1
|
Felice AG, Rodrigues TCV, Marques PH, Zen FL, Lemes MR, Trevisan RO, Andrade BS, de Oliveira CJF, Azevedo VADC, Tiwari S, Soares SDC. In silico construction of a multi-epitope vaccine (RGME-VAC/ATS-1) against the Rickettsia genus using immunoinformatics. Mem Inst Oswaldo Cruz 2025; 120:e240201. [PMID: 40136144 PMCID: PMC11932644 DOI: 10.1590/0074-02760240201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Rickettsia is a genus of Gram-negative bacteria that causes various diseases, including epidemic typhus, Rocky Mountain spotted fever, and Mediterranean spotted fever. Ticks transmit these diseases and commonly found in developing regions with poor sanitation. As a result, it is difficult to estimate the number of these diseases cases, making it challenging to create prevention and diagnostic mechanisms. OBJECTIVES Thus, this study aimed to develop an in silico multi-epitope vaccine against Rickettsia. METHODS Eight proteins were previously identified as potential vaccine candidates through reverse vaccinology and were screened for epitopes that bind to MHC class I and II molecules. The epitopes were then analysed for antigenicity, allergenicity, and toxicity. The selected epitopes were linked with AAY and GPGPG sequences peptide and a known adjuvant, the B-chain of Escherichia coli heat-labile enterotoxin, to form a chimeric multi-epitope protein. The protein's three-dimensional structure was predicted, and molecular docking analysis was performed against the toll-like receptor 4 (TLR4). Finally, the immune response to the protein was simulated using C-ImmSim tool. FINDINGS A total of 26 immunogenic epitopes, formed the multi-epitope vaccine RGME-VAC/ATS-1. The vaccine showed excellent immunogenic parameters and was predicted to do not be toxic or allergenic to the host. It also showed good potential stimulation of immune cells, with a propensity to generate memory cells and elicit IFN-γ secretion. MAIN CONCLUSIONS The in silico validations suggest that our study successfully designed an innovative multi-epitope vaccine against Rickettsia, addressing the challenges posed by the elusive nature of diseases caused by this genus. We provide a promising potential for further experimental exploration and the development of targeted prevention and diagnostic strategies for these diseases.
Collapse
Affiliation(s)
- Andrei Giacchetto Felice
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | | | - Pedro Henrique Marques
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Bioinformática, Belo Horizonte, MG, Brasil
| | - Felipe Lucas Zen
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | - Marcela Rezende Lemes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Bioinformática, Belo Horizonte, MG, Brasil
| | - Rafael Obata Trevisan
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | - Bruno Silva Andrade
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Vitória da Conquista, BA, Brasil
| | - Carlo José Freire de Oliveira
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | | | - Sandeep Tiwari
- Universidade Federal da Bahia, Instituto de Biologia, Programa de Pós-Graduação em Microbiologia, Salvador, BA, Brasil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Programa de Pós-Graduação em Imunologia, Salvador, BA, Brasil
| | - Siomar de Castro Soares
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| |
Collapse
|
2
|
Salahlou R, Farajnia S, Alizadeh E, Dastmalchi S, Bargahi N, Rahbarnia L, Steyar SH. Design and in silico analysis of a novel peptide-based multiepitope vaccine against glioblastoma multiforme by targeting tumor-associated macrophage. Heliyon 2024; 10:e40774. [PMID: 39759328 PMCID: PMC11696665 DOI: 10.1016/j.heliyon.2024.e40774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
CD204 is a distinct indicator for tumor-associated macrophages (TAMs) in glioma. Evidence indicates that CD204-positive TAMs are involved in the aggressive behavior of various types of cancers. This study was conducted to develop a new and effective peptide-based vaccine for GBM, specifically targeting CD204. Epitopes of the target protein were identified using NetMHCpan 4.1a, NetMHCIIpan-4.0, and ABCpred tools. Subsequently, the predicted epitopes were evaluated using bioinformatics tools to assess their antigenicity, non-allergenicity, immunogenicity, non-toxicity, and potential to stimulate the production of IL-4 and IFN-γ in HTL epitopes. Selected T-cell epitopes demonstrated a robust binding affinity with the particular HLA alleles. Finally, four HTL epitopes, three CTL epitopes, and two B-cell epitopes, jointed via linkers and adjuvant, were used for the final vaccine construct design. Analysis disclosed that the developed vaccine demonstrated robust antigenic properties while proving soluble, stable, non-toxic, and non-allergenic. Additionally, molecular docking studies and molecular dynamics simulations confirmed a robust correlation between the designed vaccine and TLR-2 and TLR-4 immune receptors. The molecular docking results demonstrated a strong interaction between the newly developed vaccine and TLR2 (-895.1 kcal/mol) and TLR4 (-881.0 kcal/mol) receptors. During the simulation, the vaccine-TLR2 and vaccine-TLR4 complexes exhibited binding energies of -113.41 and -106.61 kcal/mol, respectively. Analysis by different bioinformatic tools indicated the potential of the designed vaccine in immune stimulation and a significant elevation in IgG and IgM antibodies, T-helper cells, T-cytotoxic cells, INF-γ, IL-2, and IL-4. Research findings show that the newly designed multi-epitope vaccine is promising in providing long-term immunity against GBM and offers a promising therapeutic alternative.
Collapse
Affiliation(s)
- Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Nasrin Bargahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Masum MHU, Mahdeen AA, Barua L, Parvin R, Heema HP, Ferdous J. Developing a chimeric multiepitope vaccine against Nipah virus (NiV) through immunoinformatics, molecular docking and dynamic simulation approaches. Microb Pathog 2024; 197:107098. [PMID: 39521154 DOI: 10.1016/j.micpath.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Nipah virus (NiV) is a highly lethal zoonotic pathogen that poses a significant threat to human and animal health. Unfortunately, no effective treatments have been developed for this deadly zoonotic disease. Therefore, we designed a chimeric multiepitope vaccine targeting the Nipah virus (NiV) glycoprotein and fusion protein through immunoinformatic approaches. Therefore, the vaccine was developed by combining promising and potential antigenic MHC-I, MHC-II, and B-cell epitopes obtained from the selected proteins. When combined, the MHC-I and MHC-II epitopes offered 100 % global population coverage. The physicochemical characterization also exhibited favorable properties, including solubility and potential functional stability of the vaccine within the body (GRAVY score of -0.308). Structural analyses unveiled a well-stabilized secondary and tertiary structure with a Ramachandran score of 84.4 % and a Z score of -5.02. Findings from docking experiments with TLR-2 (-1089.3 kJ/mol) and TLR-4 (-1016.7 kJ/mol) showed a strong affinity of the vaccine towards the receptor. Molecular dynamics simulations revealed unique conformational dynamics among the "vaccine-apo," "vaccine-TLR-2," and "vaccine-TLR-4″ complexes. Consequently, the complexes exhibited significant compactness, flexibility, and exposure to solvents. The results of the codon optimization were remarkable, as the vaccine showed a significant amount of expression in the E. coli vector (GC content of 45.36 % and a CAI score of 1.0). The results of immune simulations, however, showed evidence of both adaptive and innate immune responses induced by the vaccine. Therefore, we highly recommend further research on this chimeric multiepitope vaccine to establish its efficacy and safety against the Nipah virus (NiV).
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh.
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Logon Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rehana Parvin
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Homaira Pervin Heema
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Obstetrics and Gynecology, Chittagong Medical College Hospital, Chattogram, 4203, Bangladesh
| |
Collapse
|
4
|
Mahdeen AA, Hossain I, Masum MHU, Islam S, Rabbi TMF. Designing novel multiepitope mRNA vaccine targeting Hendra virus (HeV): An integrative approach utilizing immunoinformatics, reverse vaccinology, and molecular dynamics simulation. PLoS One 2024; 19:e0312239. [PMID: 39441880 PMCID: PMC11498705 DOI: 10.1371/journal.pone.0312239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Human and animal health is threatened by Hendra virus (HeV), which has few treatments. This in-silico vaccine design study focuses on HeV G (glycoprotein), F (fusion protein), and M (matrix protein). These proteins were computationally assessed for B and T-cell epitopes after considering HeV strain conservation, immunogenicity, and antigenicity. To improve vaccination immunogenicity, these epitopes were selectively ligated into a multiepitope construct. To improve vaccination longevity and immunological response, adjuvants and linkers were ligated. G, F, and M epitopes were used to create an mRNA HeV vaccine. Cytotoxic, helper, and linear B-lymphocytes' epitopes are targeted by this vaccine. The population coverage analysis demonstrates that multi-epitope vaccination covers 91.81 percent of CTL and 98.55 percent of HTL epitopes worldwide. GRAVY evaluated the vaccine's well-characterized physicochemical properties -0.503, indicating solubility and functional stability. Structure analysis showed well-stabilized 2° and 3° structures in the vaccine, with alpha helix, beta sheet, and coil structures (Ramachandran score of 88.5% and Z score of -3.44). There was a strong affinity as shown by docking tests with TLR-4 (central score of -1139.4 KJ/mol) and TLR-2 (center score of -1277.9 KJ/mol). The coupled V-apo, V-TLR2, and V-TLR4 complexes were tested for binding using molecular dynamics simulation where extremely stable complexes were found. The predicted mRNA structures provided significant stability. Codon optimization for Escherichia. coli synthesis allowed the vaccine to attain a GC content of 46.83% and a CAI score of 1.0, which supports its significant expression. Immunological simulations indicated vaccine-induced innate and adaptive immune reactions. Finally, this potential HeV vaccine needs more studies to prove its efficacy and safety.
Collapse
Affiliation(s)
- Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Imam Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Habib Ullah Masum
- Faculty of Biotechnology and Genetic Engineering, Department of Genomics and Bioinformatics, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - Sajedul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - T. M. Fazla Rabbi
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
5
|
Hasani SM, Behdani M, Amirkhani Z, Rahimmanesh I, Esmaeilifallah M, Zaker E, Nikpour P, Fadaie M, Ghafouri E, Naderi S, Khanahmad H. Novel SARS-COV2 poly epitope phage-based candidate vaccine and its immunogenicity. Res Pharm Sci 2024; 19:573-590. [PMID: 39691297 PMCID: PMC11648347 DOI: 10.4103/rps.rps_82_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose The global emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted widespread concern. Bacteriophages have recently gained attention as a cost-effective and stable alternative for vaccine development due to their adjuvant properties. This study aimed to design and validate a poly epitope composed of viral proteins. Experimental approach SARS-CoV-2 proteins (spike, nucleocapsid, membrane, envelope, papain-like protease, and RNA-dependent RNA polymerase) were selected for analysis. Immunoinformatic methods were employed to predict B and T cell epitopes, assessing their antigenicity, allergenicity, and toxicity. Epitopes meeting criteria for high antigenicity, non-allergenicity, and non-toxicity were linked to form poly epitopes. These sequences were synthesized and cloned into pHEN4 plasmids to generate Poly1 and Poly2 phagemid vectors. Recombinant Poly1 and Poly2 phages were produced by transforming M13ΔIII plasmids and phagemid vectors into E. coli TG1. Female Balb/c mice were immunized with a cocktail of Poly1 and Poly2 phages, and their serum was collected for ELISA testing. Interferon-gamma (IFN-γ) testing was performed on spleen-derived lymphocytes to evaluate immune system activation. Findings/Results Recombinant Poly1 and Poly2 phages were produced, and their titer was determined as 1013 PFU/mL. Efficient humoral immune responses and cellular immunity activation in mice were achieved following phage administration. Conclusion and implication Poly epitopes displayed on phages exhibit adjuvant properties, enhancing humoral and cellular immunity in mice. This suggests that phages could serve as adjuvants to bolster immunity against SARS-Cov-2. Recombinant phages could be applied as effective candidates for injectable and oral vaccine development strategies.
Collapse
Affiliation(s)
- Sharareh Mohammad Hasani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Behdani
- Department of Biotechnology, Biotechnology Research Center, Venom and Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Zohreh Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Esmaeilifallah
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Zaker
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Science, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Science, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Sircy LM, Ramstead AG, Gibbs LC, Joshi H, Baessler A, Mena I, García-Sastre A, Emerson LL, Fairfax KC, Williams MA, Hale JS. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. PLoS Pathog 2024; 20:e1011639. [PMID: 39283916 PMCID: PMC11404825 DOI: 10.1371/journal.ppat.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection or immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa C. Gibbs
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lyska L. Emerson
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
7
|
Kumar A, Misra G, Mohandas S, Yadav PD. Multi-epitope vaccine design using in silico analysis of glycoprotein and nucleocapsid of NIPAH virus. PLoS One 2024; 19:e0300507. [PMID: 38728300 PMCID: PMC11086869 DOI: 10.1371/journal.pone.0300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/29/2024] [Indexed: 05/12/2024] Open
Abstract
According to the 2018 WHO R&D Blueprint, Nipah virus (NiV) is a priority disease, and the development of a vaccine against NiV is strongly encouraged. According to criteria used to categorize zoonotic diseases, NiV is a stage III disease that can spread to people and cause unpredictable outbreaks. Since 2001, the NiV virus has caused annual outbreaks in Bangladesh, while in India it has caused occasional outbreaks. According to estimates, the mortality rate for infected individuals ranges from 70 to 91%. Using immunoinformatic approaches to anticipate the epitopes of the MHC-I, MHC-II, and B-cells, they were predicted using the NiV glycoprotein and nucleocapsid protein. The selected epitopes were used to develop a multi-epitope vaccine construct connected with linkers and adjuvants in order to improve immune responses to the vaccine construct. The 3D structure of the engineered vaccine was anticipated, optimized, and confirmed using a variety of computer simulation techniques so that its stability could be assessed. According to the immunological simulation tests, it was found that the vaccination elicits a targeted immune response against the NiV. Docking with TLR-3, 7, and 8 revealed that vaccine candidates had high binding affinities and low binding energies. Finally, molecular dynamic analysis confirms the stability of the new vaccine. Codon optimization and in silico cloning showed that the proposed vaccine was expressed to a high degree in Escherichia coli. The study will help in identifying a potential epitope for a vaccine candidate against NiV. The developed multi-epitope vaccine construct has a lot of potential, but they still need to be verified by in vitro & in vivo studies.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Gauri Misra
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Sreelekshmy Mohandas
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| | - Pragya D. Yadav
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| |
Collapse
|
8
|
Yaseen AR, Suleman M, Jabeen A, Nezami L, Qadri AS, Arif A, Arshad I, Iqbal K, Yaqoob T, Khan Z. Design and computational evaluation of a novel multi-epitope hybrid vaccine against monkeypox virus: Potential targets and immunogenicity assessment for pandemic preparedness. Biologicals 2024; 86:101770. [PMID: 38749079 DOI: 10.1016/j.biologicals.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Monkeypox is a type of DNA-enveloped virus that belongs to the orthopoxvirus family, closely related to the smallpox virus. It can cause an infectious disease in humans known as monkeypox disease. Although there are multiple drugs and vaccines designed to combat orthopoxvirus infections, with a primary focus on smallpox, the recent spread of the monkeypox virus to over 50 countries have ignited a mounting global concern. This unchecked viral proliferation has raised apprehensions about the potential for a pandemic corresponding to the catastrophic impact of COVID-19. This investigation explored the structural proteins of monkeypox virus as potential candidates for designing a novel hybrid multi-epitope vaccine. The epitopes obtained from the selected proteins were screened to ensure their non-allergenicity, non-toxicity, and antigenicity to trigger T and B-cell responses. The interaction of the vaccine with toll-like receptor-3 (TLR-3) and major histocompatibility complexes (MHCs) was assessed using Cluspro 2.0. To establish the reliability of the docked complexes, a comprehensive evaluation was conducted using Immune and MD Simulations and Normal Mode Analysis. However, to validate the computational results of this study, additional in-vitro and in-vivo research is essential.
Collapse
Affiliation(s)
- Allah Rakha Yaseen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Muhammad Suleman
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Aqsa Jabeen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Laiba Nezami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| | - Abdul Salam Qadri
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan; Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Ayesha Arif
- Centre for Applied Molecular biology (CAMB), University of the Punjab, Lahore, 54590, Pakistan.
| | - Iram Arshad
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan.
| | - Khadija Iqbal
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan.
| | - Tasuduq Yaqoob
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Zoha Khan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
9
|
Swain SK, Panda S, Sahu BP, Mahapatra SR, Dey J, Sarangi R, Misra N. Inferring B-cell derived T-cell receptor induced multi-epitope-based vaccine candidate against enterovirus 71: a reverse vaccinology approach. Clin Exp Vaccine Res 2024; 13:132-145. [PMID: 38752008 PMCID: PMC11091429 DOI: 10.7774/cevr.2024.13.2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Enterovirus 71, a pathogen that causes hand-foot and mouth disease (HFMD) is currently regarded as an increasing neurotropic virus in Asia and can cause severe complications in pediatric patients with blister-like sores or rashes on the hand, feet, and mouth. Notwithstanding the significant burden of the disease, no authorized vaccine is available. Previously identified attenuated and inactivated vaccines are worthless over time owing to changes in the viral genome. Materials and Methods A novel vaccine construct using B-cell derived T-cell epitopes from the virulent polyprotein found the induction of possible immune response. In order to boost the immune system, a beta-defensin 1 preproprotein adjuvant with EAAAK linker was added at the N-terminal end of the vaccine sequence. Results The immunogenicity of the designed, refined, and verified prospective three-dimensional-structure of the multi-epitope vaccine was found to be quite high, exhibiting non-allergenic and antigenic properties. The vaccine candidates bound to toll-like receptor 3 in a molecular docking analysis, and the efficacy of the potential vaccine to generate a strong immune response was assessed through in silico immunological simulation. Conclusion Computational analysis has shown that the proposed multi-epitope vaccine is possibly safe for use in humans and can elicit an immune response.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Department of Medical Research, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Subhasmita Panda
- Department of Pediatrics, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Basanta Pravas Sahu
- School of Biological Science, The University of Hong Kong, Hong Kong
- Decipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
10
|
Hossen MS, Hasan MN, Haque M, Al Arian T, Halder SK, Uddin MJ, Abdullah-Al-Mamun M, Shakil MS. Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins. J Genet Eng Biotechnol 2023; 21:162. [PMID: 38055114 DOI: 10.1186/s43141-023-00623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Human parainfluenza viruses (HPIVs) are common RNA viruses responsible for respiratory tract infections. Human parainfluenza virus 3 (HPIV-3) is particularly pathogenic, causing severe illnesses with no effective vaccine or therapy available. RESULTS The current study employed a systematic immunoinformatic/reverse vaccinology approach to design a multiple epitope-based peptide vaccine against HPIV-3 by analyzing the virus proteome. On the basis of a number of therapeutic features, all three stable and antigenic proteins with greater immunological relevance, namely matrix protein, hemagglutinin neuraminidase, and RNA-directed RNA polymerase L, were chosen for predicting and screening suitable T-cell and B-cell epitopes. All of our desired epitopes exhibited no homology with human proteins, greater population coverage (99.26%), and high conservancy among reported HPIV-3 isolates worldwide. All of the T- and B-cell epitopes are then joined by putative ligands, yielding a 478-amino acid-long final construct. Upon computational refinement, validation, and thorough screening, several programs rated our peptide vaccine as biophysically stable, antigenic, allergenic, and non-toxic in humans. The vaccine protein demonstrated sufficiently stable interaction as well as binding affinity with innate immune receptors TLR3, TLR4, and TLR8. Furthermore, codon optimization and virtual cloning of the vaccine sequence in a pET32a ( +) vector showed that it can be readily expressed in the bacterial system. CONCLUSION The in silico designed HPIV-3 vaccine demonstrated potential in evoking an effective immune response. This study paves the way for further preclinical and clinical evaluation of the vaccine, offering hope for a future solution to combat HPIV-3 infections.
Collapse
Affiliation(s)
- Md Sakib Hossen
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka, 1213, Bangladesh.
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh.
| | - Md Nazmul Hasan
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh.
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
| | - Munima Haque
- Biotechnology Program, Department of Mathematics and Natural Sciences (MNS), Brac University, kha-208, 1 Bir Uttam Rafiqul Islam Ave, Dhaka, 1212, Bangladesh
| | - Tawsif Al Arian
- Department of Pharmacy, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Jasim Uddin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - M Abdullah-Al-Mamun
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Salman Shakil
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh
- Microbiology Program, Department of Mathematics and Natural Sciences (MNS), Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| |
Collapse
|
11
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
12
|
Xue W, Li T, Gu Y, Li S, Xia N. Molecular engineering tools for the development of vaccines against infectious diseases: current status and future directions. Expert Rev Vaccines 2023. [PMID: 37339445 DOI: 10.1080/14760584.2023.2227699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The escalating global changes have fostered conditions for the expansion and transmission of diverse biological factors, leading to the rise of emerging and reemerging infectious diseases. Complex viral infections, such as COVID-19, influenza, HIV, and Ebola, continue to surface, necessitating the development of effective vaccine technologies. AREAS COVERED This review article highlights recent advancements in molecular biology, virology, and genomics that have propelled the design and development of innovative molecular tools. These tools have promoted new vaccine research platforms and directly improved vaccine efficacy. The review summarizes the cutting-edge molecular engineering tools used in creating novel vaccines and explores the rapidly expanding molecular tools landscape and potential directions for future vaccine development. EXPERT OPINION The strategic application of advanced molecular engineering tools can address conventional vaccine limitations, enhance the overall efficacy of vaccine products, promote diversification in vaccine platforms, and form the foundation for future vaccine development. Prioritizing safety considerations of these novel molecular tools during vaccine development is crucial.
Collapse
Affiliation(s)
- Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, China
| |
Collapse
|
13
|
Mishra S, Rout M, Panda S, Singh SK, Sinha R, Dehury B, Pati S. An immunoinformatic approach towards development of a potent and effective multi-epitope vaccine against monkeypox virus (MPXV). J Biomol Struct Dyn 2023; 41:11714-11727. [PMID: 36591724 DOI: 10.1080/07391102.2022.2163426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023]
Abstract
Monkeypox is a viral zoonotic disease, often transmitted to humans from animals. While the whole world is haggling with the COVID-19 pandemic, the emergence of the monkeypox virus (MPXV) arose as a new challenge to mankind. Till date, numerous cases related to the MPXV have been reported in several countries across the globe, but, its momentary distribution in the current time has left everyone in fright with increasing mortality and limited clinically approved treatments. Therefore, it is of immense importance to develop a potent and highly effective vaccine capable of inducing desired immunogenic responses against the highly contagious MPXV. Herein, using various immunoinformatic and computational biology tools, we made an attempt to develop a multi-epitope vaccine construct against the MPXV which is antigenic, non-allergen and non-toxic in nature and capable of exhibiting immunogenic behavior. The sequence of vaccine construct was designed using the proposed 4 MHC-I, 3 MHC-II and 4 B-cell epitopes linked with suitable adjuvant and linkers. The modeled structure of the vaccine construct was used to assess its interaction with the Toll-like Receptor 4 (TLR4) using ClusPro and HADDOCK. All-atoms molecular dynamics simulation of the MPXV vaccine construct-TLR4 complex followed by a high level of gene expression of the construct within the bacterial system affirmed its stability along with induction of immunogenic response within the host cell. Altogether, our immunoinformatic approach aid in the development of a stable chimeric vaccine construct against MPXV and needs further experimental validation for its immunological relevance and usefulness as a vaccine candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sunita Panda
- Mycology Laboratory, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Susheel Kumar Singh
- Vaccine and Diagnostic Laboratory, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Rohan Sinha
- Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, Bihar, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Rahman MM, Masum MHU, Talukder A, Akter R. An in silico reverse vaccinology approach to design a novel multiepitope peptide vaccine for non-small cell lung cancers. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
15
|
Campos DMDO, Silva MKD, Barbosa ED, Leow CY, Fulco UL, Oliveira JIN. Exploiting reverse vaccinology approach for the design of a multiepitope subunit vaccine against the major SARS-CoV-2 variants. Comput Biol Chem 2022; 101:107754. [PMID: 36037724 PMCID: PMC9385604 DOI: 10.1016/j.compbiolchem.2022.107754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
The current COVID-19 pandemic, an infectious disease caused by the novel coronavirus (SARS-CoV-2), poses a threat to global health because of its high rate of spread and death. Currently, vaccination is the most effective method to prevent the spread of this disease. In the present study, we developed a novel multiepitope vaccine against SARS-CoV-2 containing Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (BA.1) variants. To this end, we performed a robust immunoinformatics approach based on multiple epitopes of the four structural proteins of SARS-CoV-2 (S, M, N, and E) from 475 SARS-CoV-2 genomes sequenced from the regions with the highest number of registered cases, namely the United States, India, Brazil, France, Germany, and the United Kingdom. To investigate the best immunogenic epitopes for linear B cells, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL), we evaluated antigenicity, allergenicity, conservation, immunogenicity, toxicity, human population coverage, IFN-inducing, post-translational modifications, and physicochemical properties. The tertiary structure of a vaccine prototype was predicted, refined, and validated. Through docking experiments, we evaluated its molecular coupling to the key immune receptor Toll-Like Receptor 3 (TLR3). To improve the quality of docking calculations, quantum mechanics/molecular mechanics calculations (QM/MM) were used, with the QM part of the simulations performed using the density functional theory formalism (DFT). Cloning and codon optimization were performed for the successful expression of the vaccine in E. coli. Finally, we investigated the immunogenic properties and immune response of our SARS-CoV-2 multiepitope vaccine. The results of the simulations show that administering our prototype three times significantly increases the antibody response and decreases the amount of antigens. The proposed vaccine candidate should therefore be tested in clinical trials for its efficacy in neutralizing SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Melo de Oliveira Campos
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Maria Karolaynne da Silva
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Emmanuel Duarte Barbosa
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | | | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| |
Collapse
|
16
|
Danazumi AU, Iliyasu Gital S, Idris S, BS Dibba L, Balogun EO, Górna MW. Immunoinformatic design of a putative multi-epitope vaccine candidate against Trypanosoma brucei gambiense. Comput Struct Biotechnol J 2022; 20:5574-5585. [PMID: 36284708 PMCID: PMC9576565 DOI: 10.1016/j.csbj.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022] Open
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is caused by flagellated parasites of the genus Trypanosoma. HAT imposes a significant socio-economic burden on many countries in sub-Saharan Africa and its control is hampered by several drawbacks ranging from the ineffectiveness of drugs, complex dosing regimens, drug resistance, and lack of a vaccine. Despite more than a century of research and investigations, the development of a vaccine to tackle HAT is still challenging due to the complex biology of the pathogens. Advancements in computational modeling coupled with the availability of an unprecedented amount of omics data from different organisms have allowed the design of new generation vaccines that offer better antigenicity and safety profile. One of such new generation approaches is a multi-epitope vaccine (MEV) designed from a collection of antigenic peptides. A MEV can stimulate both cellular and humoral immune responses as well as avoiding possible allergenic reactions. Herein, we take advantage of this approach to design a MEV from conserved hypothetical plasma membrane proteins of Trypanosoma brucei gambiense, the trypanosome subspecies that is responsible for the west and central African forms of HAT. The designed MEV is 402 amino acids long (41.5 kDa). It is predicted to be antigenic, non-toxic, to assume a stable 3D conformation, and to interact with a key immune receptor. In addition, immune simulation foresaw adequate immune stimulation by the putative antigen and a lasting memory. Therefore, the designed chimeric vaccine represents a potential candidate that could be used to target HAT.
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland,Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland,Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands,Corresponding authors at: Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland (A.U. Danazumi, M. W. Górna).
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria,Department of Medical Laboratory Science, Kazaure School of Health Technology, Jigawa, Nigeria
| | - Lamin BS Dibba
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria,Department of Physical and Natural Sciences, School of Arts and Sciences, University of the Gambia, Brikama Campus. P.O Box 3530, Serrekunda, the Gambia
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland,Corresponding authors at: Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland (A.U. Danazumi, M. W. Górna).
| |
Collapse
|
17
|
Multi-Epitope-Based Vaccine Candidate for Monkeypox: An In Silico Approach. Vaccines (Basel) 2022; 10:vaccines10091564. [PMID: 36146643 PMCID: PMC9504424 DOI: 10.3390/vaccines10091564] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Currently, there are limited treatment options available for the monkeypox disease. We used a computational strategy to design a specific antigenic vaccine against pathogens. After using various immunoinformatic tools and filters, cytotoxic T-cell lymphocyte (CTL)-, helper T-cell lymphocyte (HTL)-, and interferon gamma (IFN-γ)-inducing epitopes, which comprised the vaccine, in addition to other parameters, such as antigenic and allergic profiles, were assessed to confirm the safety of the vaccine. However, vaccine interaction and stability with Toll-like receptors (TLRs) were assessed by dynamic simulation methods, and it was found that the constructed vaccine was stable. In addition, C-IMMSIM tools were used to determine the immune-response-triggering capabilities of the vaccine. These immunoinformatic findings reveal that constructed vaccine candidates may be capable of triggering an efficient immune response for monkeypox viral infections. However, experimental evaluation is required to verify the safety and immunogenic profile of constructed vaccines.
Collapse
|
18
|
Jalal K, Khan K, Basharat Z, Abbas MN, Uddin R, Ali F, Khan SA, Hassan SSU. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60035-60053. [PMID: 35414157 PMCID: PMC9005162 DOI: 10.1007/s11356-022-19979-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/25/2022] [Indexed: 06/01/2023]
Abstract
The ongoing COVID-19 outbreak, initially identified in Wuhan, China, has impacted people all over the globe and new variants of concern continue to threaten hundreds of thousands of people. The delta variant (first reported in India) is currently classified as one of the most contagious variants of SARS-CoV-2. It is estimated that the transmission rate of delta variant is 225% times faster than the alpha variant, and it is causing havoc worldwide (especially in the USA, UK, and South Asia). The mutations found in the spike protein of delta variant make it more infective than other variants in addition to ruining the global efficacy of available vaccines. In the current study, an in silico reverse vaccinology approach was applied for multi-epitope vaccine construction against the spike protein of delta variant, which could induce an immune response against COVID-19 infection. Non-toxic, highly conserved, non-allergenic and highly antigenic B-cell, HTL, and CTL epitopes were identified to minimize adverse effects and maximize the efficacy of chimeric vaccines that could be developed from these epitopes. Finally, V1 vaccine construct model was shortlisted and 3D modeling was performed by refinement, docking against HLAs and TLR4 protein, simulation and in silico expression. In silico evaluation showed that the designed chimeric vaccine could elicit an immune response (i.e., cell-mediated and humoral) identified through immune simulation. This study could add to the efforts of overcoming global burden of COVID-19 particularly the variants of concern.
Collapse
Affiliation(s)
- Khurshid Jalal
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS University of Karachi, Karachi, Pakistan
| | | | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Fawad Ali
- Department of Pharmacy, KUST, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, KUST, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
19
|
Ghafouri F, Ahangari Cohan R, Samimi H, Hosseini Rad S M A, Naderi M, Noorbakhsh F, Haghpanah V. Development of a Multiepitope Vaccine Against SARS-CoV-2: Immunoinformatics Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e36100. [PMID: 35891920 PMCID: PMC9302570 DOI: 10.2196/36100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
Background Since the first appearance of SARS-CoV-2 in China in December 2019, the world witnessed the emergence of the SARS-CoV-2 outbreak. Due to the high transmissibility rate of the virus, there is an urgent need to design and develop vaccines against SARS-CoV-2 to prevent more cases affected by the virus. Objective A computational approach is proposed for vaccine design against the SARS-CoV-2 spike (S) protein, as the key target for neutralizing antibodies, and envelope (E) protein, which contains a conserved sequence feature. Methods We used previously reported epitopes of S protein detected experimentally and further identified a collection of predicted B-cell and major histocompatibility (MHC) class II–restricted T-cell epitopes derived from E proteins with an identical match to SARS-CoV-2 E protein. Results The in silico design of our candidate vaccine against the S and E proteins of SARS-CoV-2 demonstrated a high affinity to MHC class II molecules and effective results in immune response simulations. Conclusions Based on the results of this study, the multiepitope vaccine designed against the S and E proteins of SARS-CoV-2 may be considered as a new, safe, and efficient approach to combatting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Fatemeh Ghafouri
- Department of Biotechnology Faculty of Life Sciences and Biotechnology Shahid Beheshti University Tehran Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology New Technologies Research Group Pasteur Institute of Iran Tehran Iran
| | - Hilda Samimi
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | | | - Mahmood Naderi
- Digestive Diseases Research Center Digestive Diseases Research Institute Tehran University of Medical Sciences Tehran Iran
| | - Farshid Noorbakhsh
- Department of Immunology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
- Personalized Medicine Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
20
|
Khan K, Khan SA, Jalal K, Ul-Haq Z, Uddin R. Immunoinformatic approach for the construction of multi-epitopes vaccine against omicron COVID-19 variant. Virology 2022; 572:28-43. [PMID: 35576833 PMCID: PMC9087879 DOI: 10.1016/j.virol.2022.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022]
Abstract
The newly discovered SARS-CoV-2 Omicron variant B.1.1.529 is a Variant of Concern (VOC) announced by the World Health Organization (WHO). It's becoming increasingly difficult to keep these variants from spreading over the planet. The fifth wave has begun in several countries because of Omicron variant, and it is posing a threat to human civilization. As a result, we need effective vaccination that can tackle Omicron SARS-CoV-2 variants that are bound to emerge. Therefore, the current study is an initiative to design a peptide-based chimeric vaccine that may potentially battle SARS-CoV-2 Omicron variant. As a result, the most relevant epitopes present in the mutagenic areas of Omicron spike protein were identified using a set of computational tools and immunoinformatic techniques to uncover common MHC-1, MHC-II, and B cell epitopes that may have the ability to influence the host immune mechanism. A final of three epitopes from CD8+ T-cell, CD4+ T-cell epitopes, and B-cell were shortlisted from spike protein, and that are highly antigenic, IFN-γ inducer, as well as overlapping for the construction of twelve vaccine models. As a result, the antigenic epitopes were coupled with a flexible and stable peptide linker, and the adjuvant was added at the N-terminal end to create a unique vaccine candidate. The structure of a 3D vaccine candidate was refined, and its quality was assessed by using web servers. However, the applied immunoinformatic study along with the molecular docking and simulation of 12 modeled vaccines constructs against six distinct HLAs, and TLRs (TLR2, and TLR4) complexes revealed that the V1 construct was non-allergenic, non-toxic, highly immunogenic, antigenic, and most stable. The vaccine candidate's stability was confirmed by molecular dynamics investigations. Finally, we studied the expression of the suggested vaccination using codon optimization and in-silico cloning. The current study proposed V1 Multi-Epitope Vaccine (MEV) as a significant vaccine candidate that may help the scientific community to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Salman Ali Khan
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Zaheer Ul-Haq
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan; Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan.
| |
Collapse
|
21
|
Xiao M, Xie L, Cao G, Lei S, Wang P, Wei Z, Luo Y, Fang J, Yang X, Huang Q, Xu L, Guo J, Wen S, Wang Z, Wu Q, Tang J, Wang L, Chen X, Chen C, Zhang Y, Yao W, Ye J, He R, Huang J, Ye L. CD4 + T-cell epitope-based heterologous prime-boost vaccination potentiates anti-tumor immunity and PD-1/PD-L1 immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-004022. [PMID: 35580929 PMCID: PMC9114852 DOI: 10.1136/jitc-2021-004022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Antitumor therapeutic vaccines are generally based on antigenic epitopes presented by major histocompatibility complex (MHC-I) molecules to induce tumor-specific CD8+ T cells. Paradoxically, continuous T cell receptor (TCR) stimulation from tumor-derived CD8+ T-cell epitopes can drive the functional exhaustion of tumor-specific CD8+ T cells. Tumor-specific type-I helper CD4+ T (TH1) cells play an important role in the population maintenance and cytotoxic function of exhausted tumor-specific CD8+ T cells in the tumor microenvironment. Nonetheless, whether the vaccination strategy targeting MHC-II-restricted CD4+ T-cell epitopes to induce tumor-specific TH1 responses can confer effective antitumor immunity to restrain tumor growth is not well studied. Here, we developed a heterologous prime-boost vaccination strategy to effectively induce tumor-specific TH1 cells and evaluated its antitumor efficacy and its capacity to potentiate PD-1/PD-L1 immunotherapy. METHODS Listeria monocytogenes vector and influenza A virus (PR8 strain) vector stably expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein-specific I-Ab-restricted CD4+ T cell epitope (GP61-80) or ovalbumin-specific CD4+ T cell epitope (OVA323-339) were constructed and evaluated their efficacy against mouse models of melanoma and colorectal adenocarcinoma expressing lymphocytic choriomeningitis virus glycoprotein and ovalbumin. The impact of CD4+ T cell epitope-based heterologous prime-boost vaccination was detected by flow-cytometer, single-cell RNA sequencing and single-cell TCR sequencing. RESULTS CD4+ T cell epitope-based heterologous prime-boost vaccination efficiently suppressed both mouse melanoma and colorectal adenocarcinoma. This vaccination primarily induced tumor-specific TH1 response, which in turn enhanced the expansion, effector function and clonal breadth of tumor-specific CD8+ T cells. Furthermore, this vaccination strategy synergized PD-L1 blockade mediated tumor suppression. Notably, prime-boost vaccination extended the duration of PD-L1 blockade induced antitumor effects by preventing the re-exhaustion of tumor-specific CD8+ T cells. CONCLUSION CD4+ T cell epitope-based heterologous prime-boost vaccination elicited potent both tumor-specific TH1 and CTL response, leading to the efficient tumor control. This strategy can also potentiate PD-1/PD-L1 immune checkpoint blockade (ICB) against cancer.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China.,Department of Dermatology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Luoyingzi Xie
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Shun Lei
- Institute of Immunology, Third Military Medical University, Chongqing, China.,Department of Aviation Physiology Training, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Pengcheng Wang
- Key Laboratory of Nephrology, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, Jiangsu, China
| | - Zhengping Wei
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuan Luo
- Department of Immunology, Huazhong University of Science and Technology Tongji Medical College School of Basic Medicine, Wuhan, Hubei, China
| | - Jingyi Fang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xingxing Yang
- Institute of Cancer, Third Military Medical University Second Affiliated Hospital, Chongqing, China
| | - Qizhao Huang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Junyi Guo
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuqiong Wen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiming Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qing Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lisha Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yanyan Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Wei Yao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ran He
- Department of Immunology, Huazhong University of Science and Technology Tongji Medical College School of Basic Medicine, Wuhan, Hubei, China
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
22
|
Ismail S, Abbasi SW, Yousaf M, Ahmad S, Muhammad K, Waheed Y. Design of a Multi-Epitopes Vaccine against Hantaviruses: An Immunoinformatics and Molecular Modelling Approach. Vaccines (Basel) 2022; 10:378. [PMID: 35335010 PMCID: PMC8953224 DOI: 10.3390/vaccines10030378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Hantaviruses are negative-sense, enveloped, single-stranded RNA viruses of the family Hantaviridae. In recent years, rodent-borne hantaviruses have emerged as novel zoonotic viruses posing a substantial health issue and socioeconomic burden. In the current research, a reverse vaccinology approach was applied to design a multi-epitope-based vaccine against hantavirus. A set of 340 experimentally reported epitopes were retrieved from Virus Pathogen Database and Analysis Resource (ViPR) and subjected to different analyses such as antigenicity, allergenicity, solubility, IFN gamma, toxicity, and virulent checks. Finally, 10 epitopes which cleared all the filters used were linked with each other through specific GPGPG linkers to construct a multi-antigenic epitope vaccine. The designed vaccine was then joined to three different adjuvants-TLR4-agonist adjuvant, β-defensin, and 50S ribosomal protein L7/L12-using an EAAAK linker to boost up immune-stimulating responses and check the potency of vaccine with each adjuvant. The designed vaccine structures were modelled and subjected to error refinement and disulphide engineering to enhance their stability. To understand the vaccine binding affinity with immune cell receptors, molecular docking was performed between the designed vaccines and TLR4; the docked complex with a low level of global energy was then subjected to molecular dynamics simulations to validate the docking results and dynamic behaviour. The docking binding energy of vaccines with TLR4 is -29.63 kcal/mol (TLR4-agonist), -3.41 kcal/mol (β-defensin), and -11.03 kcal/mol (50S ribosomal protein L7/L12). The systems dynamics revealed all three systems to be highly stable with a root-mean-square deviation (RMSD) value within 3 Å. To test docking predictions and determine dominant interaction energies, binding free energies of vaccine(s)-TLR4 complexes were calculated. The net binding energy of the systems was as follows: TLR4-agonist vaccine with TLR4 (MM-GBSA, -1628.47 kcal/mol and MM-PBSA, -37.75 kcal/mol); 50S ribosomal protein L7/L12 vaccine with TLR4 complex (MM-GBSA, -194.62 kcal/mol and MM-PBSA, -150.67 kcal/mol); β-defensin vaccine with TLR4 complex (MM-GBSA, -9.80 kcal/mol and MM-PBSA, -42.34 kcal/mol). Finally, these findings may aid experimental vaccinologists in developing a very potent hantavirus vaccine.
Collapse
Affiliation(s)
- Saba Ismail
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, The Mall, Rawalpindi 46000, Pakistan;
| | - Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| |
Collapse
|
23
|
Rafi MO, Al-Khafaji K, Sarker MT, Taskin-Tok T, Rana AS, Rahman MS. Design of a multi-epitope vaccine against SARS-CoV-2: immunoinformatic and computational methods. RSC Adv 2022; 12:4288-4310. [PMID: 35425433 PMCID: PMC8981096 DOI: 10.1039/d1ra06532g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/23/2022] [Indexed: 12/17/2022] Open
Abstract
A novel infectious agent, SARS-CoV-2, is responsible for causing the severe respiratory disease COVID-19 and death in humans. Spike glycoprotein plays a key role in viral particles entering host cells, mediating receptor recognition and membrane fusion, and are considered useful targets for antiviral vaccine candidates. Therefore, computational techniques can be used to design a safe, antigenic, immunogenic, and stable vaccine against this pathogen. Drawing upon the structure of the S glycoprotein, we are trying to develop a potent multi-epitope subunit vaccine against SARS-CoV-2. The vaccine was designed based on cytotoxic T-lymphocyte and helper T-lymphocyte epitopes with an N-terminal adjuvant via conducting immune filters and an extensive immunoinformatic investigation. The safety and immunogenicity of the designed vaccine were further evaluated via using various physicochemical, allergenic, and antigenic characteristics. Vaccine-target (toll-like receptors: TLR2 and TLR4) interactions, binding affinities, and dynamical stabilities were inspected through molecular docking and molecular dynamic (MD) simulation methods. Moreover, MD simulations for dimeric TLRs/vaccine in the membrane-aqueous environment were performed to understand the differential domain organization of TLRs/vaccine. Further, dynamical behaviors of vaccine/TLR systems were inspected via identifying the key residues (named HUB nodes) that control interaction stability and provide a clear molecular mechanism. The obtained results from molecular docking and MD simulation revealed a strong and stable interaction between vaccine and TLRs. The vaccine's ability to stimulate the immune response was assessed by using computational immune simulation. This predicted a significant level of cytotoxic T cell and helper T cell activation, as well as IgG, interleukin 2, and interferon-gamma production. This study shows that the designed vaccine is structurally and dynamically stable and can trigger an effective immune response against viral infections.
Collapse
Affiliation(s)
- Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Khattab Al-Khafaji
- Department of Medical Laboratory Technology, AL-Nisour University College Baghdad Iraq
| | - Md Takim Sarker
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Tugba Taskin-Tok
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University Gaziantep 27310 Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University Gaziantep Turkey
| | - Abdus Samad Rana
- School of Biotechnology, Jiangnan University Wuxi 214122 PR China
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| |
Collapse
|
24
|
Designing a novel in-silico multi-epitope vaccine against penicillin-binding protein 2A in Staphylococcus aureus. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Vilela Rodrigues TC, Jaiswal AK, Lemes MR, da Silva MV, Sales-Campos H, Alcântara LCJ, Tosta SFDO, Kato RB, Alzahrani KJ, Barh D, Azevedo VADC, Tiwari S, Soares SDC. An immunoinformatics-based designed multi-epitope candidate vaccine (mpme-VAC/STV-1) against Mycoplasma pneumoniae. Comput Biol Med 2021; 142:105194. [PMID: 35007945 DOI: 10.1016/j.compbiomed.2021.105194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Pneumonia is a serious global health problem that accounts for over one million deaths annually. Among the main microorganisms causing pneumonia, Mycoplasma pneumoniae is one of the most common ones for which a vaccine is immediately required. In this context, a multi-epitope vaccine against this pathogen could be the best option that can induce effective immune response avoiding any serious adverse reactions. In this study, using an immunoinformatics approach we have designed a multi-epitope vaccine (mpme-VAC/STV-1) against M. pneumoniae. Our designed mpme-VAC/STV-1 is constructed using CTL (cytotoxic T lymphocyte), HTL (Helper T lymphocyte), and B-cell epitopes. These epitopes are selected from the core proteins of 88 M. pneumoniae genomes that were previously identified through reverse vaccinology approaches. The epitopes were filtered according to their immunogenicity, population coverage, and several other criteria. Sixteen CTL/B- and thirteen HTL/B- epitopes that belong to 5 core proteins were combined together through peptide linkers to develop the mpme-VAC/STV-1. The heat-labile enterotoxin from E. coli was used as an adjuvant. The designed mpme-VAC/STV-1 is predicted to be stable, non-toxic, non-allergenic, non-host homologous, and with required antigenic and immunogenic properties. Docking and molecular dynamic simulation of mpme-VAC/STV-1 shows that it can stimulate TLR2 pathway mediated immunogenic reactions. In silico cloning of mpme-VAC/STV-1 in an expression vector also shows positive results. Finally, the mpme-VAC/STV-1 also shows promising efficacy in immune simulation tests. Therefore, our constructed mpme-VAC/STV-1 could be a safe and effective multi-epitope vaccine for immunization against pneumonia. However, it requires further experimental and clinical validations.
Collapse
Affiliation(s)
- Thaís Cristina Vilela Rodrigues
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcela Rezende Lemes
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil
| | - Marcos Vinícius da Silva
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiânia, 74605-050, GO, Goiás, Brazil
| | | | - Sthephane Fraga de Oliveira Tosta
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Bentes Kato
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Debmalya Barh
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, 721172, India
| | - Vasco Ariston de Carvalho Azevedo
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Siomar de Castro Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil.
| |
Collapse
|
26
|
Al Zamane S, Nobel FA, Jebin RA, Amin MB, Somadder PD, Antora NJ, Hossain MI, Islam MJ, Ahmed K, Moni MA. Development of an in silico multi-epitope vaccine against SARS-COV-2 by précised immune-informatics approaches. INFORMATICS IN MEDICINE UNLOCKED 2021; 27:100781. [PMID: 34746365 PMCID: PMC8563510 DOI: 10.1016/j.imu.2021.100781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023] Open
Abstract
The coronavirus family has been infecting the human population for the past two decades, but the ongoing coronavirus called SARS-CoV-2 has posed an enigmatic challenge to global public health security. Since last year, the mutagenic quality of this virus is causing changes to its genetic material. To prevent those situations, the FDA approved some emergency vaccines but there is no assurance that these will function properly in the complex human body system. In point of view, a short but efficient effort has made in this study to develop an immune epitope-based therapy for the rapid exploitation of SARS-CoV-2 by applying in silico structural biology and advancing immune information strategies. The antigenic epitopes were screened from the Surface, Membrane, Envelope proteins of SARS-CoV-2 and passed through several immunological filters to determine the best possible one. According to this, 7CD4+, 10CD8+ and 5 B-cell epitopes were found to be prominent, antigenic, immunogenic, and most importantly, highly conserved among 128 Bangladeshi and 110 other infected countries SARS-CoV-2 variants. After that, the selected epitopes and adjuvant were linked to finalize the multi-epitope vaccine by appropriate linkers. The immune simulation disclosed that the engineered vaccine could activate both humoral and innate immune responses. For the prediction of an effective binding, molecular docking was carried out between the vaccine and immunological receptors (TLRs). Strong binding affinity and good docking scores clarified the stringency of the vaccines. Furthermore, MD simulation was performed within the highest binding affinity complex to observe the stability. Codon optimization and other physicochemical properties revealed that the vaccine would be suitable for a higher expression at cloning level. So, monitoring the overall in silico assessment, we anticipated that our engineered vaccine would be a plausible prevention against COVID-19.
Collapse
Affiliation(s)
- Saad Al Zamane
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Fahim Alam Nobel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Ruksana Akter Jebin
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammed Badrul Amin
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Pratul Dipta Somadder
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Nusrat Jahan Antora
- Department of Genetic Engineering and Biotechnology, Faculty of Sciences and Engineering, East West University, Aftabnagar, Dhaka, 1212, Bangladesh
| | - Md Imam Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Kawsar Ahmed
- Group of Biophotomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammad Ali Moni
- Department of Computer Science and Engineering, Pabna University of Science and Technology, Pabna, 6600, Bangladesh
| |
Collapse
|
27
|
Deb D, Basak S, Kar T, Narsaria U, Castiglione F, Paul A, Pandey A, Srivastava AP. Immunoinformatics based designing a multi-epitope vaccine against pathogenic Chandipura vesiculovirus. J Cell Biochem 2021; 123:322-346. [PMID: 34729821 DOI: 10.1002/jcb.30170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/11/2022]
Abstract
Chandipura vesiculovirus (CHPV) is a rapidly emerging pathogen responsible for causing acute encephalitis. Due to its widespread occurrence in Asian and African countries, this has become a global threat, and there is an urgent need to design an effective and nonallergenic vaccine against this pathogen. The present study aimed to develop a multi-epitope vaccine using an immunoinformatics approach. The conventional method of vaccine design involves large proteins or whole organism which leads to unnecessary antigenic load with increased chances of allergenic reactions. In addition, the process is also very time-consuming and labor-intensive. These limitations can be overcome by peptide-based vaccines comprising short immunogenic peptide fragments that can elicit highly targeted immune responses, avoiding the chances of allergenic reactions, in a relatively shorter time span. The multi-epitope vaccine constructed using CTL, HTL, and IFN-γ epitopes was able to elicit specific immune responses when exposed to the pathogen, in silico. Not only that, molecular docking and molecular dynamics simulation studies confirmed a stable interaction of the vaccine with the immune receptors. Several physicochemical analyses of the designed vaccine candidate confirmed it to be highly immunogenic and nonallergic. The computer-aided analysis performed in this study suggests that the designed multi-epitope vaccine can elicit specific immune responses and can be a potential candidate against CHPV.
Collapse
Affiliation(s)
- Debashrito Deb
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Srijita Basak
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Tamalika Kar
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Utkarsh Narsaria
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Via dei Taurini, Rome, Italy
| | - Abhirup Paul
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Ashutosh Pandey
- Plant Metabolic Engineering, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| |
Collapse
|
28
|
Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MSS, Biswas S, Emran TB, Dhama K, Alyami SA, Moni MA, Saleh MA. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep 2021; 11:15431. [PMID: 34326355 PMCID: PMC8322212 DOI: 10.1038/s41598-021-92176-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
Currently, no approved vaccine is available against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease. The spike glycoprotein is typically considered a suitable target for MERS-CoV vaccine candidates. A computational strategy can be used to design an antigenic vaccine against a pathogen. Therefore, we used immunoinformatics and computational approaches to design a multi-epitope vaccine that targets the spike glycoprotein of MERS-CoV. After using numerous immunoinformatics tools and applying several immune filters, a poly-epitope vaccine was constructed comprising cytotoxic T-cell lymphocyte (CTL)-, helper T-cell lymphocyte (HTL)-, and interferon-gamma (IFN-γ)-inducing epitopes. In addition, various physicochemical, allergenic, and antigenic profiles were evaluated to confirm the immunogenicity and safety of the vaccine. Molecular interactions, binding affinities, and the thermodynamic stability of the vaccine were examined through molecular docking and dynamic simulation approaches, during which we identified a stable and strong interaction with Toll-like receptors (TLRs). In silico immune simulations were performed to assess the immune-response triggering capabilities of the vaccine. This computational analysis suggested that the proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat viral infections; however, experimental evaluations remain necessary to verify the exact safety and immunogenicity profile of this vaccine.
Collapse
MESH Headings
- Computational Biology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Epitopes/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunogenicity, Vaccine/immunology
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Models, Molecular
- Molecular Docking Simulation
- Phylogeny
- Protein Binding
- Spike Glycoprotein, Coronavirus/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines/immunology
- Vaccines/pharmacology
- Vaccines, DNA
- Vaccines, Subunit/immunology
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Mst Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Faculty of Medicine, WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh.
| |
Collapse
|
29
|
In silico designing of vaccine candidate against Clostridium difficile. Sci Rep 2021; 11:14215. [PMID: 34244557 PMCID: PMC8271013 DOI: 10.1038/s41598-021-93305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a spore-forming gram-positive bacterium, recognized as the primary cause of antibiotic-associated nosocomial diarrhoea. Clostridium difficile infection (CDI) has emerged as a major health-associated infection with increased incidence and hospitalization over the years with high mortality rates. Contamination and infection occur after ingestion of vegetative spores, which germinate in the gastro-intestinal tract. The surface layer protein and flagellar proteins are responsible for the bacterial colonization while the spore coat protein, is associated with spore colonization. Both these factors are the main concern of the recurrence of CDI in hospitalized patients. In this study, the CotE, SlpA and FliC proteins are chosen to form a multivalent, multi-epitopic, chimeric vaccine candidate using the immunoinformatics approach. The overall reliability of the candidate vaccine was validated in silico and the molecular dynamics simulation verified the stability of the vaccine designed. Docking studies showed stable vaccine interactions with Toll‐Like Receptors of innate immune cells and MHC receptors. In silico codon optimization of the vaccine and its insertion in the cloning vector indicates a competent expression of the modelled vaccine in E. coli expression system. An in silico immune simulation system evaluated the effectiveness of the candidate vaccine to trigger a protective immune response.
Collapse
|
30
|
Computational vaccinology guided design of multi-epitopes subunit vaccine designing against Hantaan virus and its validation through immune simulations. INFECTION GENETICS AND EVOLUTION 2021; 93:104950. [PMID: 34089911 DOI: 10.1016/j.meegid.2021.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/23/2021] [Accepted: 05/31/2021] [Indexed: 01/26/2023]
Abstract
The Hantaan virus belongs to Bunyaviridae family, an emerging virus that is responsible for hemorrhagic fevers. The virus is distributed worldwide and as of now there is no successful antiviral drug or vaccine developed to protect against the viral infections. Immunization or vaccination is an alternative approach for the protection against viral infections. A cost effective and thermodynamically stable vaccine should be developed to prevent a future possible pandemic. In this study a vaccine candidate was designed against the Hantaan virus, multiple immunoinformatics and reverse vaccinology tools were utilized for the prediction of both B and T cell epitopes for Nuceloprotein, RNA dependent RNA polymerase L and Envelope protein of the Hantaan virus. The individual epitopes were modeled for docking with respective HLAs and a multi-epitopes subunit vaccine candidate was constructued by joining together carefully evaluated B and T cell epitopes with suitable linkers. The vaccine model was evaluated for several physiochameical parameters i.e. Molecular weight, instability index and aliphatic index among the others, followed by 3D modeling of the vaccine for docking with TLR-4. Based on previous studies, Human beta-defensin was liked at the N-terminus of the vaccine sequence as an adjuvant to enhance immunogenicity. The docked complexes of vaccine-TLR-4 were then evaluated for residual interactions. Moreover, to validate final vaccine construct, immune simulations was carried out by C-IMMSIM server. A natural immune reponse was predicted by the immune simulation analysis. In-silico cloning was carried out using E. coli as host resulting in 0.93 CAI value, which suggests that the vaccine construct will attain maximal expression in E. coli host. The vaccine designed in this study needs experimental verification to confirm the immunogenicity and efficacy of the vaccine and ultimately used against Hantaan virus associated infections.
Collapse
|
31
|
Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, Ali MA, Laura FK, Halim MA. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100578. [PMID: 33898733 PMCID: PMC8057924 DOI: 10.1016/j.imu.2021.100578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmittable and pathogenic human coronavirus that caused a pandemic situation of acute respiratory syndrome, called COVID-19, which has posed a significant threat to global health security. The aim of the present study is to computationally design an effective peptide-based multi-epitope vaccine (MEV) against SARS-CoV-2. The overall model quality of the vaccine candidate, immunogenicity, allergenicity, and physiochemical analysis have been conducted and validated. Molecular dynamics studies confirmed the stability of the candidate vaccine. The docked complexes during the simulation revealed a strong and stable binding interactions of MEV with human and mice toll-like receptors (TLR), TLR3 and TLR4. Finally, candidate vaccine codons have been optimized for their in silico cloning in E. coli expression system, to confirm increased expression. The proposed MEV can be a potential candidate against SARS-CoV-2, but experimental validation is needed to ensure its safety and immunogenicity status.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Jahirul Islam
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Arpana Parihar
- Department of Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tarhima Jahan Jerin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Rupali Dhote
- Department of Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Md Ackas Ali
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Fariha Khan Laura
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Mohammad A Halim
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
- Department of Physical Sciences, University of Arkansas-Fort Smith, Fort Smith, AR, USA
| |
Collapse
|
32
|
Designing a multi-epitope vaccine against the Lassa virus through reverse vaccinology, subtractive proteomics, and immunoinformatics approaches. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Hossain MS, Hossan MI, Mizan S, Moin AT, Yasmin F, Akash AS, Powshi SN, Hasan AR, Chowdhury AS. Immunoinformatics approach to designing a multi-epitope vaccine against Saint Louis Encephalitis Virus. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2020.100500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
34
|
Jaydari A, Nazifi N, Forouharmehr A. Computational design of a novel multi-epitope vaccine against Coxiella burnetii. Hum Immunol 2020; 81:596-605. [PMID: 32718721 DOI: 10.1016/j.humimm.2020.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Query fever is a zoonotic disease caused by Coxiella burnetii. There is no universal method for the prevention of this disease. Recombinant vaccine is a potent strategy that can be utilized for this purpose. The current study was conducted to develop a multi-epitope vaccine against Coxiella burnetii. Hence, OmpA, Tuf2, GroEL, Mip and sucB antigens were used for the prediction of epitopes. Then, a multi-epitope vaccine was developed based on a molecular adjuvant and fragments that contained the best MHCI, B cell, MHCII and IFN-γ epitopes. The features of the developed vaccine including physicochemical parameters, antigenicity and protein structures were assessed. Also, interaction between the developed vaccine and TLR4/MD2 receptor along with molecular dynamics of the ligand-receptor complex were investigated. Finally, the codon adaptation and cloning were conducted for the developed vaccine. According to the results, molecular weight, instability index, antigenicity and random coil percentage of the developed vaccine were 54.4 kDa, 32.84, 1.1936 and 34.92%, respectively. Besides, residues distribution in core region of the refined model was 85%. The results demonstrated that the developed vaccine could dock to its receptor with the lowest energy of -976.7 as well as RMSD value of the complex was between 0.15 and 0.22 nm. Also, the results showed that CIA index of the codon adapted sequence was 0.95. Finally, cloning results revealed that nucleotide sequence of the developed vaccine could be successfully cloned into pET-21a (+). Based on these results, it seems that the developed vaccine can be a suitable candidate to prevent Coxiella burnetii.
Collapse
Affiliation(s)
- Amin Jaydari
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Narges Nazifi
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Ali Forouharmehr
- Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
35
|
Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, Srivastava AP. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 2020; 10:10895. [PMID: 32616763 PMCID: PMC7331818 DOI: 10.1038/s41598-020-67749-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2. The overall quality of the candidate vaccine was validated in silico and Molecular Dynamics Simulation confirmed the stability of the designed vaccine. Docking studies revealed stable interactions of the vaccine with Toll-Like Receptors and MHC Receptors. The in silico cloning and codon optimization supported the proficient expression of the designed vaccine in E. coli expression system. The efficiency of the candidate vaccine to trigger an effective immune response was assessed by an in silico immune simulation. The computational analyses suggest that the designed multi-epitope vaccine is structurally stable which can induce specific immune responses and thus, can be a potential vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tamalika Kar
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Utkarsh Narsaria
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Srijita Basak
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Debashrito Deb
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Via dei Taurini, Rome, Italy
| | - David M Mueller
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
| |
Collapse
|
36
|
Tahir ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines (Basel) 2020; 8:E288. [PMID: 32521680 PMCID: PMC7350008 DOI: 10.3390/vaccines8020288] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology approach to curb RSV infections. Briefly, two highly antigenic and conserved proteins of RSV (glycoprotein and fusion protein) were selected and potential epitopes of different categories (B-cell and T-cell) were identified from them. Eminently antigenic and overlapping epitopes, which demonstrated strong associations with their respective human leukocyte antigen (HLA) alleles and depicted collective ~70% coverage of the world's populace, were shortlisted. Finally, 282 amino acids long MEV construct was established by connecting 13 major histocompatibility complex (MHC) class-I with two MHC class-II epitopes with appropriate adjuvant and linkers. Adjuvant and linkers were added to increase the immunogenic stimulation of the MEV. Developed MEV was stable, soluble, non-allergenic, non-toxic, flexible and highly antigenic. Furthermore, molecular docking and molecular dynamics (MD) simulations analyses were carried out. Results have shown a firm and robust binding affinity of MEV with human pathogenic toll-like receptor three (TLR3). The computationally mediated immune response of MEV demonstrated increased interferon-γ production, a significant abundance of immunoglobulin and activation of macrophages which are essential for immune-response against RSV. Moreover, MEV codons were optimized and in silico cloning was performed, to ensure its increased expression. These outcomes proposed that the MEV developed in this study will be a significant candidate against RSV to control and prevent RSV-related disorders if further investigated experimentally.
Collapse
Affiliation(s)
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei 230052, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Hamna Javed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Amna Bari
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Barira Zahid
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
37
|
Ghafouri F, Cohan RA, Noorbakhsh F, Samimi H, Haghpanah V. An in-silico approach to develop of a multi-epitope vaccine candidate against SARS-CoV-2 envelope (E) protein. RESEARCH SQUARE 2020. [PMID: 32702713 PMCID: PMC7336711 DOI: 10.21203/rs.3.rs-30374/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since the first appearance of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) in China on December 2019, the world has now witnessed the emergence of the SARS- CoV-2 outbreak. Therefore, due to the high transmissibility rate of virus, there is an urgent need to design and develop vaccines against SARS-CoV-2 to prevent more cases affected by the virus. In this study, a computational approach is proposed for vaccine design against the envelope (E) protein of SARS-CoV-2, which contains a conserved sequence feature. First, we sought to gain potential B-cell and T-cell epitopes for vaccine designing against SARS-CoV-2. Second, we attempted to develop a multi-epitope vaccine. Immune targeting of such epitopes could theoretically provide defense against SARS-CoV-2. Finally, we evaluated the affinity of the vaccine to major histocompatibility complex (MHC) molecules to stimulate the immune system response to this vaccine. We also identified a collection of B-cell and T-cell epitopes derived from E proteins that correspond identically to SARS-CoV-2 E proteins. The in-silico design of our potential vaccine against E protein of SARS-CoV-2 demonstrated a high affinity to MHC molecules, and it can be a candidate to make a protection against this pandemic event.
Collapse
|
38
|
Chauhan V, Singh MP. Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. Eur J Pharm Sci 2020; 147:105279. [DOI: 10.1016/j.ejps.2020.105279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 01/26/2023]
|
39
|
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9:13-30. [PMID: 32161726 PMCID: PMC7049754 DOI: 10.2147/itt.s241064] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of vaccines have resulted in a remarkable improvement in global health. It has saved several lives, reduced treatment costs and raised the quality of animal and human lives. Current traditional vaccines came empirically with either vague or completely no knowledge of how they modulate our immune system. Even at the face of potential vaccine design advance, immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine allergy) are being raised. And these concerns have driven immunologists toward research for a better approach to vaccine design that will consider these challenges. Currently, immunoinformatics has paved the way for a better understanding of some infectious disease pathogenesis, diagnosis, immune system response and computational vaccinology. The importance of this immunoinformatics in the study of infectious diseases is diverse in terms of computational approaches used, but is united by common qualities related to host–pathogen relationship. Bioinformatics methods are also used to assign functions to uncharacterized genes which can be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of women that are pregnant into vaccine trials and programs. The essence of this review is to give insight into the need to focus on novel computational, experimental and computation-driven experimental approaches for studying of host–pathogen interactions and thus making a case for its use in vaccine development.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Wilson Okechukwu Obialor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martins Ositadimma Ifeanyichukwu
- Department of Immunology, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Anambra, Nigeria.,Department of Medical Laboratory Science,Faculty of Health Science and Technology, College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus, Nnewi, Nigeria
| | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, Aston, PA 19014-1298, USA
| | - George Ogonna Emechebe
- Department of Pediatrics, Faculty of Clinical Medicine, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Samson Adedeji Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Gordon C Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
40
|
Shahid F, Ashfaq UA, Javaid A, Khalid H. Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. INFECTION GENETICS AND EVOLUTION 2020; 80:104199. [PMID: 31962160 DOI: 10.1016/j.meegid.2020.104199] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) is an RNA virus that has spread through mosquito sting. Currently, no vaccine and antiviral medication available so far against ZIKV. Therefore, it has fostered a study to design MEBP vaccine enabling effective prevention against the ZIKV infection. In this study combination of immuno-informatics and molecular docking approach was used to constitute a MEBP vaccine. The ZIKV proteome was used for prediction of B-cell, T-cell (HTL & CTL) and IFN-γ epitopes. After prediction, highly antigenic and overlapping epitopes have been shortlisted which includes 14 CTL and 11 HTL epitopes that have been linked to the final peptide through AAY and GPGPG linkers respectively. An adjuvant at the N-end of the vaccine was added to improve the immunogenicity of the vaccine through the EAAAK linker. The final construct constitutes 435 amino acids after the addition of linkers and adjuvant. The existence of B-cell and IFN-γ epitopes affirms the humoral and cell-mediated immune responses acquired by the construct. Allergenicity, antigenicity and different physiochemical attributes of the vaccine were evaluated to assure its safety and immunogenicity profile. In fact, the construct was antigenic and non-allergenic. Docking was performed among vaccine and TLR-3 to evaluate the binding affinity and the molecular interaction. Finally, the construct was subjected to In silico cloning to confers the authenticity of its expression efficiency. However, the proposed construct need to be validate experimentally to ensure its safety and immunogenic profile.
Collapse
Affiliation(s)
- Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hina Khalid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
41
|
Chauhan V, Rungta T, Goyal K, Singh MP. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci Rep 2019; 9:2517. [PMID: 30792446 PMCID: PMC6385272 DOI: 10.1038/s41598-019-39299-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/22/2019] [Indexed: 01/29/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) responsible for causing Kaposi sarcoma (KS), an opportunistic angioproliferative neoplasm is emerging rapidly. Despite this there is no permanent cure for this disease. The present study was aimed to design a multi-epitope based vaccine targeting the major glycoproteins of KSHV which plays an important role in the virus entry. After the application of rigorous immunoinformatics analysis and several immune filters, the multi-epitope vaccine was constructed, consisting of CD4, CD8 and IFN-γ inducing epitopes. Several physiochemical characteristics, allergenicity and antigenicity of the multi-epitope vaccine were analyzed in order to ensure its safety and immunogenicity. Further, the binding affinity and stability of the vaccine with Toll like receptor -9 (TLR-9) was analyzed by molecular docking and dynamics simulation studies. In addition, an in silico cloning was performed to ensure the expression and translation efficiency of the vaccine, utilizing pET-28a (+) vector. Such T-cell-based immunotherapies which leverage this mechanism could prove their potential against cancer. Further, the authors propose to test the present findings in the lab settings to ensure the safety, immunogenicity and efficacy of the presented vaccine which may help in controlling KSHV infection.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Proliferation/genetics
- Computational Biology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/genetics
- Glycoproteins/immunology
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/pathogenicity
- Humans
- Molecular Docking Simulation
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/prevention & control
- Sarcoma, Kaposi/virology
- Toll-Like Receptor 9/genetics
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Varun Chauhan
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Tripti Rungta
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Kapil Goyal
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Mini P Singh
- Department of Virology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India.
| |
Collapse
|
42
|
Huang Q, Hu J, Tang J, Xu L, Ye L. Molecular Basis of the Differentiation and Function of Virus Specific Follicular Helper CD4 + T Cells. Front Immunol 2019; 10:249. [PMID: 30828337 PMCID: PMC6384271 DOI: 10.3389/fimmu.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
During viral infection, virus-specific follicular helper T cells provide important help to cognate B cells for their survival, consecutive proliferation and mutation and eventual differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh cells generated in other conditions, the differentiation of virus-specific Tfh cells can also be characterized as a process involved multiple factors and stages, however, which also exhibits distinct features. Here, we mainly focus on the current understanding of Tfh fate commitment, functional maturation, lineage maintenance and memory transition and formation in the context of viral infection.
Collapse
Affiliation(s)
- Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
44
|
Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol Immunol 2017; 15:182-184. [PMID: 28890542 DOI: 10.1038/cmi.2017.92] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
|
45
|
Thomsen AR. A new vaccination strategy to trigger specific CD4 T-cell response in chronic viral infection. Cell Mol Immunol 2017; 15:868-869. [PMID: 28479602 DOI: 10.1038/cmi.2017.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Panum Institute, Copenhagen, DK-2200, Denmark.
| |
Collapse
|