1
|
Wu JZ, Pemberton JG, Morioka S, Sasaki J, Bablani P, Sasaki T, Balla T, Grinstein S, Freeman SA. Sorting nexin 10 regulates lysosomal ionic homeostasis via ClC-7 by controlling PI(3,5)P2. J Cell Biol 2025; 224:e202408174. [PMID: 40138451 PMCID: PMC11940377 DOI: 10.1083/jcb.202408174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Mutations or ablation of Snx10 are associated with neurodegeneration, blindness, and osteopetrosis. The similarities between osteoclasts and macrophages prompted us to analyze the role of Snx10 in phagocytosis. Deletion of Snx10 impaired phagosome resolution. Defective resolution was caused by reduced Cl- accumulation within (phago)lysosomes, replicating the phenotype reported in macrophages lacking ClC-7, a lysosomal 2Cl-/H+ antiporter. Delivery of ClC-7 to (phago)lysosomes was unaffected by ablation of Snx10, but its activity was markedly depressed. Snx10 was found to regulate ClC-7 activity indirectly by controlling the availability of phosphatidylinositol 3,5-bisphosphate (PI[3,5]P2), which inhibits ClC-7. By limiting the formation of PI(3,5)P2, Snx10 enables the accumulation of luminal Cl- in phagosomes and lysosomes, which is required for their optimal degradative function. Our data suggest that Snx10 regulates the delivery of PI 3-phosphate (PI[3]P), the precursor of PI(3,5)P2, from earlier endocytic compartments to (phago)lysosomes. By controlling the traffic of phosphoinositides, Snx10 regulates phagosomal resolution and possibly accounts for the impaired bone resorption in Snx10-deficient osteoclasts.
Collapse
Affiliation(s)
- Jing Ze Wu
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Joshua G. Pemberton
- Department of Biology, Faculty of Science, Western University, London, Canada
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Shin Morioka
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Priya Bablani
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Spencer A. Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Trachsel-Moncho L, Veroni C, Mathai BJ, Lapao A, Singh S, Asp NT, Schultz SW, Pankiv S, Simonsen A. SNX10 functions as a modulator of piecemeal mitophagy and mitochondrial bioenergetics. J Cell Biol 2025; 224:e202404009. [PMID: 40052924 PMCID: PMC11893173 DOI: 10.1083/jcb.202404009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/12/2025] Open
Abstract
We here identify the endosomal protein SNX10 as a negative regulator of piecemeal mitophagy of OXPHOS machinery components. In control conditions, SNX10 localizes to early endocytic compartments in a PtdIns3P-dependent manner and modulates endosomal trafficking but also shows dynamic connections with mitochondria. Upon hypoxia-mimicking conditions, SNX10 localizes to late endosomal structures containing selected mitochondrial proteins, including COX-IV and SAMM50, and the autophagy proteins SQSTM1/p62 and LC3B. The turnover of COX-IV was enhanced in SNX10-depleted cells, with a corresponding reduced mitochondrial respiration and citrate synthase activity. Importantly, zebrafish larvae lacking Snx10 show reduced levels of Cox-IV, as well as elevated ROS levels and ROS-mediated cell death in the brain, demonstrating the in vivo relevance of SNX10-mediated modulation of mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Laura Trachsel-Moncho
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Chiara Veroni
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Benan John Mathai
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ana Lapao
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sakshi Singh
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nagham Theres Asp
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sebastian W. Schultz
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Serhiy Pankiv
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Chen T, Wang Y, Yang JL, Ni J, You K, Li X, Song Y, Wang X, Li J, Shen X, Fan Y, You Y. Gentisic acid prevents the development of atherosclerotic lesions by inhibiting SNX10-mediated stabilization of LRP6. Pharmacol Res 2024; 210:107516. [PMID: 39603572 DOI: 10.1016/j.phrs.2024.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Atherosclerotic-related acute cardiovascular events remain a leading cause of mortality worldwide, yet there are currently no pharmacological interventions available to address plaque formation or plaque rupture (PR). Here we reported that gentisic acid (GA) exerted potent therapeutic effects on plaque formation and PR in a dose-dependent manner by inhibiting LRP6-mediated macrophage apoptosis. By using the CETSA assay and DARTS assay, we identified sorting nexin 10 (SNX10) as the direct target of GA. The binding of GA to SNX10 disrupts the interaction between SNX10 and LRP6, leading to the degradation of LRP6. The downregulation of LRP6 then significantly attenuated the activation of Wnt/β-catenin pathway to exert an inhibitory effect on apoptosis. Moreover, the specific depletion of SNX10 in macrophages significantly reduced LRP6 levels and subsequently macrophage apoptosis both in vivo and in vitro. In conclusion, our findings not only suggest that GA may serve as a potential therapeutic candidate for the prevention of atherosclerosis and acute cardiovascular events caused by PR, but also confirm the druggability of SNX10 as a promising therapeutic target for atherosclerotic rupture.
Collapse
Affiliation(s)
- Tongqing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Lin Yang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesong Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuping Song
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Department of Cardiology, Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, China.
| | - Yujuan Fan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, China.
| |
Collapse
|
4
|
Jiang J, Ren R, Fang W, Miao J, Wen Z, Wang X, Xu J, Jin H. Lysosomal biogenesis and function in osteoclasts: a comprehensive review. Front Cell Dev Biol 2024; 12:1431566. [PMID: 39170917 PMCID: PMC11335558 DOI: 10.3389/fcell.2024.1431566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Lysosomes serve as catabolic centers and signaling hubs in cells, regulating a multitude of cellular processes such as intracellular environment homeostasis, macromolecule degradation, intracellular vesicle trafficking and autophagy. Alterations in lysosomal level and function are crucial for cellular adaptation to external stimuli, with lysosome dysfunction being implicated in the pathogenesis of numerous diseases. Osteoclasts (OCs), as multinucleated cells responsible for bone resorption and maintaining bone homeostasis, have a complex relationship with lysosomes that is not fully understood. Dysregulated function of OCs can disrupt bone homeostasis leading to the development of various bone disorders. The regulation of OC differentiation and bone resorption for the treatment of bone disease have received considerable attention in recent years, yet the role and regulation of lysosomes in OCs, as well as the potential therapeutic implications of intervening in lysosomal biologic behavior for the treatment of bone diseases, remain relatively understudied. This review aims to elucidate the mechanisms involved in lysosomal biogenesis and to discuss the functions of lysosomes in OCs, specifically in relation to differentiation, bone resorption, and autophagy. Finally, we explore the potential therapeutic implication of targeting lysosomes in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Junchen Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Rufeng Ren
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyuan Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijun Wen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Samrani LMM, Dumont F, Hallmark N, Bars R, Tinwell H, Pallardy M, Piersma AH. Retinoic acid signaling pathway perturbation impacts mesodermal-tissue development in the zebrafish embryo: Biomarker candidate identification using transcriptomics. Reprod Toxicol 2023; 119:108404. [PMID: 37207909 DOI: 10.1016/j.reprotox.2023.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
The zebrafish embryo (ZE) model provides a developmental model well conserved throughout vertebrate embryogenesis, with relevance for early human embryo development. It was employed to search for gene expression biomarkers of compound-induced disruption of mesodermal development. We were particularly interested in the expression of genes related to the retinoic acid signaling pathway (RA-SP), as a major morphogenetic regulating mechanism. We exposed ZE to teratogenic concentrations of valproic acid (VPA) and all-trans retinoic acid (ATRA), using folic acid (FA) as a non-teratogenic control compound shortly after fertilization for 4 h, and performed gene expression analysis by RNA sequencing. We identified 248 genes specifically regulated by both teratogens but not by FA. Further analysis of this gene set revealed 54 GO-terms related to the development of mesodermal tissues, distributed along the paraxial, intermediate, and lateral plate sections of the mesoderm. Gene expression regulation was specific to tissues and was observed for somites, striated muscle, bone, kidney, circulatory system, and blood. Stitch analysis revealed 47 regulated genes related to the RA-SP, which were differentially expressed in the various mesodermal tissues. These genes provide potential molecular biomarkers of mesodermal tissue and organ (mal)formation in the early vertebrate embryo.
Collapse
Affiliation(s)
- Laura M M Samrani
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, 91104 Orsay, France; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands.
| | | | | | | | | | - Marc Pallardy
- Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, 91104 Orsay, France
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
7
|
Gimple RC, Zhang G, Wang S, Huang T, Lee J, Taori S, Lv D, Dixit D, Halbert ME, Morton AR, Kidwell RL, Dong Z, Prager BC, Kim LJ, Qiu Z, Zhao L, Xie Q, Wu Q, Agnihotri S, Rich JN. Sorting nexin 10 sustains PDGF receptor signaling in glioblastoma stem cells via endosomal protein sorting. JCI Insight 2023; 8:158077. [PMID: 36795488 PMCID: PMC10070110 DOI: 10.1172/jci.insight.158077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor, the prognosis of which remains dismal even with aggressive surgical, medical, and radiation therapies. Glioblastoma stem cells (GSCs) promote therapeutic resistance and cellular heterogeneity due to their self-renewal properties and capacity for plasticity. To understand the molecular processes essential for maintaining GSCs, we performed an integrative analysis comparing active enhancer landscapes, transcriptional profiles, and functional genomics profiles of GSCs and non-neoplastic neural stem cells (NSCs). We identified sorting nexin 10 (SNX10), an endosomal protein sorting factor, as selectively expressed in GSCs compared with NSCs and essential for GSC survival. Targeting SNX10 impaired GSC viability and proliferation, induced apoptosis, and reduced self-renewal capacity. Mechanistically, GSCs utilized endosomal protein sorting to promote platelet-derived growth factor receptor β (PDGFRβ) proliferative and stem cell signaling pathways through posttranscriptional regulation of the PDGFR tyrosine kinase. Targeting SNX10 expression extended survival of orthotopic xenograft-bearing mice, and high SNX10 expression correlated with poor glioblastoma patient prognosis, suggesting its potential clinical importance. Thus, our study reveals an essential connection between endosomal protein sorting and oncogenic receptor tyrosine kinase signaling and suggests that targeting endosomal sorting may represent a promising therapeutic approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Shuai Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Tengfei Huang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jina Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Suchet Taori
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew E Halbert
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew R Morton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Zhen Dong
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leo Jy Kim
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Qi Xie
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurosciences, UCSD, La Jolla, California, USA
| |
Collapse
|
8
|
Morleo M, Vieira HL, Pennekamp P, Palma A, Bento-Lopes L, Omran H, Lopes SS, Barral DC, Franco B. Crosstalk between cilia and autophagy: implication for human diseases. Autophagy 2023; 19:24-43. [PMID: 35613303 PMCID: PMC9809938 DOI: 10.1080/15548627.2022.2067383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Helena L.A. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital - IRCCS, Rome, Italy
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy,CONTACT Brunella Franco CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| |
Collapse
|
9
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
10
|
Huybrechts Y, Van Hul W. Osteopetrosis associated with PLEKHM1 and SNX10 genes, both involved in osteoclast vesicular trafficking. Bone 2022; 164:116520. [PMID: 35981699 DOI: 10.1016/j.bone.2022.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
The clinical and radiological variability seen in different forms of osteopetrosis, all due to impaired osteoclastic bone resorption, reflect many causal genes. Both defective differentiation of osteoclasts from hematopoietic stem cells as well as disturbed functioning of osteoclasts can be the underlying pathogenic mechanism. Pathogenic variants in PLEKHM1 and SNX10 can be classified among the latter as they impair vesicular transport within the osteoclast and therefore result in the absence of a ruffled border. Some of the typical radiological hallmarks of osteopetrosis can be seen, and most cases present as a relatively mild form segregating in an autosomal recessive mode of inheritance.
Collapse
Affiliation(s)
- Yentl Huybrechts
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
11
|
Maxson ME, Abbas YM, Wu JZ, Plumb JD, Grinstein S, Rubinstein JL. Detection and quantification of the vacuolar H+ATPase using the Legionella effector protein SidK. J Biophys Biochem Cytol 2022; 221:212963. [PMID: 35024770 PMCID: PMC8763849 DOI: 10.1083/jcb.202107174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Acidification of secretory and endocytic organelles is required for proper receptor recycling, membrane traffic, protein degradation, and solute transport. Proton-pumping vacuolar H+ ATPases (V-ATPases) are responsible for this luminal acidification, which increases progressively as secretory and endocytic vesicles mature. An increasing density of V-ATPase complexes is thought to account for the gradual decrease in pH, but available reagents have not been sufficiently sensitive or specific to test this hypothesis. We introduce a new probe to localize and quantify V-ATPases. The probe is derived from SidK, a Legionella pneumophila effector protein that binds to the V-ATPase A subunit. We generated plasmids encoding fluorescent chimeras of SidK1-278, and labeled recombinant SidK1-278 with Alexa Fluor 568 to visualize and quantify V-ATPases with high specificity in live and fixed cells, respectively. We show that V-ATPases are acquired progressively during phagosome maturation, that they distribute in discrete membrane subdomains, and that their density in lysosomes depends on their subcellular localization.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yazan M Abbas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Jing Ze Wu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Xiao B, Liu N, Hou L, Jiang M, Yao D. Identification of Key Amino Acid Residues Involved in the Localization of Sorting Nexin 10 and Induction of Vacuole Formation. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1377-1387. [PMID: 34906048 DOI: 10.1134/s000629792111002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sorting nexin 10 (SNX10) induces formation of vacuoles participating in the endosome morphogenesis in mammalian cells, but the key amino acids involved in this function have not been fully identified. In this study, point mutations were introduced to the conserved region of the SNX10 PX domain to elucidate the function of these key amino acid residues. The number of vacuoles in the R53A mutant was partially decreased, while the R52A and R51A mutants completely lacked the vacuoles. All mutant proteins lost the phosphatidylinositol 3-phosphate (PtdIns3P)-binding ability and endosomal localization. Retargeting the mutants to the endosomes rescued partially or fully the vacuole-inducing ability in the R51A and R53A mutants, respectively, but not in the R52A mutant. No vacuoles were induced when the R51A mutant was targeted to other organelles. Structural analysis showed that Arg53 is responsible for the PtdIns(3)P binding, whereas Arg51 and Arg52 contribute to the structural integrity of SNX10. We conclude that the disruption of the key residues affects the structure and function of SNX10 and that induction of vacuole formation by SNX10 depends on its endosomal location.
Collapse
Affiliation(s)
- Bo Xiao
- The Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, China.
| | - Nana Liu
- Department of Basic Medical Sciences, School of Nursing, Sanmenxia Polytechnic, Sanmenxia, 472000, China.
| | - Lixia Hou
- The Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, China.
| | - Ming Jiang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, China.
| | - Dong Yao
- The Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, China. .,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, China.,The Key Laboratory of Respiratory Disease, Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541000, China
| |
Collapse
|
13
|
Yao J, Hou J, Lv L, Song C, Zhang M, Wu Z. Does Decreased SNX10 Serve as a Novel Risk Factor in Atrial Fibrillation of the Valvular Heart Disease? - A Case-Control Study. Braz J Cardiovasc Surg 2021; 36:71-77. [PMID: 33594863 PMCID: PMC7918399 DOI: 10.21470/1678-9741-2019-0413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction Atrial fibrillation (AF) is the most common sustained arrhythmia. Sorting nexin 10 (SNX10) has been reported to be an important regulator in embryonic development and human diseases, however, little is known about its role in cardiac disease. The aim of this study was to investigate the clinical significance of SNX10 expression in AF. Methods Nineteen valvular heart disease patients with AF and nine valvular heart disease patients with sinus rhythm (SR) were enrolled. Atrial tissue samples from patients undergoing open heart surgery were examined. Atrial tissues of normal hearts were obtained from two cases’ autopsies. The SNX10 expression and its associations with the degree of fibrosis were analyzed by immunohistochemistry and Masson’s trichrome staining. Results SNX10 expression was detected in the cytoplasm of cardiac cells in human myocardial tissue. The SNX10 expression level was higher in the SR group than in the AF group (P=0.023). SNX10 expression was negatively associated with the degree of fibrosis (P=0.017, Spearman rho=-0.447), the New York Heart Association degree (P=0.003, Spearman rho=-0.545), left atrial diameter (P=0.038, Spearman rho=-0.393), right atrial diameter (P=0.043, Spearman rho=-0.386), and the brain natriuretic peptide (BNP) level 24 hours after surgery (P=0.030, Spearman rho=-0.426), but not the BNP level before surgery and 72 hours after surgery. No statistical significance was observed between SNX10 and the level of troponin T and C-reactive protein. Conclusion Decreased SNX10 might serve as a potential risk factor in AF of the valvular heart disease.
Collapse
Affiliation(s)
- Jianping Yao
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jian Hou
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong Province, People's Republic of China
| | - Linhua Lv
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chen Song
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mingxia Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
14
|
Bao WL, Wu Q, Hu B, Sun D, Zhao S, Shen X, Cheng H, Shen W. Oral Nanoparticles of SNX10-shRNA Plasmids Ameliorate Mouse Colitis. Int J Nanomedicine 2021; 16:345-357. [PMID: 33488076 PMCID: PMC7814243 DOI: 10.2147/ijn.s286392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Our previous study found that deletion of Sorting nexin 10 (SNX10) can protect against colonic inflammation and pathological damage induced by dextran sulfate sodium (DSS). This inspired us that modulation of SNX10 expression in colonic epithelial cells might represent a promising therapeutic strategy for inflammatory bowel disease (IBD). Methods Effective delivery of siRNA/shRNA to silence genes is a highly sought-after means in the treatment of multiple diseases. Here, we encapsulated SNX10-shRNA plasmids (SRP) with polylactide-polyglycolide (PLGA) to make oral nanoparticles (NPs), and then applied them to acute and chronic IBD mice model, respectively. The characteristics of the nanoparticles were assayed and the effects of SRP-NPs on mouse IBD were evaluated. Results High-efficiency SNX10-shRNA plasmids were successfully constructed and coated with PLGA to obtain nanoparticles, with a particle size of 275.2 ± 11.4mm, uniform PDI distribution, entrapment efficiency of 87.6 ± 2.5%, and drug loading of 13.11 ± 1.38%, displayed dominant efficiency of SNX10 RNA interference in the colon. In both acute and chronic IBD models, SRP-NPs could effectively reduce the loss of mice body weight, relieve the intestinal mucosal damage and inflammatory infiltration, inhibit the expression of inflammatory cytokines IL-1β, IL-23, TNF-α, and down-regulate the expression of toll-like receptors (TLRs) 2 and 4. Conclusion Oral nanoparticles of SNX10-shRNA plasmid displayed dominant efficiency of SNX10 RNA interference in the colon and ameliorate mouse colitis via TLR signaling pathway. SNX10 is a new target for IBD treatment and nanoparticles of SNX10-shRNA plasmid might be a promising treatment option for IBD.
Collapse
Affiliation(s)
- Wei-Lian Bao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China.,Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Bin Hu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Dongdong Sun
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Shengnan Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Haibo Cheng
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Weixing Shen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| |
Collapse
|
15
|
Xu J, Qiu H, Zhao J, Pavlos NJ. The molecular structure and function of sorting nexin 10 in skeletal disorders, cancers, and other pathological conditions. J Cell Physiol 2020; 236:4207-4215. [PMID: 33241559 DOI: 10.1002/jcp.30173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
SNX10 is a member of the phox homology domain-containing family of phosphoinositide-binding proteins. Intracellularly, SNX10 localizes to endosomes where it mediates intracellular trafficking, endosome organization, and protein localization to the centrosome and cilium. It is highly expressed in bone and the gut where it participates in bone mineral and calcium homeostasis through the regulation of osteoclastic bone resorption and gastric acid secretion, respectively. Not surprisingly, patients harboring mutations in SNX10 mutation manifest a phenotype of autosomal recessive osteopetrosis or malignant infantile osteopetrosis, which is clinically characterized by dense bones with increased cortical bone into the medullary space with bone marrow occlusion or depletion, bone marrow failure, and anemia. Accordingly, SNX10 mutant osteoclasts exhibit impaired bone resorptive capacity. Beyond the skeleton, there is emerging evidence implicating SNX10 in cancer development, metabolic disorders, inflammation, and chaperone-mediated autophagy. Understanding the structural basis through which SNX10 exerts its diverse biological functions in both cell and tissue-specific manners may therefore inform new therapeutic opportunities toward the treatment and management of SNX10-related diseases.
Collapse
Affiliation(s)
- Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Heng Qiu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Nathan J Pavlos
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
16
|
Yang L, Tan W, Yang X, You Y, Wang J, Wen G, Zhong J. Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. J Cell Physiol 2020; 236:3317-3335. [PMID: 33090492 DOI: 10.1002/jcp.30093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Sorting nexins (SNXs) are a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins containing the PX domain proteins. The function of SNX proteins in regulating intracellular protein trafficking consists of endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX proteins are demonstrated to be involved in several cancerous/neoplastic diseases. Here, we review the accumulated evidence of the molecular structure and biological function of SNX proteins and discuss the regulatory role of SNX proteins in distinct cancerous/neoplastic diseases. SNX family proteins may be a valuable potential biomarker and therapeutic strategy for diagnostics and treatment of cancerous/neoplastic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weihua Tan
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Emergency Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinzhi Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yong You
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jing Wang
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Stein M, Barnea-Zohar M, Shalev M, Arman E, Brenner O, Winograd-Katz S, Gerstung J, Thalji F, Kanaan M, Elinav H, Stepensky P, Geiger B, Tuckermann J, Elson A. Massive osteopetrosis caused by non-functional osteoclasts in R51Q SNX10 mutant mice. Bone 2020; 136:115360. [PMID: 32278070 DOI: 10.1016/j.bone.2020.115360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022]
Abstract
The R51Q mutation in sorting nexin 10 (SNX10) was shown to cause a lethal genetic disease in humans, namely autosomal recessive osteopetrosis (ARO). We describe here the first R51Q SNX10 knock-in mouse model and show that mice homozygous for this mutation exhibit massive, early-onset, and widespread osteopetrosis. The mutant mice exhibit multiple additional characteristics of the corresponding human disease, including stunted growth, failure to thrive, missing or impacted teeth, occasional osteomyelitis, and a significantly-reduced lifespan. Osteopetrosis in this model is the result of osteoclast inactivity that, in turn, is caused by absence of ruffled borders in the mutant osteoclasts and by their inability to secrete protons. These results confirm that the R51Q mutation in SNX10 is a causative factor in ARO and provide a model system for studying this rare disease.
Collapse
Affiliation(s)
- Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabina Winograd-Katz
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jennifer Gerstung
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Fadi Thalji
- Istishari Arab Hospital, Ramallah, Palestine
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Hila Elinav
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany.
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation. J Mol Biol 2020; 432:4750-4761. [DOI: 10.1016/j.jmb.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
|
19
|
Fan Y, Yang J, Li H, Li H, Zhang S, Li X, Song Y, Dang W, Liu L, Cao X, Wang X, Nandakumar KS, Shen X, You Y. WITHDRAWN: SNX10 deficiency restricts foam cell formation and protects against atherosclerosis by suppressing CD36-Lyn axis. Can J Cardiol 2020:S0828-282X(20)30456-6. [PMID: 32428616 DOI: 10.1016/j.cjca.2020.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Yujuan Fan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jialin Yang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - HaiDong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesong Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuping Song
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenzhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Xiaoyan Shen
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan You
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; National Institute of Allergy and Infectious, National Institute of Health, Rockville, USA.
| |
Collapse
|
20
|
Cao XW, Wang FJ, Liew OW, Lu YZ, Zhao J. Analysis of Triterpenoid Saponins Reveals Insights into Structural Features Associated with Potent Protein Drug Enhancement Effects. Mol Pharm 2020; 17:683-694. [PMID: 31913047 DOI: 10.1021/acs.molpharmaceut.9b01158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plant-based saponins are amphipathic glycosides composed of a hydrophobic aglycone backbone covalently bound to one or more hydrophilic sugar moieties. Recently, the endosomal escape activity of triterpenoid saponins has been investigated as a potentially powerful tool for improved cytosolic penetration of protein drugs internalized by endocytic uptake, thereby greatly enhancing their pharmacological effects. However, only a few saponins have been studied, and the paucity in understanding the structure-activity relationship of saponins imposes significant limitations on their applications. To address this knowledge gap, 12 triterpenoid saponins with diverse structural side chains were screened for their utility as endosomolytic agents. These compounds were used in combination with a toxin (MAP30-HBP) comprising a type I ribosome-inactivating protein fused to a cell-penetrating peptide. Suitability of saponins as endosomolytic agents was assessed on the basis of cytotoxicity, endosomal escape promotion, and synergistic effects on toxins. Five saponins showed strong endosomal escape activity, enhancing MAP30-HBP cytotoxicity by more than 106 to 109 folds. These saponins also enhanced the apoptotic effect of MAP30-HBP in a pH-dependent manner. Additionally, growth inhibition of MAP30-HBP-treated SMMC-7721 cells was greater than that of similarly treated HeLa cells, suggesting that saponin-mediated endosomolytic effect is likely to be cell-specific. Furthermore, the structural features and hydrophobicity of the sugar side chains were analyzed to draw correlations with endosomal escape activity and derive predictive rules, thus providing new insights into structure-activity relationships of saponins. This study revealed new saponins that can potentially be exploited as efficient cytosolic delivery reagents for improved therapeutic drug effects.
Collapse
Affiliation(s)
- Xue-Wei Cao
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Fu-Jun Wang
- New Drug R&D Center , Zhejiang Fonow Medicine Company, Ltd. , 209 West Hulian Road , Dongyang 322100 , Zhejiang , China.,Shanghai R&D Center for Standardization of Chinese Medicines , 1200 Cailun Road , Shanghai 201203 , China.,Institute of Chinese Materia , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Oi-Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System , Centre for Translational Medicine , MD6#08-01, 14 Medical Drive , 117599 , Singapore
| | - Ye-Zhou Lu
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jian Zhao
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
21
|
Wang P, Xia J, Zhang L, Zhao S, Li S, Wang H, Cheng S, Li H, Yin W, Pei D, Shu X. SNX17 Recruits USP9X to Antagonize MIB1-Mediated Ubiquitination and Degradation of PCM1 during Serum-Starvation-Induced Ciliogenesis. Cells 2019; 8:cells8111335. [PMID: 31671755 PMCID: PMC6912348 DOI: 10.3390/cells8111335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/15/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Centriolar satellites are non-membrane cytoplasmic granules that deliver proteins to centrosome during centrosome biogenesis and ciliogenesis. Centriolar satellites are highly dynamic during cell cycle or ciliogenesis and how they are regulated remains largely unknown. We report here that sorting nexin 17 (SNX17) regulates the homeostasis of a subset of centriolar satellite proteins including PCM1, CEP131, and OFD1 during serum-starvation-induced ciliogenesis. Mechanistically, SNX17 recruits the deubiquitinating enzyme USP9X to antagonize the mindbomb 1 (MIB1)-induced ubiquitination and degradation of PCM1. SNX17 deficiency leads to enhanced degradation of USP9X as well as PCM1 and disrupts ciliogenesis upon serum starvation. On the other hand, SNX17 is dispensable for the homeostasis of PCM1 and USP9X in serum-containing media. These findings reveal a SNX17/USP9X mediated pathway essential for the homeostasis of centriolar satellites under serum starvation, and provide insight into the mechanism of USP9X in ciliogenesis, which may lead to a better understating of USP9X-deficiency-related human diseases such as X-linked mental retardation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengtao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Jianhong Xia
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Leilei Zhang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Shaoyang Zhao
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Shengbiao Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Haiyun Wang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Shan Cheng
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Heying Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Wenguang Yin
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China.
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
22
|
Mastromoro G, Capalbo A, Guido CA, Torres B, Fabbretti M, Traversa A, Giancotti A, Ventriglia F, Bernardini L, Spalice A, Pizzuti A. Small 7p22.3 microdeletion: Case report of Snx8 haploinsufficiency and neurological findings. Eur J Med Genet 2019; 63:103772. [PMID: 31568860 DOI: 10.1016/j.ejmg.2019.103772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/05/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
Abstract
Some cases of chromosome 7p22.3 deletions have been reported, but the genotype-phenotype correlation is still uncertain. Neurodevelopmental delay and heart anomalies have been recorded as the most recurrent defects. We describe the clinical features of a four-year-old male child with a 139 kb deletion at 7p22.3 involving SNX8 gene, inherited from a mosaic mother. The same deletion is also present in the fetus on the ongoing third pregnancy of the couple with normal fetal ultrasound assessment. The proband was prenatally diagnosed with left kidney agenesis. He does not show any congenital heart disease, but mild intellectual disability, learning and language delay, and severe behavioral problems related to the hyperactive-impulsive and inattentive area. These clinical features are also evident in other 7p22 deletions cases involving the SNX8 gene, supporting the role of this gene in neurodevelopment. Conversely, the revision of all published cases with small 7p22 deletions and the absence of heart malformations in the present family confirm that this region is involved in heart development, anyway did not confirm the role of SNX8 in cardiac phenotypes, either due to the reduced penetrance or the involvement of other candidate genes.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Viale Regina Elena 324, Rome, Italy
| | - Anna Capalbo
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Cristiana Alessia Guido
- Department of Pediatrics, Division of Child Neurology, Policlinico Umberto I Hospital, Sapienza University of Rome, Viale Regina Elena 324, Rome, Italy
| | - Barbara Torres
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Maria Fabbretti
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Alice Traversa
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Antonella Giancotti
- Department of Obstetrics, Gynecology and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Viale Regina Elena 324, Rome, Italy
| | - Flavia Ventriglia
- Department of Pediatrics, Pediatric Cardiology, Policlinico Umberto I Hospital, Sapienza University of Rome, Viale Regina Elena 324, Rome, Italy
| | - Laura Bernardini
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Alberto Spalice
- Department of Pediatrics, Division of Child Neurology, Policlinico Umberto I Hospital, Sapienza University of Rome, Viale Regina Elena 324, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Viale Regina Elena 324, Rome, Italy; Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
23
|
Cassioli C, Baldari CT. A Ciliary View of the Immunological Synapse. Cells 2019; 8:E789. [PMID: 31362462 PMCID: PMC6721628 DOI: 10.3390/cells8080789] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
The primary cilium has gone from being a vestigial organelle to a crucial signaling hub of growing interest given the association between a group of human disorders, collectively known as ciliopathies, and defects in its structure or function. In recent years many ciliogenesis proteins have been observed at extraciliary sites in cells and likely perform cilium-independent functions ranging from regulation of the cytoskeleton to vesicular trafficking. Perhaps the most striking example is the non-ciliated T lymphocyte, in which components of the ciliary machinery are repurposed for the assembly and function of the immunological synapse even in the absence of a primary cilium. Furthermore, the specialization traits described at the immunological synapse are similar to those seen in the primary cilium. Here, we review common regulators and features shared by the immunological synapse and the primary cilium that document the remarkable homology between these structures.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
24
|
Zhang S, Yang Z, Bao W, Liu L, You Y, Wang X, Shao L, Fu W, Kou X, Shen W, Yuan C, Hu B, Dang W, Nandakumar KS, Jiang H, Zheng M, Shen X. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy 2019; 16:735-749. [PMID: 31208298 DOI: 10.1080/15548627.2019.1632122] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The non-receptor tyrosine kinase SRC is a key mediator of cellular protumorigenic signals. SRC is aberrantly over-expressed and activated in more than 80% of colorectal cancer (CRC) patients, therefore regulation of its stability and activity is essential. Here, we report a significant down regulation of SNX10 (sorting nexin 10) in human CRC tissues, which is closely related to tumor differentiation, TNM stage, lymph node metastasis and survival period. SNX10 deficiency in normal and neoplastic colorectal epithelial cells promotes initiation and progression of CRC in mice. SNX10 controls SRC levels by mediating autophagosome-lysosome fusion and SRC recruitment for autophagic degradation. These mechanisms ensure proper controlling of the activities of SRC-STAT3 and SRC-CTNNB1 signaling pathways by up-regulating SNX10 expression under stress conditions. These findings suggest that SNX10 acts as a tumor suppressor in CRC and it could be a potential therapeutic target for future development.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG12: autophagy related 12; CQ: chloroquine; CRC: colorectal cancer; CTNNB1: catenin beta 1; EBSS: Earle's balanced salt solution; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MAP1LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; mRNA: messenger RNA; PX: phox homology; RT-qPCR: real time quantitative polymerase chain reaction; siRNA: small interfering RNA; SNX10: sorting nexin 10; SQSTM1: sequestosome 1; SRC: SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; WT: wild type.
Collapse
Affiliation(s)
- Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weilian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Liming Shao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Fu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinhui Kou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Weixing Shen
- The Translational Medicine Research Center, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Congmin Yuan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenzhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Membrane trafficking in osteoclasts and implications for osteoporosis. Biochem Soc Trans 2019; 47:639-650. [PMID: 30837319 PMCID: PMC6490703 DOI: 10.1042/bst20180445] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Osteoclasts are large multinucleated cells exquisitely adapted to resorb bone matrix. Like other eukaryotes, osteoclasts possess an elaborate ensemble of intracellular organelles through which solutes, proteins and other macromolecules are trafficked to their target destinations via membrane-bound intermediaries. During bone resorption, membrane trafficking must be tightly regulated to sustain the structural and functional polarity of the osteoclasts’ membrane domains. Of these, the ruffled border (RB) is most characteristic, functioning as the osteoclasts' secretory apparatus. This highly convoluted organelle is classically considered to be formed by the targeted fusion of acidic vesicles with the bone-facing plasma membrane. Emerging findings disclose new evidence that the RB is far more complex than previously envisaged, possessing discrete subdomains that are serviced by several intersecting endocytic, secretory, transcytotic and autophagic pathways. Bone-resorbing osteoclasts therefore serve as a unique model system for studying polarized membrane trafficking. Recent advances in high-resolution microscopy together with the convergence of genetic and cell biological studies in humans and in mice have helped illuminate the major membrane trafficking pathways in osteoclasts and unmask the core molecular machinery that governs these distinct vesicle transport routes. Among these, small Rab GTPases, their binding partners and members of the endocytic sorting nexin family have emerged as critical regulators. This mini review summarizes our current understanding of membrane trafficking in osteoclasts, the key molecular participants, and discusses how these transport machinery may be exploited for the development of new therapies for metabolic disorders of bone-like osteoporosis.
Collapse
|
26
|
Zhang S, Hu B, You Y, Yang Z, Liu L, Tang H, Bao W, Guan Y, Shen X. Sorting nexin 10 acts as a tumor suppressor in tumorigenesis and progression of colorectal cancer through regulating chaperone mediated autophagy degradation of p21 Cip1/WAF1. Cancer Lett 2019; 419:116-127. [PMID: 29355659 DOI: 10.1016/j.canlet.2018.01.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
Chaperone-mediated autophagy (CMA) characterized by the selective degradation of target proteins has been linked with tumorigenesis in recent years. Here, we explored the function of sorting nexin 10 (SNX10), a protein involved in maintaining endosome/lysosome homeostasis, in mediating CMA activity and its impact on the progression of mouse inflammation-driven colorectal cancer. Our results revealed that SNX10 deficiency increased the activation of CMA by preventing the degradation of lysosomal LAMP-2A. In SNX10 KO cells, we disclosed that p21Cip1/WAF1, a master effector in various tumor suppressor pathways, is a substrate of CMA, and decrease of p21Cip1/WAF1 caused by SNX10-mediated CMA activation contributes to HCT116 cell proliferation and survival. Moreover, we found that SNX10 KO promoted tumorigenesis in the mouse colorectum which could be restored by SNX10 over-expression. Furthermore, SNX10 was remarkably down-regulated in human CRC tissues which showed the increased activity of CMA and decreased expression of p21Cip1/WAF1. These findings suggest that SNX10 acts as a tumor suppressor in the mouse colorectum and drives inflammation-associated colorectal cancer by a chaperone-mediated autophagy mechanism.
Collapse
Affiliation(s)
- Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Huanhuan Tang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Weilian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yunyun Guan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Zhang J, Wu Y, Jin HY, Guo S, Dong Z, Zheng ZC, Wang Y, Zhao Y. Prognostic value of sorting nexin 10 weak expression in stomach adenocarcinoma revealed by weighted gene co-expression network analysis. World J Gastroenterol 2018; 24:4906-4919. [PMID: 30487700 PMCID: PMC6250920 DOI: 10.3748/wjg.v24.i43.4906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To detect significant clusters of co-expressed genes associated with tumorigenesis that might help to predict stomach adenocarcinoma (SA) prognosis.
METHODS The Cancer Genome Atlas database was used to obtain RNA sequences as well as complete clinical data of SA and adjacent normal tissues from patients. Weighted gene co-expression network analysis (WGCNA) was used to investigate the meaningful module along with hub genes. Expression of hub genes was analyzed in 362 paraffin-embedded SA biopsy tissues by immunohistochemical staining. Patients were classified into two groups (according to expression of hub genes): Weak expression and over-expression groups. Correlation of biomarkers with clinicopathological factors indicated patient survival.
RESULTS Whole genome expression level screening identified 6,231 differentially expressed genes. Twenty-four co-expressed gene modules were identified using WGCNA. Pearson’s correlation analysis showed that the tan module was the most relevant to tumor stage (r = 0.24, P = 7 × 10-6). In addition, we detected sorting nexin (SNX)10 as the hub gene of the tan module. SNX10 expression was linked to T category (P = 0.042, χ2 = 8.708), N category (P = 0.000, χ2 = 18.778), TNM stage (P = 0.001, χ2 = 16.744) as well as tumor differentiation (P = 0.000, χ2 = 251.930). Patients with high SNX10 expression tended to have longer disease-free survival (DFS; 44.97 mo vs 33.85 mo, P = 0.000) as well as overall survival (OS; 49.95 vs 40.84 mo, P = 0.000) in univariate analysis. Multivariate analysis showed that dismal prognosis could be precisely predicted clinicopathologically using SNX10 [DFS: P = 0.014, hazard ratio (HR) = 0.698, 95% confidence interval (CI): 0.524-0.930, OS: P = 0.017, HR = 0.704, 95%CI: 0.528-0.940].
CONCLUSION This study provides a new technique for screening prognostic biomarkers of SA. Weak expression of SNX10 is linked to poor prognosis, and is a suitable prognostic biomarker of SA.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Yue Wu
- Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Hao-Yi Jin
- Pancreatic and Thyroid Surgery Department, Sheng Jing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Shuai Guo
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Zhe Dong
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Zhi-Chao Zheng
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Yue Wang
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Yan Zhao
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| |
Collapse
|
28
|
Abstract
The group of sclerosing bone dysplasia's is a clinically and genetically heterogeneous group of rare bone disorders which, according to the latest Nosology and classification of genetic skeletal disorders (2015), can be subdivided in three subgroups; the neonatal osteosclerotic dysplasias, the osteopetroses and related disorders and the other sclerosing bone disorders. Here, we give an overview of the most important radiographic and clinical symptoms, the underlying genetic defect and potential treatment options of the different sclerosing dysplasias included in these subgroups.
Collapse
Affiliation(s)
- Eveline Boudin
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
29
|
McKenzie CW, Preston CC, Finn R, Eyster KM, Faustino RS, Lee L. Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction. Sci Rep 2018; 8:13370. [PMID: 30190587 PMCID: PMC6127338 DOI: 10.1038/s41598-018-31743-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023] Open
Abstract
Congenital hydrocephalus results from cerebrospinal fluid accumulation in the ventricles of the brain and causes severe neurological damage, but the underlying causes are not well understood. It is associated with several syndromes, including primary ciliary dyskinesia (PCD), which is caused by dysfunction of motile cilia. We previously demonstrated that mouse models of PCD lacking ciliary proteins CFAP221, CFAP54 and SPEF2 all have hydrocephalus with a strain-dependent severity. While morphological defects are more severe on the C57BL/6J (B6) background than 129S6/SvEvTac (129), cerebrospinal fluid flow is perturbed on both backgrounds, suggesting that abnormal cilia-driven flow is not the only factor underlying the hydrocephalus phenotype. Here, we performed a microarray analysis on brains from wild type and nm1054 mice lacking CFAP221 on the B6 and 129 backgrounds. Expression differences were observed for a number of genes that cluster into distinct groups based on expression pattern and biological function, many of them implicated in cellular and biochemical processes essential for proper brain development. These include genes known to be functionally relevant to congenital hydrocephalus, as well as formation and function of both motile and sensory cilia. Identification of these genes provides important clues to mechanisms underlying congenital hydrocephalus severity.
Collapse
Affiliation(s)
- Casey W McKenzie
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Rozzy Finn
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Kathleen M Eyster
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, 57069, USA
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD, 57105, USA
| | - Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
30
|
Jiang J, Tang S, Xia J, Wen J, Chen S, Shu X, Huen MSY, Deng Y. C9orf140, a novel Axin1-interacting protein, mediates the negative feedback loop of Wnt/β-catenin signaling. Oncogene 2018; 37:2992-3005. [PMID: 29531269 PMCID: PMC5978805 DOI: 10.1038/s41388-018-0166-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
Wnt/β-catenin signaling activity is maintained in homeostasis by an expanding list of molecular determinants. However, the molecular components and the regulatory mechanisms involved in its fine-tuning remain to be determined. Here, we identified C9orf140, a tumor-specific protein, as a novel Axin1-interacting protein by tandem-affinity purification and mass spectrometry. We further showed that C9orf140 is a negative regulator of Wnt/β-catenin signaling in cultured cells as well as in zebrafish embryos. It functions upstream of β-catenin, outcompetes PP2A for binding to Axin1, influences the balance between phosphorylation and de-phosphorylation of β-catenin, and ultimately compromises Wnt3A-induced β-catenin accumulation. Interestingly, Wnt-induced C9orf140 expression via β-catenin. We propose that C9orf140 mediates a negative feedback loop of Wnt/β-catenin signaling by interacting with Axin1. Our results advance the current understanding of the exquisite control of Wnt/β-catenin signaling cascade, and provide evidence of the new role of C9orf140.
Collapse
Affiliation(s)
- Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shulin Tang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jianhong Xia
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Michael S Y Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
31
|
Chakraborty K, Leung K, Krishnan Y. High lumenal chloride in the lysosome is critical for lysosome function. eLife 2017; 6. [PMID: 28742019 PMCID: PMC5526669 DOI: 10.7554/elife.28862] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022] Open
Abstract
Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~103 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function. DOI:http://dx.doi.org/10.7554/eLife.28862.001 In cells, worn out proteins and other unnecessary materials are sent to small compartments called lysosomes to be broken down and recycled. Lysosomes contain many different proteins including some that break down waste material into recyclable fragments and others that transport the fragments out of the lysosome. If any of these proteins do not work, waste products build up and cause disease. There are around 70 such lysosomal storage diseases, each arising from a different lysosomal protein not working correctly. A recently developed “nanodevice” called Clensor can measure the levels of chloride ions inside cells. Clensor is constructed from DNA, and its fluorescence changes when it detects chloride ions. Although chloride ions have many biological roles, chloride ion levels had not been measured inside a living organism. Now, Chakraborty et al. – including some of the researchers who developed Clensor – have used this nanodevice to examine chloride ion levels in the lysosomes of the roundworm Caenorhabditis elegans. This revealed that the lysosomes contain high levels of chloride ions. Furthermore, reducing the amount of chloride in the lysosomes made them worse at breaking down waste. Do lysosomes affected by lysosome storage diseases also contain low levels of chloride ions? To find out, Chakraborty et al. used Clensor to study C. elegans worms and mouse and human cells whose lysosomes accumulate waste products. In all these cases, the levels of chloride in the diseased lysosomes were much lower than normal. This had a number of effects on how the lysosomes worked, such as reducing the activity of key lysosomal proteins. Chakraborty et al. also found that Clensor can be used to distinguish between different lysosomal storage diseases. This means that in the future, Clensor (or similar methods that directly measure chloride ion levels in lysosomes) may be useful not just for research purposes. They may also be valuable for diagnosing lysosomal storage diseases early in infancy that, if left undiagnosed, are fatal. DOI:http://dx.doi.org/10.7554/eLife.28862.002
Collapse
Affiliation(s)
- Kasturi Chakraborty
- Department of Chemistry, University of Chicago, Chicago, United States.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, United States
| | - KaHo Leung
- Department of Chemistry, University of Chicago, Chicago, United States.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, United States
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, United States.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
32
|
Jana A, Sinha A, Sarkar S. Phosphoinositide binding profiles of the PX domains of Giardia lamblia. Parasitol Int 2017; 66:606-614. [PMID: 28456494 DOI: 10.1016/j.parint.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
The membrane trafficking machinery that functions at the endomembrane system of Giardia lamblia appears to be significantly different from that present in most model eukaryotes. This machinery is important for encystation as cyst wall material is trafficked to the cell surface via encystation-specific vesicles. Since proteins containing the phosphoinositide-binding PX domains are known regulators of vesicular trafficking, BLAST search was used to identify the PX domains of G. lamblia. Six putative PX domain-containing ORFs were identified. Some of the encoded PX domains contained non-canonical amino acid residues in the highly conserved ligand binding pocket. In vitro and in vivo binding studies indicate that these domains have the ability to bind to diverse phosphoinositides. Also, coincidence detection is likely to play a significant role in ligand binding in vivo since domains that bind to the same lipid in vitro, exhibit differences in subcellular localization. Analyses of the expression of these six genes in trophozoites, encysting trophozoites and cysts showed that while the expression of four of the genes were downregulated in cysts, the other two were upregulated. The variation in ligand preference of the individual PX domains and the differential expression of most of the PX-domain encoding genes indicate that these PX domain-containing proteins are likely to perform diverse cellular functions.
Collapse
Affiliation(s)
- Ananya Jana
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Abhishek Sinha
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
33
|
Amirfiroozy A, Hamidieh AA, Golchehre Z, Rezamand A, Yahyaei M, Beiranvandi F, Amirfiroozy S, Keramatipour M. A Novel Mutation in SNX10 Gene Causes Malignant Infantile Osteopetrosis. Avicenna J Med Biotechnol 2017; 9:205-208. [PMID: 29090071 PMCID: PMC5650739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Osteopetrosis is a group of genetically heterogonous diseases and the main feature of that is increased bone density due to osteoclast's abnormality. It has three clinical forms based on inheritance pattern, severity and age of onset: the dominant benign form (ADO), the intermediate form (IRO) and the recessive severe form (ARO). One of the recently discovered genes for ARO form is SNX10 that accounts for 4% of affected persons by this type. METHODS In this paper, a 15 years old girl affected by osteopetrosis has been analyzed for detecting causal mutation in known osteopetrosis genes. To get it done, amplified exons of the genes were sequenced and then were analyzed. RESULTS Direct sequencing of SNX10 gene showed a homozygous c.43delG variant in the patient. Both healthy parents were heterozygous for this variant. In silico analysis revealed that this novel variant can be considered as the cause of disease in the patient. CONCLUSION In this paper, a girl affected by osteopetrosis with a novel deletion in SNX10 gene was reported.
Collapse
Affiliation(s)
- Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir A. Hamidieh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Rezamand
- Children’s Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahin Yahyaei
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Beiranvandi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Keramatipour, M.D., Ph.D., Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran, Tel: +98 21 8895 3005, Fax: +98 21 8801 4418, E-mail:
| |
Collapse
|
34
|
Dasgupta A, Amack JD. Cilia in vertebrate left-right patterning. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150410. [PMID: 27821522 PMCID: PMC5104509 DOI: 10.1098/rstb.2015.0410] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 01/10/2023] Open
Abstract
Understanding how left-right (LR) asymmetry is generated in vertebrate embryos is an important problem in developmental biology. In humans, a failure to align the left and right sides of cardiovascular and/or gastrointestinal systems often results in birth defects. Evidence from patients and animal models has implicated cilia in the process of left-right patterning. Here, we review the proposed functions for cilia in establishing LR asymmetry, which include creating transient leftward fluid flows in an embryonic 'left-right organizer'. These flows direct asymmetric activation of a conserved Nodal (TGFβ) signalling pathway that guides asymmetric morphogenesis of developing organs. We discuss the leading hypotheses for how cilia-generated asymmetric fluid flows are translated into asymmetric molecular signals. We also discuss emerging mechanisms that control the subcellular positioning of cilia and the cellular architecture of the left-right organizer, both of which are critical for effective cilia function during left-right patterning. Finally, using mosaic cell-labelling and time-lapse imaging in the zebrafish embryo, we provide new evidence that precursor cells maintain their relative positions as they give rise to the ciliated left-right organizer. This suggests the possibility that these cells acquire left-right positional information prior to the appearance of cilia.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
35
|
Lassen KG, McKenzie CI, Mari M, Murano T, Begun J, Baxt LA, Goel G, Villablanca EJ, Kuo SY, Huang H, Macia L, Bhan AK, Batten M, Daly MJ, Reggiori F, Mackay CR, Xavier RJ. Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk. Immunity 2016; 44:1392-405. [PMID: 27287411 DOI: 10.1016/j.immuni.2016.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 12/28/2022]
Abstract
Although numerous polymorphisms have been associated with inflammatory bowel disease (IBD), identifying the function of these genetic factors has proved challenging. Here we identified a role for nine genes in IBD susceptibility loci in antibacterial autophagy and characterized a role for one of these genes, GPR65, in maintaining lysosome function. Mice lacking Gpr65, a proton-sensing G protein-coupled receptor, showed increased susceptibly to bacteria-induced colitis. Epithelial cells and macrophages lacking GPR65 exhibited impaired clearance of intracellular bacteria and accumulation of aberrant lysosomes. Similarly, IBD patient cells and epithelial cells expressing an IBD-associated missense variant, GPR65 I231L, displayed aberrant lysosomal pH resulting in lysosomal dysfunction, impaired bacterial restriction, and altered lipid droplet formation. The GPR65 I231L polymorphism was sufficient to confer decreased GPR65 signaling. Collectively, these data establish a role for GPR65 in IBD susceptibility and identify lysosomal dysfunction as a potentially causative element in IBD pathogenesis with effects on cellular homeostasis and defense.
Collapse
Affiliation(s)
- Kara G Lassen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Craig I McKenzie
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Muriel Mari
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, 3713 AV Groningen, the Netherlands; Department of Cell Biology, University Medical Center Utrecht, 3564 CX Utrecht, the Netherlands
| | - Tatsuro Murano
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jakob Begun
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Mater Research Institute and School of Medicine, University of Queensland, Brisbane, QLD 4101, Australia
| | - Leigh A Baxt
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eduardo J Villablanca
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Szu-Yu Kuo
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hailiang Huang
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Laurence Macia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Atul K Bhan
- Pathology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marcel Batten
- Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Mark J Daly
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, 3713 AV Groningen, the Netherlands; Department of Cell Biology, University Medical Center Utrecht, 3564 CX Utrecht, the Netherlands
| | - Charles R Mackay
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Zhou C, You Y, Shen W, Zhu YZ, Peng J, Feng HT, Wang Y, Li D, Shao WW, Li CX, Li WZ, Xu J, Shen X. Deficiency of sorting nexin 10 prevents bone erosion in collagen-induced mouse arthritis through promoting NFATc1 degradation. Ann Rheum Dis 2016; 75:1211-8. [PMID: 26141367 DOI: 10.1136/annrheumdis-2014-207134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Periarticular and subchondral bone erosion in rheumatoid arthritis caused by osteoclast differentiation and activation is a critical index for diagnosis, therapy and monitoring of the disease. Sorting nexin (SNX) 10, a member of the SNX family which functions in regulation of endosomal sorting, has been implicated to play an important clinical role in malignant osteopetrosis. Here we studied the roles and precise mechanisms of SNX10 in the bone destruction of collagen-induced arthritis (CIA) mice. METHODS The role of SNX10 in bone destruction was evaluated by a CIA mice model which was induced in male SNX10(-/-) mice and wild type littermates. The mechanism was explored in osteoclasts induced by receptor activator of nuclear factor κB ligand from bone marrow mononuclear cells of wild type and SNX10(-/-) mice. RESULTS SNX10 knockout prevented bone loss and joint destruction in CIA mice with reduced serum levels of TNF-α, interleukin 1β and anticollagen IgG 2α antibody. SNX10 deficiency did not block osteoclastogenesis, but significantly impaired osteoclast maturation and bone-resorption function by disturbing the formation of actin belt. The production of TRAP, CtsK and MMP9 in SNX10(-/-) osteoclasts was significantly inhibited, and partially restored by SNX10 overexpression. We further demonstrated that the degradation of NFATc1 was accelerated in SNX10(-/-) osteoclasts causing an inhibition of integrin β3-Src-PYK2 signalling. CONCLUSIONS Our study discloses a crucial role and novel mechanism for SNX10 in osteoclast function, and provides evidence for SNX10 as a promising novel therapeutic target for suppression of immune inflammation and bone erosion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Chun Zhou
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan You
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Weixing Shen
- The Translational Medicine Research Center, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Peng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao-Tian Feng
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Ying Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei-Wei Shao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui-Xian Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wan-Zhen Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Xiaoyan Shen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Marshall RA, Osborn DPS. Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function. Cilia 2016; 5:16. [PMID: 27168933 PMCID: PMC4862167 DOI: 10.1186/s13630-016-0036-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/01/2016] [Indexed: 02/27/2023] Open
Abstract
Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies.
Collapse
Affiliation(s)
- Ryan A Marshall
- Cell Sciences and Genetics Research Centre, St George's University of London, London, SW17 0RE UK
| | - Daniel P S Osborn
- Cell Sciences and Genetics Research Centre, St George's University of London, London, SW17 0RE UK
| |
Collapse
|
38
|
Zeng B, Li R, Hu Y, Hu B, Zhao Q, Liu H, Yuan P, Wang Y. A novel mutation and a known mutation in the CLCN7 gene associated with relatively stable infantile malignant osteopetrosis in a Chinese patient. Gene 2016; 576:176-81. [DOI: 10.1016/j.gene.2015.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/17/2015] [Accepted: 10/12/2015] [Indexed: 01/28/2023]
|
39
|
Gokey JJ, Ji Y, Tay HG, Litts B, Amack JD. Kupffer's vesicle size threshold for robust left-right patterning of the zebrafish embryo. Dev Dyn 2015; 245:22-33. [PMID: 26442502 DOI: 10.1002/dvdy.24355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/21/2015] [Accepted: 09/27/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Motile cilia in the "organ of asymmetry" create directional fluid flows that are vital for left-right (LR) asymmetric patterning of vertebrate embryos. Organ function often depends on tightly regulated organ size control, but the role of organ of asymmetry size in LR patterning has remained unknown. Observations of the organ of asymmetry in the zebrafish, called Kupffer's vesicle (KV), have suggested significant variations in KV size in wild-type embryos, raising questions about the impact of KV organ size on LR patterning. RESULTS To understand the relationship between organ of asymmetry size and its function, we characterized variations in KV at several developmental stages and in several different zebrafish strains. We found that the number of KV cilia and the size of the KV lumen were highly variable, whereas the length of KV cilia showed less variation. These variabilities were similar among different genetic backgrounds. By specifically modulating KV size and analyzing individual embryos, we identified a size threshold that is necessary for KV function. CONCLUSIONS Together these results indicate the KV organ of asymmetry size is not tightly controlled during development, but rather must only exceed a threshold to direct robust LR patterning of the zebrafish embryo.
Collapse
Affiliation(s)
- Jason J Gokey
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Yongchang Ji
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Hwee Goon Tay
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Bridget Litts
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| |
Collapse
|
40
|
Gokey JJ, Dasgupta A, Amack JD. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish. Dev Biol 2015; 407:115-30. [PMID: 26254189 DOI: 10.1016/j.ydbio.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/20/2022]
Abstract
Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.
Collapse
Affiliation(s)
- Jason J Gokey
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
41
|
Sun-Wada GH, Wada Y. Role of vacuolar-type proton ATPase in signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1166-72. [PMID: 26072192 DOI: 10.1016/j.bbabio.2015.06.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
The vacuolar H(+)-ATPase (V-ATPase) was first identified as an electrogenic proton pump that acidifies the lumen of intra- and extracellular compartments. The acidic pH generated by V-ATPase is important for a wide range of cellular processes as well as acidification-independent processes such as secretion and membrane fusion. In addition to these housekeeping functions, recent studies implicate V-ATPase in the direct regulation and function of signaling pathways. In this review, we describe recent findings on the functions of V-ATPase in growth regulation and tissue physiology.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto 610-0395, Japan.
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
42
|
Finetti F, Onnis A, Baldari CT. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium. Traffic 2015; 16:241-9. [PMID: 25393976 DOI: 10.1111/tra.12241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023]
Abstract
The signals that orchestrate the process of T cell activation are coordinated at the specialized interface that forms upon contact with an antigen presenting cell displaying a specific MHC-associated peptide ligand, known as the immune synapse. The central role of vesicular traffic in the assembly of the immune synapse has emerged only in recent years with the finding that sustained T-cell receptor (TCR) signaling involves delivery of TCR/CD3 complexes from an intracellular pool associated with recycling endosomes. A number of receptors as well as membrane-associated signaling mediators have since been demonstrated to exploit this process to localize to the immune synapse. Here, we will review our current understanding of the mechanisms responsible for TCR recycling, with a focus on the intraflagellar transport system, a multimolecular complex that is responsible for the assembly and function of the primary cilium which we have recently implicated in polarized endosome recycling to the immune synapse.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | | | | |
Collapse
|
43
|
Jiménez-Amilburu V, Jong-Raadsen S, Bakkers J, Spaink HP, Marín-Juez R. GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. J Endocrinol 2015; 224:1-15. [PMID: 25326603 DOI: 10.1530/joe-14-0539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiomyopathies-associated metabolic pathologies (e.g., type 2 diabetes and insulin resistance) are a leading cause of mortality. It is known that the association between these pathologies works in both directions, for which heart failure can lead to metabolic derangements such as insulin resistance. This intricate crosstalk exemplifies the importance of a fine coordination between one of the most energy-demanding organs and an equilibrated carbohydrate metabolism. In this light, to assist in the understanding of the role of insulin-regulated glucose transporters (GLUTs) and the development of cardiomyopathies, we have developed a model for glut12 deficiency in zebrafish. GLUT12 is a novel insulin-regulated GLUT expressed in the main insulin-sensitive tissues, such as cardiac muscle, skeletal muscle, and adipose tissue. In this study, we show that glut12 knockdown impacts the development of the embryonic heart resulting in abnormal valve formation. Moreover, glut12-deficient embryos also exhibited poor glycemic control. Glucose measurements showed that these larvae were hyperglycemic and resistant to insulin administration. Transcriptome analysis demonstrated that a number of genes known to be important in cardiac development and function as well as metabolic mediators were dysregulated in these larvae. These results indicate that glut12 is an essential GLUT in the heart where the reduction in glucose uptake due to glut12 deficiency leads to heart failure presumably due to the lack of glucose as energy substrate. In addition, the diabetic phenotype displayed by these larvae after glut12 abrogation highlights the importance of this GLUT during early developmental stages.
Collapse
Affiliation(s)
- Vanesa Jiménez-Amilburu
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Susanne Jong-Raadsen
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Jeroen Bakkers
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Herman P Spaink
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Rubén Marín-Juez
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| |
Collapse
|
44
|
Xu T, Xu J, Ye Y, Wang Q, Shu X, Pei D, Liu J. Structure of human SNX10 reveals insights into its role in human autosomal recessive osteopetrosis. Proteins 2014; 82:3483-9. [DOI: 10.1002/prot.24689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
- School of Life Sciences, University of Science and Technology of China; Hefei 230026 China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Yinghua Ye
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Qi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
- School of Life Sciences, University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
45
|
Rendu J, Satre V, Testard H, Devillard F, Vieville G, Fauré J, Amblard F, Jouk PS, Coutton C. 7p22.3 microdeletion disruptingSNX8in a patient presenting with intellectual disability but no tetralogy of Fallot. Am J Med Genet A 2014; 164A:2133-5. [DOI: 10.1002/ajmg.a.36566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- John Rendu
- Département de Biochimie, Biochimie et Génétique Moléculaire; Toxicologie et Pharmacologie; CHU Grenoble Grenoble France
- Université Joseph Fourier; Grenoble France
- Grenoble Institut des Neurosciences; Unité INSERM U836 Grenoble France
| | - Véronique Satre
- Université Joseph Fourier; Grenoble France
- Laboratoire de Génétique Chromosomique, Département de Génétique et Procréation; Hôpital Couple-Enfant; CHU Grenoble Grenoble France
- Université Joseph Fourier, AGIM CNRS FRE3405, Equipe “Andrologie, Génétique et Cancer”; Grenoble France
| | - Hervé Testard
- Service de Pédiatrie et Néonatalogie Centre Hospitalier ALPES LEMAN; Contamine sur Arve France
| | - Francoise Devillard
- Laboratoire de Génétique Chromosomique, Département de Génétique et Procréation; Hôpital Couple-Enfant; CHU Grenoble Grenoble France
| | - Gaëlle Vieville
- Laboratoire de Génétique Chromosomique, Département de Génétique et Procréation; Hôpital Couple-Enfant; CHU Grenoble Grenoble France
| | - Julien Fauré
- Département de Biochimie, Biochimie et Génétique Moléculaire; Toxicologie et Pharmacologie; CHU Grenoble Grenoble France
- Université Joseph Fourier; Grenoble France
- Grenoble Institut des Neurosciences; Unité INSERM U836 Grenoble France
| | - Florence Amblard
- Laboratoire de Génétique Chromosomique, Département de Génétique et Procréation; Hôpital Couple-Enfant; CHU Grenoble Grenoble France
| | - Pierre-Simon Jouk
- Service de Génétique Clinique, Département de Génétique et Procréation; Hôpital Couple-Enfant; CHU Grenoble Grenoble France
| | - Charles Coutton
- Université Joseph Fourier; Grenoble France
- Laboratoire de Génétique Chromosomique, Département de Génétique et Procréation; Hôpital Couple-Enfant; CHU Grenoble Grenoble France
- Université Joseph Fourier, AGIM CNRS FRE3405, Equipe “Andrologie, Génétique et Cancer”; Grenoble France
| |
Collapse
|
46
|
Abstract
Many internal organs develop distinct left and right sides that are essential for their functions. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that plays an important role in establishing left-right (LR) signaling cascades. These ‘LR cilia’ are found in the ventral node and posterior notochordal plate in mammals, the gastrocoel roof plate in amphibians and Kupffer’s vesicle in teleost fish. I consider these transient ciliated structures as the ‘organ of asymmetry’ that directs LR patterning of the developing embryo. Variations in size and morphology of the organ of asymmetry in different vertebrate species have raised questions regarding the fundamental features that are required for LR determination. Here, I review current models for how LR asymmetry is established in vertebrates, discuss the cellular architecture of the ciliated organ of asymmetry and then propose key features of this organ that are critical for orienting the LR body axis.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Department of Cell and Developmental Biology; State University of New York; Upstate Medical University; Syracuse, NY USA
| |
Collapse
|
47
|
Koefoed K, Veland IR, Pedersen LB, Larsen LA, Christensen ST. Cilia and coordination of signaling networks during heart development. Organogenesis 2013; 10:108-25. [PMID: 24345806 DOI: 10.4161/org.27483] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.
Collapse
Affiliation(s)
- Karen Koefoed
- Department of Biology; University of Copenhagen; Copenhagen, Denmark; Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen, Denmark
| | - Iben Rønn Veland
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | | | - Lars Allan Larsen
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen, Denmark
| | | |
Collapse
|
48
|
Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 2013; 9:522-36. [PMID: 23877423 DOI: 10.1038/nrendo.2013.137] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Unit Of Support/Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Italy
| | | | | | | | | |
Collapse
|
49
|
Lacombe J, Karsenty G, Ferron M. Regulation of lysosome biogenesis and functions in osteoclasts. Cell Cycle 2013; 12:2744-52. [PMID: 23966172 DOI: 10.4161/cc.25825] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In order to resorb the mineralized bone extracellular matrix, the osteoclast relies on the generation of a resorption lacuna characterized by the presence of specific proteases and a low pH. Hence, bone resorption by osteoclasts is highly dependent on lysosomes, the organelles specialized in intra- and extracellular material degradation. This is best illustrated by the fact that multiple forms of human osteopetrosis are caused by mutations in genes encoding for lysosomal proteins. Yet, until recently, the molecular mechanisms regulating lysosomal biogenesis and function in osteoclasts were poorly understood. Here we review the latest developments in the study of lysosomal biogenesis and function in osteoclasts with an emphasis on the transcriptional control of these processes.
Collapse
Affiliation(s)
- Julie Lacombe
- Institut de Recherches Cliniques de Montréal; Montréal, Québec, Canada
| | | | | |
Collapse
|
50
|
Pangrazio A, Fasth A, Sbardellati A, Orchard PJ, Kasow KA, Raza J, Albayrak C, Albayrak D, Vanakker OM, De Moerloose B, Vellodi A, Notarangelo LD, Schlack C, Strauss G, Kühl JS, Caldana E, Lo Iacono N, Susani L, Kornak U, Schulz A, Vezzoni P, Villa A, Sobacchi C. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res 2013; 28:1041-9. [PMID: 23280965 DOI: 10.1002/jbmr.1849] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/21/2012] [Accepted: 12/05/2012] [Indexed: 11/05/2022]
Abstract
Human Autosomal Recessive Osteopetrosis (ARO) is a genetically heterogeneous disorder caused by reduced bone resorption by osteoclasts. In 2000, we found that mutations in the TCIRG1 gene encoding for a subunit of the proton pump (V-ATPase) are responsible for more than one-half of ARO cases. Since then, five additional genes have been demonstrated to be involved in the pathogenesis of the disease, leaving approximately 25% of cases that could not be associated with a genotype. Very recently, a mutation in the sorting nexin 10 (SNX10) gene, whose product is suggested to interact with the proton pump, has been found in 3 consanguineous families of Palestinian origin, thus adding a new candidate gene in patients not previously classified. Here we report the identification of 9 novel mutations in this gene in 14 ARO patients from 12 unrelated families of different geographic origin. Interestingly, we define the molecular defect in three cases of "Västerbottenian osteopetrosis," named for the Swedish Province where a higher incidence of the disease has been reported. In our cohort of more than 310 patients from all over the world, SNX10-dependent ARO constitutes 4% of the cases, with a frequency comparable to the receptor activator of NF-κB ligand (RANKL), receptor activator of NF-κB (RANK) and osteopetrosis-associated transmembrane protein 1 (OSTM1)-dependent subsets. Although the clinical presentation is relatively variable in severity, bone seems to be the only affected tissue and the defect can be almost completely rescued by hematopoietic stem cell transplantation (HSCT). These results confirm the involvement of the SNX10 gene in human ARO and identify a new subset with a relatively favorable prognosis as compared to TCIRG1-dependent cases. Further analyses will help to better understand the role of SNX10 in osteoclast physiology and verify whether this protein might be considered a new target for selective antiresorptive therapies.
Collapse
Affiliation(s)
- Alessandra Pangrazio
- Unità Organizzativa di Supporto/Istituto di Ricerca Genetica e Biomedica, Milan Unit, CNR, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|