1
|
Ranjbarnejad T, Abolhassani H, Sherkat R, Salehi M, Ranjbarnejad F, Vatandoost N, Sharifi M. Exploring Monogenic, Polygenic, and Epigenetic Models of Common Variable Immunodeficiency. Hum Mutat 2025; 2025:1725906. [PMID: 40265101 PMCID: PMC12014265 DOI: 10.1155/humu/1725906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 12/21/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic inborn error of immunity (IEI). CVID is genetically heterogeneous and occurs in sporadic or familial forms with different inheritance patterns. Monogenic mutations have been found in a low percentage of patients, and multifactorial or polygenic inheritance may be involved in unsolved patients. In the complex disease model, the epistatic effect of multiple variants in several genes and environmental factors such as infections may contribute. Epigenetic modifications, such as DNA methylation changes, are also proposed to be involved in CVID pathogenesis. In general, the pathogenic mechanism and molecular basis of CVID disease are still unknown, and identifying patterns of association across the genome in polygenic models and epigenetic modification profiles in CVID requires more studies. Here, we describe the current knowledge of the molecular genetic basis of CVID from monogenic, polygenic, and epigenetic aspects.
Collapse
Affiliation(s)
- Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Science, Isfahan, Iran
| | - Fatemeh Ranjbarnejad
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Szczawińska-Popłonyk A, Bekalarska J, Jęch K, Knobloch N, Łukasik O, Ossowska A, Ruducha J, Wysocka Z. The Burden of Non-Infectious Organ-Specific Immunopathology in Pediatric Common Variable Immunodeficiency. Int J Mol Sci 2025; 26:2653. [PMID: 40141295 PMCID: PMC11942423 DOI: 10.3390/ijms26062653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
The pediatric common variable immunodeficiency (CVID) is the most frequent symptomatic antibody production defect characterized by infectious and non-infectious autoimmune, inflammatory, and lymphoproliferative complications. The background for CVID-related organ-specific immunopathology is associated with immune dysregulation and immunophenotypic biomarkers with expansion of CD21low B cells, and dysfunctional memory B cell, follicular T cell, and regulatory T cell compartments. The ever-increasing progress in immunogenetics shows the heterogeneity of genetic background for CVID related to the complexity of clinical phenotypes. Multiple systemic modulatory pathways are determined by variants in such genes as TACI or TNFRSF13B gene encoding for BAFF-R, CTLA-4, LRBA, NFKB1 and NFKB2, and PIK3CD or PIK3R1. The organ-specific immunopathology encompasses a spectrum of disorders associated with immune dysregulation, such as granulomatous interstitial lung disease, hepatocellular nodular regenerative hyperplasia, enteropathy, neuropathy, endocrinopathies, and dermatoses. This review is aimed to define and delineate the organ-specific immunopathology in pediatric CVID. It is also conducted to gather data facilitating a better understanding of complex and heterogeneous immunophenotypes in the context of immune dysregulation mechanisms and genetic background determining manifestations of the disease and implicating personalized targeted therapies with biological agents.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Julia Bekalarska
- Student Scientific Society, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (J.B.); (K.J.); (N.K.); (O.Ł.); (A.O.); (J.R.); (Z.W.)
| | - Kacper Jęch
- Student Scientific Society, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (J.B.); (K.J.); (N.K.); (O.Ł.); (A.O.); (J.R.); (Z.W.)
| | - Nadia Knobloch
- Student Scientific Society, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (J.B.); (K.J.); (N.K.); (O.Ł.); (A.O.); (J.R.); (Z.W.)
| | - Oliwia Łukasik
- Student Scientific Society, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (J.B.); (K.J.); (N.K.); (O.Ł.); (A.O.); (J.R.); (Z.W.)
| | - Aleksandra Ossowska
- Student Scientific Society, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (J.B.); (K.J.); (N.K.); (O.Ł.); (A.O.); (J.R.); (Z.W.)
| | - Jędrzej Ruducha
- Student Scientific Society, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (J.B.); (K.J.); (N.K.); (O.Ł.); (A.O.); (J.R.); (Z.W.)
| | - Zuzanna Wysocka
- Student Scientific Society, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (J.B.); (K.J.); (N.K.); (O.Ł.); (A.O.); (J.R.); (Z.W.)
| |
Collapse
|
3
|
Kahn A, Luque G, Cuestas E, Basquiera A, Ricchi B, Schmitz-Abe K, Charbonnier LM, Benamar M, Motrich RD, Chatila TA, Rivero VE. Immunological biomarkers associated with survival in a cohort of Argentinian patients with common variable immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100311. [PMID: 39282620 PMCID: PMC11393598 DOI: 10.1016/j.jacig.2024.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 09/19/2024]
Abstract
Background Common variable immunodeficiency (CVID) is the most common symptomatic syndrome among inborn errors of immunity. Although several aspects of CVID immunopathology have been elucidated, predictive factors for mortality are incompletely defined. A genetic cause can be identified only in approximately 30% of patients. Objective We sought to develop a mortality predictive score on the basis of the immunophenotypes and genotypes of patients with CVID. Methods Twenty-one patients diagnosed with CVID in Córdoba, Argentina, were analyzed for clinical and laboratory data. Immunophenotyping was done by flow cytometry. CVID-associated mutations were identified by whole-exome sequencing. Results Alive (15) and deceased (6) patients were compared. Univariate analysis showed significant differences in CD4+ T cells (P = .002), natural killer (NK) cells (P = .001), and memory switched B cells (P = .001) between groups. Logistic regression analysis showed a negative correlation between CD4+, NK, and memory switched B-cell counts and probability of survival over a 10-year period (CD4+ T cells: odds ratio [OR], 1.01; 95% CI, 1.001-1.020; NK cells: OR, 1.07; 95% CI, 1.02-1.17; and memory switched B cells: OR, 26.23; 95% CI, 2.06-2651.96). Receiver-operating characteristic curve analysis identified a survival cutoff point for each parameter (CD4+ T cells: 546 cells/mL; AUC, 0.87; sensitivity, 60%; specificity, 100%; memory switched B cells: 0.84 cells/mL; AUC, 0.92; sensitivity, 100%; specificity, 85%; and NK cells: 45 cells/mL; AUC, 0.92; sensitivity, 83%; specificity, 100%). Genetic analysis on 14 (9 female and 5 male) patients from the cohort revealed mutations associated with inborn errors of immunity in 6 patients. Conclusions A score to predict mortality is proposed on the basis of CD4+ T, NK, and memory switched B-cell counts in patients with CVID.
Collapse
Affiliation(s)
- Adrian Kahn
- Servicio de Alergia e Inmunología Clínica, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
- FOCIS Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Córdoba, Argentina
| | - Gabriela Luque
- Servicio de Oncohematologia, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Eduardo Cuestas
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
- Servicio de Pediatria, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Ana Basquiera
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
- Servicio de Oncohematologia, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Brenda Ricchi
- Servicio de Oncohematologia, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children’s Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Mass
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, Fla
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children’s Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children’s Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Ruben Dario Motrich
- FOCIS Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Virginia E. Rivero
- FOCIS Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Szczawińska-Popłonyk A, Ciesielska W, Konarczak M, Opanowski J, Orska A, Wróblewska J, Szczepankiewicz A. Immunogenetic Landscape in Pediatric Common Variable Immunodeficiency. Int J Mol Sci 2024; 25:9999. [PMID: 39337487 PMCID: PMC11432681 DOI: 10.3390/ijms25189999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic antibody deficiency, characterized by heterogeneous genetic, immunological, and clinical phenotypes. It is no longer conceived as a sole disease but as an umbrella diagnosis comprising a spectrum of clinical conditions, with defects in antibody biosynthesis as their common denominator and complex pathways determining B and T cell developmental impairments due to genetic defects of many receptors and ligands, activating and co-stimulatory molecules, and intracellular signaling molecules. Consequently, these genetic variants may affect crucial immunological processes of antigen presentation, antibody class switch recombination, antibody affinity maturation, and somatic hypermutation. While infections are the most common features of pediatric CVID, variants in genes linked to antibody production defects play a role in pathomechanisms of immune dysregulation with autoimmunity, allergy, and lymphoproliferation reflecting the diversity of the immunogenetic underpinnings of CVID. Herein, we have reviewed the aspects of genetics in CVID, including the monogenic, digenic, and polygenic models of inheritance exemplified by a spectrum of genes relevant to CVID pathophysiology. We have also briefly discussed the epigenetic mechanisms associated with micro RNA, DNA methylation, chromatin reorganization, and histone protein modification processes as background for CVID development.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Wiktoria Ciesielska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Marta Konarczak
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Jakub Opanowski
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Aleksandra Orska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Julia Wróblewska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Aleksandra Szczepankiewicz
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| |
Collapse
|
5
|
Ameratunga R, Longhurst H, Leung E, Steele R, Lehnert K, Woon ST. Limitations in the clinical utility of vaccine challenge responses in the evaluation of primary antibody deficiency including Common Variable Immunodeficiency Disorders. Clin Immunol 2024; 266:110320. [PMID: 39025346 DOI: 10.1016/j.clim.2024.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Vaccine challenge responses are an integral component in the diagnostic evaluation of patients with primary antibody deficiency, including Common Variable Immunodeficiency Disorders (CVID). There are no studies of vaccine challenge responses in primary hypogammaglobulinemia patients not accepted for subcutaneous/intravenous immunoglobulin (SCIG/IVIG) replacement compared to those accepted for such treatment. Vaccine challenge responses in patients enrolled in two long-term prospective cohorts, the New Zealand Hypogammaglobulinemia Study (NZHS) and the New Zealand CVID study (NZCS), were compared in this analysis. Almost all patients in the more severely affected SCIG/IVIG treatment group achieved protective antibody levels to tetanus toxoid and H. influenzae type B (HIB). Although there was a highly significant statistical difference in vaccine responses to HIB, tetanus and diphtheria toxoids, there was substantial overlap in both groups. In contrast, there was no significant difference in Pneumococcal Polysaccharide antibody responses to Pneumovax® (PPV23). This analysis illustrates the limitations of evaluating vaccine challenge responses in patients with primary hypogammaglobulinemia to establish the diagnosis of CVID and in making decisions to treat with SCIG/IVIG. The conclusion from this study is that patients with symptoms attributable to primary hypogammaglobulinemia with reduced IgG should not be denied SCIG/IVIG if they have normal vaccine responses.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand.
| | - Hilary Longhurst
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Health and Medical Sciences, University of Auckland, Symonds St, Auckland 1010, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand
| |
Collapse
|
6
|
Utsumi T, Tsumura M, Yashiro M, Kato Z, Noma K, Sakura F, Kagawa R, Mizoguchi Y, Karakawa S, Ohnishi H, Cunningham-Rundles C, Arkwright PD, Kobayashi M, Kanegane H, Bogunovic D, Boisson B, Casanova JL, Asano T, Okada S. Exclusive Characteristics of the p.E555K Dominant-Negative Variant in Autosomal Dominant E47 Deficiency. J Clin Immunol 2024; 44:167. [PMID: 39073655 PMCID: PMC11286708 DOI: 10.1007/s10875-024-01758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Transcription factor 3 (TCF3) encodes 2 transcription factors generated by alternative splicing, E12 and E47, which contribute to early lymphocyte differentiation. In humans, autosomal dominant (AD) E47 transcription factor deficiency is an inborn error of immunity characterized by B-cell deficiency and agammaglobulinemia. Only the recurrent de novo p.E555K pathogenic variant has been associated with this disease and acts via a dominant-negative (DN) mechanism. In this study, we describe the first Asian patient with agammaglobulinemia caused by the TCF3 p.E555K variant and provide insights into the structure and function of this variant. METHODS TCF3 variant was identified by inborn errors of immunity-related gene panel sequencing. The variant E555K was characterized by alanine scanning of the E47 basic region and comprehensive mutational analysis focused on position 555. RESULTS The patient was a 25-year-old male with B-cell deficiency, agammaglobulinemia, and mild facial dysmorphic features. We confirmed the diagnosis of AD E47 transcription factor deficiency by identifying a heterozygous missense variant, c.1663 G>A; p.E555K, in TCF3. Alanine scanning of the E47 basic region revealed the structural importance of position 555. Comprehensive mutational analysis focused on position 555 showed that only the glutamate-to-lysine substitution had a strong DN effect. 3D modeling demonstrated that this variant not only abolished hydrogen bonds involved in protein‒DNA interactions, but also inverted the charge on the surface of the E47 protein. CONCLUSIONS Our study reveals the causative mutation hotspot in the TCF3 DN variant and highlights the weak negative selection associated with the TCF3 gene.
Collapse
Affiliation(s)
- Takanori Utsumi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Structural Medicine, United Graduate School of Drug Discovery and Medical Information Science, Gifu University, Gifu, Japan
| | - Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Masao Kobayashi
- Japanese Red Cross Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute (HHMI), New York, NY, USA
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
7
|
Gu C, Wei X, Yan D, Cai Y, Li D, Shu J, Cai C. DEPDC5 plays a vital role in epilepsy: Genotypic and phenotypic features in cohort and literature. Epileptic Disord 2024; 26:341-349. [PMID: 38752894 DOI: 10.1002/epd2.20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE DEPDC5 emerges to play a vital role in focal epilepsy. However, genotype-phenotype correlation in DEPDC5-related focal epilepsies is challenging and controversial. In this study, we aim to investigate the genotypic and phenotypic features in DEPDC5-affected patients. METHODS Genetic testing combined with criteria published by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), was used to identify pathogenic/likely pathogenic variants in DEPDC5 among the cohort of 479 patients with focal epilepsy. Besides, the literature review was performed to explore the genotype-phenotype correlation and the penetrance in DEPDC5-related focal epilepsies. RESULTS Eight unrelated probands were revealed to carry different pathogenic/likely pathogenic variants in DEPDC5 and the total prevalence of DEPDC5-related focal epilepsy was 1.67% in the cohort. Sixty-five variants from 28 studies were included in our review. Combined with the cases reported, null variants accounted for a larger proportion than missense variants and were related to unfavorable prognosis (drug resistance or even sudden unexpected death in epilepsy; χ2 = 5.429, p = .020). And, the prognosis of probands with developmental delay/intellectual disability or focal cortical dysplasia was worse than that of probands with simple epilepsy (χ2 = -, p = .006). Besides, the overall penetrance of variants in DEPDC5 was 68.96% (231/335). SIGNIFICANCE The study expands the variant spectrum of DEPDC5 and proves that the DEPDC5 variant plays a significant role in focal epilepsy. Due to the characteristics of phenotypic heterogeneity and incomplete penetrance, genetic testing is necessary despite no specific family history. And we propose to adopt the ACMG/AMP criteria refined by ClinGen Sequence Variant Interpretation Working Group, for consistency in usage and transparency in classification rationale. Moreover, we reveal an important message to clinicians that the prognosis of DEPDC5-affected patients is related to the variant type and complications.
Collapse
Affiliation(s)
- Chunyu Gu
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Xinping Wei
- The Medical Department of Neurology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Dandan Yan
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Yingzi Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Dong Li
- The Medical Department of Neurology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| |
Collapse
|
8
|
Bou-Maroun LM, Walkovich KJ, Frazier L, Hannibal M, Michniacki TF. Heterozygous TCF3-related disease presenting as X-linked agammaglobulinemia mimicry in a male toddler with B-cell aplasia, agammaglobulinemia, and severe neutropenia. Pediatr Blood Cancer 2024; 71:e30947. [PMID: 38462791 DOI: 10.1002/pbc.30947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Laura M Bou-Maroun
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly J Walkovich
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren Frazier
- Division of Genetics, Metabolism & Genomic Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark Hannibal
- Division of Genetics, Metabolism & Genomic Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas F Michniacki
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Ameratunga R, Woon ST, Leung E, Lea E, Chan L, Mehrtens J, Longhurst HJ, Steele R, Lehnert K, Lindsay K. The autoimmune rheumatological presentation of Common Variable Immunodeficiency Disorders with an overview of genetic testing. Semin Arthritis Rheum 2024; 65:152387. [PMID: 38330740 DOI: 10.1016/j.semarthrit.2024.152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - James Mehrtens
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary J Longhurst
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Lindsay
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|
10
|
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 2024; 25:184-195. [PMID: 37863939 DOI: 10.1038/s41576-023-00656-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Garcia-Prat M, Batlle-Masó L, Parra-Martínez A, Franco-Jarava C, Martinez-Gallo M, Aguiló-Cucurull A, Perurena-Prieto J, Castells N, Urban B, Dieli-Crimi R, Soler-Palacín P, Colobran R. Role of Skewed X-Chromosome Inactivation in Common Variable Immunodeficiency. J Clin Immunol 2024; 44:54. [PMID: 38265673 DOI: 10.1007/s10875-024-01659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
The term common variable immunodeficiency (CVID) encompasses a clinically diverse group of disorders, mainly characterized by hypogammaglobulinemia, insufficient specific antibody production, and recurrent infections. The genetics of CVID is complex, and monogenic defects account for only a portion of cases, typically <30%. Other proposed mechanisms include digenic, oligogenic, or polygenic inheritance and epigenetic dysregulation. In this study, we aimed to assess the role of skewed X-chromosome inactivation (XCI) in CVID. Within our cohort of 131 genetically analyzed CVID patients, we selected female patients with rare variants in CVID-associated genes located on the X-chromosome. Four patients harboring heterozygous variants in BTK (n = 2), CD40LG (n = 1), and IKBKG (n = 1) were included in the study. We assessed XCI status using the HUMARA assay and an NGS-based method to quantify the expression of the 2 alleles in mRNA. Three of the 4 patients (75%) exhibited skewed XCI, and the mutated allele was predominantly expressed in all cases. Patient 1 harbored a hypomorphic variant in BTK (p.Tyr418His), patient 3 had a pathogenic variant in CD40LG (c.288+1G>A), and patient 4 had a hypomorphic variant in IKBKG (p.Glu57Lys) and a heterozygous splice variant in TNFRSF13B (TACI) (c.61+2T>A). Overall, the analysis of our cohort suggests that CVID in a small proportion of females (1.6% in our cohort) is caused by skewed XCI and highly penetrant gene variants on the X-chromosome. Additionally, skewed XCI may contribute to polygenic effects (3.3% in our cohort). These results indicate that skewed XCI may represent another piece in the complex puzzle of CVID genetics.
Collapse
Affiliation(s)
- Marina Garcia-Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Laura Batlle-Masó
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
| | - Alba Parra-Martínez
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Clara Franco-Jarava
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Mónica Martinez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Aina Aguiló-Cucurull
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Janire Perurena-Prieto
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Neus Castells
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Medicine Genetics Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Blanca Urban
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Romina Dieli-Crimi
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Pere Soler-Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain.
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain.
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Catalonia, Spain.
| |
Collapse
|
12
|
Ameratunga R, Leung E, Woon ST, Lea E, Allan C, Chan L, Longhurst H, Steele R, Snell R, Lehnert K. Challenges for gene editing in common variable immunodeficiency disorders: Current and future prospects. Clin Immunol 2024; 258:109854. [PMID: 38013164 DOI: 10.1016/j.clim.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 11/29/2023]
Abstract
The original CRISPR Cas9 gene editing system and subsequent innovations offers unprecedented opportunities to correct severe genetic defects including those causing Primary Immunodeficiencies (PIDs). Common Variable Immunodeficiency Disorders (CVID) are the most frequent symptomatic PID in adults and children. Unlike many other PIDs, patients meeting CVID criteria do not have a definable genetic defect and cannot be considered to have an inborn error of immunity (IEI). Patients with a CVID phenotype carrying a causative mutation are deemed to have a CVID-like disorder consequent to an IEI. Patients from consanguineous families often have highly penetrant early-onset autosomal recessive forms of CVID-like disorders. Individuals from non-consanguineous families may have autosomal dominant CVID-like disorders with variable penetrance and expressivity. This essay explores the potential clinical utility as well as the current limitations and risks of gene editing including collateral genotoxicity. In the immediate future the main application of this technology is likely to be the in vitro investigation of epigenetic and polygenic mechanisms, which are likely to underlie many cases of CVID and CVID-like disorders. In the longer-term, the CRISPR Cas9 system and other gene-based therapies could be utilized to treat CVID-like disorders, where the underlying IEI is known.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Euphemia Leung
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Edward Lea
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Caroline Allan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Russell Snell
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Farchione AJ, Cheon H, Hodgkin PD, Bryant VL. Quantifying Human Naïve B Cell Proliferation Kinetics and Differentiation in Controlled In Vitro Cell Culture. Methods Mol Biol 2024; 2826:167-187. [PMID: 39017893 DOI: 10.1007/978-1-0716-3950-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Division tracking dyes like Cell Trace Violet (CTV) enable the quantification of cell proliferation, division, and survival kinetics of human naïve B cell responses in vitro. Human naïve B cells exhibit distinct responses to different stimuli, with CpG and anti-Ig inducing a T cell-independent (TI) response, while CD40L and IL-21 promote a T cell-dependent (TD) response that induces isotype switching and differentiation into antibody-secreting cells (ASCs). Both stimulation methods yield valuable insights into the intrinsic programming of B cell health within individuals, making them useful for clinical investigations. For instance, quantitative analysis from these B cell populations could reveal biologically meaningful measurements such as the average number of division rounds and the time to cells' fate. Here, we describe a novel in vitro culture setup for CTV-labelled human naïve B cells and a method for obtaining precise time-based data on proliferation, division-linked isotype switching, and differentiation.
Collapse
Affiliation(s)
- Anthony J Farchione
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - HoChan Cheon
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Philip D Hodgkin
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Bryant
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Department Clinical Immunology and Allergy, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Meyer BJ, Kunz N, Seki S, Higgins R, Ghosh A, Hupfer R, Baldrich A, Hirsiger JR, Jauch AJ, Burgener AV, Lötscher J, Aschwanden M, Dickenmann M, Stegert M, Berger CT, Daikeler T, Heijnen I, Navarini AA, Rudin C, Yamamoto H, Kemper C, Hess C, Recher M. Immunologic and Genetic Contributors to CD46-Dependent Immune Dysregulation. J Clin Immunol 2023; 43:1840-1856. [PMID: 37477760 PMCID: PMC10661731 DOI: 10.1007/s10875-023-01547-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Mutations in CD46 predispose to atypical hemolytic uremic syndrome (aHUS) with low penetrance. Factors driving immune-dysregulatory disease in individual mutation carriers have remained ill-understood. In addition to its role as a negative regulator of the complement system, CD46 modifies T cell-intrinsic metabolic adaptation and cytokine production. Comparative immunologic analysis of diseased vs. healthy CD46 mutation carriers has not been performed in detail yet. In this study, we comprehensively analyzed clinical, molecular, immune-phenotypic, cytokine secretion, immune-metabolic, and genetic profiles in healthy vs. diseased individuals carrying a rare, heterozygous CD46 mutation identified within a large single family. Five out of six studied individuals carried a CD46 gene splice-site mutation causing an in-frame deletion of 21 base pairs. One child suffered from aHUS and his paternal uncle manifested with adult-onset systemic lupus erythematosus (SLE). Three mutation carriers had no clinical evidence of CD46-related disease to date. CD4+ T cell-intrinsic CD46 expression was uniformly 50%-reduced but was comparable in diseased vs. healthy mutation carriers. Reconstitution experiments defined the 21-base pair-deleted CD46 variant as intracellularly-but not surface-expressed and haploinsufficient. Both healthy and diseased mutation carriers displayed reduced CD46-dependent T cell mitochondrial adaptation. Diseased mutation carriers had lower peripheral regulatory T cell (Treg) frequencies and carried potentially epistatic, private rare variants in other inborn errors of immunity (IEI)-associated proinflammatory genes, not found in healthy mutation carriers. In conclusion, low Treg and rare non-CD46 immune-gene variants may contribute to clinically manifest CD46 haploinsufficiency-associated immune-dysregulation.
Collapse
Affiliation(s)
- Benedikt J Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Natalia Kunz
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Complement and Inflammation Research Section, CIRS, DIR, NHLBI, NIH, Bethesda, USA
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Adhideb Ghosh
- Dermatology, University Hospital Basel, Basel, Switzerland
- Competence Center for Personalized Medicine, University of Zürich/Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Robin Hupfer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Adrian Baldrich
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Anne-Valérie Burgener
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jonas Lötscher
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Markus Aschwanden
- Department of Angiology, University Hospital Basel, Basel, Switzerland
| | - Michael Dickenmann
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Mihaela Stegert
- Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Thomas Daikeler
- Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Christoph Rudin
- University Children's Hospital, University of Basel, Basel, Switzerland
| | - Hiroyuki Yamamoto
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Claudia Kemper
- Complement and Inflammation Research Section, CIRS, DIR, NHLBI, NIH, Bethesda, USA
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
- University Center for Immunology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Boast B, Goel S, González-Granado LI, Niemela J, Stoddard J, Edwards ESJ, Seneviratne S, Spensberger D, Quesada-Espinosa JF, Allende LM, McDonnell J, Haseley A, Lesmana H, Walkiewicz MA, Muhammad E, Bosco JJ, Fleisher TA, Cohen S, Holland SM, van Zelm MC, Enders A, Kuehn HS, Rosenzweig SD. TCF3 haploinsufficiency defined by immune, clinical, gene-dosage, and murine studies. J Allergy Clin Immunol 2023; 152:736-747. [PMID: 37277074 PMCID: PMC10527523 DOI: 10.1016/j.jaci.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND TCF3 is a transcription factor contributing to early lymphocyte differentiation. Germline monoallelic dominant negative and biallelic loss-of-function (LOF) null TCF3 mutations cause a fully penetrant severe immunodeficiency. We identified 8 individuals from 7 unrelated families with monoallelic LOF TCF3 variants presenting with immunodeficiency with incomplete clinical penetrance. OBJECTIVE We sought to define TCF3 haploinsufficiency (HI) biology and its association with immunodeficiency. METHODS Patient clinical data and blood samples were analyzed. Flow cytometry, Western blot analysis, plasmablast differentiation, immunoglobulin secretion, and transcriptional activity studies were conducted on individuals carrying TCF3 variants. Mice with a heterozygous Tcf3 deletion were analyzed for lymphocyte development and phenotyping. RESULTS Individuals carrying monoallelic LOF TCF3 variants showed B-cell defects (eg, reduced total, class-switched memory, and/or plasmablasts) and reduced serum immunoglobulin levels; most but not all presented with recurrent but nonsevere infections. These TCF3 LOF variants were either not transcribed or translated, resulting in reduced wild-type TCF3 protein expression, strongly suggesting HI pathophysiology for the disease. Targeted RNA sequencing analysis of T-cell blasts from TCF3-null, dominant negative, or HI individuals clustered away from healthy donors, implying that 2 WT copies of TCF3 are needed to sustain a tightly regulated TCF3 gene-dosage effect. Murine TCF3 HI resulted in a reduction of circulating B cells but overall normal humoral immune responses. CONCLUSION Monoallelic LOF TCF3 mutations cause a gene-dosage-dependent reduction in wild-type protein expression, B-cell defects, and a dysregulated transcriptome, resulting in immunodeficiency. Tcf3+/- mice partially recapitulate the human phenotype, underscoring the differences between TCF3 in humans and mice.
Collapse
Affiliation(s)
- Brigette Boast
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Shubham Goel
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Luis I González-Granado
- Department of Pediatrics, Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), School of Medicine, Complutense University, Madrid, Spain
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Emily S J Edwards
- Department of Immunology, Monash University, and The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia
| | - Sandali Seneviratne
- Centre for Personalised Immunology and Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Dominik Spensberger
- ANU Gene Targeting Facility, Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | - Luis M Allende
- Department of Immunology, Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - John McDonnell
- Department of Pediatric Allergy and Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Alexandria Haseley
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Harry Lesmana
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Magdalena A Walkiewicz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Emad Muhammad
- Hematology Laboratory, Carmel Medical Center, Haifa, Spain
| | - Julian J Bosco
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Australia
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Shai Cohen
- Allergy and Clinical Immunology Service, Department of Internal Medicine B, Lin and Carmel Medical Center, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Menno C van Zelm
- Department of Immunology, Monash University, and The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Australia
| | - Anselm Enders
- Centre for Personalised Immunology and Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md.
| |
Collapse
|
16
|
Holma P, Pesonen P, Karjalainen MK, Järvelin MR, Väyrynen S, Sliz E, Heikkilä A, Seppänen MRJ, Kettunen J, Auvinen J, Hautala T. Low and high serum IgG associates with respiratory infections in a young and working age population. EBioMedicine 2023; 94:104712. [PMID: 37453363 PMCID: PMC10366395 DOI: 10.1016/j.ebiom.2023.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND We investigated health consequences and genetic properties associated with serum IgG concentration in a young and working age general population. METHODS Northern Finland Birth Cohort 1966 (NFBC1966, n = 12,231) health data have been collected from birth to 52 years of age. Relationships between life-long health events, medications, chronic conditions, lifestyle, and serum IgG concentration measured at age 46 years (n = 5430) were analysed. Regulatory mechanisms of serum IgG concentration were considered. FINDINGS Smoking and genetic variation (FCGR2B and TNFRSF13B) were the most important determinants of serum IgG concentration. Laboratory findings suggestive of common variable immunodeficiency (CVID) were 10-fold higher compared to previous reports (73.7 per 100,000 vs 0.6-6.9 per 100,000). Low IgG was associated with antibiotic use (relative risk 1.285, 95% CI 1.001-1.648; p = 0.049) and sinus surgery (relative risk 2.257, 95% CI 1.163-4.379; p = 0.016). High serum IgG was associated with at least one pneumonia episode (relative risk 1.737, 95% CI 1.032-2.922; p = 0.038) and with total number of pneumonia episodes (relative risk 2.167, 95% CI 1.443-3.254; p < 0.001). INTERPRETATION CVID-like laboratory findings are surprisingly common in our unselected study population. Any deviation of serum IgG from normal values can be harmful; both low and high serum IgG may indicate immunological insufficiency. Critical evaluation of clinical presentation must accompany immunological laboratory parameters. FUNDING Oulu University Hospital VTR, CSL Behring, Foundation for Pediatric Research.
Collapse
Affiliation(s)
- Pia Holma
- Research Unit of Internal Medicine and Biomedicine, University of Oulu and Oulu University Hospital, Division of Infectious Diseases, Oulu, Finland
| | - Paula Pesonen
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Minna K Karjalainen
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland; Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Epidemiology and Biostatistics, MRC Center for Environment & Health, School of Public Health, Imperial College London, London, UK
| | - Sara Väyrynen
- Research Unit of Internal Medicine and Biomedicine, University of Oulu and Oulu University Hospital, Division of Infectious Diseases, Oulu, Finland
| | - Eeva Sliz
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anni Heikkilä
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Mikko R J Seppänen
- Rare Disease Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Johannes Kettunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Auvinen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Timo Hautala
- Research Unit of Internal Medicine and Biomedicine, University of Oulu and Oulu University Hospital, Division of Infectious Diseases, Oulu, Finland.
| |
Collapse
|
17
|
Zhang C, Han X, Jin Y, Chen X, Gong C, Peng J, Wang Y, Luo X, Yang Z, Zhang Y, Wan W, Liu X, Mao J, Yu H, Li J, Liu L, Sun L, Yang S, An Y, Liu Z, Gao E, Zhu H, Chen Y, Yu X, Zhou Q, Liu Z. Pathogenic Gene Spectrum and Clinical Implication in Chinese Patients with Lupus Nephritis. Clin J Am Soc Nephrol 2023; 18:869-880. [PMID: 37099456 PMCID: PMC10356117 DOI: 10.2215/cjn.0000000000000185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Lupus nephritis is a rare immunological disorder. Genetic factors are considered important in its causation. We aim to systematically investigate the rare pathogenic gene variants in patients with lupus nephritis. METHODS Whole-exome sequencing was used to screen pathogenic gene variants in 1886 probands with lupus nephritis. Variants were interpreted on the basis of known pathogenic variants or the American College of Medical Genetics and Genomics guidelines and studied by functional analysis, including RNA sequencing, quantitative PCR, cytometric bead array, and Western blotting. RESULTS Mendelian form of lupus nephritis was confirmed in 71 probands, involving 63 variants in 39 pathogenic genes. The detection yield was 4%. The pathogenic genes enriched in nuclear factor kappa-B (NF-κB), type I interferon, phosphatidylinositol-3-kinase/serine/threonine kinase Akt (PI3K/AKT), Ras GTPase/mitogen-activated protein kinase (RAS/MAPK), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. Clinical manifestation patterns were diverse among different signaling pathways. More than 50% of the pathogenic gene variants were reported to be associated with lupus or lupus nephritis for the first time. The identified pathogenic gene variants of lupus nephritis overlapped with those of autoinflammatory and immunodeficiency diseases. Inflammatory signatures, such as cytokine levels of IL-6, IL-8, IL-1 β , IFN α , IFN γ , and IP10 in serum and transcriptional levels of interferon-stimulated genes in blood, were significantly higher in patients with pathogenic gene variants compared with controls. The overall survival rate of patients with pathogenic gene variants was lower than those without pathogenic gene variants. CONCLUSIONS A small fraction of patients with lupus nephritis had identifiable pathogenic gene variants, primarily in NF-κB, type I interferon, PI3K/AKT, JAK/STAT, RAS/MAPK, and complement pathways.
Collapse
Affiliation(s)
- Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xu Han
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiang Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cheng Gong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jiahui Peng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yusha Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaoxin Luo
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Zhaohui Yang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yangyang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weiguo Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Liu
- Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haiguo Yu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyi Li
- Department of Rheumatology and Immunology, First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China
| | - Li Liu
- Children's Hospital of Tianjin University, Tianjin, China
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhengzhao Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Honghao Zhu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
18
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
19
|
Ameratunga R, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Lehnert K, Longhurst H. Selective IgA Deficiency May Be an Underrecognized Risk Factor for Severe COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:181-186. [PMID: 36241155 PMCID: PMC9554200 DOI: 10.1016/j.jaip.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
SARS-CoV-2, the agent responsible for COVID-19, has wreaked havoc around the globe. Hundreds of millions of individuals have been infected and well over six million have died from COVID-19. Many COVID-19 survivors have ongoing physical and psychiatric morbidity, which will remain for the rest of their lives. Early in the pandemic, it became apparent that older individuals and those with comorbidities including obesity, diabetes mellitus, coronary artery disease, hypertension, and renal and pulmonary disease were at increased risk of adverse outcomes. It is also clear that some immunodeficient patients, such as those with innate or T cell-immune defects, are at greater risk from COVID-19. Selective IgA deficiency (sIgAD) is generally regarded as a mild disorder in which most patients are asymptomatic because of redundancy in protective immune mechanisms. Recent data indicate that patients with sIgAD may be at high risk of severe COVID-19. SARS-CoV-2 gains entry primarily through the upper respiratory tract mucosa, where IgA has a critical protective role. This may underlie the vulnerability of sIgAD patients to adverse outcomes from COVID-19. This perspective highlights the need for ongoing research into mucosal immunity to improve COVID-19 treatments for patients with sIgAD.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Grafton, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand,Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Caroline Allan
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Kong IY, Trezise S, Light A, Todorovski I, Arnau GM, Gadipally S, Yoannidis D, Simpson KJ, Dong X, Whitehead L, Tempany JC, Farchione AJ, Sheikh AA, Groom JR, Rogers KL, Herold MJ, Bryant VL, Ritchie ME, Willis SN, Johnstone RW, Hodgkin PD, Nutt SL, Vervoort SJ, Hawkins ED. Epigenetic modulators of B cell fate identified through coupled phenotype-transcriptome analysis. Cell Death Differ 2022; 29:2519-2530. [PMID: 35831623 PMCID: PMC9751284 DOI: 10.1038/s41418-022-01037-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/31/2023] Open
Abstract
High-throughput methodologies are the cornerstone of screening approaches to identify novel compounds that regulate immune cell function. To identify novel targeted therapeutics to treat immune disorders and haematological malignancies, there is a need to integrate functional cellular information with the molecular mechanisms that regulate changes in immune cell phenotype. We facilitate this goal by combining quantitative methods for dissecting complex simultaneous cell phenotypic effects with genomic analysis. This combination strategy we term Multiplexed Analysis of Cells sequencing (MAC-seq), a modified version of Digital RNA with perturbation of Genes (DRUGseq). We applied MAC-seq to screen compounds that target the epigenetic machinery of B cells and assess altered humoral immunity by measuring changes in proliferation, survival, differentiation and transcription. This approach revealed that polycomb repressive complex 2 (PRC2) inhibitors promote antibody secreting cell (ASC) differentiation in both murine and human B cells in vitro. This is further validated using T cell-dependent immunization in mice. Functional dissection of downstream effectors of PRC2 using arrayed CRISPR screening uncovered novel regulators of B cell differentiation, including Mybl1, Myof, Gas7 and Atoh8. Together, our findings demonstrate that integrated phenotype-transcriptome analyses can be effectively combined with drug screening approaches to uncover the molecular circuitry that drives lymphocyte fate decisions.
Collapse
Affiliation(s)
- Isabella Y. Kong
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephanie Trezise
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Amanda Light
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Izabela Todorovski
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Gisela Mir Arnau
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - Sreeja Gadipally
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - David Yoannidis
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - Kaylene J. Simpson
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia ,grid.1055.10000000403978434Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Xueyi Dong
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Lachlan Whitehead
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Jessica C. Tempany
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Anthony J. Farchione
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Amania A. Sheikh
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia
| | - Joanna R. Groom
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Kelly L. Rogers
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Marco J. Herold
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Vanessa L. Bryant
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Matthew E. Ritchie
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Simon N. Willis
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Ricky W. Johnstone
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Philip D. Hodgkin
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephen L. Nutt
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephin J. Vervoort
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia ,grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Edwin D. Hawkins
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| |
Collapse
|
21
|
Ramirez N, Posadas-Cantera S, Langer N, de Oteyza ACG, Proietti M, Keller B, Zhao F, Gernedl V, Pecoraro M, Eibel H, Warnatz K, Ballestar E, Geiger R, Bossen C, Grimbacher B. Multi-omics analysis of naïve B cells of patients harboring the C104R mutation in TACI. Front Immunol 2022; 13:938240. [PMID: 36072607 PMCID: PMC9443529 DOI: 10.3389/fimmu.2022.938240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent form of symptomatic primary immunodeficiency in humans. The genetic cause of CVID is still unknown in about 70% of cases. Ten percent of CVID patients carry heterozygous mutations in the tumor necrosis factor receptor superfamily member 13B gene (TNFRSF13B), encoding TACI. Mutations in TNFRSF13B alone may not be sufficient for the development of CVID, as 1% of the healthy population carry these mutations. The common hypothesis is that TACI mutations are not fully penetrant and additional factors contribute to the development of CVID. To determine these additional factors, we investigated the perturbations of transcription factor (TF) binding and the transcriptome profiles in unstimulated and CD40L/IL21-stimulated naïve B cells from CVID patients harboring the C104R mutation in TNFRSF13B and compared them to their healthy relatives with the same mutation. In addition, the proteome of stimulated naïve B cells was investigated. For functional validation, intracellular protein concentrations were measured by flow cytometry. Our analysis revealed 8% less accessible chromatin in unstimulated naïve B cells and 25% less accessible chromatin in class-switched memory B cells from affected and unaffected TACI mutation carriers compared to healthy donors. The most enriched TF binding motifs in TACI mutation carriers involved members from the ETS, IRF, and NF-κB TF families. Validation experiments supported dysregulation of the NF-κB and MAPK pathways. In steady state, naïve B cells had increased cell death pathways and reduced cell metabolism pathways, while after stimulation, enhanced immune responses and decreased cell survival were detected. Using a multi-omics approach, our findings provide valuable insights into the impaired biology of naïve B cells from TACI mutation carriers.
Collapse
Affiliation(s)
- Neftali Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Niko Langer
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Andres Caballero Garcia de Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Hannover Medical University, Hannover, Germany
- Resolving Infection Susceptibility (RESIST) – Cluster of Excellence 2155, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Fangwen Zhao
- Medical Epigenomics & Genome Technology, Research Center for Molecular Medicine(CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Gernedl
- Medical Epigenomics & Genome Technology, Research Center for Molecular Medicine(CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Claudia Bossen
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center – University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Resolving Infection Susceptibility (RESIST) – Cluster of Excellence 2155, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) – German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs University, Freiburg, Germany
- *Correspondence: Bodo Grimbacher,
| |
Collapse
|
22
|
Mukherjee S, Cogan JD, Newman JH, Phillips JA, Hamid R, Meiler J, Capra JA. Identifying digenic disease genes via machine learning in the Undiagnosed Diseases Network. Am J Hum Genet 2021; 108:1946-1963. [PMID: 34529933 PMCID: PMC8546038 DOI: 10.1016/j.ajhg.2021.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Rare diseases affect millions of people worldwide, and discovering their genetic causes is challenging. More than half of the individuals analyzed by the Undiagnosed Diseases Network (UDN) remain undiagnosed. The central hypothesis of this work is that many of these rare genetic disorders are caused by multiple variants in more than one gene. However, given the large number of variants in each individual genome, experimentally evaluating combinations of variants for potential to cause disease is currently infeasible. To address this challenge, we developed the digenic predictor (DiGePred), a random forest classifier for identifying candidate digenic disease gene pairs by features derived from biological networks, genomics, evolutionary history, and functional annotations. We trained the DiGePred classifier by using DIDA, the largest available database of known digenic-disease-causing gene pairs, and several sets of non-digenic gene pairs, including variant pairs derived from unaffected relatives of UDN individuals. DiGePred achieved high precision and recall in cross-validation and on a held-out test set (PR area under the curve > 77%), and we further demonstrate its utility by using digenic pairs from the recent literature. In contrast to other approaches, DiGePred also appropriately controls the number of false positives when applied in realistic clinical settings. Finally, to enable the rapid screening of variant gene pairs for digenic disease potential, we freely provide the predictions of DiGePred on all human gene pairs. Our work enables the discovery of genetic causes for rare non-monogenic diseases by providing a means to rapidly evaluate variant gene pairs for the potential to cause digenic disease.
Collapse
Affiliation(s)
- Souhrid Mukherjee
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Joy D Cogan
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John H Newman
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John A Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Institute for Drug Discovery, Leipzig University Medical School, Leipzig 04103, Germany; Department of Chemistry, Leipzig University, Leipzig 04109, Germany; Department of Computer Science, Leipzig University, Leipzig 04109, Germany.
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Ameratunga R, Longhurst H, Steele R, Lehnert K, Leung E, Brooks AES, Woon ST. Common Variable Immunodeficiency Disorders, T-Cell Responses to SARS-CoV-2 Vaccines, and the Risk of Chronic COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:3575-3583. [PMID: 34182162 PMCID: PMC8230758 DOI: 10.1016/j.jaip.2021.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
COVID-19 has had a calamitous effect on the global community. Despite intense study, the immunologic response to the infection is only partially understood. In addition to older age and ethnicity, patients with comorbidities including obesity, diabetes, hypertension, coronary artery disease, malignancy, renal, and pulmonary disease may experience severe outcomes. Some patients with primary immunodeficiency (PID) and secondary immunodeficiency also appear to be at increased risk from COVID-19. In addition to vulnerability to SARS-CoV-2, patients with PIDs often have chronic pulmonary disease and may not respond to vaccines, which exacerbates their long-term risk. Patients with common variable immunodeficiency disorders, the most frequent symptomatic PID in adults and children, have a spectrum of B- and T-cell defects. It may be possible to stratify their risk for severe COVID-19 based on age, ethnicity, the severity of the T-cell defect, and the presence of other comorbidities. Patients with common variable immunodeficiency disorders and other immunodeficiencies are at risk for Chronic COVID-19, a dangerous stalemate between a suboptimal immune response and SARS-CoV-2. Intra-host viral evolution could result in the rapid emergence of vaccine-resistant mutants and variants of high consequence; it is a public health emergency. Vaccination and prevention of Chronic COVID-19 in immunodeficient patients is therefore of the utmost priority. Having a reliable diagnostic assay for T-cell immunity to SARS-CoV-2 is critical for evaluating responses to vaccines in these patients. New treatments for SARS-CoV-2 such as NZACE2-Pātari are likely to be particularly beneficial for immunodeficient patients, especially those who fail to mount a robust T-cell response to COVID-19 vaccines.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Centre for Brain Research, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Ameratunga R, Longhurst H, Lehnert K, Steele R, Edwards ESJ, Woon ST. Are All Primary Immunodeficiency Disorders Inborn Errors of Immunity? Front Immunol 2021; 12:706796. [PMID: 34367167 PMCID: PMC8335567 DOI: 10.3389/fimmu.2021.706796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Emily S J Edwards
- B Cell Differentiation Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| |
Collapse
|
25
|
Ameratunga R, Longhurst H, Steele R, Woon ST. Comparison of Diagnostic Criteria for Common Variable Immunodeficiency Disorders (CVID) in the New Zealand CVID Cohort Study. Clin Rev Allergy Immunol 2021; 61:236-244. [PMID: 34236581 DOI: 10.1007/s12016-021-08860-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune deficiencies in adults and children. In addition to recurrent and severe infections, patients with CVID are susceptible to autoimmune and inflammatory complications. The aetiologies of these uncommon conditions are, by definition, unknown. When the causes of complex disorders are uncertain, diagnostic criteria may offer valuable guidance to the management of patients. Over the last two decades, there have been four sets of diagnostic criteria for CVID in use. The original 1999 European Society for Immunodeficiencies and Pan-American Society for Immunodeficiency (ESID/PAGID) criteria are less commonly used than the three newer criteria: Ameratunga et al (Clin Exp Immunol 174:203-211, 2013), ESID (J Allergy Clin Immunol Pract, 2019) and ICON (J Allergy Clin Immunol Pract 4:38-59, 2016) criteria. The primary aim of the present study was to compare the utility of diagnostic criteria in a well-characterised cohort of CVID patients. The New Zealand CVID cohort study (NZCS) commenced in 2006 and currently comprises one hundred and thirteen patients, which represents approximately 70% of all known CVID patients in NZ. Many patients have been on subcutaneous or intravenous (SCIG/IVIG) immunoglobulin treatment for decades. Patients were given a clinical diagnosis of CVID as most were diagnosed before the advent of newer diagnostic criteria. Application of the three commonly used CVID diagnostic criteria to the NZCS showed relative sensitivities as follows: Ameratunga et al (Clin Exp Immunol 174:203-211, 2013), possible and probable CVID, 88.7%; ESID (J Allergy Clin Immunol Pract, 2019), 48.3%; and ICON (J Allergy Clin Immunol Pract 4:38-59, 2016), 47.1%. These differences were mostly due to the low rates of diagnostic vaccination challenges in patients prior to commencing SCIG/IVIG treatment and mirror similar findings in CVID cohorts from Denmark and Finland. Application of the Ameratunga et al (Clin Exp Immunol 174:203-211, 2013) CVID diagnostic criteria to patients on SCIG/IVIG may obviate the need to stop treatment for vaccine studies, to confirm the diagnosis.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand. .,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand. .,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Abraham RS, Butte MJ. The New "Wholly Trinity" in the Diagnosis and Management of Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:613-625. [PMID: 33551037 DOI: 10.1016/j.jaip.2020.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
The field of immunology has a rich and diverse history, and the study of inborn errors of immunity (IEIs) represents both the "cake" and the "icing on top of the cake," as it has enabled significant advances in our understanding of the human immune system. This explosion of knowledge has been facilitated by a unique partnership, a triumvirate formed by the physician who gathers detailed immunological and clinical phenotypic information from, and shares results with, the patient; the laboratory scientist/immunologist who performs diagnostic testing, as well as advanced functional correlative studies; and the genomics scientist/genetic counselor, who conducts and interprets varied genetic analyses, all of which are essential for dissecting constitutional genetic disorders. Although the basic principles of clinical care have not changed in recent years, the practice of clinical immunology has changed to reflect the prodigious advances in diagnostics, genomics, and therapeutics. An "omic/tics"-centric approach to IEI reflects the tremendous strides made in the field in the new millennium with recognition of new disorders, characterization of the molecular underpinnings, and development and implementation of personalized treatment strategies. This review brings renewed attention to bear on the indispensable "trinity" of phenotypic, genomic, and immunological analyses in the diagnosis, management, and treatment of IEIs.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Calif.
| |
Collapse
|
27
|
Al Sheikh E, Arkwright PD, Herwadkar A, Hussell T, Briggs TA. TCF3 Dominant Negative Variant Causes an Early Block in B-Lymphopoiesis and Agammaglobulinemia. J Clin Immunol 2021; 41:1391-1394. [PMID: 33905048 DOI: 10.1007/s10875-021-01049-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/20/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Ebtehal Al Sheikh
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, M13 9XX, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, M13 9WL, UK
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, M13 9XX, UK. .,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Oxford Rd, Manchester, M13 9WL, UK.
| | - Archana Herwadkar
- Department of Immunology, Salford Royal Foundation NHS Trust, Manchester, M6 8HD, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, M13 9XX, UK
| | - Tracy A Briggs
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, M13 9XX, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, M13 9WL, UK
| |
Collapse
|
28
|
Ameratunga R, Jordan A, Cavadino A, Ameratunga S, Hills T, Steele R, Hurst M, McGettigan B, Chua I, Brewerton M, Kennedy N, Koopmans W, Ahn Y, Barker R, Allan C, Storey P, Slade C, Baker A, Huang L, Woon ST. Bronchiectasis is associated with delayed diagnosis and adverse outcomes in the New Zealand Common Variable Immunodeficiency Disorders cohort study. Clin Exp Immunol 2021; 204:352-360. [PMID: 33755987 DOI: 10.1111/cei.13595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID) are multi-system disorders where target organ damage is mediated by infective, autoimmune and inflammatory processes. Bronchiectasis is probably the most common disabling complication of CVID. The risk factors for bronchiectasis in CVID patients are incompletely understood. The New Zealand CVID study (NZCS) is a nationwide longitudinal observational study of adults, which commenced in 2006. In this analysis, the prevalence and risk factors for bronchiectasis were examined in the NZCS. After informed consent, clinical and demographic data were obtained with an interviewer-assisted questionnaire. Linked electronic clinical records and laboratory results were also reviewed. Statistical methods were applied to determine if variables such as early-onset disease, delay in diagnosis and increased numbers of infections were associated with greater risk of bronchiectasis. One hundred and seven adult patients with a diagnosis of CVID are currently enrolled in the NZCS, comprising approximately 70% of patients known to have CVID in New Zealand. Fifty patients (46·7%) had radiologically proven bronchiectasis. This study has shown that patients with compared to those without bronchiectasis have an increased mortality at a younger age. CVID patients with bronchiectasis had a greater number of severe infections consequent to early-onset disease and delayed diagnosis. Indigenous Māori have a high prevalence of CVID and a much greater burden of bronchiectasis compared to New Zealand Europeans. Diagnostic latency has not improved during the study period. Exposure to large numbers of infections because of early-onset disease and delayed diagnosis was associated with an increased risk of bronchiectasis. Earlier diagnosis and treatment of CVID may reduce the risk of bronchiectasis and premature death in some patients.
Collapse
Affiliation(s)
- R Ameratunga
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - A Jordan
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - A Cavadino
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - S Ameratunga
- School of Population Health, University of Auckland, Auckland, New Zealand.,Population Health Directorate, Counties Manukau Health, Auckland, New Zealand
| | - T Hills
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - R Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - M Hurst
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - B McGettigan
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, WA, Australia
| | - I Chua
- Department of Clinical Immunology, Christchurch Hospital, Christchurch, New Zealand
| | - M Brewerton
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - N Kennedy
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - W Koopmans
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Y Ahn
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - R Barker
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - C Allan
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - P Storey
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - C Slade
- Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - A Baker
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - L Huang
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - S-T Woon
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Ameratunga R, Allan C, Lehnert K, Woon ST. Perspective: Application of the American College of Medical Genetics Variant Interpretation Criteria to Common Variable Immunodeficiency Disorders. Clin Rev Allergy Immunol 2021; 61:226-235. [PMID: 33818703 DOI: 10.1007/s12016-020-08828-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency disorders (CVIDs) are rare primary immunodeficiency diseases (PIDs) mostly associated with late onset antibody failure leading to immune system failure. Patients with CVID are predisposed to disabling complications such as bronchiectasis and systemic autoimmunity. In recent years a large number of genetic defects have become associated with these disorders. Patients with a causative mutation are deemed to have CVID-like disorders, while those with mutations predisposing to or modifying disease severity remain within the spectrum of CVID as defined by current diagnostic criteria. Next-generation sequencing (NGS) allows simultaneous analysis of multiple genes. Potential mutations identified from NGS are commonly evaluated with the American College of Medical Genetics (ACMG) variant interpretation criteria to determine their pathogenicity (causality). Patients with CVID and CVID-like disorders have marked genetic, allelic, and phenotypic heterogeneity. Although all patients with a CVID phenotype should undergo genetic testing, the complexity of the genetics associated with these disorders is challenging. Variants of unknown significance (VUS) remain a significant barrier to realising the full potential of NGS in CVID and CVID-like disorders. Here we explore the nuances of applying the ACMG criteria to patients with CVID and CVID-like disorders. Close collaboration between the clinician, bioinformatics, and genetics professionals will improve the diagnostic yield from genetic testing and reduce the frequency of VUS.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand. .,Department of Clinical Immunology, Auckland City Hospital, Auckland, 1010, New Zealand. .,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand.
| | - Caroline Allan
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
30
|
Lee K, Abraham RS. Next-generation sequencing for inborn errors of immunity. Hum Immunol 2021; 82:871-882. [PMID: 33715910 DOI: 10.1016/j.humimm.2021.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022]
Abstract
Inborn errors of immunity (IEIs) include several hundred gene defects affecting various components of the immune system. As with other constitutional disorders, next-generation sequencing (NGS) is a powerful tool for the diagnosis of these diseases. While NGS can provide molecular confirmation of disease in a patient with a suspected or classic phenotype, it can also identify new molecular defects of the immune system, expand gene-disease phenotypes, clarify mechanism of disease, pattern of inheritance or identify new gene-disease associations. Multiple clinical specialties are involved in the diagnosis and management of patients with IEI, and most have no formal genetic training or expertise. To effectively utilize NGS tools and data in clinical practice, it is relevant and pragmatic to obtain a modicum of knowledge about genetic terminology, the variety of platforms and tools available for high-throughput genomic analysis, the interpretation and implementation of such data in clinical practice. There is considerable variability not only in the technologies and analytical tools used for NGS but in the bioinformatics approach to variant identification and interpretation. The ability to provide a molecular basis for disease has the potential to alter therapeutic management and longer-term treatment of the disease, including developing personalized approaches with molecularly targeted therapies. This review is intended for the clinical specialist or diagnostic immunologist who works in the area of inborn errors of immunity, and provides an overview of the need for genetic testing in these patients (the "why" aspect), the various technologies and analytical approaches, bioinformatics tools, resources, and challenges (the "how" aspect), and the clinical evidence for identifying which patients might be best served by such testing (the "when" aspect).
Collapse
Affiliation(s)
- Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
31
|
Perspective: Evolving Concepts in the Diagnosis and Understanding of Common Variable Immunodeficiency Disorders (CVID). Clin Rev Allergy Immunol 2021; 59:109-121. [PMID: 31720921 DOI: 10.1007/s12016-019-08765-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune deficiency in adults. At this time, the causes of these conditions are unknown. Patients with CVID experience immune system failure consequent to late onset antibody failure. They have increased susceptibility to infections and are also at risk of severe autoimmune and inflammatory disorders as a result of immune dysregulation. An increasing number of monogenic causes as well as a digenic disorder have been described in patients with a CVID phenotype. If a causative mutation is identified, patients are removed from the umbrella diagnosis of CVID and are reclassified as having a CVID-like disorder, resulting from a specific mutation. In non-consanguineous populations, next-generation sequencing (NGS) identifies a genetic cause in approximately 25% of patients with a CVID phenotype. It is six years since we published our diagnostic criteria for CVID. There is ongoing debate about diagnostic criteria, the role of vaccine responses and genetic analysis in the diagnosis of CVID. There have been several recent studies, which have addressed some of these uncertainties. Here we review this new evidence from the perspective of our CVID diagnostic criteria and speculate on future approaches, which may assist in identifying and assessing this group of enigmatic disorders.
Collapse
|
32
|
Ameratunga R, Allan C, Woon ST. Defining Common Variable Immunodeficiency Disorders in 2020. Immunol Allergy Clin North Am 2020; 40:403-420. [PMID: 32654689 DOI: 10.1016/j.iac.2020.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune deficiency in adults. Because there is no known cause for these conditions, there is no single clinical feature or laboratory test that can confirm the diagnosis with certainty. If a causative mutation is identified, patients are deemed to have a CVID-like disorder caused by a specific primary immunodeficiency/inborn error of immunity. In the remaining patients, the explanation for these disorders remains unclear. The understanding of CVID continues to evolve and the authors review recent studies, which have addressed some of these uncertainties.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand; Auckland Healthcare Services, Park Road, Grafton, Auckland 1010, New Zealand; Clinical Immunology, Auckland City Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Caroline Allan
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Gruber C, Bogunovic D. Incomplete penetrance in primary immunodeficiency: a skeleton in the closet. Hum Genet 2020; 139:745-757. [PMID: 32067110 PMCID: PMC7275875 DOI: 10.1007/s00439-020-02131-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
Abstract
Primary immunodeficiencies (PIDs) comprise a diverse group of over 400 genetic disorders that result in clinically apparent immune dysfunction. Although PIDs are classically considered as Mendelian disorders with complete penetrance, we now understand that absent or partial clinical disease is often noted in individuals harboring disease-causing genotypes. Despite the frequency of incomplete penetrance in PID, no conceptual framework exists to categorize and explain these occurrences. Here, by reviewing decades of reports on incomplete penetrance in PID we identify four recurrent themes of incomplete penetrance, namely genotype quality, (epi)genetic modification, environmental influence, and mosaicism. For each of these principles, we review what is known, underscore what remains unknown, and propose future experimental approaches to fill the gaps in our understanding. Although the content herein relates specifically to inborn errors of immunity, the concepts are generalizable across genetic diseases.
Collapse
Affiliation(s)
- Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
| |
Collapse
|
34
|
Ameratunga R, Lehnert K, Woon ST. All Patients With Common Variable Immunodeficiency Disorders (CVID) Should Be Routinely Offered Diagnostic Genetic Testing. Front Immunol 2019; 10:2678. [PMID: 31824486 PMCID: PMC6883368 DOI: 10.3389/fimmu.2019.02678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
35
|
Ameratunga R, Ahn Y, Steele R, Woon ST. The Natural History of Untreated Primary Hypogammaglobulinemia in Adults: Implications for the Diagnosis and Treatment of Common Variable Immunodeficiency Disorders (CVID). Front Immunol 2019; 10:1541. [PMID: 31379811 PMCID: PMC6652801 DOI: 10.3389/fimmu.2019.01541] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Adults with primary hypogammaglobulinemia are frequently encountered by clinicians. Where IgG levels are markedly decreased, most patients are treated with subcutaneous or intravenous immunoglobulin (SCIG/IVIG), because of the presumed risk of severe infections. The natural history of untreated severe asymptomatic hypogammaglobulinemia is thus unknown. Similarly, there are no long-term prospective studies examining the natural history of patients with moderate reductions in IgG. Methods: In 2006, we began a prospective cohort study of patients with symptomatic and asymptomatic reductions in IgG who were not immediately commenced on SCIG/IVIG. Over the course of 12 years, 120 patients were enrolled in the NZ hypogammaglobulinemia study (NZHS) including 59 who were asymptomatic. Results: Five patients with profound primary hypogammaglobulinemia (IgG < 3 g/l), who were not on regular SCIG/IVIG have remained well for a mean duration of 139 months. This study has also shown most asymptomatic patients with moderate hypogammaglobulinemia (IgG 3.0–6.9 g/l) have been in good health for a mean observation period of 96 months. We have only identified one asymptomatic patient with moderate hypogammaglobulinemia who experienced progressive decline in IgG levels to <3 g/l and was accepted for IVIG replacement. Prospective monitoring has shown that none have suffered catastrophic infections or any of the severe autoimmune or inflammatory sequelae associated with Common Variable Immunodeficiency Disorders (CVID). Unexpectedly, 18.1% of asymptomatic and 41.6% of symptomatic hypogammaglobulinemic patients spontaneously increased their IgG into the normal range (≥7.0 g/l) on at least one occasion, which we have termed transient hypogammaglobulinemia of adulthood (THA). In this study, vaccine challenge responses have correlated poorly with symptomatic state and long-term prognosis including subsequent SCIG/IVIG treatment. Conclusions: In spite of our favorable experience, we recommend patients with severe asymptomatic hypogammaglobulinemia are treated with SCIG/IVIG because of the potential risk of severe infections. Patients with moderate asymptomatic hypogammaglobulinemia have a good prognosis. Patients with symptomatic hypogammaglobulinemia are a heterogeneous group where some progress to SCIG/IVIG replacement, while many others spontaneously recover. This study has implications for the diagnosis and treatment of CVID.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Yeri Ahn
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
36
|
Cifaldi C, Brigida I, Barzaghi F, Zoccolillo M, Ferradini V, Petricone D, Cicalese MP, Lazarevic D, Cittaro D, Omrani M, Attardi E, Conti F, Scarselli A, Chiriaco M, Di Cesare S, Licciardi F, Davide M, Ferrua F, Canessa C, Pignata C, Giliani S, Ferrari S, Fousteri G, Barera G, Merli P, Palma P, Cesaro S, Gattorno M, Trizzino A, Moschese V, Chini L, Villa A, Azzari C, Finocchi A, Locatelli F, Rossi P, Sangiuolo F, Aiuti A, Cancrini C, Di Matteo G. Targeted NGS Platforms for Genetic Screening and Gene Discovery in Primary Immunodeficiencies. Front Immunol 2019; 10:316. [PMID: 31031743 PMCID: PMC6470723 DOI: 10.3389/fimmu.2019.00316] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Primary Immunodeficiencies (PIDs) are a heterogeneous group of genetic immune disorders. While some PIDs can manifest with more than one phenotype, signs, and symptoms of various PIDs overlap considerably. Recently, novel defects in immune-related genes and additional variants in previously reported genes responsible for PIDs have been successfully identified by Next Generation Sequencing (NGS), allowing the recognition of a broad spectrum of disorders. Objective: To evaluate the strength and weakness of targeted NGS sequencing using custom-made Ion Torrent and Haloplex (Agilent) panels for diagnostics and research purposes. Methods: Five different panels including known and candidate genes were used to screen 105 patients with distinct PID features divided in three main PID categories: T cell defects, Humoral defects and Other PIDs. The Ion Torrent sequencing platform was used in 73 patients. Among these, 18 selected patients without a molecular diagnosis and 32 additional patients were analyzed by Haloplex enrichment technology. Results: The complementary use of the two custom-made targeted sequencing approaches allowed the identification of causative variants in 28.6% (n = 30) of patients. Twenty-two out of 73 (34.6%) patients were diagnosed by Ion Torrent. In this group 20 were included in the SCID/CID category. Eight out of 50 (16%) patients were diagnosed by Haloplex workflow. Ion Torrent method was highly successful for those cases with well-defined phenotypes for immunological and clinical presentation. The Haloplex approach was able to diagnose 4 SCID/CID patients and 4 additional patients with complex and extended phenotypes, embracing all three PID categories in which this approach was more efficient. Both technologies showed good gene coverage. Conclusions: NGS technology represents a powerful approach in the complex field of rare disorders but its different application should be weighted. A relatively small NGS target panel can be successfully applied for a robust diagnostic suspicion, while when the spectrum of clinical phenotypes overlaps more than one PID an in-depth NGS analysis is required, including also whole exome/genome sequencing to identify the causative gene.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Zoccolillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Davide Petricone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Attardi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Francesca Conti
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Alessia Scarselli
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Maria Chiriaco
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Silvia Di Cesare
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Francesco Licciardi
- Division of Immunology and Rheumatology, Department of Paediatric Infectious Diseases, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Montin Davide
- Division of Immunology and Rheumatology, Department of Paediatric Infectious Diseases, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Clementina Canessa
- Pediatric Immunology, Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital, Florence, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Simona Ferrari
- Unit of Medical Genetics, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Pediatric Department, San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Merli
- Department of Onco-Hematology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Paolo Palma
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Simone Cesaro
- Paediatric Hematology-Oncology, “Ospedale della Donna e del Bambino”, Verona, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Giannina Gaslini, Genoa, Italy
| | - Antonio Trizzino
- Department of Pediatric Hematology and Oncology, “ARNAS Civico Di Cristina Benfratelli” Hospital, Palermo, Italy
| | - Viviana Moschese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata Policlinico Tor Vergata, Rome, Italy
| | - Loredana Chini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata Policlinico Tor Vergata, Rome, Italy
| | - Anna Villa
- Milan Unit, National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB), Milan, Italy
- Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Chiara Azzari
- Pediatric Immunology, Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital, Florence, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, University of Rome La Sapienza, Rome, Italy
| | - Paolo Rossi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Caterina Cancrini
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
37
|
Fatal Enteroviral Encephalitis in a Patient with Common Variable Immunodeficiency Harbouring a Novel Mutation in NFKB2. J Clin Immunol 2019; 39:324-335. [DOI: 10.1007/s10875-019-00602-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
38
|
Kralickova P, Milota T, Litzman J, Malkusova I, Jilek D, Petanova J, Vydlakova J, Zimulova A, Fronkova E, Svaton M, Kanderova V, Bloomfield M, Parackova Z, Klocperk A, Haviger J, Kalina T, Sediva A. CVID-Associated Tumors: Czech Nationwide Study Focused on Epidemiology, Immunology, and Genetic Background in a Cohort of Patients With CVID. Front Immunol 2019; 9:3135. [PMID: 30723478 PMCID: PMC6349737 DOI: 10.3389/fimmu.2018.03135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/19/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Common variable immunodeficiency disorder (CVID) is one of the most frequent inborn errors of immunity, increased occurrence of malignancies, particularly lymphomas, and gastric cancers, has long been noted among CVID patients. Multifactorial etiology, including immune dysregulation, infections, chronic inflammation, or genetic background, is suggested to contribute to tumor development. Here, we present the results of the first Czech nationwide study focused on epidemiology, immunology and genetic background in a cohort of CVID patients who also developed tumors Methods: The cohort consisted of 295 CVID patients followed for 3,070 patient/years. Standardized incidence ratio (SIR) was calculated to determine the risk of cancer, and Risk ratio (RR) was established to evaluate the significance of comorbidities. Moreover, immunophenotyping, including immunoglobulin levels and lymphocyte populations, was assessed. Finally, Whole exome sequencing (WES) was performed in all patients with lymphoma to investigate the genetic background. Results: Twenty-five malignancies were diagnosed in 22 patients in a cohort of 295 CVID patients. SIR was more than 6 times greater in comparison to the general population. The most common neoplasias were gastric cancers and lymphomas. History of Immune thrombocytopenic purpura (ITP) was established as a potential risk factor, with over 3 times higher risk of cancer development. The B cell count at diagnosis of lymphoma was reduced in the lymphoma group; moreover, post-treatment B and T cell lymphopenia, associated with poorer outcome, was found in a majority of the patients. Intriguingly, no NK cell depression was observed after the chemotherapy. WES revealed heterogeneous genetic background among CVID patients with tumors, identifying gene variants associated with primary immunodeficiencies (such as CTLA4, PIK3CD, PMS2) and/or increased cancer susceptibility (including BRCA1, RABEP1, EP300, KDM5A). Conclusions: The incidence of malignancy in our CVID cohort was found to be more than 6 times greater compared to the general population. Gastric cancers and lymphomas were the most frequently diagnosed tumors. ITP was identified as a risk factor for malignancy in CVID patients. WES analysis confirmed a wide genetic heterogeneity among CVID patients. The identified causative or modifying gene variants pointed to errors in mechanisms contributing to both immunodeficiency and malignancy.
Collapse
Affiliation(s)
- Pavlina Kralickova
- Department of Allergology and Clinical Immunology, Faculty of Medicine, Charles University and University Hospital in Hradec Kralove, Hradec Kralove, Czechia
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jiri Litzman
- Department of Allergology nad Clinical Immunology, Faculty of Medicine, Masaryk University and St Anne's University Hospital in Brno, Brno, Czechia
| | - Ivana Malkusova
- Department of Allergology and Clinical Immunology, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czechia
| | - Dalibor Jilek
- Department of Allergology and Clinical Immunology, Institute of Health, Usti nad Labem, Czechia
| | - Jitka Petanova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jana Vydlakova
- Department of Clinical Immunology and Allergology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Alena Zimulova
- Department of Pneumology, Regional Thomas Bata Hospital, Zlin, Czechia
| | - Eva Fronkova
- Childhood Leukemia Investigation Prague, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michael Svaton
- Childhood Leukemia Investigation Prague, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Veronika Kanderova
- Childhood Leukemia Investigation Prague, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Marketa Bloomfield
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Zuzana Parackova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jiri Haviger
- Department of Informatics and Quantitative Methods, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Tomas Kalina
- Childhood Leukemia Investigation Prague, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| |
Collapse
|
39
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
40
|
Common Variable Immunodeficiency with Genetic Defects Identified by Whole Exome Sequencing. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3724630. [PMID: 30363934 PMCID: PMC6186323 DOI: 10.1155/2018/3724630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022]
Abstract
Common variable immunodeficiency (CVID) belongs to the primary immunodeficiency disorders (PIDs), presenting a profound heterogeneity in phenotype and genotype, with monogenic or complex causes. Recurrent respiratory infections are the most common clinical manifestations. CVID patients can also develop various autoimmune and lymphoproliferative complications. Genetic testing such as whole exome sequencing (WES) can be utilized to investigate likely genetic defects, helping for better clinical management. We described the clinical phenotypes of three sporadic cases of CVID, who developed recurrent respiratory infections with different autoimmune and lymphoproliferative complications. WES was applied to screen disease-causing or disease-associated mutations. Two patients were identified to have monogenic disorders, with compound heterozygous mutations in LRBA for one patient and a frameshift insertion in NFKB1 for another. The third patient was identified to be a complex form of CVID. Two novel mutations were identified, respectively, in LRBA and NFKB1. A combination of clinical and genetic diagnosis can be more extensively utilized in the clinical practice due to the complexity and heterogeneity of CVID.
Collapse
|
41
|
Ameratunga R. Assessing Disease Severity in Common Variable Immunodeficiency Disorders (CVID) and CVID-Like Disorders. Front Immunol 2018; 9:2130. [PMID: 30323807 PMCID: PMC6172311 DOI: 10.3389/fimmu.2018.02130] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
42
|
Review: Diagnosing Common Variable Immunodeficiency Disorder in the Era of Genome Sequencing. Clin Rev Allergy Immunol 2018; 54:261-268. [PMID: 29030829 DOI: 10.1007/s12016-017-8645-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Common variable immunodeficiency disorders (CVID) are an enigmatic group of often heritable conditions, which may manifest for the first time in early childhood or as late as the eighth decade of life. In the last 5 years, next generation sequencing (NGS) has revolutionised identification of genetic disorders. However, despite the best efforts of researchers around the globe, CVID conditions have been slow to yield their molecular secrets. We have previously described the many clinical advantages of identifying the genetic basis of primary immunodeficiency disorders (PIDs). In a minority of CVID patients, monogenic defects have now been identified. If a causative mutation is identified, these conditions are reclassified as CVID-like disorders. Here we discuss recent advances in the genetics of CVID and discuss how NGS can be optimally deployed to identify the causal mutations responsible for the protean clinical manifestations of these conditions. Diagnostic criteria such as the Ameratunga et al. criteria will continue to play an important role in patient management as well as case selection and sequencing strategy design until the genetic conundrum of CVID is solved.
Collapse
|
43
|
Ameratunga R, Ahn Y, Jordan A, Lehnert K, Brothers S, Woon ST. Keeping it in the family: the case for considering late-onset combined immunodeficiency a subset of common variable immunodeficiency disorders. Expert Rev Clin Immunol 2018; 14:549-556. [PMID: 29806948 DOI: 10.1080/1744666x.2018.1481750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune defect in adults. Within the broad spectrum of CVID, a proportion of patients present with a predominant T cell phenotype associated with increased mortality. These patients are termed late-onset combined immunodeficiency (LOCID) and are currently separated from patients suffering from CVID. Areas covered: We have recently codiscovered a new CVID-like disorder caused by mutations of the NFKB1 gene. Members of this non-consanguineous New Zealand kindred have a very diverse spectrum of phenotypes in spite of carrying the identical mutation. The proband appears to have the autoimmune variant. The proband's recently deceased sister best matched LOCID while other family members are less severely affected, including one asymptomatic adult brother, who has an affected daughter. Differences in genetics was one of the main arguments for separating these disorders in the past. Expert commentary: Given the recent advances in the understanding of the genetic basis of these conditions, we present the case that LOCID should now be considered a subset of CVID, rather than a separate disorder. At a clinical level, this distinction is less important but it is imperative these patients are carefully evaluated, the relevant complications are treated, and they are offered prognostic information.
Collapse
Affiliation(s)
- Rohan Ameratunga
- a Department of Virology and Immunology , Auckland City Hospital , Auckland , New Zealand.,b Department of Clinical Immunology , Auckland City Hospital , Auckland , New Zealand
| | - Yeri Ahn
- a Department of Virology and Immunology , Auckland City Hospital , Auckland , New Zealand.,b Department of Clinical Immunology , Auckland City Hospital , Auckland , New Zealand
| | - Anthony Jordan
- b Department of Clinical Immunology , Auckland City Hospital , Auckland , New Zealand
| | - Klaus Lehnert
- c School of Biological Sciences , University of Auckland , Auckland , New Zealand
| | | | - See-Tarn Woon
- a Department of Virology and Immunology , Auckland City Hospital , Auckland , New Zealand
| |
Collapse
|
44
|
Slade CA, Bosco JJ, Binh Giang T, Kruse E, Stirling RG, Cameron PU, Hore-Lacy F, Sutherland MF, Barnes SL, Holdsworth S, Ojaimi S, Unglik GA, De Luca J, Patel M, McComish J, Spriggs K, Tran Y, Auyeung P, Nicholls K, O'Hehir RE, Hodgkin PD, Douglass JA, Bryant VL, van Zelm MC. Delayed Diagnosis and Complications of Predominantly Antibody Deficiencies in a Cohort of Australian Adults. Front Immunol 2018; 9:694. [PMID: 29867917 PMCID: PMC5960671 DOI: 10.3389/fimmu.2018.00694] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/04/2023] Open
Abstract
Background Predominantly antibody deficiencies (PADs) are the most common type of primary immunodeficiency in adults. PADs frequently pass undetected leading to delayed diagnosis, delayed treatment, and the potential for end-organ damage including bronchiectasis. In addition, PADs are frequently accompanied by comorbid autoimmune disease, and an increased risk of malignancy. Objectives To characterize the diagnostic and clinical features of adult PAD patients in Victoria, Australia. Methods We identified adult patients receiving, or having previously received immunoglobulin replacement therapy for a PAD at four hospitals in metropolitan Melbourne, and retrospectively characterized their clinical and diagnostic features. Results 179 patients from The Royal Melbourne, Alfred and Austin Hospitals, and Monash Medical Centre were included in the study with a median age of 49.7 years (range: 16–87 years), of whom 98 (54.7%) were female. The majority of patients (116; 64.8%) met diagnostic criteria for common variable immunodeficiency (CVID), and 21 (11.7%) were diagnosed with X-linked agammaglobulinemia (XLA). Unclassified hypogammaglobulinemia (HGG) was described in 22 patients (12.3%), IgG subclass deficiency (IGSCD) in 12 (6.7%), and specific antibody deficiency (SpAD) in 4 individuals (2.2%). The remaining four patients had a diagnosis of Good syndrome (thymoma with immunodeficiency). There was no significant difference between the age at diagnosis of the disorders, with the exception of XLA, with a median age at diagnosis of less than 1 year. The median age of reported symptom onset was 20 years for those with a diagnosis of CVID, with a median age at diagnosis of 35 years. CVID patients experienced significantly more non-infectious complications, such as autoimmune cytopenias and lymphoproliferative disease, than the other antibody deficiency disorders. The presence of non-infectious complications was associated with significantly reduced survival in the cohort. Conclusion Our data are largely consistent with the experience of other centers internationally, with clear areas for improvement, including reducing diagnostic delay for patients with PADs. It is likely that these challenges will be in part overcome by continued advances in implementation of genomic sequencing for diagnosis of PADs, and with that opportunities for targeted treatment of non-infectious complications.
Collapse
Affiliation(s)
- Charlotte A Slade
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Tran Binh Giang
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia
| | - Elizabeth Kruse
- Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Robert G Stirling
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul U Cameron
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Fiona Hore-Lacy
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Michael F Sutherland
- Department of Respiratory and Sleep Medicine, The Austin Hospital, Melbourne, VIC, Australia
| | - Sara L Barnes
- Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Stephen Holdsworth
- Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Gary A Unglik
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joseph De Luca
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Mittal Patel
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy McComish
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Kymble Spriggs
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Yang Tran
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Priscilla Auyeung
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Katherine Nicholls
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Robyn E O'Hehir
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jo A Douglass
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Menno C van Zelm
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Ameratunga R, Woon ST, Bryant VL, Steele R, Slade C, Leung EY, Lehnert K. Clinical Implications of Digenic Inheritance and Epistasis in Primary Immunodeficiency Disorders. Front Immunol 2018; 8:1965. [PMID: 29434582 PMCID: PMC5790765 DOI: 10.3389/fimmu.2017.01965] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
The existence of epistasis in humans was first predicted by Bateson in 1909. Epistasis describes the non-linear, synergistic interaction of two or more genetic loci, which can substantially modify disease severity or result in entirely new phenotypes. The concept has remained controversial in human genetics because of the lack of well-characterized examples. In humans, it is only possible to demonstrate epistasis if two or more genes are mutated. In most cases of epistasis, the mutated gene products are likely to be constituents of the same physiological pathway leading to severe disruption of a cellular function such as antibody production. We have recently described a digenic family, who carry mutations of TNFRSF13B/TACI as well as TCF3 genes. Both genes lie in tandem along the immunoglobulin isotype switching and secretion pathway. We have shown they interact in an epistatic way causing severe immunodeficiency and autoimmunity in the digenic proband. With the advent of next generation sequencing, it is likely other families with digenic inheritance will be identified. Since digenic inheritance does not always cause epistasis, we propose an epistasis index which may help quantify the effects of the two mutations. We also discuss the clinical implications of digenic inheritance and epistasis in humans with primary immunodeficiency disorders.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Richard Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Charlotte Slade
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Allergy and Clinical Immunology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Euphemia Yee Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Ameratunga R. Initial intravenous immunoglobulin doses should be based on adjusted body weight in obese patients with primary immunodeficiency disorders. Allergy Asthma Clin Immunol 2017; 13:47. [PMID: 29225631 PMCID: PMC5718066 DOI: 10.1186/s13223-017-0220-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/25/2017] [Indexed: 02/04/2023] Open
Abstract
Background Immunoglobulin therapy plays a critical role in the treatment of immunodeficiency disorders as well as autoimmune and inflammatory conditions. In immunodeficient patients, there has been controversy whether initial loading doses of intravenous (IVIG) should be based on actual body weight or a calculated parameter such as adjusted body weight in obese patients. Case presentation I describe a patient with Common Variable Immunodeficiency disorder (CVID) who underwent bariatric surgery for morbid obesity. Her weight decreased by 50% to below her calculated ideal body weight (IBW) while her immunoglobulin requirement fell by approximately 20%. Her steady state serum IgG increased from approximately 7 g/l to 11.7 g/l concomitant with weight loss. Conclusions I present this observation as support for the recommendation that initial loading doses of SCIG/IVIG in immunodeficiency should be based on adjusted body weight (AjBW) and not actual body weight in obese patients. This has important fiscal implications for treating obese patients with immunodeficiency disorders.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|