1
|
Suri K, Hosur V, Panchakshari R, Amiji MM. A Multimodal Therapeutic Strategy for Inflammatory Bowel Disease Using MicroRNA-146a Mimic Encapsulated in Lipid Nanoparticles. Mol Pharm 2025. [PMID: 40324972 DOI: 10.1021/acs.molpharmaceut.5c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Dysregulated microRNAs (miRNAs) have significant potential as diagnostic tools for various chronic diseases; however, their therapeutic applications remain largely unexplored. Given their capacity to regulate multiple pathways, miRNAs are promising candidates for treating pleiotropic diseases, such as inflammatory bowel disease (IBD). In our study, we conducted a comprehensive review of the literature of miRNA-146 levels in the inflamed tissues of IBD patients and murine colitis models. Initially, we quantified the expression of miRNA-146a and miRNA-146b in the colons of mice using the dextran sodium sulfate (DSS)-inducedacute model of IBD. We selected miRNA-146a for further study due to its anti-inflammatory properties and potential relevance in IBD treatment. We hypothesized that a macrophage model of inflammation would be well-suited to studying the effects of this miRNA. Subsequently, we investigated the use of lipid nanoparticles (LNPs) for the targeted delivery of miRNA-146a to macrophages, which play a key role in IBD. Our results indicated that miRNA-146a levels increased in the DSS model and LNP-mediated delivery effectively downregulated genes associated with inflammation. These findings highlight the critical role of miRNA-146a in modulating IBD and suggest that LNP-based delivery could be a promising therapeutic strategy for managing inflammatory responses.
Collapse
Affiliation(s)
- Kanika Suri
- Takeda Development Center Americas, Cambridge, Massachusetts 02142, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Vishnu Hosur
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Rohit Panchakshari
- Takeda Development Center Americas, Cambridge, Massachusetts 02142, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Suri K, Pfeifer L, Cvet D, Li A, McCoy M, Singh A, Amiji MM. Oral delivery of stabilized lipid nanoparticles for nucleic acid therapeutics. Drug Deliv Transl Res 2025; 15:1755-1769. [PMID: 39320435 PMCID: PMC11968485 DOI: 10.1007/s13346-024-01709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Gastrointestinal disorders originate in the gastrointestinal tract (GIT), and the therapies can benefit from direct access to the GIT achievable through the oral route. RNA molecules show great promise therapeutically but are highly susceptible to degradation and often require a carrier for cytoplasmic access. Lipid nanoparticles (LNPs) are clinically proven drug-delivery agents, primarily administered parenterally. An ideal Orally Delivered (OrD) LNP formulation should overcome the diverse GI environment, successfully delivering the drug to the site of action. A versatile OrD LNP formulation has been developed to encapsulate and deliver siRNA and mRNA in this paper. The formulations were prepared by the systematic addition of cationic lipid to the base LNP formulation, keeping the total of cationic lipid and ionizable lipid to 50 mol%. Biorelevant media stability depicted increased resistance to bile salt mediated destabilization upon the addition of the cationic lipid, however the in vitro efficacy data underscored the importance of the ionizable lipid. Based on this, OrD LNP was selected comprising of 20% cationic lipid and 30% ionizable lipid. Further investigation revealed the enhanced efficacy of OrD LNP in vitro after incubation in different dilutions of fasted gastric, fasted intestinal media, and mucin. Confocal imaging and flow cytometry confirmed uptake while in vivo studies demonstrated efficacy with siRNA and mRNA as payloads. Taken together, this research introduces OrD LNP to deliver nucleic acid locally to the GIT.
Collapse
Affiliation(s)
- Kanika Suri
- Takeda Development Center Americas, Cambridge, MA, USA
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Liam Pfeifer
- Takeda Development Center Americas, Cambridge, MA, USA
| | - Donna Cvet
- Takeda Development Center Americas, Cambridge, MA, USA
| | - Angela Li
- Takeda Development Center Americas, Cambridge, MA, USA
| | - Michael McCoy
- Takeda Development Center Americas, Cambridge, MA, USA
| | - Amit Singh
- Takeda Development Center Americas, Cambridge, MA, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA.
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
3
|
Zhang Y, Zang C, Mao M, Zhang M, Tang Z, Chen W, Zhu W. Advances in RNA therapy for the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103753. [PMID: 39842534 DOI: 10.1016/j.autrev.2025.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Autoimmune diseases (ADs) are a group of complex, chronic conditions characterized by disturbance of immune tolerance, with examples including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. These diseases have unclear pathogenesis, and traditional therapeutic approaches remain limited. However, advances in high-throughput histology technology and scientific discoveries have led to the identification of various pathogenic factors contributing to ADs. Coupled with improvements in RNA nucleic acid-based drug synthesis, design, and delivery, RNA-based therapies have been extensively investigated for their potential in treating ADs. This paper reviews the progress in the use of miRNAs, lncRNAs, circRNAs, siRNAs, antisense oligonucleotides (ASOs), aptamers, mRNAs, and other RNA-based therapies in ADs, focusing on their therapeutic potential and application prospects, providing insights for future research and clinical treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Chenyang Zang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Manyun Mao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Mi Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangqing Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
4
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
5
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
8
|
Oral Nanomedicines for siRNA Delivery to Treat Inflammatory Bowel Disease. Pharmaceutics 2022; 14:pharmaceutics14091969. [PMID: 36145716 PMCID: PMC9503894 DOI: 10.3390/pharmaceutics14091969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
RNA interference (RNAi) therapies have significant potential for the treatment of inflammatory bowel diseases (IBD). Although administering small interfering RNA (siRNA) via an oral route is desirable, various hurdles including physicochemical, mucus, and cellular uptake barriers of the gastrointestinal tract (GIT) impede both the delivery of siRNA to the target site and the action of siRNA drugs at the target site. In this review, we first discuss various physicochemical and biological barriers in the GI tract. Furthermore, we present recent strategies and the progress of oral siRNA delivery strategies to treat IBD. Finally, we consider the challenges faced in the use of these strategies and future directions of oral siRNA delivery strategies.
Collapse
|
9
|
Chen F, Liu Q, Xiong Y, Xu L. Nucleic acid strategies for infectious disease treatments: The nanoparticle-based oral delivery route. Front Pharmacol 2022; 13:984981. [PMID: 36105233 PMCID: PMC9465296 DOI: 10.3389/fphar.2022.984981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Therapies based on orally administrated nucleic acids have significant potential for the treatment of infectious diseases, including chronic inflammatory diseases such as inflammatory bowel disease (IBD)-associated with the gastrointestinal (GI) tract, and infectious and acute contagious diseases like coronavirus disease 2019 (COVID-19). This is because nucleic acids could precisely regulate susceptibility genes in regulating the pro- and anti-inflammatory cytokines expression related to the infections. Unfortunately, gene delivery remains a major hurdle due to multiple intracellular and extracellular barriers. This review thoroughly discusses the challenges of nanoparticle-based nucleic acid gene deliveries and strategies for overcoming delivery barriers to the inflammatory sites. Oral nucleic acid delivery case studies were also present as vital examples of applications in infectious diseases such as IBD and COVID-19.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- Department of Anorectal Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Li Xu,
| |
Collapse
|
10
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Nanoparticles to Target and Treat Macrophages: The Ockham's Concept? Pharmaceutics 2021; 13:pharmaceutics13091340. [PMID: 34575416 PMCID: PMC8469871 DOI: 10.3390/pharmaceutics13091340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles are nanomaterials with three external nanoscale dimensions and an average size ranging from 1 to 1000 nm. Nanoparticles have gained notoriety in technological advances due to their tunable physical, chemical, and biological characteristics. However, the administration of functionalized nanoparticles to living beings is still challenging due to the rapid detection and blood and tissue clearance by the mononuclear phagocytic system. The major exponent of this system is the macrophage. Regardless the nanomaterial composition, macrophages can detect and incorporate foreign bodies by phagocytosis. Therefore, the simplest explanation is that any injected nanoparticle will be probably taken up by macrophages. This explains, in part, the natural accumulation of most nanoparticles in the spleen, lymph nodes, and liver (the main organs of the mononuclear phagocytic system). For this reason, recent investigations are devoted to design nanoparticles for specific macrophage targeting in diseased tissues. The aim of this review is to describe current strategies for the design of nanoparticles to target macrophages and to modulate their immunological function involved in different diseases with special emphasis on chronic inflammation, tissue regeneration, and cancer.
Collapse
|
12
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
13
|
Oral Delivery of Nucleic Acids with Passive and Active Targeting to the Intestinal Tissue Using Polymer-Based Nanocarriers. Pharmaceutics 2021; 13:pharmaceutics13071075. [PMID: 34371766 PMCID: PMC8309160 DOI: 10.3390/pharmaceutics13071075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the apparent advantages for long-term treatment and local therapies against intestinal diseases, the oral delivery of nucleic acids has been challenging due to unfavorable physiological conditions for their stability. In this study, a novel nanodelivery system of PEG-PCL nanoparticles with encapsulated nucleic acids–mannosylated PEI (Man-PEI) complexes was developed for intestinal delivery. We complexed model nucleic acids with Man-PEI at the optimal N/P ratio of 20:1 for in vitro and in vivo analyses. Cells were transfected in vitro and analyzed for gene expression, receptor-mediated uptake, and PEG-PCL nanoparticles’ toxicity. We also evaluated the nucleic acid’s stability in the nanocarrier during formulation, and under simulated gastrointestinal environments or the presence of nucleases. Finally, we assessed the biodistribution for the PEG-PCL nanoparticles with encapsulated complexes and their ability to transfect intestinal cells in vivo. Nucleic acids complexed with Man-PEI were protected from degradation against nucleases. In comparison to the parent compound PEI, Man-PEI transfected the cells with an overall higher potency. Competition assay indicated receptor-mediated endocytosis promoted by mannose receptors. The PEG-PCL nanoparticles with Man-PEI/plasmid complexes indicated minimal cytotoxicity. The nanocarrier successfully protected the complexes in a simulated gastric fluid environment and released them in a simulated intestinal fluid environment, promoted by the presence of lipases. The oral administration of the PEG-PCL nanoparticles with encapsulated Man-PEI/plasmid complexes transfected intestinal cells with the plasmid in vivo, while presenting a time-dependent progression through the intestines. Conclusively, our carrier system can deliver genetic material to the GI tract and actively target mannose receptor overexpressing cells.
Collapse
|
14
|
Attarwala HZ, Suri K, Amiji MM. Co-Silencing of Tissue Transglutaminase-2 and Interleukin-15 Genes in a Celiac Disease Mimetic Mouse Model Using a Nanoparticle-in-Microsphere Oral System. Mol Pharm 2021; 18:3099-3107. [PMID: 34228470 DOI: 10.1021/acs.molpharmaceut.1c00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Celiac disease is a chronic inflammatory condition characterized by activation of the immune system in response to deamidation of gluten peptides brought about by tissue transglutaminase-2 (TG2). Overexpression of interleukin-15 (IL-15) in the intestinal epithelium and the lamina propria leads to the dysregulation of the immune system, leading to epithelial damage. The goal of this study was to develop an RNA interference therapeutic strategy for celiac disease using a combination of TG2 and IL-15 gene silencing in the inflamed intestine. TG2 and IL-15 silencing siRNA sequences, along with scrambled control, were encapsulated in a nanoparticle-in-microsphere oral system (NiMOS) and administered in a poly(I:C) mouse model of celiac disease. Single TG2 and IL-15 siRNA therapy and the combination showed effective gene silencing in vivo. Additionally, it was found that IL-15 gene silencing alone and combination in the NiMOS significantly reduced other proinflammatory cytokines. The tissue histopathology data also confirmed a reduction in immune cell infiltration and restoration of the mucosal architecture and barrier function in the intestine upon treatment. Overall, the results of this study show evidence that celiac disease can be potentially treated with an oral microsphere formulation using a combination of TG2 and IL-15 RNA interference therapeutic strategies.
Collapse
Affiliation(s)
- Husain Z Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kanika Suri
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Chemical Engineering College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Chen F, Liu Q, Xiong Y, Xu L. Current Strategies and Potential Prospects of Nanomedicine-Mediated Therapy in Inflammatory Bowel Disease. Int J Nanomedicine 2021; 16:4225-4237. [PMID: 34188471 PMCID: PMC8236271 DOI: 10.2147/ijn.s310952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are highly debilitating. IBDs are associated with the imbalance of inflammatory mediators within the inflamed bowel. Conventional drugs for IBD treatment include anti-inflammatory medications and immune suppressants. However, they suffer from a lack of bioavailability and high dose-induced systemic side effects. Nanoparticle (NP)-derived therapy improves therapeutic efficacy and increases targeting specificity. Recent studies have shown that nanomedicines, based on bowel disease's pathophysiology, are a fast-growing field. NPs can prolong the circulation period and reduce side effects by improving drug encapsulation and targeted delivery. Here, this review summarizes various IBD therapies with a focus on NP-derived applications, whereas their challenges and future perspectives have also been discussed.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Li Xu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| |
Collapse
|
16
|
Zhang W, Michalowski CB, Beloqui A. Oral Delivery of Biologics in Inflammatory Bowel Disease Treatment. Front Bioeng Biotechnol 2021; 9:675194. [PMID: 34150733 PMCID: PMC8209478 DOI: 10.3389/fbioe.2021.675194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) has been posed as a great worldwide health threat. Having an onset during early adulthood, IBD is a chronic inflammatory disease characterized by remission and relapse. Due to its enigmatic etiology, no cure has been developed at the moment. Conventionally, steroids, 5-aminosalicylic acid, and immunosuppressants have been applied clinically to relieve patients’ syndrome which, unfavorably, causes severe adverse drug reactions including diarrhea, anemia, and glaucoma. Insufficient therapeutic effects also loom, and surgical resection is mandatory in half of the patients within 10 years after diagnosis. Biologics demonstrated unique and differentiative therapeutic mechanism which can alleviate the inflammation more effectively. However, their application in IBD has been hindered considering their stability and toxicity. Scientists have brought up with the concept of nanomedicine to achieve the targeted drug delivery of biologics for IBD. Here, we provide an overview of biologics for IBD treatment and we review existing formulation strategies for different biological categories including antibodies, gene therapy, and peptides. This review highlights the current trends in oral delivery of biologics with an emphasis on the important role of nanomedicine in the development of reliable methods for biologic delivery in IBD treatment.
Collapse
Affiliation(s)
- Wunan Zhang
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Cecilia Bohns Michalowski
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
17
|
Verma P, Srivastava A, Srikanth CV, Bajaj A. Nanoparticle-mediated gene therapy strategies for mitigating inflammatory bowel disease. Biomater Sci 2021; 9:1481-1502. [PMID: 33404019 DOI: 10.1039/d0bm01359e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder of the gastrointestinal tract (GIT) where Ulcerative Colitis (UC) displays localized inflammation in the colon, and Crohn's Disease (CD) affects the entire GIT. Failure of current therapies and associated side-effects bring forth serious social, economic, and health challenges. The gut epithelium provides the best target for gene therapy delivery vehicles to combat IBD. Gene therapy involving the use of nucleic acid (NA) therapeutics faces major challenges due to the hydrophilic, negative-charge, and degradable nature of NAs. Recent success in the engineering of biomaterials for gene therapy and their emergence in clinical trials for various diseases is an inspiration for scientists to develop gene therapy vehicles that can be easily targeted to the desired tissues for IBD. Advances in nanotechnology have enabled the formulations of numerous nanoparticles for NA delivery to mitigate IBD that still faces challenges of stability in the GIT, poor therapeutic efficacy, and targetability. This review presents the challenges of gene therapeutics, gastrointestinal barriers, and recent advances in the engineering of nanoparticles for IBD treatment along with future directions for successful translation of nanoparticle-mediated gene therapeutics in clinics.
Collapse
Affiliation(s)
- Priyanka Verma
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, By-pass Road, Bhauri, Bhopal-462030, India
| | - C V Srikanth
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad- Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
18
|
Minakshi P, Kumar R, Ghosh M, Brar B, Barnela M, Lakhani P. Application of Polymeric Nano-Materials in Management of Inflammatory Bowel Disease. Curr Top Med Chem 2021; 20:982-1008. [PMID: 32196449 DOI: 10.2174/1568026620666200320113322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory Bowel Disease (IBD) is an umbrella term used to describe disorders that involve Crohn's disease (CD), ulcerative colitis (UC) and pouchitis. The disease occurrence is more prevalent in the working group population which not only hampers the well being of an individual but also has negative economical impact on society. The current drug regime used therapy is very costly owing to the chronic nature of the disease leading to several side effects. The condition gets more aggravated due to the lower concentration of drug at the desired site. Therefore, in the present scenario, a therapy is needed which can maximize efficacy, adhere to quality of life, minimize toxicity and doses, be helpful in maintaining and stimulating physical growth of mucosa with minimum disease complications. In this aspect, nanotechnology intervention is one promising field as it can act as a carrier to reduce toxicity, doses and frequency which in turn help in faster recovery. Moreover, nanomedicine and nanodiagnostic techniques will further open a new window for treatment in understanding pathogenesis along with better diagnosis which is poorly understood till now. Therefore the present review is more focused on recent advancements in IBD in the application of nanotechnology.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology & Biochemistry, LUVAS, Hisar-125 004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Manju Barnela
- Department of Nano & Biotechnology, Guru Jambheshwar University, Hisar-125001, Haryana, India
| | - Preeti Lakhani
- Department of Veterinary Physiology & Biochemistry, LUVAS, Hisar-125 004, India
| |
Collapse
|
19
|
Naeem M, Lee J, Oshi MA, Cao J, Hlaing SP, Im E, Jung Y, Yoo JW. Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis. Acta Biomater 2020; 116:368-382. [PMID: 32937207 DOI: 10.1016/j.actbio.2020.09.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Nanoparticle (NP)-based drug delivery systems accumulate in the disrupted epithelium of inflamed colon tissue in ulcerative colitis. However, premature early drug release and uptake or degradation of NPs during their passage through the harsh gastric or intestinal environment compromise their therapeutic outcomes. This study aimed to develop an advanced colitis-targeted hybrid nanoparticles-in-microparticles (NPsinMPs) drug delivery system to overcome the aforementioned challenges. First, sustained drug releasing poly(lactic-co-glycolic acid) NPs were generated and further encapsulated in pH-sensitive Eudragit FS30D MPs to ensure complete drug protection in a gastric-like pH and for selective delivery of NPs to the colon. SEM and confocal microscopy for the NPsinMPs revealed successful NP encapsulation. NPsinMPs prevented drug release in an acidic gastric-like and intestinal-like pH and presented a sustained release thereafter at an ileal and colonic pH, indicating the degradation of the outer pH-sensitive MPs and release of NPs. Furthermore, in vivo imaging of gastrointestinal tract of a colitis mouse orally administered with fluorescent NPsinMPs revealed higher fluorescence intensities selectively in the colon, demonstrating the release of loaded NPs and their concomitant accumulation at the site of colon inflammation. NPsinMPs markedly mitigated experimental colitis in mice indicated by improved histopathological analysis, decreased myeloperoxidase activity, neutrophils and macrophage infiltration, and expression of proinflammatory cytokines in colonic tissues compared with NP-treated mice. The present results show the successful formulation of an NPsinMP-based drug delivery system and provide a platform to improve NP-based colon-targeted drug delivery through improved protection of encapsulated NPs and their payload in the early small intestine.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Pharmacy, Pusan National University, Busan609-735, South Korea; Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Murtada A Oshi
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan609-735, South Korea.
| |
Collapse
|
20
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
21
|
Attarwala HZ, Suri K, Amiji MM. Pharmacokinetics and Biodistribution Analysis of Small Interference RNA for Silencing Tissue Transglutaminase-2 in Celiac Disease After Oral Administration in Mice Using Gelatin-Based Multicompartmental Delivery Systems. Bioelectricity 2020; 2:167-174. [PMID: 34471844 DOI: 10.1089/bioe.2020.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: RNA interference (RNAi) therapy has tremendous potential in treating diseases that are characterized by overexpression of genes. However, the biggest challenge to utilize the therapy is to engineer delivery systems that can efficiently transport small interfering RNA (siRNA) to appropriate target sites. Our objective in this study was to develop and evaluate multi-compartmental systems for the oral delivery of siRNA that targets the overexpressed TG2 gene (TG2-siRNA) in the small intestine for the treatment of celiac disease (CD). Materials and Methods: Two types of multicompartmental systems were developed and evaluated: (1) a solid-in-solid multicompartmental system featuring "nanoparticle in microsphere oral system (NiMOS)" where type B gelatin nanoparticles containing TG2-siRNA (TG2-NiMOS) were encapsulated within poly(ɛ-caprolactone) (PCL) based microspheres, and (2) a solid-in-liquid multicompartmental system, "Nanoparticle-in-Emulsion (NiE)" consisting of type-B gelatin nanoparticles containing TG2-siRNA encapsulated within safflower oil containing water-in-oil-in-water (W/O/W) multiple emulsion (TG2-NiE). Results: Evaluation of the biodistribution and pharmacokinetics (PK) after a single oral dose of siRNA containing multicompartmental systems to C57BL/6 mice showed that TG2-siRNA was delivered to the small intestine (duodenum, jejunum and ileum), and colon with minimal systemic exposure via both TG2-NiE and TG2-NiMOS systems. TG2-siRNA exposure (AUC0-t) in the duodenum, jejunum, ileum and colon was 56.4-, 34.3-, 85.5- and 35.5-fold greater for the TG2-NiMOS formulation, relative to the TG2-NiE formulation. Conclusion: The results of this study suggest that TG2-NiMOS formulation was more superior than TG2-NiE formulation in facilitating intestinal delivery of siRNA via the oral route of administration and can be potentially used in the treatment of CD.
Collapse
Affiliation(s)
- Husain Z Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy Northeastern University, Boston, Massachusetts, USA
| | - Kanika Suri
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Gareb B, Otten AT, Frijlink HW, Dijkstra G, Kosterink JGW. Review: Local Tumor Necrosis Factor-α Inhibition in Inflammatory Bowel Disease. Pharmaceutics 2020; 12:E539. [PMID: 32545207 PMCID: PMC7356880 DOI: 10.3390/pharmaceutics12060539] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) characterized by intestinal inflammation. Increased intestinal levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) are associated with disease activity and severity. Anti-TNF-α therapy is administered systemically and efficacious in the treatment of IBD. However, systemic exposure is associated with adverse events that may impede therapeutic treatment. Clinical studies show that the efficacy correlates with immunological effects localized in the gastrointestinal tract (GIT) as opposed to systemic effects. These data suggest that site-specific TNF-α inhibition in IBD may be efficacious with fewer expected side effects related to systemic exposure. We therefore reviewed the available literature that investigated the efficacy or feasibility of local TNF-α inhibition in IBD. A literature search was performed on PubMed with given search terms and strategy. Of 8739 hits, 48 citations were included in this review. These studies ranged from animal studies to randomized placebo-controlled clinical trials. In these studies, local anti-TNF-α therapy was achieved with antibodies, antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and genetically modified organisms. This narrative review summarizes and discusses these approaches in view of the clinical relevance of local TNF-α inhibition in IBD.
Collapse
Affiliation(s)
- Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Martini Hospital Groningen, Department of Clinical Pharmacy and Toxicology, Van Swietenplein 1, 9728 NT Groningen, The Netherlands
| | - Antonius T. Otten
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Jos G. W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
23
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
24
|
Hossian AKMN, Mackenzie GG, Mattheolabakis G. miRNAs in gastrointestinal diseases: can we effectively deliver RNA-based therapeutics orally? Nanomedicine (Lond) 2019; 14:2873-2889. [PMID: 31735124 DOI: 10.2217/nnm-2019-0180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based therapeutics are evaluated for their potential of treating a plethora of diseases, including cancer and inflammation. Short nucleic acids, such as miRNAs, have emerged as versatile regulators for gene expression and are studied for therapeutic purposes. However, their inherent instability in vivo following enteral and parenteral administration has prompted the development of novel methodologies for their delivery. Although research on the oral delivery of siRNAs is progressing, with the development and utilization of promising carrier-based methodologies for the treatment of a plethora of gastrointestinal diseases, research on miRNA-based oral therapeutics is lagging behind. In this review, we present the potential role of miRNAs in diseases of the GI tract, and analyze current research and the cardinal features of the novel carrier systems used for nucleic acid oral delivery that can be expanded for oral miRNA administration.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- School of Basic Pharmaceutical & Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | | | - George Mattheolabakis
- School of Basic Pharmaceutical & Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
25
|
Giron F, Pastó A, Tasciotti E, Abraham BP. Nanotechnology in the Treatment of Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1871-1880. [PMID: 31560054 DOI: 10.1093/ibd/izz205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Due to the lack of cure for inflammatory bowel disease (IBD) and failure of current medical therapies in many patients with IBD, a need exists in finding novel ways to treat inflammation with a high benefit and the lowest risk possible. With current medical therapies, adverse events or risks of cancer/lymphoma and infections prevent patients-and sometimes providers-in using effective therapies for treatment. Some patients develop systemic side effects that preclude them from continuing a therapy that may have been efficacious, or in other cases, current medical therapies are not adequate to control disease. Nanotechnology is an emerging field where particles, in the size of nanometers, can be used to deliver medications directly to the area of inflammation thus avoiding drug-associated systemic side effects. When using nanoparticles (NPs), only a small amount of the drug is needed, and it can be delivered directly to the inflamed site without exposure to the rest of the body. Here we review conventional and unconventional therapies applied in the treatment of IBD underlying how the introduction of NPs has improved their safety and efficacy.
Collapse
Affiliation(s)
- Fanny Giron
- Universidad Católica de Honduras, San Pedro Sula, Honduras
| | - Anna Pastó
- Istituto Oncologico Veneto-IRCCS, Padova, Italy
| | - Ennio Tasciotti
- Underwood Center for Digestive Disorders, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| | - Bincy P Abraham
- Underwood Center for Digestive Disorders, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
26
|
Nunes R, Neves JD, Sarmento B. Nanoparticles for the regulation of intestinal inflammation: opportunities and challenges. Nanomedicine (Lond) 2019; 14:2631-2644. [PMID: 31612773 DOI: 10.2217/nnm-2019-0191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prevalence of chronic inflammation of the gastrointestinal tract is increasing, emerging as a public health challenge. Conventional drug delivery systems targeting the colon have improved the treatment of inflammatory bowel disease. However, therapy frequently results in inconsistent efficacy and toxicity problems. Novel approaches based on nanoparticles offer several advantages over conventional dosage forms due to their ability to selectively target inflamed tissues. Several formulation efforts have been made in order to obtain increasingly selective nanosized systems, some with promising results in animal models of colitis. Despite all advances, no nanomedicines are yet approved for clinical use in inflammatory bowel disease. This review discusses the most recent efforts made toward the development of nanoparticles for regulating chronic intestinal inflammation.
Collapse
Affiliation(s)
- Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| |
Collapse
|
27
|
Esteban-Pérez S, Bravo-Osuna I, Andrés-Guerrero V, Molina-Martínez IT, Herrero-Vanrell R. Trojan Microparticles Potential for Ophthalmic Drug Delivery. Curr Med Chem 2019; 27:570-582. [PMID: 31486746 DOI: 10.2174/0929867326666190905150331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022]
Abstract
The administration of drugs to treat ocular disorders still remains a technological challenge in this XXI century. Although there is an important arsenal of active molecules useful to treat ocular diseases, ranging from classical compounds to biotechnological products, currenty, no ideal delivery system is able to profit all their therapeutic potential. Among the Intraocular Drug Delivery Systems (IODDS) proposed to overcome some of the most important limitations, microsystems and nanosystems have raised high attention. While microsystems are able to offer long-term release after intravitreal injection, nanosystems can protect the active compound from external environment (reducing their clearance) and direct it to its target tissues. In recent years, some researchers have explored the possibility of combining micro and nanosystems in "Nanoparticle-in-Microparticle (NiMs)" systems or "trojan systems". This excellent idea is not exempt of technological problems, remains partially unsolved, especially in the case of IODDS. The objective of the present review is to show the state of art concerning the design, preparation and characterization of trojan microparticles for drug delivery and to remark their potential and limitations as IODDS, one of the most important challenges faced by pharmaceutical technology at the moment.
Collapse
Affiliation(s)
- Sergio Esteban-Pérez
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Irene Bravo-Osuna
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Irene T Molina-Martínez
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Rocío Herrero-Vanrell
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| |
Collapse
|
28
|
Chevalier R. siRNA Targeting and Treatment of Gastrointestinal Diseases. Clin Transl Sci 2019; 12:573-585. [PMID: 31309709 PMCID: PMC6853152 DOI: 10.1111/cts.12668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
RNA interference via small interfering RNA (siRNA) offers opportunities to precisely target genes that contribute to gastrointestinal (GI) pathologies, such as inflammatory bowel disease, celiac, and esophageal scarring. Delivering the siRNA to the GI tract proves challenging as the harsh environment of the intestines degrades the siRNA before it can reach its target or blocks its entry into its site of action in the cytoplasm. Additionally, the GI tract is large and disease is often localized to a specific site. This review discusses polymer and lipid‐based delivery systems for protection and targeting of siRNA therapies to the GI tract to treat local disease.
Collapse
Affiliation(s)
- Rachel Chevalier
- Children's Mercy Kansas City, Kansas City, Missouri, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
29
|
Tian Y, Xu J, Li Y, Zhao R, Du S, Lv C, Wu W, Liu R, Sheng X, Song Y, Bi X, Li G, Li M, Wu X, Lou P, You H, Cui W, Sun J, Shuai J, Ren F, Zhang B, Guo M, Hou X, Wu K, Xue L, Zhang H, Plikus MV, Cong Y, Lengner CJ, Liu Z, Yu Z. MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium, and Delivery of Mimics in Microspheres Reduces Colitis in Mice. Gastroenterology 2019; 156:2281-2296.e6. [PMID: 30779922 DOI: 10.1053/j.gastro.2019.02.023] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Levels of microRNA 31 (MIR31) are increased in intestinal tissues from patients with inflammatory bowel diseases and colitis-associated neoplasias. We investigated the effects of this microRNA on intestinal inflammation by studying mice with colitis. METHODS We obtained colon biopsy samples from 82 patients with ulcerative colitis (UC), 79 patients with Crohn's disease (CD), and 34 healthy individuals (controls) at Shanghai Tenth People's Hospital. MIR31- knockout mice and mice with conditional disruption of Mir31 specifically in the intestinal epithelium (MIR31 conditional knockouts) were given dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS) to induce colitis. We performed chromatin immunoprecipitation and luciferase assays to study proteins that regulate expression of MIR31, including STAT3 and p65, in LOVO colorectal cancer cells and organoids derived from mouse colon cells. Partially hydrolyzed alpha-lactalbumin was used to generate peptosome nanoparticles, and MIR31 mimics were loaded onto their surface using electrostatic adsorption. Peptosome-MIR31 mimic particles were encapsulated into oxidized konjac glucomannan (OKGM) microspheres, which were administered by enema into the large intestines of mice with DSS-induced colitis. Intestinal tissues were collected and analyzed by histology and immunohistochemistry. RESULTS Levels of MIR31 were increased in inflamed mucosa from patients with CD or UC, and from mice with colitis, compared with controls. STAT3 and nuclear factor-κB activated transcription of MIR31 in colorectal cancer cells and organoids in response to tumor necrosis factor and interleukin (IL)6. MIR31-knockout and conditional-knockout mice developed more severe colitis in response to DSS and TNBS, with increased immune responses, compared with control mice. MIR31 bound to 3' untranslated regions of Il17ra and Il7r messenger RNAs (RNAs) (which encode receptors for the inflammatory cytokines IL17 and IL7) and Il6st mRNA (which encodes GP130, a cytokine signaling protein). These mRNAs and proteins were greater in MIR31-knockout mice with colitis, compared with control mice; MIR31 and MIR31 mimics inhibited their expression. MIR31 also promoted epithelial regeneration by regulating the WNT and Hippo signaling pathways. OKGM peptosome-MIR31 mimic microspheres localized to colonic epithelial cells in mice with colitis; they reduced the inflammatory response, increased body weight and colon length, and promoted epithelial cell proliferation. CONCLUSIONS MIR31, increased in colon tissues from patients with CD or UC, reduces the inflammatory response in colon epithelium of mice by preventing expression of inflammatory cytokine receptors (Il7R and Il17RA) and signaling proteins (GP130). MIR31 also regulates the WNT and Hippo signaling pathways to promote epithelial regeneration following injury. OKGM peptosome-MIR31 microspheres localize to the colon epithelium of mice to reduce features of colitis. Transcript Profiling: GSE123556.
Collapse
Affiliation(s)
- Yuhua Tian
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sujuan Du
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengzhen Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xi Wu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiwen You
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Cui
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China; Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, UK
| | - Jinyue Sun
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bing Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Technology and Science, Wuhan, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lixiang Xue
- Medical Research Center. Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hongquan Zhang
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Beijing, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, California
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
30
|
Zhou J, Bai W, Liu Q, Cui J, Zhang W. Silencing of ADAM33 restrains proliferation and induces apoptosis of airway smooth muscle cells in ovalbumin-induced asthma model. J Cell Biochem 2019; 120:1435-1443. [PMID: 30450713 DOI: 10.1002/jcb.27263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023]
Abstract
A defibrinogen and metalloproteinase 33 (ADAM33) was reported to play an important role in asthma. Furthermore, ADAM33 may play a possible role in airway remodeling due to its high expression in myo-/fibroblasts, epithelium, as well as the airway smooth muscle cells (ASMCs). Thus, the study is supposed to investigate the effect of the downregulation of ADAM33 on the proliferation and apoptosis of ASMCs in allergic asthma. An ovalbumin-induced asthma model in rats was established for investigating the function of the silencing of ADAM33. ASMCs were cultured and divided into four groups after transfection. The messenger RNA and protein expressions of ADAM33 were measured by reverse transcription quantitative polymerase chain reaction and Western blot analysis. Cell proliferation was tested by cell counting kit-8 and cell apoptosis by TdT-mediated dUTP nick-end labeling. The allergic asthma rats showed a large number of inflammatory cell infiltration, airway smooth muscle hypertrophy and hyperplasia, and increased WA t , WA m , and numbers of bronchial smooth muscle nucleus. Additionally, increased numbers of eosinophils and neutrophils, expressions of immunoglobulin E and interleukin-4, content of airway air pressure, and NO, although decreased in expression of interferon-γ, were exhibited in rats with allergic asthma. In our study, upregulated ADAM33 was found, and after the silencing of ADAM33, decreased proliferation and increased apoptosis of ASMCs were observed. The study evidences that silencing of ADAM33 can decrease the proliferation and increase the apoptosis of ASMCs in a rat model of allergic asthma, suggesting ADAM33 represents a potential investigative focus target aiding allergic asthma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Bai
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Cui
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Mohan LJ, Daly JS, Ryan BM, Ramtoola Z. The future of nanomedicine in optimising the treatment of inflammatory bowel disease. Scand J Gastroenterol 2019; 54:18-26. [PMID: 30678499 DOI: 10.1080/00365521.2018.1563805] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There have been major advancements in the treatment of inflammatory bowel disease (IBD) over the past three decades. However despite significant progress, the best available treatments continue to demonstrate variable efficacy in patients and are associated with adverse effects. Therefore there remains an unmet clinical need for ongoing therapeutic advances for IBD. In recent years nanomedicines have emerged as promising diagnostic and therapeutic tools. Nanoparticles in particular show promise to facilitate targeted oral drug delivery in IBD. Here we discuss the pitfalls of current therapies and explore the potential for nanoparticles to improve the treatment of IBD. This review examines the range of conventional and novel therapies which have benefited from nanoparticle-mediated delivery and highlights the proven therapeutic efficacy of this approach in preclinical models. These strategies under development represent a novel and innovative treatment for IBD.
Collapse
Affiliation(s)
- Lauren J Mohan
- a Division of Biology, Department of Anatomy , Royal College of Surgeons in Ireland , Dublin , Ireland.,b School of Pharmacy, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Jacqueline S Daly
- a Division of Biology, Department of Anatomy , Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Barbara M Ryan
- c Department of Gastroenterology and Clinical Medicine , Tallaght Hospital and Trinity College , Dublin , Ireland
| | - Zebunnissa Ramtoola
- b School of Pharmacy, Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
32
|
Wong CY, Martinez J, Al-Salami H, Dass CR. Quantification of BSA-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography. Anal Bioanal Chem 2018; 410:6991-7006. [PMID: 30206665 DOI: 10.1007/s00216-018-1319-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
Therapeutic proteins are administered subcutaneously because of their instability in the gastrointestinal tract. Current research suggests that polymeric-based nanoparticles, microparticles and liposomes are ideal nanocarriers to encapsulate proteins for disease management. In order to develop a successful drug delivery system, it is crucial to determine drug release profile and stability. However, the non-active excipients in polymeric formulations can influence the quantification of proteins in analytical techniques. This study investigated the effect of nine common polymers on quantification of bovine serum albumin (BSA) using RP-HPLC method. The technique offers advantages such as short analytical time, high accuracy and selectivity. In the meantime, the technique can be employed to separate proteins including BSA, insulin and pigment epithelium-derived factor (PEDF). Furthermore, the RP-HPLC method was applied to quantify the drug release pattern of a novel BSA-loaded nanoparticulate formulation in simulated gastric and intestinal fluids. The nanoparticles were formulated by natural polymer (chitosan) and oligonucleotide (Dz13Scr) using complex coacervation. The prepared particles were found to have small size (337.87 nm), low polydispersity index (0.338) and be positively charged (10.23 mV). The in vitro drug release patterns were characterised using the validated RP-HPLC method over 12 h. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia.,Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia.,Curtin Health Innovation Research Institute, Bentley, 6102, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia. .,Curtin Health Innovation Research Institute, Bentley, 6102, Australia.
| |
Collapse
|
33
|
Fukata T, Mizushima T, Nishimura J, Okuzaki D, Wu X, Hirose H, Yokoyama Y, Kubota Y, Nagata K, Tsujimura N, Inoue A, Miyoshi N, Haraguchi N, Takahashi H, Hata T, Matsuda C, Kayama H, Takeda K, Doki Y, Mori M, Yamamoto H. The Supercarbonate Apatite-MicroRNA Complex Inhibits Dextran Sodium Sulfate-Induced Colitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:658-671. [PMID: 30092402 PMCID: PMC6083010 DOI: 10.1016/j.omtn.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing. Nucleic acid-based medicine has potential as a next-generation treatment, but it is rarely successful with IBD. The aim of this study was to establish a microRNA-based therapy in an IBD model. For this purpose, we used microRNA-29 (miR-29) and a supercarbonate apatite (sCA) nanoparticle as a drug delivery system. Injection of sCA-miR-29a-3p or sCA-miR-29b-3p into mouse tail veins markedly prevented and restored inflammation because of dextran sulfate sodium (DSS)-induced colitis. RNA sequencing analysis revealed that miR-29a and miR-29b could inhibit the interferon-associated inflammatory cascade. Subcutaneous injection of sCA-miR-29b also potently inhibited inflammation, and it efficiently targeted CD11c+ dendritic cells (DCs) among various types of immune cells in the inflamed mucosa. RT-PCR analysis indicated that the miR-29 RNAs in CD11c+ DCs suppressed the production of interleukin-6 (IL-6), transforming growth factor β (TGF-β), and IL-23 subunits in DSS-treated mice. This may inhibit Th17 differentiation and subsequent activation, which is critical in IBD pathogenesis. In vivo experiments using a non-natural artificial microRNA sequence revealed that targeting of DCs in the inflamed colon is an exceptional feature of sCA. This study suggests that sCA-miR-29s may open a new avenue in nucleic acid-based medicine for IBD treatment.
Collapse
Affiliation(s)
- Tadafumi Fukata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita City, Osaka, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Yui Kubota
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Kazuya Nagata
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Naoto Tsujimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Akira Inoue
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, Japan; Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka3-1, Suita City, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, Japan; Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka3-1, Suita City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan; Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan.
| |
Collapse
|
34
|
Wang Y, Kong QJ, Sun JC, Xu XM, Yang Y, Liu N, Shi JG. Protective effect of epigenetic silencing of CyclinD1 against spinal cord injury using bone marrow-derived mesenchymal stem cells in rats. J Cell Physiol 2017; 233:5361-5369. [PMID: 29215736 DOI: 10.1002/jcp.26354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
This study focuses on the protective effect of epigenetic silencing of CyclinD1 against spinal cord injury (SCI) using bone marrow-derived mesenchymal stem cells (BMSCs) in rats. Eighty-eight adult female Wistar rats were randomly assigned into the sham group, the control group, the si-CyclinD1 + BMSCs group and the BMSCs group. CyclinD1 protein and mRNA expressions after siRNA transfection were detected by Western blotting and qRT-PCR. The siRNA-CyclinD1 BMSCs were transplanted into rats in the si-CyclinD1 + BMSCs group using stereotaxic method 6 hr after SCI. Hindlimb locomotor performance was determined using inclined plane test and Basso-Beattie-Bresnahan (BBB) locomotor rating scale. Expressions of glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) were detected by immunohistochemistry. Inclined plane and BBB scores in the control, si-CyclinD1 + BMSCs, and BMSCs groups were significantly lower than the sham group, but these scores were evidently decreased in the control group and increased in the si-CyclinD1 + BMSCs group compared with the BMSCs group. The repair degree of spinal cord tissues of rats in the si-CyclinD1 + BMSCs group was obvious than the BMSCs group. GFAP and NGF protein expressions were markedly decreased in the control, si-CyclinD1 + BMSCs and BMSCs groups when compared with the sham group. GFAP- and NGF-positive cells were significantly increased in the si-CyclinD1 + BMSCs group while decreased in the control group. Our study provides evidence that epigenetic silencing of CyclinD1 using BMSCs might accelerate the repair of SCI in rats.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Qing-Jie Kong
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Jin-Chuan Sun
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Xi-Ming Xu
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Yong Yang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Ning Liu
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Jian-Gang Shi
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| |
Collapse
|
35
|
Attarwala H, Clausen V, Chaturvedi P, Amiji MM. Cosilencing Intestinal Transglutaminase-2 and Interleukin-15 Using Gelatin-Based Nanoparticles in an in Vitro Model of Celiac Disease. Mol Pharm 2017; 14:3036-3044. [DOI: 10.1021/acs.molpharmaceut.7b00233] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Husain Attarwala
- Department of Pharmaceutical
Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Valerie Clausen
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Prasoon Chaturvedi
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Mansoor M. Amiji
- Department of Pharmaceutical
Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Acharya R, Saha S, Ray S, Hazra S, Mitra MK, Chakraborty J. siRNA-nanoparticle conjugate in gene silencing: A future cure to deadly diseases? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1378-1400. [DOI: 10.1016/j.msec.2017.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
|
37
|
Attarwala H, Han M, Kim J, Amiji M. Oral nucleic acid therapy using multicompartmental delivery systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544521 DOI: 10.1002/wnan.1478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/12/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid-based therapeutics has the potential for treating numerous diseases by correcting abnormal expression of specific genes. Lack of safe and efficacious delivery strategies poses a major obstacle limiting clinical advancement of nucleic acid therapeutics. Oral route of drug administration has greater delivery challenges, because the administered genes or oligonucleotides have to bypass degrading environment of the gastrointestinal (GI) tract in addition to overcoming other cellular barriers preventing nucleic acid delivery. For efficient oral nucleic acid delivery, vector should be such that it can protect encapsulated material during transit through the GI tract, facilitate efficient uptake and intracellular trafficking at desired target sites, along with being safe and well tolerated. In this review, we have discussed multicompartmental systems for overcoming extracellular and intracellular barriers to oral delivery of nucleic acids. A nanoparticles-in-microsphere oral system-based multicompartmental system was developed and tested for in vivo gene and small interfering RNA delivery for treating colitis in mice. This system has shown efficient transgene expression or gene silencing when delivered orally along with favorable downstream anti-inflammatory effects, when tested in a mouse model of intestinal bowel disease. WIREs Nanomed Nanobiotechnol 2018, 10:e1478. doi: 10.1002/wnan.1478 This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Husain Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Dar MJ, Ali H, Khan A, Khan GM. Polymer-based drug delivery: the quest for local targeting of inflamed intestinal mucosa. J Drug Target 2017; 25:582-596. [DOI: 10.1080/1061186x.2017.1298601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M. Junaid Dar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Amjad Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
39
|
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use.
Collapse
Affiliation(s)
- Jian Guo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Xiaojing Jiang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
40
|
RNAi-mediated silencing of TNF-α converting enzyme to down-regulate soluble TNF-α production for treatment of acute and chronic colitis. J Control Release 2016; 239:231-41. [DOI: 10.1016/j.jconrel.2016.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 01/26/2023]
|
41
|
Knipe JM, Strong LE, Peppas NA. Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α Knockdown in the Intestine. Biomacromolecules 2016; 17:788-97. [PMID: 26813877 DOI: 10.1021/acs.biomac.5b01518] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel diseases (IBD) manifest from excessive intestinal inflammation. Local delivery of siRNA that targets these inflammatory cytokines would provide a novel treatment approach. Microencapsulated nanogels are designed and validated as platforms for oral delivery of siRNA targeting TNF-α, a common clinical target of IBD treatments. The preferred platform was designed to (i) protect siRNA-loaded nanogels from the harsh acidic environment of the upper GI tract and (ii) enzymatically degrade and release the nanogels once the carrier has reached the intestinal region. This platform consists of microgels composed of poly(methacrylic acid-co-N-vinyl-2-pyrrolidone) (P[MAA-co-NVP]) cross-linked with a trypsin-degradable peptide linker. The P(MAA-co-NVP) backbone is designed to collapse around and protect encapsulated nanogel from degradation at the low pH levels seen in the stomach (pH 2-4). At pH levels of 6-7.5, as typically observed in the intestine, the P(MAA-co-NVP) matrix swells, potentially facilitating diffusion of intestinal fluid and degradation of the matrix by intestinal enzymes such as trypsin, thus "freeing" the therapeutic nanogels for delivery and cellular uptake within the intestine. TNF-α siRNA-loaded nanogels released from this platform were capable of inducing potent knockdown of secreted TNF-α levels in murine macrophages, further validating the potential for this approach to be used for the treatment of IBD.
Collapse
Affiliation(s)
- Jennifer M Knipe
- Department of Chemical Engineering, C0400, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Laura E Strong
- Department of Biomedical Engineering, C0800, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Nicholas A Peppas
- Department of Chemical Engineering, C0400, The University of Texas at Austin , Austin, Texas 78712, United States.,Department of Biomedical Engineering, C0800, The University of Texas at Austin , Austin, Texas 78712, United States.,Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin , Austin, Texas 78712, United States.,College of Pharmacy, A1900, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
42
|
Alvarez MM, Liu JC, Trujillo-de Santiago G, Cha BH, Vishwakarma A, Ghaemmaghami AM, Khademhosseini A. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications. J Control Release 2016; 240:349-363. [PMID: 26778695 DOI: 10.1016/j.jconrel.2016.01.026] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/21/2022]
Abstract
Macrophages are key players in many physiological scenarios including tissue homeostasis. In response to injury, typically the balance between macrophage sub-populations shifts from an M1 phenotype (pro-inflammatory) to an M2 phenotype (anti-inflammatory). In tissue engineering scenarios, after implantation of any device, it is desirable to exercise control on this M1-M2 progression and to ensure a timely and smooth transition from the inflammatory to the healing stage. In this review, we briefly introduce the current state of knowledge regarding macrophage function and nomenclature. Next, we discuss the use of controlled release strategies to tune the balance between the M1 and M2 phenotypes in the context of tissue engineering applications. We discuss recent literature related to the release of anti-inflammatory molecules (including nucleic acids) and the sequential release of cytokines to promote a timely M1-M2 shift. In addition, we describe the use of macrophages as controlled release agents upon stimulation by physical and/or mechanical cues provided by scaffolds. Moreover, we discuss current and future applications of "smart" implantable scaffolds capable of controlling the cascade of biochemical events related to healing and vascularization. Finally, we provide our opinion on the current challenges and the future research directions to improve our understanding of the M1-M2 macrophage balance and properly exploit it in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Julie C Liu
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; School of Chemical Engineering and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Byung-Hyun Cha
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ajaykumar Vishwakarma
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
43
|
Sreedhar R, Arumugam S, Thandavarayan RA, Giridharan VV, Karuppagounder V, Pitchaimani V, Afrin R, Harima M, Nakamura T, Ueno K, Nakamura M, Suzuki K, Watanabe K. Toki-shakuyaku-san, a Japanese kampo medicine, reduces colon inflammation in a mouse model of acute colitis. Int Immunopharmacol 2015; 29:869-875. [DOI: 10.1016/j.intimp.2015.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023]
|
44
|
Takedatsu H, Mitsuyama K, Torimura T. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease. World J Gastroenterol 2015; 21:11343-52. [PMID: 26525603 PMCID: PMC4616210 DOI: 10.3748/wjg.v21.i40.11343] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/28/2015] [Accepted: 08/29/2015] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease and ulcerative colitis are two important categories of human inflammatory bowel disease (IBD). Because the precise mechanisms of the inflammation and immune responses in IBD have not been fully elucidated, the treatment of IBD primarily aims to inhibit the pathogenic factors of the inflammatory cascade. Inconsistencies exist regarding the response and side effects of the drugs that are currently used to treat IBD. Recent studies have suggested that the use of nanomedicine might be advantageous for the treatment of intestinal inflammation because nano-sized molecules can effectively penetrate epithelial and inflammatory cells. We reviewed nanomedicine treatments, such as the use of small interfering RNAs, antisense oligonucleotides, and anti-inflammatory molecules with delivery systems in experimental colitis models and clinical trials for IBD based on a systematic search. The efficacy and usefulness of the treatments reviewed in this manuscript have been demonstrated in experimental colitis models and clinical trials using various types of nanomedicine. Nanomedicine is expected to become a new therapeutic approach to the treatment of IBD.
Collapse
|
45
|
Dual TNF-α/IL-12p40 Interference as a Strategy to Protect Against Colitis Based on miR-16 Precursors With Macrophage Targeting Vectors. Mol Ther 2015; 23:1611-21. [PMID: 26073885 DOI: 10.1038/mt.2015.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
Cytokines are central components of the mucosal inflammatory responses that take place during the development of Crohn's disease. Cell-specific combination therapies against cytokines may lead to increased efficacy and even reduced side effects. Therefore, a colonic macrophage-specific therapy using miR-16 precursors that can target both TNF-α and IL-12p40 was tested for its efficacy in experimental colitic mice. Galactosylated low molecular weight chitosan (G-LMWC) associated with miR-16 precursors were intracolonically injected into mice. The cellular localization of miR-16 precursors was determined. The therapeutic effects and possible mechanism were further studied in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. The results show that specific upregulation of miR-16 level in colonic macrophages significantly reduces TNF-α and IL-12p40 expression, which could suppress the associated mucosal inflammation and ultimately result in the relief of colitic symptoms. This strategy, based on the dual silencing of colonic macrophage-specific cytokines, represents a potential therapeutic approach that may be valuable for colitis therapy.
Collapse
|
46
|
Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1117-32. [PMID: 25784453 DOI: 10.1016/j.nano.2015.02.018] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Colon targeted drug delivery is an active area of research for local diseases affecting the colon, as it improves the efficacy of therapeutics and enables localized treatment, which reduces systemic toxicity. Targeted delivery of therapeutics to the colon is particularly advantageous for the treatment of inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease. Advances in oral drug delivery design have significantly improved the bioavailability of drugs to the colon; however in order for a drug to have therapeutic efficacy during disease, considerations must be made for the altered physiology of the gastrointestinal (GI) tract that is associated with GI inflammation. Nanotechnology has been used in oral dosage formulation design as strategies to further enhance uptake into diseased tissue within the colon. This review will describe some of the physiological challenges faced by orally administered delivery systems in IBD, the important developments in orally administered nano-delivery systems for colon targeting, and the future advances of this research. FROM THE CLINICAL EDITOR Inflammatory Bowel Disease (IBD) poses a significant problem for a large number of patients worldwide. Current medical therapy mostly aims at suppressing the active inflammatory episodes. In this review article, the authors described and discussed the various approaches current nano-delivery systems can offer in overcoming the limitations of conventional drug formulations.
Collapse
Affiliation(s)
- Susan Hua
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
| | - Ellen Marks
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Gastrointestinal Research Group, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jennifer J Schneider
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Simon Keely
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Gastrointestinal Research Group, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
47
|
Tran TH, Amiji MM. Targeted delivery systems for biological therapies of inflammatory diseases. Expert Opin Drug Deliv 2014; 12:393-414. [DOI: 10.1517/17425247.2015.972931] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Viscido A, Capannolo A, Latella G, Caprilli R, Frieri G. Nanotechnology in the treatment of inflammatory bowel diseases. J Crohns Colitis 2014; 8:903-18. [PMID: 24686095 DOI: 10.1016/j.crohns.2014.02.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Treatment of inflammatory bowel diseases (IBD) is only aimed to block or inhibit the pathogenetic steps of the inflammatory cascade. Side effects of systemic therapies, poor targeting of orally administered topical drug and low adherence to prescription represent frequent therapeutic challenges. Recent observations suggest that nanotechnology could provide amazing advantage in this field since particles having dimension in the nanometer scale (nanoparticles) can modify pharmacokinetic step of biologic and conventional therapeutic agents with a better delivery of drugs within the intestinal inflammatory cells. The aim of this review was to provide the clinician with an insight into the potential role of nanotechnology in the treatment of IBD. METHODS A systematic search (PubMed) for experimental studies on the treatment of intestinal inflammation using nanotechnology for the delivery of drugs. RESULTS AND CONCLUSIONS The size of the pharmaceutical formulation is inversely related to specificity for inflammation. Nanoparticles can penetrate epithelial and inflammatory cells resulting in much higher, effective and long-acting concentrations than can be obtained using conventional delivery systems. From a practical point of view, this should lead to improvements in both efficacy and adherence to treatment, providing patients with the prospect of stable and prolonged remissions with reduced drug loadings. Reduced systemic side effects could also be expected.
Collapse
Affiliation(s)
- Angelo Viscido
- Gastroenterology Unit, Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Annalisa Capannolo
- Gastroenterology Unit, Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Gastroenterology Unit, Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Giuseppe Frieri
- Gastroenterology Unit, Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
49
|
Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev 2014; 71:58-76. [PMID: 24157534 DOI: 10.1016/j.addr.2013.10.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a frequently occurring disease in young people, which is characterized by a chronic inflammation of the gastrointestinal tract. The therapy of IBD is dominated by the administration of anti-inflammatory and immunosuppressive drugs, which suppress the intestinal inflammatory burden and improve the disease-related symptoms. Established treatment strategies are characterized by a limited therapeutical efficacy and the occurrence of adverse drug reactions. Thus, the development of novel disease-targeted drug delivery strategies is intended for a more effective therapy and demonstrates the potential to address unmet medical needs. This review gives an overview about the established as well as future-oriented drug targeting strategies, including intestine targeting by conventional drug delivery systems (DDS), disease targeted drug delivery by synthetic DDS and disease targeted drug delivery by biological DDS. Furthermore, this review analyses the targeting mechanisms of the respective DDS and discusses the possible field of utilization in IBD.
Collapse
Affiliation(s)
- Christian Lautenschläger
- Clinic of Internal Medicine IV, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | - Carsten Schmidt
- Clinic of Internal Medicine IV, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | - Dagmar Fischer
- Institute of Pharmacy, Department of Pharmaceutical Technology, Friedrich-Schiller University Jena, Otto-Schott-Strasse 41, 07745 Jena, Germany.
| | - Andreas Stallmach
- Clinic of Internal Medicine IV, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| |
Collapse
|
50
|
Sobczak M, Fabisiak A, Murawska N, Wesołowska E, Wierzbicka P, Wlazłowski M, Wójcikowska M, Zatorski H, Zwolińska M, Fichna J. Current overview of extrinsic and intrinsic factors in etiology and progression of inflammatory bowel diseases. Pharmacol Rep 2014; 66:766-75. [PMID: 25149979 DOI: 10.1016/j.pharep.2014.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/29/2014] [Accepted: 04/09/2014] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic, relapsing disorders affecting gastrointestinal (GI) tract and associated with intestinal mucosa damage and inflammation. The principal therapeutic goals in IBD include control of the intestinal inflammation and treatment of the major symptoms, mainly abdominal pain and diarrhea. Current therapeutic strategies for IBD rely on the use of non-specific anti-inflammatory agents and immunosuppressive drugs (e.g. aminosalicylates, monoclonal antibodies, and antibiotics), which cause severe side effects, and - in a significant number of patients - do not induce long-term benefits. In this review, we summarize the epidemiology and the most important risk factors of IBD, including genetic, immunological and environmental. Our main focus is to discuss pharmacological targets for current and future treatments of IBD.
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Natalia Murawska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Ewelina Wesołowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Paulina Wierzbicka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Marcin Wlazłowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Marta Wójcikowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Hubert Zatorski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Marta Zwolińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|