigens (CTAs) by comparing the bioinformatics of CD8+ T effector memory (Tem) cell infiltration between MSI-H and non-MSI-H CRC. Two ODF2-derived epitope peptides, P433 and P609, displayed immunogenicity and increased the proportion of CD8+ T effector memory (Tem) cells in vitro and in vivo. The adoptive transfer of peptide pool-induced CTLs inhibited tumor growth and enhanced CD8+ T cell infiltration in tumor-bearing NOD/SCID mice. The mechanistic study showed that knockdown of ODF2 in CRC cells promoted interleukin-15 expression, which facilitated CD8+ T cell proliferation. In conclusion, ODF2, a CTA, was negatively correlated with CD8+ T cell infiltration in "cold" non-MSI-H CRC and was selected based on the results of bioinformatics analyses. The corresponding HLA-A2 restricted epitope peptide induced antigen-specific CTLs. Immunotherapy targeting ODF2 could improve CTA infiltration via upregulating IL-15 in non-MSI-H CRC. This tumor antigen screening strategy could be exploited to develop therapeutic vaccines targeting non-MSI-H CRC.
Collapse
Affiliation(s)
- Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihan Zhang
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Guangxing Yue
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China.
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao CC. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022; 13:931612. [PMID: 35967400 PMCID: PMC9364268 DOI: 10.3389/fimmu.2022.931612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Peptide-based cancer vaccines have been shown to boost immune systems to kill tumor cells in cancer patients. However, designing an effective T cell epitope peptide-based cancer vaccine still remains a challenge and is a major hurdle for the application of cancer vaccines. In this study, we constructed for the first time a library of peptide-based cancer vaccines and their clinical attributes, named CancerVaccine (https://peptidecancervaccine.weebly.com/). To investigate the association factors that influence the effectiveness of cancer vaccines, these peptide-based cancer vaccines were classified into high (HCR) and low (LCR) clinical responses based on their clinical efficacy. Our study highlights that modified peptides derived from artificially modified proteins are suitable as cancer vaccines, especially for melanoma. It may be possible to advance cancer vaccines by screening for HLA class II affinity peptides may be an effective therapeutic strategy. In addition, the treatment regimen has the potential to influence the clinical response of a cancer vaccine, and Montanide ISA-51 might be an effective adjuvant. Finally, we constructed a high sensitivity and specificity machine learning model to assist in designing peptide-based cancer vaccines capable of providing high clinical responses. Together, our findings illustrate that a high clinical response following peptide-based cancer vaccination is correlated with the right type of peptide, the appropriate adjuvant, and a matched HLA allele, as well as an appropriate treatment regimen. This study would allow for enhanced development of cancer vaccines.
Collapse
Affiliation(s)
- Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| | - Jianrong Li
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Wei Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | | | - Geng Liu
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Bo Li
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc, San Francisco, CA, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| |
Collapse
|
7
|
Jin X, Liu X, Zhou Z, Ding Y, Wu Y, Qiu J, Shen C. Identification of HLA-A2 restricted epitopes of glypican-3 and induction of CTL responses in HLA-A2 transgenic mice. Cancer Immunol Immunother 2021; 71:1569-1582. [PMID: 34724090 DOI: 10.1007/s00262-021-03096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality, but lacks effective treatments. Carcinoembryonic antigen glypican-3 (GPC3) is a tumor-associated antigen overexpressed in HCC but rarely expressed in healthy individuals and thus is one of the most promising therapeutic targets. T cell epitope-based vaccines may bring light to HCC patients, especially to the patients at a late stage. However, few epitopes from GPC3 were identified to date, which limited the application of GPC3-derived epitopes in immunotherapy and T cell function detection. In this study, a total of 25 HLA-A0201 restricted GPC3 epitopes were in silico predicted and selected as candidate epitopes. Then, HLA-A0201+/GPC3+ HCC patients' PBMCs were collected and co-stimulated with the candidate epitope peptides in ex vivo IFN-γ Elispot assay, by which five epitopes were identified as real-world epitopes. Their capacity to elicit specific CD8+ T cells activation and proliferation was further confirmed by in vitro co-cultures of patients' PBMCs with peptide, in vitro co-cultures of healthy donors' PBLs with DCs and peptide, T2 cell binding assay as well as HLA-A2 molecule stability assay. Moreover, the in vivo immunogenicity of the five validated epitopes was confirmed by peptides cocktail/poly(I:C) vaccination in HLA-A0201/DR1 transgenic mice. Robust epitope-specific CD8+ T cell responses and cytotoxicity targeting HepG2 cells were observed as detected by IFN-γ Elispot, intracellular IFN-γ staining and cytolysis assay. This study provided novel GPC3 CTL epitopes for the development of T cell epitope vaccines and evaluation of GPC3 specific T cell responses.
Collapse
Affiliation(s)
- Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zining Zhou
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Ding
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Qiu
- Department of Hepatobiliary Oncology, The Second Hospital of Nanjing Affiliated To Southeast University, Nanjing, 210003, Jiangsu, China.
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China. .,Jiangsu Province Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Wang X, Yu Z, Liu W, Tang H, Yi D, Wei M. Recent progress on MHC-I epitope prediction in tumor immunotherapy. Am J Cancer Res 2021; 11:2401-2416. [PMID: 34249407 PMCID: PMC8263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Tumor immunotherapy has now become one of the most potential therapy for those intractable cancer diseases. The antigens on the cancer cell surfaces are the keys for the immune system to recognize and eliminate them. As reported, the immunogenicity of the tumor antigens could be determined by the binding between the key epitope peptides and MHC molecules. In recent years, the approaches to anticipate the peptides from the candidate epitopes have gradually changed into more efficient methods. Including the improved conventional methods, more diverse methods were coming into view. Here we review the anticipated methods of the tumor associated epitopes that specifically bind with major histocompatibility complex (MHC) class I molecules, and the recent advances and applications of those epitope prediction methods.
Collapse
Affiliation(s)
- Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Dongxu Yi
- The Affiliated Reproductive Hospital of China Medical UniversityNo. 10 Puhe Street, Huanggu District Shenyang, Liaoning, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| |
Collapse
|
9
|
Nelde A, Rammensee HG, Walz JS. The Peptide Vaccine of the Future. Mol Cell Proteomics 2021; 20:100022. [PMID: 33583769 PMCID: PMC7950068 DOI: 10.1074/mcp.r120.002309] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
The approach of peptide-based anticancer vaccination has proven the ability to induce cancer-specific immune responses in multiple studies for various cancer entities. However, clinical responses remain so far limited to single patients and broad clinical applicability was not achieved. Therefore, further efforts are required to improve peptide vaccination in order to integrate this low-side-effect therapy into the clinical routine of cancer therapy. To design clinically effective peptide vaccines in the future, different issues have to be addressed and optimized comprising antigen target selection as well as choice of optimal adjuvants and vaccination schedules. Furthermore, the combination of peptide-based vaccines with other immuno- and molecular targeted therapies as well as the development of predictive biomarkers could further improve efficacy. In this review, current approaches in the development of peptide-based vaccines and critical implications for optimal vaccine design are discussed.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany; Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Zhao S, Wei Y, Pang H, Xu J, Li Y, Zhang H, Zhang J, Zhang Y. Genome-wide identification of the PEBP genes in pears and the putative role of PbFT in flower bud differentiation. PeerJ 2020; 8:e8928. [PMID: 32296611 PMCID: PMC7151754 DOI: 10.7717/peerj.8928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
Although Phosphatidylethanolamine-binding protein (PEBP) genes have been identified in several plants, little is known about PEBP genes in pears. In this study, a total of 24 PEBP genes were identified, in which 10, 5 and 9 were from Pyrus bretschneideri genome, Pyrus communis genome and Pyrus betuleafolia genome, respectively. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, promoter regions, collinearity and expression were determined with these PEBP genes. It was found that only PbFT from PEBP genes of P. bretschneideri was relatively highly expressed in leaves during flower bud differentiation. Whereas, expression patterns of TFL1 homologues, gene23124 and gene16540, were different from PbFT in buds. The expression pattern and the treatment of reduction day-length indicated that the expression of PbFT in leaves were regulated by day-length and circadian clock. Additionally, the phenotype of transgenic Arabidopsis suggested that PbFT played a role in not only promoting flower bud differentiation, but also regulating the balance between vegetative and reproductive growth. These results may provide important information for further understanding of the evolution and function of PEBP genes in pears.
Collapse
Affiliation(s)
- Shuliang Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yarui Wei
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongguang Pang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianfeng Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yingli Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Haixia Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianguang Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
11
|
Yu H, Ye C, Li J, Pan C, Lin W, Chen H, Zhou Z, Ye Y. An altered HLA-A0201-restricted MUC1 epitope that could induce more efficient anti-tumor effects against gastric cancer. Exp Cell Res 2020; 390:111953. [PMID: 32156601 DOI: 10.1016/j.yexcr.2020.111953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
Abstract
MUC1 is a tumor-associated antigen (TAA) overexpressed in many tumor types, which makes it an attractive target for cancer immunotherapy. However, this marker is a non-mutated antigen without high immunogenicity. In this study, we designed several new altered peptides by replacing amino acids in their sequences, which were derived from a low-affinity MUC1 peptide, thus bypassing immune tolerance. Compared to the wild-type (WT) peptide, the altered MUC1 peptides (MUC11081-1089L2, MUC11156-1164L2, MUC11068-1076Y1) showed higher affinity to the HLA-A0201 molecule and stronger immunogenicity. Furthermore, these altered peptides resulted in the generation of more cytotoxic T lymphocytes (CTLs) that could cross-recognize gastric cancer cells expressing WT MUC1 peptides, in an HLA-A0201-restricted manner. In addition, M1.1 (MUC1950-958), a promising antitumor peptide that has been tested in multiple tumors, was not able to induce stronger antitumor responses. Collectively, our results demonstrated that altered peptides from MUC1, as potential HLA-A0201-restricted CTL epitopes, could serve as peptide vaccines or constitute components of peptide-loaded dendritic cell vaccines for gastric cancer treatment.
Collapse
Affiliation(s)
- Huahui Yu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Chunmei Ye
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Chunli Pan
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Huijing Chen
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Zhifeng Zhou
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Yunbin Ye
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China; Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China.
| |
Collapse
|
12
|
Synthetic tumor-specific antigenic peptides with a strong affinity to HLA-A2 elicit anti-breast cancer immune response through activating CD8 + T cells. Eur J Med Chem 2020; 189:112051. [PMID: 31968280 DOI: 10.1016/j.ejmech.2020.112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Researches on tumor-associated antigen have become a hot target in immunotherapy, but it stagnated in the pre-clinical/clinical stages. Here, we developed a series of MAGE-A1-restricted antigenic peptides, which exhibited prominent inhibiting effect on specific breast cancer. Peptides were synthesized by Fmoc solid phase method and analyzed by online servers. The stability and affinity to HLA-A2 was assessed by inverted fluorescence and flow cytometry qualitatively and quantitatively. In vitro effect on dendritic cells (DCs) maturation was observed by morphology and surface markers. The secretion of IFN-γ in the supernatant was detected by co-incubation of DCs loaded with as-synthesized peptides and CD8+ T lymphocytes. The specific immune response was evaluated against 4 cell lines, and the response in MCF-7 xenografted BALB/c nude mice were further assessed. Most of the derived peptides, especially I-6, showed great HLA-A2 binding ability. Compared with cytokines, I-6 significantly induced DCs maturation and promoted CD8+ T lymphocytes activation. Additionally, it is more specific for the lethality of MAGE & HLA-A2 double positive cells compared with others. We successfully developed I-6 with a high affinity to HLA-A2 which could induce strong specific immune response. It could be a potential candidate for breast cancer immunotherapy, which deserves further studies.
Collapse
|
13
|
Taylor S, Pieri K, Nanni P, Tica J, Barratt J, Didangelos A. Phosphatidylethanolamine binding protein-4 (PEBP4) is increased in IgA nephropathy and is associated with IgA-positive B-cells in affected kidneys. J Autoimmun 2019; 105:102309. [PMID: 31402200 DOI: 10.1016/j.jaut.2019.102309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022]
Abstract
IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide and a major cause of chronic kidney disease and failure. IgAN is driven by an autoimmune reaction against galactose-deficient IgA1 that results in the generation of autoantibodies and large IgG-IgA immune complexes. Immune complexes accumulate in the glomerular mesangium causing chronic inflammation and renal scarring. A significant proportion of IgAN patients develop end-stage kidney disease and require dialysis or transplantation. Currently, there are no approved specific therapies that can ameliorate the systemic autoimmune reaction in IgAN and no biomarkers that can predict renal inflammation and scarring. In this study, we used shotgun LC-MS/MS proteomics to compare small volumes of urine from healthy subjects and IgAN patients. We identified multiple urine proteins with unknown renal or IgAN function. Our attention was captured by the increase of phosphatidylethanolamine binding protein-4 (PEBP4) in IgAN urine. The function of PEBP4 in IgAN or renal disease is unknown. Increased levels of urine and serum PEBP4 were subsequently validated in different cohorts of IgAN patients and PEBP4 was linked to declining kidney function in IgAN. Strong PEBP4 staining was sporadically seen in IgAN kidney biopsies, colocalising with IgA in glomeruli and in the lumen of kidney tubules. In a small number of IgAN biopsies, PEBP4 colocalised with IgA and CD19 while the increased excretion of PEBP4 in IgAN urine was accompanied by increased excretion of classic B-cell factors BAFF, BCMA and TACI as well as IgA and IgG. PEBP4 is a new IgAN-related protein with unknown function and a likely renal disease marker in urine and serum.
Collapse
Affiliation(s)
- Scott Taylor
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Kyriaki Pieri
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Paolo Nanni
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Jure Tica
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Jonathan Barratt
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Athanasios Didangelos
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom.
| |
Collapse
|
14
|
Shan W, Zheng H, Fu G, Liu C, Li Z, Ye Y, Zhao J, Xu D, Sun L, Wang X, Chen XL, Bi S, Ren L, Fu G. Bioengineered Nanocage from HBc Protein for Combination Cancer Immunotherapy. NANO LETTERS 2019; 19:1719-1727. [PMID: 30724087 DOI: 10.1021/acs.nanolett.8b04722] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein nanocages are promising multifunctional platforms for nanomedicine owing to the ability to decorate their surfaces with multiple functionalities through genetic and/or chemical modification to achieve desired properties for therapeutic and diagnostic purposes. Here, we describe a model antigen (OVA peptide) that was conjugated to the surface of a naturally occurring hepatitis B core protein nanocage (HBc NC) by genetic modification. The engineered OVA-HBc nanocages (OVA-HBc NCs), displaying high density repetitive array of epitopes in a limited space by self-assembling into symmetrical structure, not only can induce bone marrow derived dendritic cells (BMDC) maturation effectively but also can be enriched in the draining lymph nodes. Naïve C57BL/6 mice immunized with OVA-HBc NCs are able to generate significant and specific cytotoxic T lymphocyte (CTL) responses. Moreover, OVA-HBc NCs as a robust nanovaccine can trigger preventive antitumor immunity and significantly delay tumor growth. When combined with a low-dose chemotherapy drug (paclitaxel), OVA-HBc NCs could specifically inhibit progression of an established tumor. Our findings support HBc-based nanocages with modularity and scalability as an attractive nanoplatform for combination cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjun Shan
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Guofeng Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Chenfeng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zizhen Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health , Xiamen University , Xiamen , Fujian 361102 , P. R. China
| | - Yuhan Ye
- Zhongshan Hospital , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Jie Zhao
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Dan Xu
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Liping Sun
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health , Xiamen University , Xiamen , Fujian 361102 , P. R. China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Shengli Bi
- Chinese Center for Disease Control & Prevention Institute for Viral Disease Control & Prevention , Beijing 102206 , P. R. China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
- Cancer Research Center of Xiamen University , Xiamen , Fujian 361102 , China
| |
Collapse
|