1
|
Marcella S, Braile M, Grimaldi AM, Soricelli A, Smaldone G. Exploring thymic stromal lymphopoietin in the breast cancer microenvironment: A preliminary study. Oncol Lett 2025; 29:182. [PMID: 40007626 PMCID: PMC11851057 DOI: 10.3892/ol.2025.14928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 02/27/2025] Open
Abstract
Cancer participates in the immune response by releasing several factors, such as cytokines and chemokines, which can alter the ability of the immune system to identify and eradicate cancer. Notably, the role of thymic stromal lymphopoietin (TSLP) in breast cancer (BC) is currently controversial and unclear. The present study characterized the role of TSLP in BC and its interaction with peripheral blood mononuclear cells, focusing on the CD14+CD16+ monocyte population via the secretome released by BC cells. The UALCAN and Gene Expression Profiling Interactive Analysis tools were employed to define TSLP expression in BC, and its levels in different BC subtype cell lines were validated using reverse transcription-quantitative PCR and ELISA. In addition, TIMER 2.0 was used to determine the abundance of immune cell infiltration in BC. Subsequently, the effects of BC conditioned medium (CM) and TSLP were investigated on CD14+CD16+ monocytes via flow cytometry. A Cellular Reactive Oxygen Species (ROS) Assay Kit, Fluo-4 AM assay and ATPlite assay were used to explore the effects of TSLP on monocyte cellular metabolism. The results showed that a reduction in TSLP expression was associated with an unfavorable prognosis in BC. Furthermore, a higher expression of TSLP in CM from a non-tumoral cell line increased the percentage of CD14+CD16+ monocytes. Finally, it was revealed that TSLP decreased intracellular ATP levels, while increasing intracellular calcium levels and producing ROS in THP-1 cells. Therefore, TSLP may be considered a novel biomarker in the BC microenvironment, where it could regulate cellular metabolism through the expansion of CD14+CD16+ monocytes.
Collapse
|
2
|
Wang J, Li X, Liu P, Dai Y, Zhu H, Zhang Y, Wu M, Yao Y, Liu M, Yu S, Jiang F, Wang S, Mu H, Jiao B, Yan H, Wu W, Shen Y, Li J, Wang S, Ren R. A phase 2 pilot study of umbilical cord blood infusion as an adjuvant consolidation therapy in elderly patients with acute myeloid leukemia. Signal Transduct Target Ther 2024; 9:358. [PMID: 39702351 DOI: 10.1038/s41392-024-02065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aging-related malignancy, with patients aged ≥60 years old facing significantly poorer prognosis. Umbilical cord blood (UCB) has emerged as a promising source with effective anti-aging roles. Here, we conducted a prospective, phase 2, single-arm trial of UCB infusion as an adjuvant consolidation therapy in elderly AML patients (ChiCTR-OPC-15006492). A total of 51 patients were enrolled (median age 66 years; range, 60-75) and received two cycles of consolidation chemotherapy combined with UCB infusion. At a median follow-up of 27.3 months (range, 9.3-100), the median overall survival (OS) was not yet reached and the median event-free survival (EFS) was 72.2 months (range, 5.4-100). The 2-year OS and EFS rates were 76.9% and 62.8%, respectively. No acute graft-versus-host disease (aGVHD) or toxicity-related death occurred in any patient. The median times to platelet and neutrophil recovery were 11.5 days (range, 6-17) and 12.2 days (range, 0-21), respectively. Single-cell RNA sequencing (scRNA-seq) identified enhanced anti-tumor and anti-aging properties of UCB, manifested through activation of immune responses and telomere synthesis/maintenance. These findings suggest that UCB infusion is an effective and safe post-remission adjuvant therapy for elderly AML patients. This study provides evidence that anti-aging therapy may serve as a new and promising dimension in combined cancer treatment.
Collapse
Affiliation(s)
- Jinzeng Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yao Dai
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunying Yao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingzhu Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuting Yu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fangying Jiang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuai Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoran Mu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junming Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, Hainan Province, 571199, China.
| |
Collapse
|
3
|
Tian J, Chen W. Prediction of Ki-67 expression and malignant potential in gastrointestinal stromal tumors: novel models based on CE-CT and serological indicators. BMC Cancer 2024; 24:1412. [PMID: 39548454 PMCID: PMC11568542 DOI: 10.1186/s12885-024-13172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
PURPOSE To identify more reliable imaging and serological indicators for predicting Ki-67 expression and malignant potential in gastrointestinal stromal tumors, as well as to develop a preoperative prediction model with clinical utility. PATIENTS AND METHODS This study retrospectively analyzed patients with gastrointestinal stromal tumors (GIST) diagnosed at the First Affiliated Hospital of Jinzhou Medical University between May 2018 and May 2024. Univariate logistic analyses, two-way stepwise regression, P-value stepwise regression, and LASSO regression were employed to screen for Ki-67 high expression and high malignant potential risk factors associated with GIST. Models were established using various regression methods; Nomograms, calibration curves, and clinical decision curves were generated for the two best prediction models. RESULTS Two-way stepwise regression analysis revealed that diameter (P=0.037; OR=1.22; 95% CI: 1.01 - 1.46), growth pattern (extraluminal type: P=0.028; OR=3.54; 95% CI: 1.14 - 10.94), enhancement model (P=0.099; OR=0.39; 95% CI: 0.12 - 1.20), EVFDM (P=0.069; OR=0.43; 95% CI: 0.17 - 1.07), PLR (P=0.099; OR=3.06; 95% CI: 0.81 - 11.59), and OPNI (P=0.058; OR=2.38; 95% CI: 0.97 - 5.84) are identified as independent risk factors for Ki-67 expression. Utilizing the two-way stepwise regression model to predict Ki-67 expression, the area under the curve (AUC) for the training group was 0.865 (95% CI: 0.807-0.922), while for the validation group it was 0.784 (95% CI: 0.631-0.937). The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for the training group were 153.360 and 174.619, respectively. Two-way stepwise regression analysis revealed that volume (P < .001, OR = 1.06; 95% CI: 1.03 - 1.09), contour (P = 0.066; OR = 0.17; 95% CI: 0.05 - 0.62), ulcer (P = 0.094; OR = 0.16; 95% CI: 0.03 - 0.98), IBSC (P = 0.008; OR = 5.27; 95% CI: 1.57 - 17.69), and OPNI (P = 0.045; OR = 0.22; 95% CI: 0.05 - 0.96) are independent risk factors for malignant potential. Utilizing the two-way stepwise regression model to predict malignant potential, the AUC for the training group was 0.950 (95% CI: 0.920 - 0.980), while for the validation group it was 0.936 (95% CI: 0.867 - 1.000). The AIC and BIC values for the training group were 96.330 and 114.552, respectively. CONCLUSION Diameter, growth pattern, enhancement pattern, EVFDM, PLR, and OPNI are independent risk factors for GIST with high Ki-67 expression. Additionally, volume, contour, ulceration, IBSC, and OPNI serve as independent risk factors for GIST with high malignant potential. The preoperative models developed using CT images can predict the malignant potential and Ki-67 expression status of GIST to a certain extent. When combined with serological indicators, these models' predictive performance can be further enhanced.
Collapse
Affiliation(s)
- Jun Tian
- Radiology Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Weizhi Chen
- Radiology Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
4
|
Kaneko Y, Miyato H, Tojo M, Futoh Y, Takahashi K, Kimura Y, Saito A, Ohzawa H, Yamaguchi H, Sata N, Kitayama J, Hosoya Y. Splenectomy has opposite effects on the growth of primary compared with metastatic tumors in a murine colon cancer model. Sci Rep 2024; 14:4496. [PMID: 38402307 PMCID: PMC10894273 DOI: 10.1038/s41598-024-54768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
The spleen is a key source of circulating and tumor-infiltrating immune cells. However, the effect of splenectomy on tumor growth remains unclear. At 3 weeks after splenectomy, we subcutaneously injected LuM1 cells into BALB/c mice and evaluated the growth of primary tumors and lung metastases at 4 weeks after tumor inoculation. In addition, we examined the phenotypes of immune cells in peripheral blood by using flow cytometry and in tumor tissue by using multiplex immunohistochemistry. The growth of primary tumors was reduced in splenectomized mice compared with the sham-operated group. Conversely, splenectomized mice had more lung metastases. Splenectomized mice had fewer CD11b+cells, especially monocytic MDSCs (CD11b+Gr-1neg-lowLy6chigh), and NK cells (CD49b+CD335+). The proportion of NK cells was inversely correlated with the number of lung metastases. In splenectomized mice, the density of CD3+ and granzyme B+ CD8+ T cells was increased, with fewer M2-type macrophages in primary tumors, but NK cells were decreased markedly in lung. Splenectomy concurrently enhances T cell-mediated acquired immunity by reducing the number of monocytic MDSCs and suppresses innate immunity by decreasing the number of NK cells. Splenectomy has opposite effects on primary and metastatic lesions through differential regulation on these two immune systems.
Collapse
Affiliation(s)
- Yuki Kaneko
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Mineyuki Tojo
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yurie Futoh
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kazuya Takahashi
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuki Kimura
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Akira Saito
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
5
|
Jain K, Henrich IC, Quick L, Young R, Mondal S, Oliveira AM, Blobel GA, Chou MM. Natural Killer Cell Activation by Ubiquitin-specific Protease 6 Mediates Tumor Suppression in Ewing Sarcoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1615-1627. [PMID: 37615015 PMCID: PMC10443598 DOI: 10.1158/2767-9764.crc-22-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Ewing sarcoma is a rare and deadly pediatric bone cancer for which survival rates and treatment options have stagnated for decades. Ewing sarcoma has not benefited from immunotherapy due to poor understanding of how its immune landscape is regulated. We recently reported that ubiquitin-specific protease 6 (USP6) functions as a tumor suppressor in Ewing sarcoma, and identified it as the first cell-intrinsic factor to modulate the Ewing sarcoma immune tumor microenvironment (TME). USP6 induces intratumoral infiltration and activation of multiple innate immune lineages in xenografted nude mice. Here we report that natural killer (NK) cells are essential for its tumor-inhibitory functions, as NK cell depletion reverses USP6-mediated suppression of Ewing sarcoma xenograft growth. USP6 expression in Ewing sarcoma cells directly stimulates NK cell activation and degranulation in vitro, and functions by increasing surface levels of multiple NK cell-activating ligands. USP6 also induces surface upregulation of the receptor for the apoptosis-inducing ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), providing an additional route for enhanced sensitivity to NK cell killing. Furthermore, USP6-expressing Ewing sarcoma and NK cells participate in a paracrine immunostimulatory feedforward loop, wherein IFNγ secreted by activated NK cells feeds back on USP6/Ewing sarcoma cells to induce synergistic expression of chemokines CXCL9 and CXCL10. Remarkably, expression of USP6 in subcutaneous Ewing sarcoma xenografts induces systemic activation and maturation of NK cells, and induces an abscopal response in which growth of distal tumors is inhibited, coincident with increased infiltration and activation of NK cells. This work reveals how USP6 reprograms the Ewing sarcoma TME to enhance antitumor immunity, and may be exploited for future therapeutic benefit. Significance This study provides novel insights into the immunomodulatory functions of USP6, the only cancer cell-intrinsic factor demonstrated to regulate the immune TME in Ewing sarcoma. We demonstrate that USP6-mediated suppression of Ewing sarcoma tumorigenesis is dependent on NK cells. USP6 directly activates NK cell cytolytic function, inducing both intratumoral and systemic activation of NK cells in an Ewing sarcoma xenograft model.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian C. Henrich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura Quick
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert Young
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shreya Mondal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andre M. Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gerd A. Blobel
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pediatric Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Margaret M. Chou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Li R, Zhou Y, Zhang M, Xie R, Duan N, Liu H, Qin Y, Ma J, Li Z, Ye P, Wang W, Wang X. Oral squamous cell carcinoma-derived EVs promote tumor progression by regulating inflammatory cytokines and the IL-17A-induced signaling pathway. Int Immunopharmacol 2023; 118:110094. [PMID: 37030119 DOI: 10.1016/j.intimp.2023.110094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Inflammatory cytokines in the tumor microenvironment (TME) contribute to tumor growth, proliferation, and invasion, and tumor-derived extracellular vesicles (EVs) act as critical "messengers" of communication in the tumor microenvironment. The effects of EVs derived from oral squamous cell carcinoma (OSCC) cells on tumor progression and the inflammatory microenvironment are still unclear. Our study aims to investigate the role of OSCC-derived EVs in tumor progression, the imbalanced TME, and immunosuppression and their effect on the IL-17A-induced signaling pathway. METHODS EVs were isolated from the supernatant of a mouse OSCC cell line, SCC7. The effects of SCC7-EVs and the EV release-specific inhibitor GW4869 on the proliferation and migration of SCC7 cells were investigated in vitro by using CCK-8 and scratch wound healing assays. RT-qPCR and ELISA were performed to examine the alterations in cytokine levels. Then, a mouse xenograft model of OSCC was established by submucosal injection of SCC7 cells with or without SCC7-EV and GW4869 treatment. The effects of GW4869 and SCC7-EVs on xenograft tumor proliferation and invasion were investigated by tumor volume determination and histopathological examination. ELISA was used to investigate the changes in serum cytokine levels. Immunohistochemistry was adopted to analyze the alterations in the levels of inflammatory cytokines, immune factors, and crucial molecules in the IL-17A signaling pathway. RESULTS SCC7-derived EVs increased the supernatant and serum levels of IL-17A, IL-10, IL-1β, and PD-L1, while GW4869 decreased those of TNF-α and IFN-γ. SCC7-EV treatment significantly increased xenograft tumor growth and invasion in mice but resulted in little liquefactive necrosis in tumors. However, GW4869 treatment significantly inhibited xenograft tumor growth but resulted in more liquefactive necrosis. SCC7-derived EVs decreased the expression level of PTPN2, suppressing the immune responses of CD8 + T cells in vivo. Moreover, SCC7-EV treatment significantly enhanced the tumor expression levels of crucial molecules in the IL-17A pathway, including IL-17A, TRAF6 and c-FOS, whereas GW4869 treatment significantly reduced those levels in tumor tissues. CONCLUSION Our results indicated that OSCC-derived EVs can promote tumor progression by altering the TME, causing an inflammatory cytokine imbalance, inducing immunosuppression, and contributing to overactivation of the IL-17A-induced signaling pathway. Our study might provide novel insights into the role of OSCC-derived EVs in tumor biological behavior and immune dysregulation.
Collapse
|
7
|
Fu Z, Hou Y, Haugen HJ, Chen X, Tang K, Fang L, Liu Y, Zhang S, Ma Q, Chen L. TiO 2 nanostructured implant surface-mediated M2c polarization of inflammatory monocyte requiring intact cytoskeleton rearrangement. J Nanobiotechnology 2023; 21:1. [PMID: 36593461 PMCID: PMC9809010 DOI: 10.1186/s12951-022-01751-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microgravity directly disturbs the reorganization of the cytoskeleton, exerting profound effects on the physiological process of macrophages. Although it has been established that macrophage M1/M2 polarization could be manipulated by the surface nanostructure of biomaterial in our previous study under normal gravity, how will inflammatory monocytes (iMos)-derived macrophages respond to diverse nanostructured Ti surfaces under normal gravity or microgravity remains unrevealed. RESULTS In this study, Cytochalasin D, a cytoskeleton relaxant, was employed to establish the simulated microgravity (SMG) environment. Our results showed that human iMos polarized into M2c macrophages on NT5 surface but M1 type on NT20 surface with divergent inflammatory phenotypes according to the profile of macrophage polarization featured molecules under normal gravity. However, such manipulative effects of NTs surfaces on iMos-derived macrophages were strikingly weakened by SMG, characterized by the altered macrophage morphology, changed cytokine secretion profile, and decreased cell polarization capacity. CONCLUSIONS To our knowledge, this is the first metallic implantable material study focusing on the functions of specific monocyte subsets and its crucial role of the cytoskeleton in materials-mediated host immune response, which enriches our mechanism knowledge about the crosstalk between immunocytes and biomaterials. The results obtained in the present study may also provide potential targets and strategies for biomaterial development and clinical treatment via precise immune-regulation under normal gravity and microgravity.
Collapse
Affiliation(s)
- Zhaoyue Fu
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Yongli Hou
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Håvard Jostein Haugen
- grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Xutao Chen
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Kang Tang
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Liang Fang
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Yong Liu
- grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| | - Shu Zhang
- grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| | - Qianli Ma
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China ,grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Lihua Chen
- grid.233520.50000 0004 1761 4404Department of Immunology, School of Basic Medicine, Fourth Military Medical University, 169 West Changle Road, Xi’an, 710032 People’s Republic of China ,grid.233520.50000 0004 1761 4404The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, 710032 Shaanxi China
| |
Collapse
|
8
|
Yan P, Li JW, Mo LG, Huang QR. A nomogram combining inflammatory markers and clinical factors predicts survival in patients with diffuse glioma. Medicine (Baltimore) 2021; 100:e27972. [PMID: 34964788 PMCID: PMC8615312 DOI: 10.1097/md.0000000000027972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
In this study, we aimed to investigate the prognostic value of neutrophil/lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), and platelet/lymphocyte ratio (PLR) in diffuse glioma, and to establish a prognostic nomogram accordingly.The hematologic and clinicopathological data of 162 patients with primary diffuse glioma who received surgical treatment from January 2012 to December 2018 were retrospectively analyzed. Receiver operator characteristic (ROC) curve was carried out to determine the optimal cut-off values for NLR, MLR, PLR, age, and Ki-67 index, respectively. Kaplan-Meier method was used to investigate the correlation between inflammatory indicators and prognosis of glioma patients. Univariate and multivariate Cox regression were performed to evaluate the independent prognostic value of each parameter in glioma. Then, a nomogram was developed to predict 1-, 3-, and 5-year postoperative survival in diffuse glioma patients based on independent prognostic factors. Subsequent time-dependent ROC curve, calibration curve, decision curve analysis (DCA), and concordance index (C-index) were performed to assess the predictive performance of the nomogram.The Kaplan-Meier curve indicated that patients with high levels of NLR, MLR, and PLR had a poor prognosis. In addition, we found that NLR level was associated with World Health Organization (WHO) grade and IDH status of glioma. The multivariate Cox analysis indicated that resection extent, WHO grade, and NLR level were independent prognostic factors, and we established a nomogram that included these three parameters. The evaluation of the nomogram indicated that the nomogram had a good predictive performance, and the addition of NLR could improve the accuracy.NLR, MLR, and PLR were prognostic factors of diffuse glioma. In addition, the nomogram including NLR was reliable for predicting survival of diffuse glioma patients.
Collapse
|
9
|
Moreno-Cañadas R, Luque-Martín L, Arroyo AG. Intravascular Crawling of Patrolling Monocytes: A Lèvy-Like Motility for Unique Search Functions? Front Immunol 2021; 12:730835. [PMID: 34603307 PMCID: PMC8485030 DOI: 10.3389/fimmu.2021.730835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Patrolling monocytes (PMo) are the organism’s preeminent intravascular guardians by their continuous search of damaged endothelial cells and harmful microparticles for their removal and to restore homeostasis. This surveillance is accomplished by PMo crawling on the apical side of the endothelium through regulated interactions of integrins and chemokine receptors with their endothelial ligands. We propose that the search mode governs the intravascular motility of PMo in vivo in a similar way to T cells looking for antigen in tissues. Signs of damage to the luminal side of the endothelium (local death, oxidized LDL, amyloid deposits, tumor cells, pathogens, abnormal red cells, etc.) will change the diffusive random towards a Lèvy-like crawling enhancing their recognition and clearance by PMo damage receptors as the integrin αMβ2 and CD36. This new perspective can help identify new actors to promote unique PMo intravascular actions aimed at maintaining endothelial fitness and combating harmful microparticles involved in diseases as lung metastasis, Alzheimer’s angiopathy, vaso-occlusive disorders, and sepsis.
Collapse
Affiliation(s)
- Rocío Moreno-Cañadas
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Laura Luque-Martín
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Alicia G Arroyo
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Guo L, Yi J, Liu M, Li J. The prognostic landscape of tumor-infiltrating immune cells in lung squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:799. [PMID: 34268412 PMCID: PMC8246229 DOI: 10.21037/atm-21-1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
Background Exploring novel biomarkers and developing effective therapeutic strategies can improve the prognosis of lung squamous cell carcinoma (LUSC) in the future. The prognostic value of tumor-infiltrating immune cells (TICs) in solid tumors has been extensively studied. However, the landscape of TICs involved in the prognosis of non-small cell lung cancer (NSCLC), especially in LUSC, remains unclear and should be systematically investigated. Methods This retrospective study analyzed the immune-related transcriptional profiles of 490 LUSC patients from The Cancer Genome Atlas (TCGA) cohort. Using the CIBERSORT method, TICs were evaluated and examined for their association with overall survival (OS) in LUSC. Results Out of the 27 TICs, 14 were correlated with prognosis in LUSC. A novel prognostic model characterized by fewer memory B cells and more central memory CD8 T cells, regulatory T cells (Tregs), and plasmacytoid dendritic cell (pDC) infiltration predicted poor OS in LUSC with high accuracy. The 1-, 3-, and 5-year areas under the curve (AUC) were 0.95, 0.98, and 0.96, respectively, in the training cohort. This finding was further validated in the validation cohort, where the 1-, 3-, and 5-year AUCs were 0.95, 0.98, and 0.95, respectively. Conclusions These findings may provide more effective prognostic biomarkers and potential therapeutic targets for the immunotherapy of LUSC.
Collapse
Affiliation(s)
- Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaoyu Yi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ming Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juanjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Jiang R, Agrawal S, Aghaamoo M, Parajuli R, Agrawal A, Lee AP. Rapid isolation of circulating cancer associated fibroblasts by acoustic microstreaming for assessing metastatic propensity of breast cancer patients. LAB ON A CHIP 2021; 21:875-887. [PMID: 33351008 DOI: 10.1039/d0lc00969e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells (i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8+ T cells expressing programmed cell death protein 1 (PD1), higher number of CD4+ T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment.
Collapse
Affiliation(s)
- Ruoyu Jiang
- Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Sudhanshu Agrawal
- Department of Medicine, Division of Basic and Clinical Immunology, University of California, Irvine, CA 92697, USA
| | - Mohammad Aghaamoo
- Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Ritesh Parajuli
- Department of Medicine, Division of Hematology Oncology, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Department of Medicine, Division of Basic and Clinical Immunology, University of California, Irvine, CA 92697, USA
| | - Abraham P Lee
- Biomedical Engineering, University of California, Irvine, CA 92697, USA. and Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
13
|
Chen SY, Chen YZ, Lee YJ, Jiang CL, Lu SC, Lin FJ. Maternal hypercholesterolemia exacerbates atherosclerosis lesions in female offspring through potentiating macrophage polarization toward an inflammatory M1 phenotype. J Nutr Biochem 2020; 90:108575. [PMID: 33387610 DOI: 10.1016/j.jnutbio.2020.108575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Maternal hypercholesterolemia induces early onset of cardiovascular diseases in offspring; however, its underlying mechanism remains poorly understood. We hypothesized that maternal hypercholesterolemia increases offspring susceptibility to atherosclerosis in adulthood through developmental modifications of macrophages. Female apolipoprotein E (ApoE)-deficient mice were fed a Western-type diet (WD) or a control diet (CD) prior to and throughout gestation and lactation. The offspring were all fed a WD after weaning. Sixteen-week-old female offspring of WD-fed dams showed a significant increase in atherosclerotic lesions of the aorta and aortic root compared with those of CD-fed dams. This effect was associated with increased macrophage accumulation within lesions, macrophage inflammation and an increase in circulating Ly6Chigh monocyte and F4/80 macrophage counts. We further evidenced that in utero WD exposure promoted macrophage polarization toward the M1 phenotype by elevating M1 markers (Cd86, Inos/Nos2) without affecting M2 markers (Cd206, Arg1). Proinflammatory cytokine synthesis was also enhanced in response to LPS. Finally, maternal WD intake strongly inhibited the macrophage expression of Pparg and Lxra, which was associated with aberrant DNA methylation of Lxra promoter. Our findings demonstrate that maternal hypercholesterolemia exacerbates atherosclerosis, in part by altering the epigenetic state of the macrophage genome of the offspring, imprinting gene expression, and changing macrophage polarization, which ultimately contributes to plaque macrophage burden.
Collapse
Affiliation(s)
- Sin-Yu Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Zhen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Jing Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Zheng Y, Wang Z, Wei S, Liu Z, Chen G. Epigenetic silencing of chemokine CCL2 represses macrophage infiltration to potentiate tumor development in small cell lung cancer. Cancer Lett 2020; 499:148-163. [PMID: 33253790 DOI: 10.1016/j.canlet.2020.11.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022]
Abstract
Highly invasive and rapidly fatal, small-cell lung cancer (SCLC) has been an insurmountable gulf since discovery. Innate immunity plays a vital role in anti-tumor response, among which macrophages contribute to an indispensable character. Here, we found that macrophage infiltration in SCLC reduced significantly in a stage-dependent manner, attributed to the decreased expression of CCL2, a potent chemoattractant for monocytes. Validated by ChIP-qPCR and MassArray methylation analysis, CCL2 expression was inhibited by EZH2-mediated H3K27me3 in the enhancer regions and DNMT1-mediated DNA methylation in the promoter regions, the process of which could be reversed by small-molecular compounds, EPZ011989 and Decitabine. Direct cell-cell contact between SCLC cells and macrophages skewed the phenotype of macrophages to be more M1-like. Furthermore, in an ectopic engraft model of SCLC, disruption of EZH2/DNMT1 function using the combination treatment of EPZ011989 and Decitabine potently abrogated the inhibition of macrophage infiltration and thus suppressed tumor growth, the effect of which was impaired by CCL2 neutralization or macrophage depletion. Overall, this work provides new insights into the role of macrophages in SCLC and establishes a rationale for constructing novel therapeutic avenues for SCLC patients.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Oncology, First Hospital, Jilin University, 130012, Jilin, PR China.
| | - Zhihong Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850, Beijing, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Simeng Wei
- Department of Oncology, First Hospital, Jilin University, 130012, Jilin, PR China
| | - Ziling Liu
- Department of Oncology, First Hospital, Jilin University, 130012, Jilin, PR China.
| | - Guojiang Chen
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850, Beijing, PR China.
| |
Collapse
|
15
|
Dahmani Z, Addou-Klouche L, Gizard F, Dahou S, Messaoud A, Chahinez Djebri N, Benaissti MI, Mostefaoui M, Terbeche H, Nouari W, Miliani M, Lefranc G, Fernandez A, Lamb NJ, Aribi M. Metformin partially reverses the inhibitory effect of co-culture with ER-/PR-/HER2+ breast cancer cells on biomarkers of monocyte antitumor activity. PLoS One 2020; 15:e0240982. [PMID: 33108409 PMCID: PMC7591052 DOI: 10.1371/journal.pone.0240982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Immune activities of monocytes (MOs) can be altered within the microenvironment of solid malignancies, including breast cancer. Metformin (1,1-dimethylbiguanide hydrochloride, MET), has been shown to decrease tumor cell proliferation, but its effects have yet to be explored with respect to MOs (monocytes) activity during their crosstalk with breast cancer cells. Here, we investigated the effects of MET on overall phenotypic functional activities, including cellular immunometabolism and protective redox signaling based-biomarkers, intracellular free calcium ions (ifCa2+), phagocytosis and co-operative cytokines (IFN-γ and IL-10) of autologous MOs before and during their interplay with primary ER-/PR-/HER2+ breast cancer cells. METHODS Human primary breast cancer cells were either cultured alone or co-cultured with autologous MOs before treatment with MET. RESULTS MET downregulated breast cancer cell proliferation and phagocytosis, while having no significant effect on the ratio of phosphorylated Akt (p-Akt) to total Akt. Additionally, we observed that, in the absence of MET treatment, the levels of lactate dehydrogenase (LDH)-based cytotoxicity, catalase, ifCa2+, IL-10 and arginase activity were significantly reduced in co-cultures compared to levels in MOs cultured alone whereas levels of inducible nitric oxide synthase (iNOS) activity were significantly increased. In contrast, MET treatment reduced the effects measured in co-culture on the levels of LDH-based cytotoxicity, arginase activity, catalase, ifCa2+, and IFN-γ. MET also induced upregulation of both iNOS and arginase in MO cells, although the increase did not reach significant difference for iNOS activity. Moreover, MET induced a robust increase of superoxide dismutase (SOD) activity in MOs, but not in MOs co-cultured with breast cancer cells. Furthermore, MET markedly upregulated the levels of IFN-γ production and downregulated those of IL-10 in isolated MOs, while inducing a slight opposing up-regulation of IL-10 production in co-cultures. CONCLUSIONS Our results show that the biomarkers of phenotypic functional activities of MOs are modified after co-culturing with primary human breast cancer cells. Treatment of co-cultures with MET resulted in increased release of antitumor cytokine IFN-γ and ifCa2+, and increased cell necrosis during breast cancer cells-MOs crosstalk.
Collapse
Affiliation(s)
- Zoheir Dahmani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Lynda Addou-Klouche
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Florence Gizard
- Cell Biology Unit, IGH CNRS, Université de Montpellier, (UMR 9002), Montpellier, France
| | - Sara Dahou
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Aida Messaoud
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Nihel Chahinez Djebri
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Mahmoud Idris Benaissti
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Meriem Mostefaoui
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Hadjer Terbeche
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Marwa Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Gérard Lefranc
- IGH, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Anne Fernandez
- Cell Biology Unit, IGH CNRS, Université de Montpellier, (UMR 9002), Montpellier, France
| | - Ned J. Lamb
- Cell Biology Unit, IGH CNRS, Université de Montpellier, (UMR 9002), Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
16
|
Liu M, Tong Z, Ding C, Luo F, Wu S, Wu C, Albeituni S, He L, Hu X, Tieri D, Rouchka EC, Hamada M, Takahashi S, Gibb AA, Kloecker G, Zhang HG, Bousamra M, Hill BG, Zhang X, Yan J. Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. J Clin Invest 2020; 130:2081-2096. [PMID: 31945018 PMCID: PMC7108920 DOI: 10.1172/jci131335] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
Macrophages have been linked to tumor initiation, progression, metastasis, and treatment resistance. However, the transcriptional regulation of macrophages driving the protumor function remains elusive. Here, we demonstrate that the transcription factor c-Maf is a critical controller for immunosuppressive macrophage polarization and function in cancer. c-Maf controls many M2-related genes and has direct binding sites within a conserved noncoding sequence of the Csf-1r gene and promotes M2-like macrophage-mediated T cell suppression and tumor progression. c-Maf also serves as a metabolic checkpoint regulating the TCA cycle and UDP-GlcNAc biosynthesis, thus promoting M2-like macrophage polarization and activation. Additionally, c-Maf is highly expressed in tumor-associated macrophages (TAMs) and regulates TAM immunosuppressive function. Deletion of c-Maf specifically in myeloid cells results in reduced tumor burden with enhanced antitumor T cell immunity. Inhibition of c-Maf partly overcomes resistance to anti-PD-1 therapy in a subcutaneous LLC tumor model. Similarly, c-Maf is expressed in human M2 and tumor-infiltrating macrophages/monocytes as well as circulating monocytes of human non-small cell lung carcinoma (NSCLC) patients and critically regulates their immunosuppressive activity. The natural compound β-glucan downregulates c-Maf expression on macrophages, leading to enhanced antitumor immunity in mice. These findings establish a paradigm for immunosuppressive macrophage polarization and transcriptional regulation by c-Maf and suggest that c-Maf is a potential target for effective tumor immunotherapy.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunity, Cellular
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Macrophage Activation
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Mice, Knockout
- Monocytes/immunology
- Monocytes/pathology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Proto-Oncogene Proteins c-maf/genetics
- Proto-Oncogene Proteins c-maf/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Min Liu
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Zan Tong
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Chuanlin Ding
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Fengling Luo
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Shouzhen Wu
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Caijun Wu
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | | | | - Xiaoling Hu
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - David Tieri
- Department of Anatomical Sciences and Neurobiology, and
| | - Eric C. Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, USA
| | - Michito Hamada
- Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | | | - Goetz Kloecker
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Huang-ge Zhang
- Department of Microbiology and Immunology, School of Medicine
| | - Michael Bousamra
- Department of Cardiovascular Thoracic Surgery, University of Louisville, Louisville, Kentucky, USA
| | | | | | - Jun Yan
- Division of Immunotherapy, Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, School of Medicine
| |
Collapse
|
17
|
Ge Y, Mu W, Ba Q, Li J, Jiang Y, Xia Q, Wang H. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett 2020; 477:41-48. [PMID: 32112905 DOI: 10.1016/j.canlet.2020.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, despite improvements in the clinical trial and diagnosis, HCC still remains high mortality due to the 70% recurrence and lung metastasis after surgical resection. Exosomes are small membrane vesicles, which are shuttled from donor cells to recipient cells, contributing to the recruitment and reprogramming of constituents via an autocrine or paracrine fashion. HCC derived exosomes could redirect metastasis of tumor cells which lack the capacity to metastasize to a specific organ via generating pre-metastatic niche. These findings emphasize a practical and potentially feasible role of exosomes in the treatment of patients with HCC, both as a target and a vehicle for drug design. We herein summarize recent findings that implicate oncogenes and non-canonical signaling of HCC exosomes, as well as the impact of exosomal bioactive molecules in high recurrence induced by organ-specific metastasis. The aim of review is to illustrate the underlying mechanism of exosomes in tumor metastasis, immune evasion, and the potential application of prognostic biomarker in HCC process.
Collapse
Affiliation(s)
- Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiguo Jiang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiang Xia
- Organ Transplantation Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
18
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
19
|
Triaca V, Carito V, Fico E, Rosso P, Fiore M, Ralli M, Lambiase A, Greco A, Tirassa P. Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging (Albany NY) 2019; 11:11770-11792. [PMID: 31812953 PMCID: PMC6932930 DOI: 10.18632/aging.102499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/17/2019] [Indexed: 05/12/2023]
Abstract
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
20
|
Milanese JS, Tibiche C, Zou J, Meng Z, Nantel A, Drouin S, Marcotte R, Wang E. Germline variants associated with leukocyte genes predict tumor recurrence in breast cancer patients. NPJ Precis Oncol 2019; 3:28. [PMID: 31701019 PMCID: PMC6825127 DOI: 10.1038/s41698-019-0100-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Germline variants such as BRCA1/2 play an important role in tumorigenesis and clinical outcomes of cancer patients. However, only a small fraction (i.e., 5-10%) of inherited variants has been associated with clinical outcomes (e.g., BRCA1/2, APC, TP53, PTEN and so on). The challenge remains in using these inherited germline variants to predict clinical outcomes of cancer patient population. In an attempt to solve this issue, we applied our recently developed algorithm, eTumorMetastasis, which constructs predictive models, on exome sequencing data to ER+ breast (n = 755) cancer patients. Gene signatures derived from the genes containing functionally germline variants significantly distinguished recurred and non-recurred patients in two ER+ breast cancer independent cohorts (n = 200 and 295, P = 1.4 × 10-3). Furthermore, we compared our results with the widely known Oncotype DX test (i.e., Oncotype DX breast cancer recurrence score) and outperformed prediction for both high- and low-risk groups. Finally, we found that recurred patients possessed a higher rate of germline variants. In addition, the inherited germline variants from these gene signatures were predominately enriched in T cell function, antigen presentation, and cytokine interactions, likely impairing the adaptive and innate immune response thus favoring a pro-tumorigenic environment. Hence, germline genomic information could be used for developing non-invasive genomic tests for predicting patients' outcomes in breast cancer.
Collapse
Affiliation(s)
| | - Chabane Tibiche
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Jinfeng Zou
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Zhigang Meng
- Department of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Chinese Academy of Agricultural Science, No. 12 Zhongguangcun South Street, Haidian District, Beijing, 100086 China
| | - Andre Nantel
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Simon Drouin
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Richard Marcotte
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue W, Montreal, QC H3A 1A3 Canada
| | - Edwin Wang
- Department of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Alberta Children’s Hospital Research Institute and Arnie Charbonneau Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
21
|
Saini M, Szczerba BM, Aceto N. Circulating Tumor Cell-Neutrophil Tango along the Metastatic Process. Cancer Res 2019; 79:6067-6073. [DOI: 10.1158/0008-5472.can-19-1972] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
|
22
|
Tolerability and Safety of a Nutritional Supplement with Potential as Adjuvant in Colorectal Cancer Therapy: A Randomized Trial in Healthy Volunteers. Nutrients 2019; 11:nu11092001. [PMID: 31450563 PMCID: PMC6769991 DOI: 10.3390/nu11092001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Bioactive supplements display relevant therapeutic properties when properly applied according to validated molecular effects. Our previous research efforts established the basis to develop a dietary supplement based on a Rosmarinus officinalis supercritical extract. This was enriched in phenolic diterpenes (RE) with proven properties against signaling pathways involved in colon tumorigenesis, and shark liver oil rich in alkylglycerols (AKG) as a bioactive lipid vehicle to improve RE bioavailability and synergize with the potential therapeutic action of the extract. Herein, we have investigated the tolerability and safety of the supplement and the biological and molecular effects from an immuno-nutritional perspective. Sixty healthy volunteers participated in a six week, double-blind, randomized parallel pilot study with two study arms: RE-AKG capsules (CR) and control capsules (CC). Mean age (±SD) of volunteers was 28.32 (±11.39) and 27.5 (±9.04) for the control and the study groups, respectively. Safety of the CR product consumption was confirmed by analyzing liver profile, vital constants, and oxidation markers (LDLox in blood and isoprostanes and thromboxanes in urine). The following were monitored: (1) the phenotyping of plasmatic leukocytes and the ex vivo response of lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs); (2) expression of genes associated with immune-modulation, inflammation, oxidative stress, lipid metabolism, and tumorigenesis; and (3) the correlation of selected genetic variants (SNPs) with the differential responses among individuals. The lack of adverse effects on liver profile and oxidation markers, together with adequate tolerability and safe immunological adaptations, provide high-quality information for the potential use of CR as co-adjuvant of therapeutic strategies against colorectal cancer.
Collapse
|
23
|
Cui X, Zhu S, Tao Z, Deng X, Wang Y, Gao Y, Liao Y, Ma W, Zhang Y, Ma X. Long-term outcomes and prognostic markers in gallbladder cancer. Medicine (Baltimore) 2018; 97:e11396. [PMID: 29995783 PMCID: PMC6076111 DOI: 10.1097/md.0000000000011396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer-related inflammation and systemic inflammatory markers have been widely recognized as an essential part in tumor multiplication, invasion, and metastasis of tumor cells. This study aimed to estimate and compare the prognostic value of various biomarkers on overall survival (OS) in patients with gallbladder cancer patients.We performed a retrospective study of 159 patients received different therapies in West China Hospital from 2009 to 2014. The preoperative biomarker data, including neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), monocyte-lymphocyte ratio (MLR), lactate dehydrogenase, and alkaline phosphatase, as well as other clinical information, were obtained from electronic record. And the receiver operating characteristic curves were used to analyze the optimal cut-off values of them. Kaplan-Meier survival analysis and Cox proportional hazard model analysis were applied to evaluate the association between markers and OS.The optimal cut-off value was 4.39 for NLR, 181.85 for PLR, 0.30 for MLR, and 3.02 for carcinoembryonic antigen (CEA). Kaplan-Meier analysis and univariate Cox analysis both demonstrated the significant prognostic value of NLR, MLR, and CEA. However, PLR failed to be a significant predictor of OS. The multivariate Cox analysis showed that preoperative NLR and CEA were independent prognostic factors for OS.Advanced tumor/node/metastasis stage, enhanced pretherapeutic NLR, and CEA were significantly associated with worse OS of gallbladder cancer patients. Furthermore, NLR was a better prognostic factor than CEA in advanced T (T3-T4) stage patients, while CEA was better for early T (T1-T2) stage, early N (N0-N1) stage, and early M (M0) stage patients.
Collapse
Affiliation(s)
- Xiwei Cui
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Sha Zhu
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University
| | - Zhihang Tao
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University
| | - Xinghao Deng
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University
| | - Yexiao Wang
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuanjing Gao
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yue Liao
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weijun Ma
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiwen Zhang
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University
| | - Xuelei Ma
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Chattopadhyay A, Yang X, Mukherjee P, Sulaiman D, Fogelman HR, Grijalva V, Dubinett S, Wasler TC, Paul MK, Salehi-Rad R, Mack JJ, Iruela-Arispe ML, Navab M, Fogelman AM, Reddy ST. Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Sci Rep 2018; 8:9032. [PMID: 29899427 PMCID: PMC5998131 DOI: 10.1038/s41598-018-26755-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Having demonstrated that apolipoprotein A-I (apoA-I) mimetic peptides ameliorate cancer in mouse models, we sought to determine the mechanism for the anti-tumorigenic function of these peptides. CT-26 cells (colon cancer cells that implant and grow into tumors in the lungs) were injected into wild-type BALB/c mice. The day after injection, mice were either continued on chow or switched to chow containing 0.06% of a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F). After four weeks, the number of lung tumors was significantly lower in Tg6F-fed mice. Gene expression array analyses of jejunum and lung identified Notch pathway genes significantly upregulated, whereas osteopontin (Spp1) was significantly downregulated by Tg6F in both jejunum and lung. In jejunum, Tg6F increased protein levels for Notch1, Notch2, Dll1, and Dll4. In lung, Tg6F increased protein levels for Notch1 and Dll4 and decreased Spp1. Tg6F reduced oxidized phospholipid levels (E06 immunoreactivity) and reduced 25-hydroxycholesterol (25-OHC) levels, which are known to inhibit Notch1 and induce Spp1, respectively. Notch pathway promotes anti-tumorigenic patrolling monocytes, while Spp1 facilitates pro-tumorigenic myeloid derived suppressor cells (MDSCs) formation. Tg6F-fed mice had higher numbers of patrolling monocytes in jejunum and in lung (p < 0.02), and lower plasma levels of Spp1 with reduced numbers of MDSCs in jejunum and in lung (p < 0.03). We conclude that Tg6F alters levels of specific oxidized lipids and 25-OHC to modulate Notch pathways and Spp1, which alter small intestine immune cells, leading to similar changes in lung that reduce tumor burden.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Xinying Yang
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Pallavi Mukherjee
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Dawoud Sulaiman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1736, USA
| | - Hannah R Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Victor Grijalva
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Steven Dubinett
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Tonya C Wasler
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Manash K Paul
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Ramin Salehi-Rad
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Julia J Mack
- Department of Molecular, Cell and Developmental Biology, College of Letters and Science, University of California, Los Angeles, CA, 90095-1736, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, College of Letters and Science, University of California, Los Angeles, CA, 90095-1736, USA
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Srinivasa T Reddy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1736, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
| |
Collapse
|
25
|
Sato S, Weaver AM. Extracellular vesicles: important collaborators in cancer progression. Essays Biochem 2018; 62:149-163. [PMID: 29666212 PMCID: PMC6377252 DOI: 10.1042/ebc20170080] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane vesicles that are released from cells and mediate cell-cell communication. EVs carry protein, lipid, and nucleic acid cargoes that interact with recipient cells to alter their phenotypes. Evidence is accumulating that tumor-derived EVs can play important roles in all steps of cancer progression. Here, we review recent studies reporting critical roles for EVs in four major areas of cancer progression: promotion of cancer invasiveness and motility, enhancement of angiogenesis and vessel permeability, conditioning premetastatic niches, and immune suppression.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
26
|
Poon C, Sarkar M, Chung EJ. Synthesis of Monocyte-targeting Peptide Amphiphile Micelles for Imaging of Atherosclerosis. J Vis Exp 2017. [PMID: 29286384 DOI: 10.3791/56625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a major contributor to cardiovascular disease, the leading cause of death worldwide, which claims 17.3 million lives annually. Atherosclerosis is also the leading cause of sudden death and myocardial infarction, instigated by unstable plaques that rupture and occlude the blood vessel without warning. Current imaging modalities cannot differentiate between stable and unstable plaques that rupture. Peptide amphiphiles micelles (PAMs) can overcome this drawback as they can be modified with a variety of targeting moieties that bind specifically to diseased tissue. Monocytes have been shown to be early markers of atherosclerosis, while large accumulation of monocytes is associated with plaques prone to rupture. Hence, nanoparticles that can target monocytes can be used to discriminate different stages of atherosclerosis. To that end, here, we describe a protocol for the preparation of monocyte-targeting PAMs (monocyte chemoattractant protein-1 (MCP-1) PAMs). MCP-1 PAMs are self-assembled through synthesis under mild conditions to form nanoparticles of 15 nm in diameter with near neutral surface charge. In vitro, PAMs were found to be biocompatible and had a high binding affinity for monocytes. The methods described herein show promise for a wide range of applications in atherosclerosis as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Christopher Poon
- Department of Biomedical Engineering, University of Southern California
| | - Manjima Sarkar
- Department of Biomedical Engineering, University of Southern California
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California;
| |
Collapse
|
27
|
Capobianco A, Cottone L, Monno A, Manfredi AA, Rovere-Querini P. The peritoneum: healing, immunity, and diseases. J Pathol 2017; 243:137-147. [PMID: 28722107 DOI: 10.1002/path.4942] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 12/13/2022]
Abstract
The peritoneum defines a confined microenvironment, which is stable under normal conditions, but is exposed to the damaging effect of infections, surgical injuries, and other neoplastic and non-neoplastic events. Its response to damage includes the recruitment, proliferation, and activation of a variety of haematopoietic and stromal cells. In physiological conditions, effective responses to injuries are organized; inflammatory triggers are eliminated; inflammation quickly abates; and the normal tissue architecture is restored. However, if inflammatory triggers are not cleared, fibrosis or scarring occurs and impaired tissue function ultimately leads to organ failure. Autoimmune serositis is characterized by the persistence of self-antigens and a relapsing clinical pattern. Peritoneal carcinomatosis and endometriosis are characterized by the persistence of cancer cells or ectopic endometrial cells in the peritoneal cavity. Some of the molecular signals orchestrating the recruitment of inflammatory cells in the peritoneum have been identified in the last few years. Alternative activation of peritoneal macrophages was shown to guide angiogenesis and fibrosis, and could represent a novel target for molecular intervention. This review summarizes current knowledge of the alterations to the immune response in the peritoneal environment, highlighting the ambiguous role played by persistently activated reparative macrophages in the pathogenesis of common human diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Annalisa Capobianco
- San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Milan, Italy
| | - Lucia Cottone
- San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Milan, Italy.,University College London, Genetics and Cell Biology of Sarcoma Group, London, UK
| | - Antonella Monno
- San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Milan, Italy
| | - Angelo A Manfredi
- San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Patrizia Rovere-Querini
- San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
Schernberg A, Moureau-Zabotto L, Rivin Del Campo E, Escande A, Ducreux M, Nguyen F, Goere D, Chargari C, Deutsch E. Leukocytosis and neutrophilia predict outcome in locally advanced esophageal cancer treated with definitive chemoradiation. Oncotarget 2017; 8:11579-11588. [PMID: 28086222 PMCID: PMC5355287 DOI: 10.18632/oncotarget.14584] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate the prognostic value of leukocyte and neutrophil count as biomarkers in patients with locally advanced esophageal squamous cell carcinoma (SCC) undergoing exclusive chemoradiation. Results A total of 126 patients were identified. Respectively, 33% and 35% displayed baseline leukocytosis and neutrophilia. Estimated 3-year OS and PFS from chemoradiation completion were 31% and 25%, respectively. In univariate analysis, both leukocytosis and neutrophilia were associated with worse OS, PFS, and LRC (p < 0.01). In multivariate analysis, leukocytosis remained an independent risk factor associated with poorer OS, PFS and LRC (p < 0.05), independently from tumor stage and length, with higher prognostic value for OS compared with patients’ performance status (PS). Materials and Methods Bi-institutional clinical records from consecutive non-operable patients treated between 2003 and 2015 with definitive chemoradiation for locally advanced esophageal carcinoma were reviewed. Leukocytosis and neutrophilia were defined as a leukocyte or neutrophil count over 10 G/L and 7 G/L, respectively. These parameters were studied for their potential correlation with overall survival (OS), progression free survival (PFS), locoregional control (LRC) and distant metastases control (DMC). Conclusions Leukocytosis and neutrophilia were independent prognostic factors of poor OS, PFS, and LRC in this bi-institutional series of locally advanced esophageal SCC treated with definitive chemoradiation. Although prospective confirmation is warranted, it is suggested that the leukocyte and neutrophil count parameters might be clinically relevant biomarkers to be considered for further clinical investigations.
Collapse
Affiliation(s)
- Antoine Schernberg
- Radiotherapy Department, Gustave Roussy Cancer Campus, Villejuif, France
| | | | | | - Alexandre Escande
- Radiotherapy Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Michel Ducreux
- Université Paris Sud, Université Paris Saclay, Faculté de médecine du Kremlin-Bicetre, Le Kremlin-Bicetre, France.,Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - France Nguyen
- Radiotherapy Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Diane Goere
- Department of Surgery, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Cyrus Chargari
- Radiotherapy Department, Gustave Roussy Cancer Campus, Villejuif, France.,INSERM1030, Gustave Roussy Cancer Campus, Villejuif France.,French Military Health Services Academy, Ecole du Val-de-Grâce, Paris, France.,Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge, France
| | - Eric Deutsch
- Radiotherapy Department, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Université Paris Saclay, Faculté de médecine du Kremlin-Bicetre, Le Kremlin-Bicetre, France.,INSERM1030, Gustave Roussy Cancer Campus, Villejuif France
| |
Collapse
|
29
|
Willrodt AH, Beffinger M, Vranova M, Protsyuk D, Schuler K, Jadhav M, Heikenwalder M, van den Broek M, Borsig L, Halin C. Stromal Expression of Activated Leukocyte Cell Adhesion Molecule Promotes Lung Tumor Growth and Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2558-2569. [PMID: 28822802 DOI: 10.1016/j.ajpath.2017.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 01/07/2023]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is expressed on various cell types, including leukocytes, endothelial cells, and certain tumor cells. Although ALCAM expression on tumor cells has been linked to tumor invasion and metastatic spread, the contribution of ALCAM expressed in cells forming the tumor stroma to cancer progression has not been investigated. In this study, ALCAM-deficient (ALCAM-/-) mice were used to evaluate the role of ALCAM in lung tumor growth and metastasis. ALCAM-/- mice displayed an altered blood vascular network in the lung and the diaphragm, indicative of an angiogenetic defect. The absence of ALCAM expression in cells forming the stromal tumor microenvironment profoundly affected lung tumor growth in three different i.v. metastasis models. In the case of Lewis lung carcinoma (LLC), an additional defect in tumor cell homing to the lungs and a resulting reduction in the number of lung tumor nodules were observed. Similarly, when LLC cells were implanted subcutaneously for the study of spontaneous tumor cell metastasis, the rate of LLC metastasis to the lungs was profoundly reduced in ALCAM-/- mice. Taken together, our work demonstrates for the first time the in vivo contribution of ALCAM to angiogenesis and reveals a novel role of stromally expressed ALCAM in supporting tumor growth and metastatic spread.
Collapse
Affiliation(s)
- Ann-Helen Willrodt
- Institute of Pharmaceutical Sciences, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Michal Beffinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Darya Protsyuk
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Katja Schuler
- Institute of Pharmaceutical Sciences, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Maria Jadhav
- Institute of Pharmaceutical Sciences, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | | | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| |
Collapse
|
30
|
Kubo H, Mensurado S, Gonçalves-Sousa N, Serre K, Silva-Santos B. Primary Tumors Limit Metastasis Formation through Induction of IL15-Mediated Cross-Talk between Patrolling Monocytes and NK Cells. Cancer Immunol Res 2017; 5:812-820. [PMID: 28811289 DOI: 10.1158/2326-6066.cir-17-0082] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/31/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
Abstract
Metastases are responsible for the vast majority of cancer-related deaths. Although tumor cells can become invasive early during cancer progression, metastases formation typically occurs as a late event. How the immune response to primary tumors may dictate this outcome remains poorly understood, which hampers our capacity to manipulate it therapeutically. Here, we used a two-step experimental model, based on the highly aggressive B16F10 melanoma, that temporally segregates the establishment of primary tumors (subcutaneously) and the formation of lung metastases (from intravenous injection). This allowed us to identify a protective innate immune response induced by primary tumors that inhibits experimental metastasis. We found that in the presence of primary tumors, increased numbers of natural killer (NK) cells with enhanced IFNγ, granzyme B, and perforin production were recruited to the lung upon metastasis induction. These changes were mirrored by a local accumulation of patrolling monocytes and macrophages with high expression of MHC class II and NOS2. Critically, the protective effect on metastasis was lost upon patrolling monocyte or NK cell depletion, IL15 neutralization, or IFNγ ablation. The combined analysis of these approaches allowed us to establish a hierarchy in which patrolling monocytes, making IL15 in response to primary tumors, activate NK cells and IFNγ production that then inhibit lung metastasis formation. This work identifies an innate cell network and the molecular determinants responsible for "metastasis immunosurveillance," providing support for using the key molecular mediator, IL15, to improve immunotherapeutic outcomes. Cancer Immunol Res; 5(9); 812-20. ©2017 AACR.
Collapse
Affiliation(s)
- Hiroshi Kubo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Immunology Research Unit, Department of Medical Innovations, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Sofia Mensurado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Natacha Gonçalves-Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal. .,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
31
|
Ortiz AL, Lenz LL. A Listeria-derived polypeptide promotes in vivo activation of NK cells for antitumor therapy. Immunohorizons 2017; 1:53-62. [PMID: 29658011 DOI: 10.4049/immunohorizons.1700013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Immunotherapies have shown promise in treatment of cancer, but more potent and targeted therapies are needed. Natural killer (NK) cells are lymphocytes with innate ability to recognize and lyse tumor cells. When activated, they also produce type II interferon (IFNγ) to orchestrate the activity of other immune cells. Strategies to elicit NK cell activation in vivo have potential usefulness in anti-tumor immunotherapies. Here, we report on a strategy to stimulate NK cell activation and anti-tumor activity in mice with established B16.F10 murine melanomas. We and others previously observed that NK cells are rapidly activated during infection by pathogens such as the bacterium Listeria monocytogenes (Lm). A secreted Lm virulence protein, p60, and a fragment of p60 termed L1S were previously shown to stimulate innate immune responses and promote NK cell activation. We purified recombinant L1S and characterized its activity in cell culture studies. Recombinant L1S protein was also observed to promote accumulation and robust NK cell activation in the lungs when given via intratracheal instillation to control and tumor-bearing mice. Importantly, therapeutic administration of a single L1S dose was found to significantly reduce the number and area of "metastatic" tumor nodules on the lungs of mice with established B16.F10 murine melanomas. Depletion studies showed that these antitumor effects were dependent on NK cells and IFNγ. These data provide proof of concept that administration of a single immune-modulating microbial polypeptide can be used to therapeutically boost NK cell in vivo activation and promote anti-tumor responses.
Collapse
Affiliation(s)
- Amber L Ortiz
- Department of Immunology and Microbiology. University of Colorado School of Medicine. Aurora, CO. 80045
| | - Laurel L Lenz
- Department of Biomedical Research. National Jewish Health. Denver, CO 80206
| |
Collapse
|
32
|
Beaman KD, Dambaeva S, Katara GK, Kulshrestha A, Gilman-Sachs A. The immune response in pregnancy and in cancer is active and supportive of placental and tumor cell growth not their destruction. Gynecol Oncol 2017; 145:476-480. [PMID: 28477880 DOI: 10.1016/j.ygyno.2017.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 12/27/2022]
Abstract
While many investigators have described the biochemical and physiological similarities between tumor cells and trophoblast cells, in this discourse we will compare primarily their leucocytes, which constitute a large portion of the tumor and its microenvironment as well as the placenta and its microenvironment. There is a remarkable similarity between the cells that support placental growth and development and tumor growth and development. In many cases over half of the cells present in the tumor and the placenta are non-tumor or nontrophoblast cells, immune cells. Most of these immune cells are prevented from attacking the fetal derived placental cells and the self-derived tumor cells. Nevertheless, these leucocytes, in our opinion, are very active and support tumor and placental cell growth through the production of growth factors and angiogenic factors. These cells do this by activating the portion of the immune response which initiates and helps control tissue repair.
Collapse
Affiliation(s)
- Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Svetlana Dambaeva
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
33
|
Li F, Ulrich M, Jonas M, Stone IJ, Linares G, Zhang X, Westendorf L, Benjamin DR, Law CL. Tumor-Associated Macrophages Can Contribute to Antitumor Activity through FcγR-Mediated Processing of Antibody-Drug Conjugates. Mol Cancer Ther 2017; 16:1347-1354. [PMID: 28341790 DOI: 10.1158/1535-7163.mct-17-0019] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 11/16/2022]
Abstract
The primary mechanism of antibody-drug conjugates (ADC) is targeted delivery of a cytotoxic payload to tumor cells via cancer-associated membrane receptors. However, the tumor microenvironment likely plays a role in ADC penetration, distribution, and processing and thus impacts the overall antitumor activity. Here, we report on the potential contribution of Fc-FcγR interactions between ADCs and tumor-associated macrophages (TAM) to the preclinical antitumor activities of ADCs. In the CD30+ L-428 Hodgkin lymphoma model, anti-CD30-vcMMAE and a non-binding control (hIgG-vcMMAE) demonstrated similar antitumor activity as well as similar payload release in the tumors. IHC analysis revealed L-428 tumors contained highly abundant TAMs, which were confirmed to bind ADCs by IHC and flow cytometry. The infiltration of TAMs was further found to correlate with the antitumor activity of the non-binding hIgG-vcMMAE in five additional xenograft models. hIgG1V1-vcMMAE, bearing a mutation in the Fc region which ablates Fc gamma receptor (FcγR) binding, lost antitumor activity in three TAM-high xenograft models, suggesting Fc-FcγR interactions modulate the TAM-ADC interaction. Our results suggest that TAMs can contribute to ADC processing through FcγR interaction in preclinical tumor models and may represent an important additional mechanism for drug release from ADCs. Correlative studies in clinical trials will further shed light on whether TAMs play a role in patients' response to ADC therapies. Mol Cancer Ther; 16(7); 1347-54. ©2017 AACR.
Collapse
Affiliation(s)
- Fu Li
- Preclinical Research, Seattle Genetics, Inc., Bothell, Washington.
| | - Michelle Ulrich
- Preclinical Research, Seattle Genetics, Inc., Bothell, Washington
| | - Mechthild Jonas
- Translational Research, Seattle Genetics, Inc, Bothell, Washington
| | - Ivan J Stone
- Preclinical Research, Seattle Genetics, Inc., Bothell, Washington
| | - Germein Linares
- Translational Research, Seattle Genetics, Inc, Bothell, Washington
| | - Xinqun Zhang
- Chemistry, Seattle Genetics, Inc., Bothell, Washington
| | - Lori Westendorf
- Translational Research, Seattle Genetics, Inc, Bothell, Washington
| | | | - Che-Leung Law
- Preclinical Research, Seattle Genetics, Inc., Bothell, Washington
| |
Collapse
|