1
|
Shi S, Zhang H, Chu X, Cai Q, He D, Qin X, Wei W, Zhang N, Zhao Y, Jia Y, Zhang F, Wen Y. Identifying novel chemical-related susceptibility genes for five psychiatric disorders through integrating genome-wide association study and tissue-specific 3'aQTL annotation datasets. Eur Arch Psychiatry Clin Neurosci 2025; 275:851-862. [PMID: 38305800 DOI: 10.1007/s00406-023-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
The establishment of 3'aQTLs comprehensive database provides an opportunity to help explore the functional interpretation from the genome-wide association study (GWAS) data of psychiatric disorders. In this study, we aim to search novel susceptibility genes, pathways, and related chemicals of five psychiatric disorders via GWAS and 3'aQTLs datasets. The GWAS datasets of five psychiatric disorders were collected from the open platform of Psychiatric Genomics Consortium (PGC, https://www.med.unc.edu/pgc/ ) and iPSYCH ( https://ipsych.dk/ ) (Demontis et al. in Nat Genet 51(1):63-75, 2019; Grove et al. in Nat Genet 51:431-444, 2019; Genomic Dissection of Bipolar Disorder and Schizophrenia in Cell 173: 1705-1715.e1716, 2018; Mullins et al. in Nat Genet 53: 817-829; Howard et al. in Nat Neurosci 22: 343-352, 2019). The 3'untranslated region (3'UTR) alternative polyadenylation (APA) quantitative trait loci (3'aQTLs) summary datasets of 12 brain regions were obtained from another public platform ( https://wlcb.oit.uci.edu/3aQTLatlas/ ) (Cui et al. in Nucleic Acids Res 50: D39-D45, 2022). First, we aligned the GWAS-associated SNPs of psychiatric disorders and datasets of 3'aQTLs, and then, the GWAS-associated 3'aQTLs were identified from the overlap. Second, gene ontology (GO) and pathway analysis was applied to investigate the potential biological functions of matching genes based on the methods provided by MAGMA. Finally, chemical-related gene-set analysis (GSA) was also conducted by MAGMA to explore the potential interaction of GWAS-associated 3'aQTLs and multiple chemicals in the mechanism of psychiatric disorders. A number of susceptibility genes with 3'aQTLs were found to be associated with psychiatric disorders and some of them had brain-region specificity. For schizophrenia (SCZ), HLA-A showed associated with psychiatric disorders in all 12 brain regions, such as cerebellar hemisphere (P = 1.58 × 10-36) and cortex (P = 1.58 × 10-36). GO and pathway analysis identified several associated pathways, such as Phenylpropanoid Metabolic Process (GO:0009698, P = 6.24 × 10-7 for SCZ). Chemical-related GSA detected several chemical-related gene sets associated with psychiatric disorders. For example, gene sets of Ferulic Acid (P = 6.24 × 10-7), Morin (P = 4.47 × 10-2) and Vanillic Acid (P = 6.24 × 10-7) were found to be associated with SCZ. By integrating the functional information from 3'aQTLs, we identified several susceptibility genes and associated pathways especially chemical-related gene sets for five psychiatric disorders. Our results provided new insights to understand the etiology and mechanism of psychiatric disorders.
Collapse
Affiliation(s)
- Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
2
|
Tian Y, Qiao H, Odamah K, Zhu LQ, Man HY. Role of androgen receptors in sexually dimorphic phenotypes in UBE3A-dependent autism spectrum disorder. iScience 2025; 28:111868. [PMID: 39991542 PMCID: PMC11847089 DOI: 10.1016/j.isci.2025.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/04/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Autism spectrum disorders (ASDs) involve social, communication, and behavioral challenges. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sexually dimorphic changes at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social communication, long-term memory, and pain sensitivity compared to females. UBE3A-mediated degradation reduced androgen receptor (AR) levels in both sexes but only male mice showed significant dysregulation in the expression of AR target genes. Importantly, restoring AR levels in the brain normalized levels of AR target genes, and rescued the deficits in social preference, grooming, and memory in male UBE3A-overexpressing mice, without affecting females. These findings reveal the critical role of AR signaling in sex-specific changes linked to UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
3
|
Tian Y, Qiao H, Zhu LQ, Man HY. Sexually dimorphic phenotypes and the role of androgen receptors in UBE3A-dependent autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592248. [PMID: 38746146 PMCID: PMC11092617 DOI: 10.1101/2024.05.02.592248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
4
|
Cossard A, Stam K, Smets A, Jossin Y. MKL/SRF and Bcl6 mutual transcriptional repression safeguards the fate and positioning of neocortical progenitor cells mediated by RhoA. SCIENCE ADVANCES 2023; 9:eadd0676. [PMID: 37967194 PMCID: PMC10651131 DOI: 10.1126/sciadv.add0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.
Collapse
Affiliation(s)
- Alexia Cossard
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | | | | |
Collapse
|
5
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
6
|
Tabuchi A, Ihara D. SRF in Neurochemistry: Overview of Recent Advances in Research on the Nervous System. Neurochem Res 2022; 47:2545-2557. [PMID: 35668335 DOI: 10.1007/s11064-022-03632-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
Serum response factor (SRF) is a representative transcription factor that plays crucial roles in various biological phenomena by regulating immediate early genes (IEGs) and genes related to cell morphology and motility, among others. Over the years, the signal transduction pathways activating SRF have been clarified and SRF-target genes have been identified. In this overview, we initially briefly summarize the basic biology of SRF and its cofactors, ternary complex factor (TCF) and megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF). Progress in the generation of nervous system-specific knockout (KO) or genetically modified mice as well as genetic analyses over the last few decades has not only identified novel SRF-target genes but also highlighted the neurochemical importance of SRF and its cofactors. Therefore, here we next present the phenotypes of mice with nervous system-specific KO of SRF or its cofactors by depicting recent findings associated with brain development, plasticity, epilepsy, stress response, and drug addiction, all of which result from function or dysfunction of the SRF axis. Last, we develop a hypothesis regarding the possible involvement of SRF and its cofactors in human neurological disorders including neurodegenerative, psychiatric, and neurodevelopmental diseases. This overview should deepen our understanding, highlight promising future directions for developing novel therapeutic strategies, and lead to illumination of the mechanisms underlying higher brain functions based on neuronal structure and function.
Collapse
Affiliation(s)
- Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
7
|
Scala M, Grasso EA, Di Cara G, Riva A, Striano P, Verrotti A. The Pathophysiological Link Between Reelin and Autism: Overview and New Insights. Front Genet 2022; 13:869002. [PMID: 35422848 PMCID: PMC9002092 DOI: 10.3389/fgene.2022.869002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Reelin is a secreted extracellular matrix protein playing pivotal roles in neuronal migration and cortical stratification during embryonal brain development. In the adult brain, its activity is crucial for synaptic plasticity, memory processing, and cognition. Genetic alterations in RELN have been variably reported as possible contributors to the pathogenesis of autism spectrum disorders (ASD). In particular, GCCs repeats in the 5′UTR, and single nucleotide polymorphysms (SNPs) in RELN have been suggested to affect brain development and predispose to autism. We reviewed pertinent literature on RELN expression and haplotypes transmission in children with ASD, critically analyzing available evidence in support of the pathophysiological association between Reelin deficiency and ASD.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | | | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Alberto Verrotti
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Tabuchi A, Ihara D. Regulation of Dendritic Synaptic Morphology and Transcription by the SRF Cofactor MKL/MRTF. Front Mol Neurosci 2021; 14:767842. [PMID: 34795561 PMCID: PMC8593110 DOI: 10.3389/fnmol.2021.767842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that the serum response factor (SRF) cofactor megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF) has critical roles in many physiological and pathological processes in various cell types. MKL/MRTF molecules comprise MKL1/MRTFA and MKL2/MRTFB, which possess actin-binding motifs at the N-terminus, and SRF-binding domains and a transcriptional activation domain (TAD) at the C-terminus. Several studies have reported that, in association with actin rearrangement, MKL/MRTF translocates from the cytoplasm to the nucleus, where it regulates SRF-mediated gene expression and controls cell motility. Therefore, it is important to elucidate the roles of MKL/MRTF in the nervous system with regard to its structural and functional regulation by extracellular stimuli. We demonstrated that MKL/MRTF is highly expressed in the brain, especially the synapses, and is involved in dendritic complexity and dendritic spine maturation. In addition to the positive regulation of dendritic complexity, we identified several MKL/MRTF isoforms that negatively regulate dendritic complexity in cortical neurons. We found that the MKL/MRTF isoforms were expressed differentially during brain development and the impacts of these isoforms on the immediate early genes including Arc/Arg3.1, were different. Here, we review the roles of MKL/MRTF in the nervous system, with a special focus on the MKL/MRTF-mediated fine-tuning of neuronal morphology and gene transcription. In the concluding remarks, we briefly discuss the future perspectives and the possible involvement of MKL/MRTF in neurological disorders such as schizophrenia and autism spectrum disorder.
Collapse
Affiliation(s)
- Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Rodriguez-Gomez DA, Garcia-Guaqueta DP, Charry-Sánchez JD, Sarquis-Buitrago E, Blanco M, Velez-van-Meerbeke A, Talero-Gutiérrez C. A systematic review of common genetic variation and biological pathways in autism spectrum disorder. BMC Neurosci 2021; 22:60. [PMID: 34627165 PMCID: PMC8501721 DOI: 10.1186/s12868-021-00662-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social communication and interaction. Common genetic variation appears to play a key role in the development of this condition. In this systematic review, we describe the relationship between genetic variations and autism. We created a gene dataset of the genes involved in the pathogenesis of autism and performed an over-representation analysis to evaluate the biological functions and molecular pathways that may explain the associations between these variants and the development of ASD. Results 177 studies and a gene set composed of 139 were included in this qualitative systematic review. Enriched pathways in the over-representation analysis using the KEGG pathway database were mostly associated with neurotransmitter receptors and their subunits. Major over-represented biological processes were social behavior, vocalization behavior, learning and memory. The enriched cellular component of the proteins encoded by the genes identified in this systematic review were the postsynaptic membrane and the cell junction. Conclusions Among the biological processes that were examined, genes involved in synaptic integrity, neurotransmitter metabolism, and cell adhesion molecules were significantly involved in the development of autism. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00662-z.
Collapse
Affiliation(s)
- Diego Alejandro Rodriguez-Gomez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Danna Paola Garcia-Guaqueta
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Jesús David Charry-Sánchez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Elias Sarquis-Buitrago
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Mariana Blanco
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Alberto Velez-van-Meerbeke
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia. .,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.
| |
Collapse
|
10
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
11
|
Ahmed S, Rakib A, Uddin MMN, Islam MS, Ullah SA, Emran TB. Association of reelin gene (RELN) polymorphism with autism spectrum disorder in the Bangladeshi population. Meta Gene 2021; 29:100901. [DOI: 10.1016/j.mgene.2021.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Freitag CM, Chiocchetti AG, Haslinger D, Yousaf A, Waltes R. [Genetic risk factors and their influence on neural development in autism spectrum disorders]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2021; 50:187-202. [PMID: 34128703 DOI: 10.1024/1422-4917/a000803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic risk factors and their influence on neural development in autism spectrum disorders Abstract. Abstract. Autism spectrum disorders are etiologically based on genetic and specific gene x biologically relevant environmental risk factors. They are diagnosed based on behavioral characteristics, such as impaired social communication and stereotyped, repetitive behavior and sensory as well as special interests. The genetic background is heterogeneous, i. e., it comprises diverse genetic risk factors across the disorder and high interindividual differences of specific genetic risk factors. Nevertheless, risk factors converge regarding underlying biological mechanisms and shared pathways, which likely cause the autism-specific behavioral characteristics. The current selective literature review summarizes differential genetic risk factors and focuses particularly on mechanisms and pathways currently being discussed by international research. In conclusion, clinically relevant aspects and open translational research questions are presented.
Collapse
Affiliation(s)
- Christine M Freitag
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Andreas G Chiocchetti
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Denise Haslinger
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Afsheen Yousaf
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| | - Regina Waltes
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main
| |
Collapse
|
13
|
Agarwala S, Ramachandra NB. Role of CNTNAP2 in autism manifestation outlines the regulation of signaling between neurons at the synapse. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00138-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Autism is characterized by high heritability and a complex genetic mutational landscape with restricted social behavior and impaired social communication. Whole-exome sequencing is a reliable tool to pinpoint variants for unraveling the disease pathophysiology. The present meta-analysis was performed using 222 whole-exome sequences deposited by Simons Simplex Collection (SSC) at the European Nucleotide Archive. This sample cohort was used to identify causal mutations in autism-specific genes to create a mutational landscape focusing on the CNTNAP2 gene.
Results
The authors account for the identification of 15 high confidence genes with 24 variants for autism with Simons Foundation Autism Research Initiative (SFARI) gene scoring. These genes encompass critical autism pathways such as neuron development, synapse complexity, cytoskeleton, and microtubule activation. Among these 15 genes, overlapping variants were present across multiple samples: KMT2C in 167 cases, CNTNAP2 in 192 samples, CACNA1C in 152 cases, and SHANK3 in 124 cases. Pathway analysis identifies clustering and interplay of autism genes—WDFY3, SHANK2, CNTNAP2, HOMER1, SYNGAP1, and ANK2 with CNTNAP2. These genes coincide across autism-relevant pathways, namely abnormal social behavior and intellectual and cognitive impairment. Based on multiple layers of selection criteria, CNTNAP2 was chosen as the master gene for the study. It is an essential gene for autism with speech-language delays, a typical phenotype in most cases under study. It showcases nine variants across multiple samples with one damaging variant, T589P, with a GERP rank score range of 0.065–0.95. This unique variant was present across 86.5% of the samples impairing the epithelial growth factor (EGF) domain. Established microRNA (miRNA) genes hsa-mir-548aq and hsa-mir-548f were mutated within the CNTNAP2 region, adding to the severity. The mutated protein showed reduced stability by 0.25, increased solvent accessibility by 9%, and reduced depth by 0.2, which rendered the protein non-functional. Secondary physical interactors of CNTNAP2 through CNTN2 proteins were mutated in the samples, further intensifying the severity.
Conclusion
CNTNAP2 has been identified as a master gene in autism manifestation responsible for speech-language delay by impairing the EGF protein domain and downstream cascade. The decrease in EGF is correlated with vital autism symptoms, especially language disabilities.
Collapse
|
14
|
Pijuan J, Ortigoza-Escobar JD, Ortiz J, Alcalá A, Calvo MJ, Cubells M, Hernando-Davalillo C, Palau F, Hoenicka J. PLXNA2 and LRRC40 as candidate genes in autism spectrum disorder. Autism Res 2021; 14:1088-1100. [PMID: 33749153 DOI: 10.1002/aur.2502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability with high heritability yet the genetic etiology remains elusive. Therefore, it is necessary to elucidate new genotype-phenotype relationships for ASD to improve both the etiological knowledge and diagnosis. In this work, a copy-number variant and whole-exome sequencing analysis were performed in an ASD patient with a complex neurobehavioral phenotype with epilepsy and attention deficit hyperactivity disorder. We identified rare recessive single nucleotide variants in the two genes, PLXNA2 encoding Plexin A2 that participates in neurodevelopment, and LRRC40, which encodes Leucine-rich repeat containing protein 40, a protein of unknown function. PLXNA2 showed the heterozygous missense variants c.614G>A (p.Arg205Gln) and c.4904G>A (p.Arg1635Gln) while LRRC40 presented the homozygous missense variant c.1461G>T (p.Leu487Phe). In silico analysis predicted that these variants could be pathogenic. We studied PLXNA2 and LRRC40 mRNA and proteins in fibroblasts from the patient and controls. We observed a significant PlxnA2 subcellular delocalization and very low levels of LRRC40 in the patient. Moreover, we found a novel interaction between PlxnA2 and LRRC40 suggesting that participate in a common neural pathway. This interaction was significant decreased in the patient's fibroblasts. In conclusion, our results identified PLXNA2 and LRRC40 genes as candidates in ASD providing novel clues for the pathogenesis. Further attention to these genes is warranted in genetic studies of patients with neurodevelopmental disorders, particularly ASD. LAY SUMMARY: Genomics is improving the knowledge and diagnosis of patients with autism spectrum disorder (ASD) yet the genetic etiology remains elusive. Here, using genomic analysis together with experimental functional studies, we identified in an ASD complex patient the PLXNA2 and LRRC40 recessive genes as ASD candidates. Furthermore, we found that the proteins of these genes interact in a common neural network. Therefore, more attention to these genes is warranted in genetic studies of patients with neurodevelopmental disorders, particularly ASD.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Department of Pediatric Neurology, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Juan Ortiz
- Department of Child Psychiatry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Adrián Alcalá
- Department of Genetic Medicine - IPER, Hospital Sant Joan de Déu, Barcelona, Spain
| | - María José Calvo
- Department of Pediatric Neurology, Hospital San Jorge de Huesca, Huesca, Spain
| | - Mariona Cubells
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Department of Genetic Medicine - IPER, Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona, Spain.,Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
15
|
Cheng S, Wen Y, Ma M, Zhang L, Liu L, Qi X, Cheng B, Liang C, Li P, Kafle OP, Zhang F. Identifying 5 Common Psychiatric Disorders Associated Chemicals Through Integrative Analysis of Genome-Wide Association Study and Chemical-Gene Interaction Datasets. Schizophr Bull 2020; 46:1182-1190. [PMID: 32291453 PMCID: PMC7505178 DOI: 10.1093/schbul/sbaa053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Psychiatric disorders are a group of complex psychological syndromes whose etiology remains unknown. Previous study suggested that various chemicals contributed to the development of psychiatric diseases through affecting gene expression. This study aims to systematically explore the potential relationships between 5 major psychiatric disorders and more than 11 000 chemicals. The genome-wide association studies (GWAS) datasets of attention deficiency/hyperactive disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depression disorder (MDD), and schizophrenia (SCZ) were driven from the Psychiatric GWAS Consortium and iPSYCH website. The chemicals related gene sets were obtained from the comparative toxicogenomics database (CTD). First, transcriptome-wide association studies (TWAS) were performed by FUSION to calculate the expression association testing statistics utilizing GWAS summary statistics of the 5 common psychiatric disorders. Chemical-related gene set enrichment analysis (GSEA) was then conducted to explore the relationships between chemicals and each of the psychiatric diseases. We observed several significant correlations between chemicals and each of the psychiatric disorders. We also detected common chemicals between every 4 of the 5 major psychiatric disorders, such as androgen antagonists for ADHD (P value = .0098), ASD (P value = .0330), BD (P value = .0238), and SCZ (P value = .0062), and imipramine for ADHD (P value = .0054), ASD (P value = .0386), MDD (P value = .0438), and SCZ (P value = .0008). Our study results provide new clues for revealing the roles of environmental chemicals in the development of psychiatric disorders.
Collapse
Affiliation(s)
- Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| |
Collapse
|
16
|
Gui A, Jones EJH, Wong CCY, Meaburn E, Xia B, Pasco G, Lloyd-Fox S, Charman T, Bolton P, Johnson MH. Leveraging epigenetics to examine differences in developmental trajectories of social attention: A proof-of-principle study of DNA methylation in infants with older siblings with autism. Infant Behav Dev 2020; 60:101409. [PMID: 32623100 DOI: 10.1016/j.infbeh.2019.101409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Preliminary evidence suggests that changes in DNA methylation, a widely studied epigenetic mechanism, contribute to the etiology of Autism Spectrum Disorder (ASD). However, data is primarily derived from post-mortem brain samples or peripheral tissue from adults. Deep-phenotyped longitudinal infant cohorts are essential to understand how epigenetic modifications relate to early developmental trajectories and emergence of ASD symptoms. We present a proof-of-principle study designed to evaluate the potential of prospective epigenetic studies of infant siblings of children with ASD. Illumina genome-wide 450 K DNA methylation data from buccal swabs was generated for 63 male infants at multiple time-points from 8 months to 2 years of age (total N = 107 samples). 11 of those infants received a diagnosis of ASD at 3 years. We conducted a series of analyses to characterize DNA methylation signatures associated with categorical outcome and neurocognitive measures from parent-report questionnaire, eye-tracking and electro-encephalography. Effects observed across the entire genome (epigenome-wide association analyses) suggest that collecting DNA methylation samples within infant-sibling designs allows for the detection of meaningful signals with smaller sample sizes than previously estimated. Mapping networks of co-methylated probes associated with neural correlates of social attention implicated enrichment of pathways involved in brain development. Longitudinal modelling found covariation between phenotypic traits and DNA methylation levels in the proximity of genes previously associated with cognitive development, although larger samples and more complete datasets are needed to obtain generalizable results. In conclusion, assessment of DNA methylation profiles at multiple time-points in infant-sibling designs is a promising avenue to comprehend developmental origins and mechanisms of ASD.
Collapse
Affiliation(s)
- Anna Gui
- Department of Psychological Sciences, Birkbeck College, University of London, UK.
| | - Emily J H Jones
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| | - Chloe C Y Wong
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Emma Meaburn
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| | - Baocong Xia
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Greg Pasco
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patrick Bolton
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | |
Collapse
|
17
|
Ishibashi Y, Shoji S, Ihara D, Kubo Y, Tanaka T, Tanabe H, Hakamata T, Miyata T, Satou N, Sakagami H, Mizuguchi M, Kikuchi K, Fukuchi M, Tsuda M, Takasaki I, Tabuchi A. Expression of SOLOIST/MRTFB i4, a novel neuronal isoform of the mouse serum response factor coactivator myocardin-related transcription factor-B, negatively regulates dendritic complexity in cortical neurons. J Neurochem 2020; 159:762-777. [PMID: 32639614 DOI: 10.1111/jnc.15122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/11/2019] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Megakaryoblastic leukemia 2 (MKL2)/myocardin-related transcription factor-B (MRTFB), a serum response factor (SRF) coactivator, is an important regulator of gene expression and neuronal morphology. Here, we show that different mouse MRTFB splice isoforms, including a novel fourth MRTFB isoform named spliced neuronal long isoform of SRF transcriptional coactivator (SOLOIST)/MRTFB isoform 4 (MRTFB i4), play distinct roles in this process. SOLOIST/MRTFB i4 has a short exon that encodes 21 amino acid residues ahead of the first RPXXXEL (RPEL) motif in MRTFB isoform 3. Quantitative PCR revealed that SOLOIST/MRTFB i4 and isoform 1 were enriched in the forebrain and neurons, and up-regulated during brain development. Conversely, isoform 3 was detected in various tissues, including both neurons and astrocytes, and was down-regulated in the developing brain. Reporter assays supported the SRF-coactivator function of SOLOIST/MRTFB i4 as well as isoform 1. Acute expression of MRTFB isoform 1, but not isoform 3 or SOLOIST/MRTFB i4, in neuronal cells within 24 hr drastically increased endogenous immediate early gene [c-fos, egr1, and activity-regulated cytoskeleton-associated protein] expression, but not endogenous actinin α1, β-actin, gelsolin, or srf gene expression measured by qPCR. Over-expression of SOLOIST/MRTFB i4 reduced the dendritic complexity of cortical neurons, whereas over-expression of isoform 1 increased this complexity. Co-expression of isoform 1 and SOLOIST/MRTFB i4 in cortical neurons revealed that isoform 1 competitively counteracted down-regulation by SOLOIST/MRTFB i4. Our findings indicate that MRTFB isoforms have unique expression patterns and differential effects on gene expression and dendritic complexity, which contribute to shaping neuronal circuits, at least in part.
Collapse
Affiliation(s)
- Yuta Ishibashi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shizuku Shoji
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Laboratory of Molecular Neurobiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yukimi Kubo
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuro Tanaka
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Tanabe
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoyuki Hakamata
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoaki Miyata
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Natsumi Satou
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mineyuki Mizuguchi
- Laboratory of Structural Biology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keietsu Kikuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Present affiliation: Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Laboratory of Molecular Neurobiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
18
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
19
|
The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Good Tool for Better Understanding Neurodevelopment? J Clin Med 2019; 8:jcm8122088. [PMID: 31805691 PMCID: PMC6947477 DOI: 10.3390/jcm8122088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
The first description of the Reeler mutation in mouse dates to more than fifty years ago, and later, its causative gene (reln) was discovered in mouse, and its human orthologue (RELN) was demonstrated to be causative of lissencephaly 2 (LIS2) and about 20% of the cases of autosomal-dominant lateral temporal epilepsy (ADLTE). In both human and mice, the gene encodes for a glycoprotein referred to as reelin (Reln) that plays a primary function in neuronal migration during development and synaptic stabilization in adulthood. Besides LIS2 and ADLTE, RELN and/or other genes coding for the proteins of the Reln intracellular cascade have been associated substantially to other conditions such as spinocerebellar ataxia type 7 and 37, VLDLR-associated cerebellar hypoplasia, PAFAH1B1-associated lissencephaly, autism, and schizophrenia. According to their modalities of inheritances and with significant differences among each other, these neuropsychiatric disorders can be modeled in the homozygous (reln−/−) or heterozygous (reln+/−) Reeler mouse. The worth of these mice as translational models is discussed, with focus on their construct and face validity. Description of face validity, i.e., the resemblance of phenotypes between the two species, centers onto the histological, neurochemical, and functional observations in the cerebral cortex, hippocampus, and cerebellum of Reeler mice and their human counterparts.
Collapse
|
20
|
Loss of serum response factor in mature neurons in the dentate gyrus alters the morphology of dendritic spines and hippocampus-dependent behavioral tasks. Brain Struct Funct 2019; 224:2691-2701. [PMID: 31375980 PMCID: PMC6778544 DOI: 10.1007/s00429-019-01925-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Serum response factor (SRF) is a major transcription factor that regulates the expression of several plasticity-associated genes in the brain. Although the developmental expression of SRF in excitatory neurons is crucial for establishing proper hippocampal circuitry, no substantial evidence of its role in unstimulated mature neurons has been provided. The present study used time-controlled, conditional SRF knockout mice and found that the lack of SRF in adult neurons led to decreased actin levels and inactivation of the actin-severing protein cofilin 1 through its increase in phosphorylation at Ser3. The augmentation of cofilin 1 phosphorylation correlated with an alteration of dendritic spine morphology in the dentate gyrus, which was reflected by an increase in the number of spines that clustered into the long-spine category. The changes in spine morphology coincided with a lower amplitude and frequency of miniature excitatory postsynaptic currents. Moreover, SRF knockout animals were hyperactive and exhibited impairments in hippocampus-dependent behaviors, such as digging, marble burying, and nesting. Altogether, our data indicate that the adult deletion of neuronal SRF leads to alterations of spine morphology and function and hippocampus-dependent behaviors. Thus, SRF deletion in adult neurons recapitulates some aspects of morphological, electrophysiological, and behavioral changes that are observed in such psychiatric disorders as schizophrenia and autism spectrum disorders.
Collapse
|
21
|
Challenges in the clinical interpretation of small de novo copy number variants in neurodevelopmental disorders. Gene 2019; 706:162-171. [PMID: 31085274 DOI: 10.1016/j.gene.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
In clinical genetics, the need to discriminate between benign and pathogenic variants identified in patients with neurodevelopmental disorders is an absolute necessity. Copy number variants (CNVs) of small size can enable the identification of genes that are critical for neurologic development. However, assigning a definite association with a specific disorder is a difficult task. Among 328 trios analyzed over seven years of activity in a single laboratory, we identified 19 unrelated patients (5.8%) who carried a small (<500 kb) de novo CNV. Four patients had an additional independent de novo CNV. Nine had a variant that could be assigned as definitely pathogenic, whereas the remaining CNVs were considered as variants of unknown significance (VUS). We report clinical and molecular findings of patients harboring VUS. We reviewed the medical literature available for genes impacted by CNVs, obtained the probability of truncating loss-of-function intolerance, and compared overlapping CNVs reported in databases. The classification of small non-recurrent CNVs remains difficult but, among our findings, we provide support for a role of SND1 in the susceptibility of autism, describe a new case of the rare 17p13.1 microduplication syndrome, and report an X-linked duplication involving KIF4A and DLG3 as a likely cause of epilepsy.
Collapse
|
22
|
Xie X, Hou F, Li L, Chen Y, Liu L, Luo X, Gu H, Li X, Zhang J, Gong J, Song R. Polymorphisms of Ionotropic Glutamate Receptor-Related Genes and the Risk of Autism Spectrum Disorder in a Chinese Population. Psychiatry Investig 2019; 16:379-385. [PMID: 31132842 PMCID: PMC6539266 DOI: 10.30773/pi.2019.02.26.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/26/2019] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE To evaluate the association of GRIK2 and NLGN1 with autism spectrum disorder in a Chinese population. METHODS We performed spatio-temporal expression analysis of GRIK2 and NLGN1 in the developing prefrontal cortex, and examined the expression of the genes in ASD cases and healthy controls using the GSE38322 data set. Following, we performed a case-control study in a Chinese population. RESULTS The analysis using the publicly available expression data showed that GRIK2 and NLGN1 may have a role in the development of human brain and contribute to the risk of ASD. Later genetic analysis in the Chinese population showed that the GRIK2 rs6922753 for the T allele, TC genotype and dominant model played a significant protective role in ASD susceptibility (respectively: OR=0.840, p=0.023; OR=0.802, p=0.038; OR=0.791, p=0.020). The NLGN1 rs9855544 for the G allele and GG genotype played a significant protective role in ASD susceptibility (respectively: OR=0.844, p=0.019; OR=0.717, p=0.022). After adjusting p values, the statistical significance was lost (p>0.05). CONCLUSION Our results suggested that GRIK2 rs6922753 and NLGN1 rs9855544 might not confer susceptibility to ASD in the Chinese population.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Lingfei Liu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu Luo
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaiting Gu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Huang H, Cheng S, Ding M, Wen Y, Ma M, Zhang L, Li P, Cheng B, Liang X, Liu L, Du Y, Zhao Y, Kafle OP, Han B, Zhang F. Integrative analysis of transcriptome-wide association study and mRNA expression profiles identifies candidate genes associated with autism spectrum disorders. Autism Res 2018; 12:33-38. [PMID: 30561910 DOI: 10.1002/aur.2048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/21/2018] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASD) are a group of highly heritable psychiatric syndromes with high prevalence. The genetic mechanism of ASD remains elusive now. Here we conducted a transcriptome-wide association study (TWAS) of ASD. The GWAS summary data of ASD was driven from the Psychiatric Genomics Consortium (PGC) portal, totally involving 5,305 ASD cases and 5,305 controls. FUSION software was applied to the GWAS summary data for tissue-related TWAS of ASD considering brain and blood. The ASD associated genes identified by TWAS were further validated by mRNA expression profiling of ASD and the Simons Foundation for Autism Research (SFARI) Gene tool. DAVID 6.8 was used to perform gene ontology (GO) enrichment analysis of ASD associated genes identified by TWAS. TWAS identified 85 genes with TWAS P value <0.05 for ASD. Further comparing the 85 genes with the differentially expressed genes identified by mRNA expression profiling of ASD patients found 5 overlapped genes, including MUTYH (PTWAS = 0.0460, PmRNA = 0.0040), ARHGAP27 (PTWAS = 0.0100, PmRNA = 0.0016), GCA (PTWAS = 0.0480, PmRNA = 0.0063), CCDC14 (PTWAS = 0.0067, PmRNA = 0.0035), and MED15 (PTWAS = 0.0324, PmRNA = 0.0092). Gene Ontology (GO) enrichment analysis of the genes identified by TWAS detected 10 significant GO terms, such as mitochondrion (P = 0.0051), NAD or NADH binding (P = 0.0169), mitochondrial part (P = 0.0386) and 2-oxoglutarate metabolic process (P = 0.0399). In conclusion, this study identified multiple ASD associated genes and gene sets, providing novel clues for revealing the pathogenesis of ASD. Autism Research 2019, 12: 33-38. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Recent genetic studies of autism spectrum disorders (ASD) have found multiple ASD related genes. However, the results of these studies were hardly replicated with each other, providing limited clues for exploring the genetic mechanism of ASD. This study detected a group of candidate genes showing transcriptome-wide associations with ASD. These results may provide novel clues for revealing the pathogenesis of ASD.
Collapse
Affiliation(s)
- Huimei Huang
- Health Science Center, Xi'an Jiaotong University, Xi'an, China.,The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Miao Ding
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ping Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Du
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Om Prakash Kafle
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Kikuchi K, Ihara D, Fukuchi M, Tanabe H, Ishibashi Y, Tsujii J, Tsuda M, Kaneda M, Sakagami H, Okuno H, Bito H, Yamazaki Y, Ishikawa M, Tabuchi A. Involvement of SRF coactivator MKL2 in BDNF-mediated activation of the synaptic activity-responsive element in the Arc gene. J Neurochem 2018; 148:204-218. [PMID: 30244496 DOI: 10.1111/jnc.14596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
The expression of immediate early genes (IEGs) is thought to be an essential molecular basis of neuronal plasticity for higher brain function. Many IEGs contain serum response element in their transcriptional regulatory regions and their expression is controlled by serum response factor (SRF). SRF is known to play a role in concert with transcriptional cofactors. However, little is known about how SRF cofactors regulate IEG expression during the process of neuronal plasticity. We hypothesized that one of the SRF-regulated neuronal IEGs, activity-regulated cytoskeleton-associated protein (Arc; also termed Arg3.1), is regulated by an SRF coactivator, megakaryoblastic leukemia (MKL). To test this hypothesis, we initially investigated which binding site of the transcription factor or SRF cofactor contributes to brain-derived neurotrophic factor (BDNF)-induced Arc gene transcription in cultured cortical neurons using transfection and reporter assays. We found that BDNF caused robust induction of Arc gene transcription through a cAMP response element, binding site of myocyte enhancer factor 2, and binding site of SRF in an Arc enhancer, the synaptic activity-responsive element (SARE). Regardless of the requirement for the SRF-binding site, the binding site of a ternary complex factor, another SRF cofactor, did not affect BDNF-mediated Arc gene transcription. In contrast, chromatin immunoprecipitation revealed occupation of MKL at the SARE. Furthermore, knockdown of MKL2, but not MKL1, significantly decreased BDNF-mediated activation of the SARE. Taken together, these findings suggest a novel mechanism by which MKL2 controls the Arc SARE in response to BDNF stimulation.
Collapse
Affiliation(s)
- Keietsu Kikuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Tanabe
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuta Ishibashi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Junya Tsujii
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Marisa Kaneda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuya Yamazaki
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mitsuru Ishikawa
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
25
|
Um SM, Ha S, Lee H, Kim J, Kim K, Shin W, Cho YS, Roh JD, Kang J, Yoo T, Noh YW, Choi Y, Bae YC, Kim E. NGL-2 Deletion Leads to Autistic-like Behaviors Responsive to NMDAR Modulation. Cell Rep 2018; 23:3839-3851. [DOI: 10.1016/j.celrep.2018.05.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
|
26
|
Synaptic localisation of SRF coactivators, MKL1 and MKL2, and their role in dendritic spine morphology. Sci Rep 2018; 8:727. [PMID: 29335431 PMCID: PMC5768758 DOI: 10.1038/s41598-017-18905-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
The megakaryoblastic leukaemia (MKL) family are serum response factor (SRF) coactivators, which are highly expressed in the brain. Accordingly, MKL plays important roles in dendritic morphology, neuronal migration, and brain development. Further, nucleotide substitutions in the MKL1 and MKL2 genes are found in patients with schizophrenia and autism spectrum disorder, respectively. Thus, studies on the precise synaptic localisation and function of MKL in neurons are warranted. In this study, we generated and tested new antibodies that specifically recognise endogenously expressed MKL1 and MKL2 proteins in neurons. Using these reagents, we biochemically and immunocytochemically show that MKL1 and MKL2 are localised at synapses. Furthermore, shRNA experiments revealed that postsynaptic deletion of MKL1 or MKL2 reduced the percentage of mushroom- or stubby-type spines in cultured neurons. Taken together, our findings suggest that MKL1 and MKL2 are present at synapses and involved in dendritic spine maturation. This study may, at least in part, contribute to better understanding of the molecular mechanisms underlying MKL-mediated synaptic plasticity and neurological disorders.
Collapse
|
27
|
Fakhoury M. Imaging genetics in autism spectrum disorders: Linking genetics and brain imaging in the pursuit of the underlying neurobiological mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:101-114. [PMID: 28322981 DOI: 10.1016/j.pnpbp.2017.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorders (ASD) include a wide range of heterogeneous neurodevelopmental conditions that affect an individual in several aspects of social communication and behavior. Recent advances in molecular genetic technologies have dramatically increased our understanding of ASD etiology through the identification of several autism risk genes, most of which serve important functions in synaptic plasticity and protein synthesis. However, despite significant progress in this field of research, the characterization of the neurobiological mechanisms by which common genetic risk variants might operate to give rise to ASD symptomatology has proven to be far more difficult than expected. The imaging genetics approach holds great promise for advancing our understanding of ASD etiology by bridging the gap between genetic variations and their resultant biological effects on the brain. This paper provides a conceptual overview of the contribution of genetics in ASD and discusses key findings from the emerging field of imaging genetics.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
28
|
Chen CH, Chen HI, Chien WH, Li LH, Wu YY, Chiu YN, Tsai WC, Gau SSF. High resolution analysis of rare copy number variants in patients with autism spectrum disorder from Taiwan. Sci Rep 2017; 7:11919. [PMID: 28931914 PMCID: PMC5607249 DOI: 10.1038/s41598-017-12081-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Rare genomic copy number variations (CNVs) (frequency <1%) contribute a part to the genetic underpinnings of autism spectrum disorders (ASD). The study aimed to understand the scope of rare CNV in Taiwanese patients with ASD. We conducted a genome-wide CNV screening of 335 ASD patients (299 males, 36 females) from Taiwan using Affymetrix Genome-Wide Human SNP Array 6.0 and compared the incidence of rare CNV with that of 1093 control subjects (525 males, 568 females). We found a significantly increased global burden of rare CNVs in the ASD group compared to the controls as a whole or when the rare CNVs were classified by the size and types of CNV. Further analysis confirmed the presence of several rare CNVs at regions strongly associated with ASD as reported in the literature in our sample. Additionally, we detected several new private pathogenic CNVs in our samples and five patients carrying two pathogenic CNVs. Our data indicate that rare genomic CNVs contribute a part to the genetic landscape of our ASD patients. These CNVs are highly heterogeneous, and the clinical interpretation of the pathogenic CNVs of ASD is not straightforward in consideration of the incomplete penetrance, varied expressivity, and individual genetic background.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
- Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-I Chen
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei-Hsien Chien
- Department of Occupational Therapy, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Yu Wu
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yen-Nan Chiu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wen-Che Tsai
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Peng XD, Huang CQ, Chen L, Wei XM, Liu QX, Wang ZR. The polymorphism of CLOCK gene rs4864548 A>G is associated with susceptibility of Alzheimer’s disease in Chinese population. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1371951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiao-Dong Peng
- Key Laboratory of Chronobiology of Health Ministry, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Chang-Quan Huang
- Departments of Geriatrics, the Third Hospital of Mianyang, Mianyang, China
| | - Ling Chen
- Departments of Geriatrics, the Third Hospital of Mianyang, Mianyang, China
| | - Xue-Mei Wei
- Departments of Geriatrics, the Third Hospital of Mianyang, Mianyang, China
| | - Qing-Xiu Liu
- Departments of Geriatrics, the Third Hospital of Mianyang, Mianyang, China
| | - Zheng-rong Wang
- Key Laboratory of Chronobiology of Health Ministry, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Feng W, Kawauchi D, Körkel-Qu H, Deng H, Serger E, Sieber L, Lieberman JA, Jimeno-González S, Lambo S, Hanna BS, Harim Y, Jansen M, Neuerburg A, Friesen O, Zuckermann M, Rajendran V, Gronych J, Ayrault O, Korshunov A, Jones DTW, Kool M, Northcott PA, Lichter P, Cortés-Ledesma F, Pfister SM, Liu HK. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun 2017; 8:14758. [PMID: 28317875 PMCID: PMC5364396 DOI: 10.1038/ncomms14758] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/25/2017] [Indexed: 12/16/2022] Open
Abstract
Mutations in chromatin modifier genes are frequently associated with neurodevelopmental diseases. We herein demonstrate that the chromodomain helicase DNA-binding protein 7 (Chd7), frequently associated with CHARGE syndrome, is indispensable for normal cerebellar development. Genetic inactivation of Chd7 in cerebellar granule neuron progenitors leads to cerebellar hypoplasia in mice, due to the impairment of granule neuron differentiation, induction of apoptosis and abnormal localization of Purkinje cells, which closely recapitulates known clinical features in the cerebella of CHARGE patients. Combinatory molecular analyses reveal that Chd7 is required for the maintenance of open chromatin and thus activation of genes essential for granule neuron differentiation. We further demonstrate that both Chd7 and Top2b are necessary for the transcription of a set of long neuronal genes in cerebellar granule neurons. Altogether, our comprehensive analyses reveal a mechanism with chromatin remodellers governing brain development via controlling a core transcriptional programme for cell-specific differentiation.
Collapse
Affiliation(s)
- Weijun Feng
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Daisuke Kawauchi
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Huiqin Körkel-Qu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Huan Deng
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Elisabeth Serger
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Laura Sieber
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Jenna Ariel Lieberman
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Sander Lambo
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Bola S. Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Yassin Harim
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Malin Jansen
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Anna Neuerburg
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Olga Friesen
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Marc Zuckermann
- Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Vijayanad Rajendran
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Jan Gronych
- Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Olivier Ayrault
- Institut Curie, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110, 91405 Orsay, France
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Centre (DKFZ), Department of Neuropathology, University of Heidelberg, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg 69120, Germany
| | - David T. W. Jones
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg 69120, Germany
| | - Marcel Kool
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Paul A. Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Peter Lichter
- Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg 69120, Germany
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Stefan M. Pfister
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg 69120, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ–ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| |
Collapse
|
32
|
Safari MR, Omrani MD, Noroozi R, Sayad A, Sarrafzadeh S, Komaki A, Manjili FA, Mazdeh M, Ghaleiha A, Taheri M. Synaptosome-Associated Protein 25 (SNAP25) Gene Association Analysis Revealed Risk Variants for ASD, in Iranian Population. J Mol Neurosci 2016; 61:305-311. [PMID: 27888397 DOI: 10.1007/s12031-016-0860-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a common, complex neurological condition, affecting approximately 1% of people worldwide. Monogenic neurodevelopmental disorders which showed autistic behavior patterns have suggested synaptic dysfunction, as a key mechanism in the pathophysiology of ASD. Subsequently, genes involved in synaptic signaling have been investigated with a priority for candidate gene studies. A synaptosomal-associated protein 25 (SNAP25) gene plays a crucial role in the central nervous system, contributing to exocytosis by targeting and fusion of vesicles to the cell membrane. Studies have shown a correlation between aberrant expression of the SNAP25 and a variety of brain diseases. Single nucleotide polymorphisms (SNPs) in this gene are associated with several psychiatric diseases, such as bipolar, schizophrenia, and attention-deficit/hyperactivity disorder. The aim of the present study was to investigate whether polymorphisms (rs3746544 and rs1051312) in the regulatory 3'-untranslated region (3'UTR) of the SNAP25 gene have an association with ASD in unrelated Iranian case (N = 524)-control (N = 472) samples. We observed robust association of the rs3746544 SNP and ASD patients, in both allele and haplotype-based analyses. Our results supported the previous observations and indicated a possible role for SNAP25 polymorphisms as susceptibility genetic factors involved in developing ASD.
Collapse
Affiliation(s)
- Mohammad Reza Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, No 23, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| | - Rezvan Noroozi
- Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neurology, Hamadan University of Medical sciences, Hamadan, Iran
| | - Ali Ghaleiha
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, No 23, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran.
| |
Collapse
|
33
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
34
|
Tudor staphylococcal nuclease: biochemistry and functions. Cell Death Differ 2016; 23:1739-1748. [PMID: 27612014 DOI: 10.1038/cdd.2016.93] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022] Open
Abstract
Tudor staphylococcal nuclease (TSN, also known as Tudor-SN, SND1 or p100) is an evolutionarily conserved protein with invariant domain composition, represented by tandem repeat of staphylococcal nuclease domains and a tudor domain. Conservation along significant evolutionary distance, from protozoa to plants and animals, suggests important physiological functions for TSN. It is known that TSN is critically involved in virtually all pathways of gene expression, ranging from transcription to RNA silencing. Owing to its high protein-protein binding affinity coexistent with enzymatic activity, TSN can exert its biochemical function by acting as both a scaffolding molecule of large multiprotein complexes and/or as a nuclease. TSN is indispensible for normal development and stress resistance, whereas its increased expression is closely associated with various types of cancer. Thus, TSN is an attractive target for anti-cancer therapy and a potent tumor marker. Considering ever increasing interest to further understand a multitude of TSN-mediated processes and a mechanistic role of TSN in these processes, here we took an attempt to summarize and update the available information about this intriguing multifunctional protein.
Collapse
|
35
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
36
|
Fraley ER, Burkett ZD, Day NF, Schwartz BA, Phelps PE, White SA. Mice with Dab1 or Vldlr insufficiency exhibit abnormal neonatal vocalization patterns. Sci Rep 2016; 6:25807. [PMID: 27184477 PMCID: PMC4868998 DOI: 10.1038/srep25807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 11/27/2022] Open
Abstract
Genetic and epigenetic changes in components of the Reelin-signaling pathway (RELN, DAB1) are associated with autism spectrum disorder (ASD) risk. Social communication deficits are a key component of the ASD diagnostic criteria, but the underlying neurogenetic mechanisms remain unknown. Reln insufficient mice exhibit ASD-like behavioral phenotypes including altered neonatal vocalization patterns. Reelin affects multiple pathways including through the receptors, Very low-density lipoprotein receptor (Vldlr), Apolipoprotein receptor 2 (Apoer2), and intracellular signaling molecule Disabled-1 (Dab1). As Vldlr was previously implicated in avian vocalization, here we investigate vocalizations of neonatal mice with a reduction or absence of these components of the Reelin-signaling pathway. Mice with low or no Dab1 expression exhibited reduced calling rates, altered call-type usage, and differential vocal development trajectories. Mice lacking Vldlr expression also had altered call repertoires, and this effect was exacerbated by deficiency in Apoer2. Together with previous findings, these observations 1) solidify a role for Reelin in vocal communication of multiple species, 2) point to the canonical Reelin-signaling pathway as critical for development of normal neonatal calling patterns in mice, and 3) suggest that mutants in this pathway could be used as murine models for Reelin-associated vocal deficits in humans.
Collapse
Affiliation(s)
- E R Fraley
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - Z D Burkett
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - N F Day
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - B A Schwartz
- Undergraduate Interdepartmental Program in Neuroscience, University of California, Los Angeles, USA
| | - P E Phelps
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - S A White
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| |
Collapse
|
37
|
Shen Y, Xun G, Guo H, He Y, Ou J, Dong H, Xia K, Zhao J. Association and gene-gene interactions study of reelin signaling pathway related genes with autism in the Han Chinese population. Autism Res 2015; 9:436-42. [PMID: 26285919 DOI: 10.1002/aur.1540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 07/03/2015] [Accepted: 07/31/2015] [Indexed: 11/08/2022]
Abstract
Autism is a neurodevelopmental disorder with unclear etiology. Reelin had been proposed to participate in the etiology of autism due to its important role in brain development. The goal of this study was to explore the association and gene-gene interactions of reelin signaling pathway related genes (RELN, VLDLR, LRP8, DAB1, FYN, and CDK5) with autism in Han Chinese population. Genotyping data of the six genes were obtained from a recent genome-wide association study performed in 430 autistic children who fulfilled the DSM-IV-TR criteria for autistic disorder, and 1,074 healthy controls. Single marker case-control association analysis and haplotype case-control association analysis were conducted after the data was screened. Multifactor dimensionality reduction (MDR) was applied to further test gene-gene interactions. Neither the single marker nor the haplotype association tests found any significant difference between the autistic group and the control group after permutation test of 1,000 rounds. The 4-locus MDR model (comprising rs6143734, rs1858782, rs634500, and rs1924267 which belong to RELN and DAB1) was determined to be the model with the highest cross-validation consistency (CVC) and testing balanced accuracy. The results indicate that an interaction between RELN and DAB1 may increase the risk of autism in the Han Chinese population. Furthermore, it can also be inferred that the involvement of RELN in the etiology of autism would occur through interaction with DAB1.
Collapse
Affiliation(s)
- Yidong Shen
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Guanglei Xun
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Center of Shandong Province, Jinan, China
| | - Hui Guo
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yiqun He
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, China.,The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Jianjun Ou
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Huixi Dong
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jingping Zhao
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
38
|
Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases. Mol Pharmacol 2015; 88:203-17. [PMID: 25904555 PMCID: PMC4468639 DOI: 10.1124/mol.115.097998] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases.
Collapse
Affiliation(s)
- Hongjie Yuan
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Chian-Ming Low
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Olivia A Moody
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Andrew Jenkins
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Stephen F Traynelis
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| |
Collapse
|
39
|
Abstract
There is now substantial evidence that autistic-like traits in the general population lie on a continuum, with clinical autism spectrum disorders (ASD) representing the extreme end of this distribution. In this study, we sought to evaluate five independently identified genetic associations with ASD with autistic-like traits in the general population. In the study cohort, clinical phenotype and genomewide association genotype data were obtained from the Western Australian Pregnancy Cohort (Raine) Study. The outcome measure used was the Autism Spectrum Quotient (AQ), a quantitative measure of autistic-like traits of individuals in the cohort. Total AQ scores were calculated for each individual, as well as scores for three subscales. Five candidate single nucleotide polymorphism (SNP) associations with ASD, reported in previously published genomewide association studies, were selected using a nominal cutoff value of P less than 1.0×10. We tested whether these five SNPs were associated with total AQ and the subscales, after adjustment for possible confounders. SNP rs4141463 located in the macro domain containing 2 (MACROD2) gene was significantly associated with the Communication/Mindreading subscale. No other SNP was significantly associated with total AQ or the subscales. The MACROD2 gene is a strong positional candidate risk factor for autistic-like traits in the general population.
Collapse
|
40
|
Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int J Dev Neurosci 2015; 43:70-7. [PMID: 25862937 DOI: 10.1016/j.ijdevneu.2015.04.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders that is among the most severe in terms of prevalence, morbidity and impact to the society. It is characterized by complex behavioral phenotype and deficits in both social and cognitive functions. Although the exact cause of ASD is still not known, the main findings emphasize the role of genetic and environmental factors in the development of autistic behavior. Environmental factors are also likely to interact with the genetic profile and cause aberrant changes in brain growth, neuronal development, and functional connectivity. The past few years have seen an increase in the prevalence of ASD, as a result of enhanced clinical tests and diagnostic tools. Despite growing evidence for the involvement of endogenous biomarkers in the pathophysiology of ASD, early detection of this disorder remains a big challenge. This paper describes the main behavioral and cognitive features of ASD, as well as the symptoms that differentiate autism from other developmental disorders. An attempt will be made to integrate all the available evidence which point to reduced brain connectivity, mirror neurons deficits, and inhibition-excitation imbalance in individuals with ASD. Finally, this review discusses the main factors involved in the pathophysiology of ASD, and illustrates some of the most important markers used for the diagnosis of this debilitating disorder.
Collapse
|
41
|
Martin-Guerrero I, Gutierrez-Camino A, Lopez-Lopez E, Bilbao-Aldaiturriaga N, Pombar-Gomez M, Ardanaz M, Garcia-Orad A. Genetic variants in miRNA processing genes and pre-miRNAs are associated with the risk of chronic lymphocytic leukemia. PLoS One 2015; 10:e0118905. [PMID: 25793711 PMCID: PMC4368096 DOI: 10.1371/journal.pone.0118905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/15/2015] [Indexed: 01/05/2023] Open
Abstract
Genome wide association studies (GWAS) have identified several low-penetrance susceptibility alleles in chronic lymphocytic leukemia (CLL). Nevertheless, these studies scarcely study regions that are implicated in non-coding molecules such as microRNAs (miRNAs). Abnormalities in miRNAs, as altered expression patterns and mutations, have been described in CLL, suggesting their implication in the development of the disease. Genetic variations in miRNAs can affect levels of miRNA expression if present in pre-miRNAs and in miRNA biogenesis genes or alter miRNA function if present in both target mRNA and miRNA sequences. Therefore, the present study aimed to evaluate whether polymorphisms in pre-miRNAs, and/or miRNA processing genes contribute to predisposition for CLL. A total of 91 SNPs in 107 CLL patients and 350 cancer-free controls were successfully analyzed using TaqMan Open Array technology. We found nine statistically significant associations with CLL risk after FDR correction, seven in miRNA processing genes (rs3805500 and rs6877842 in DROSHA, rs1057035 in DICER1, rs17676986 in SND1, rs9611280 in TNRC6B, rs784567 in TRBP and rs11866002 in CNOT1) and two in pre-miRNAs (rs11614913 in miR196a2 and rs2114358 in miR1206). These findings suggest that polymorphisms in genes involved in miRNAs biogenesis pathway as well as in pre-miRNAs contribute to the risk of CLL. Large-scale studies are needed to validate the current findings.
Collapse
Affiliation(s)
- Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Bilbao, Spain
| | - Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Bilbao, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Bilbao, Spain
| | - Nerea Bilbao-Aldaiturriaga
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Bilbao, Spain
| | - Maria Pombar-Gomez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Bilbao, Spain
| | | | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Bilbao, Spain
- BioCruces Health Research Institute, UPV/EHU, Leioa, Spain
- * E-mail:
| |
Collapse
|
42
|
Micheau J, Vimeney A, Normand E, Mulle C, Riedel G. Impaired hippocampus-dependent spatial flexibility and sociability represent autism-like phenotypes in GluK2 mice. Hippocampus 2014; 24:1059-69. [PMID: 24753134 DOI: 10.1002/hipo.22290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/06/2022]
Abstract
Autism is a complex neurodevelopmental disorder with high heritability. grik2 (which encodes the GluK2 subunit of kainate receptors) has been identified as a susceptibility gene in Autism Spectrum Disorders (ASD), but its role in the core and associated symptoms of ASD still remains elusive. We used mice lacking GluK2 (GluK2 KO) to examine their endophenotype with a view to modeling aspects of autism, including social deficits, stereotyped and repetitive behavior and decreased cognitive abilities. Anxiety was recorded in the elevated plus maze, social behavior in a three-chamber apparatus, and cognition in different water maze protocols. Deletion of the GluK2 gene reduced locomotor activity and sociability as indicated by the social interaction task. In addition, GluK2 KO mice learnt to locate a hidden platform in a water maze surrounded by a curtain with hanging cues faster than wild-type mice. They maintained a bias toward the target quadrant when some of these cues were removed, at which point wild-types orthogonalized the behavior and showed no memory. However, GluK2 KO mice were impaired in spatial reversal learning. These behavioral data together with previously published electrophysiology showing severe anomalies in CA3 network activity, suggest a computational shift in this network for enhanced propensity of pattern completion that would explain the loss of behavioral flexibility in GluK2 KO mice. Although a single mutation cannot recapitulate the entire core symptoms of ASD, our data provide evidence for glutamatergic dysfunction underlying a number of social- and cognition-related phenotypes relevant to ASD.
Collapse
Affiliation(s)
- Jacques Micheau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, CNRS, UMR 5287, 33 405, Talence, Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Gayatri S, Bedford MT. Readers of histone methylarginine marks. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:702-10. [PMID: 24583552 PMCID: PMC4099268 DOI: 10.1016/j.bbagrm.2014.02.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
Abstract
Arginine methylation is a common posttranslational modification (PTM) that alters roughly 0.5% of all arginine residues in the cells. There are three types of arginine methylation: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). These three PTMs are enriched on RNA-binding proteins and on histones, and also impact signal transduction cascades. To date, over thirty arginine methylation sites have been cataloged on the different core histones. These modifications alter protein structure, impact interactions with DNA, and also generate docking sites for effector molecules. The primary "readers" of methylarginine marks are Tudor domain-containing proteins. The complete family of thirty-six Tudor domain-containing proteins has yet to be fully characterized, but at least ten bind methyllysine motifs and eight bind methylarginine motifs. In this review, we will highlight the biological roles of the Tudor domains that interact with arginine methylated motifs, and also address other types of interactions that are regulated by these particular PTMs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Sitaram Gayatri
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
44
|
Guedj F, Pennings JLA, Wick HC, Bianchi DW. Analysis of adult cerebral cortex and hippocampus transcriptomes reveals unique molecular changes in the Ts1Cje mouse model of down syndrome. Brain Pathol 2014; 25:11-23. [PMID: 24916381 DOI: 10.1111/bpa.12151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
We investigated gene expression and functional differences between Ts1Cje mice and wild-type (WT) littermates in adult cerebral cortex and hippocampus. These two brain regions are affected in people with Down syndrome, but have not been previously molecularly characterized in Ts1Cje mice. Total RNA was prepared from the brains of 8-10-week-old Ts1Cje mice (n = 6) and WT littermates (n = 5) and hybridized to Affymetrix 1.0 ST gene mouse arrays. Differentially regulated genes were identified and used to perform in silico functional analyses to better characterize dysregulated pathways in both brain regions. Hippocampus had more significantly differentially expressed genes compared with cortex (30 vs. 7 at a Benjamini-Hochberg false discovery rate of 20%). We identified novel genes that were differentially regulated in adult brains, including Cyb5r1, Fsbp, Vmn2r110, Snd1 and Zhx2. Functional analyses in Ts1Cje mice highlighted the importance of NFAT signaling, oxidative stress, neuroinflammation and olfactory perception via G-protein signaling. In a comparison of adult Ts1Cje and WT brains, we identified new genes and pathway differences in the cortex and hippocampus. Our analyses identified physiologically relevant pathways that can serve as targets for the development of future treatments to improve neurocognition in Down syndrome.
Collapse
Affiliation(s)
- Faycal Guedj
- Mother Infant Research Institute, Floating Hospital for Children, Tufts Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
45
|
Poot M. A candidate gene association study further corroborates involvement of contactin genes in autism. Mol Syndromol 2014; 5:229-35. [PMID: 25337070 DOI: 10.1159/000362891] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 01/09/2023] Open
Abstract
Although autism spectrum disorder (ASD) shows a high degree of heritability, only a few mutated genes and mostly de novo copy number variations (CNVs) with a high phenotypic impact have as yet been identified. In families with multiple ASD patients, transmitted CNVs often do not appear to cosegregate with disease. Therefore, also transmitted single nucleotide variants which escape detection if genetic analyses were limited to CNVs may contribute to disease risk. In several studies of ASD patients, CNVs covering at least one gene of the contactin gene family were found. To determine whether there is evidence for a contribution of transmitted variants in contactin genes, a cohort of 67 ASD patients and a population-based reference of 117 healthy individuals, who were not related to the ASD families, were compared. In total, 1,648 SNPs, spanning 12.1 Mb of genomic DNA, were examined. After Bonferroni correction for multiple testing, the strongest signal was found for a SNP located within the CNTN5 gene (rs6590473 [G], p = 4.09 × 10(-7); OR = 3.117; 95% CI = 1.603-6.151). In the ASD cohort, a combination of risk alleles of SNPs in CNTN6 (rs9878022 [A]; OR = 3.749) and in CNTNAP2 (rs7804520 [G]; OR = 2.437) was found more frequently than would be expected under random segregation, albeit this association was not statistically significant. The latter finding is consistent with a polygenic disease model in which multiple mutagenic mechanisms, operating concomitantly, elicit the ASD phenotype. Altogether, this study corroborates the possible involvement of contactins in ASD, which has been indicated by earlier studies of CNVs.
Collapse
Affiliation(s)
- Martin Poot
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
46
|
Michetti C, Romano E, Altabella L, Caruso A, Castelluccio P, Bedse G, Gaetani S, Canese R, Laviola G, Scattoni ML. Mapping pathological phenotypes in reelin mutant mice. Front Pediatr 2014; 2:95. [PMID: 25237666 PMCID: PMC4154529 DOI: 10.3389/fped.2014.00095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/21/2014] [Indexed: 11/20/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders with multifactorial origin characterized by social communication deficits and the presence of repetitive behaviors/interests. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we assessed the behavioral, neurochemical, and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in the ultrasonic vocal repertoire and a general delay in motor development of reeler pups. We now report that adult male heterozygous (Het) reeler mice did not show social behavior and communication deficits during male-female social interactions. Wildtype and Het mice showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection) only Het mice showed an over response to stress. In addition to the behavioral studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in Het mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD neurobehavioral phenotype.
Collapse
Affiliation(s)
- Caterina Michetti
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy ; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome , Italy
| | - Emilia Romano
- Behavioural Neuroscience Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy ; Bambino Gesù Children's Hospital, Istituto Di Ricovero e Cura a Carattere Scientifico , Rome , Italy
| | - Luisa Altabella
- Molecular and Cellular Imaging Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| | - Angela Caruso
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy ; Department of Psychology, School of Behavioural Neuroscience, Sapienza University of Rome , Rome , Italy
| | - Paolo Castelluccio
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| | - Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome , Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome , Italy
| | - Rossella Canese
- Molecular and Cellular Imaging Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| | - Giovanni Laviola
- Behavioural Neuroscience Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| | - Maria Luisa Scattoni
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
47
|
Lam YG. Re-examining the cognitive phenotype in autism: a study with young Chinese children. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:4591-4598. [PMID: 24171826 DOI: 10.1016/j.ridd.2013.09.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
Deficits consistently found in autism include an impaired "theory of mind", weak central coherence, and deficits in executive function. The current study examined whether this traditional cluster of symptoms existed in a group of Chinese-speaking children with autism. Sixteen high-functioning, non-retarded children with autism were matched to 16 typically developing (TD) children on gender, non-verbal IQ and age. Non-verbal IQ's of all participants were measured using the Raven Progressive Matrices. Each participant was tested individually on measures of "theory of mind", central coherence and executive function. Results indicated that most, but not all, participants with autism performed significantly poorer on two standard measures of first-order "theory of mind," although there was no significant difference on two other measures of that domain. As expected, they performed significantly worse on executive function tasks. However, the hypothesis of weak central coherence in autism was not substantiated. There was no evidence that these three cognitive impairments co-existed in individuals with autism. More likely, each of these deficits appears singly or in pair instead of forming a cluster.
Collapse
|
48
|
Fu X, Mei Z, Sun L. Association between the g.296596G > A genetic variant of RELN gene and susceptibility to autism in a Chinese Han population. Genet Mol Biol 2013; 36:486-9. [PMID: 24385848 PMCID: PMC3873176 DOI: 10.1590/s1415-47572013005000037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022] Open
Abstract
Autism is a childhood neuro-developmental disorder, and Reelin (RELN) is an important candidate gene for influencing autism. This study aimed at investigating the influence of genetic variants of the RELN gene on autism susceptibility. In this study, 205 autism patients and 210 healthy controls were recruited and the genetic variants of the RELN gene were genotyped by the created restriction site-polymerase chain reaction (CRS-PCR) method. The influence of genetic variants on autism susceptibility was analyzed by association analysis, and the g.296596G > A genetic variant in exon10 of the RELN gene was detected. The frequencies of allele/genotype in autistic patients were significantly different from those in healthy controls, and a statistically significant association was detected between this genetic variant and autism susceptibility. Our data lead to the inference that the g.296596G > A genetic variant in the RELN gene has a potential influence on autism susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaoyan Fu
- Department of Pediatrics, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Zhu Mei
- Department of Pediatrics, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Lixin Sun
- Department of Pediatrics, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Li J, Liu J, Zhao L, Ma Y, Jia M, Lu T, Ruan Y, Li Q, Yue W, Zhang D, Wang L. Association study between genes in Reelin signaling pathway and autism identifies DAB1 as a susceptibility gene in a Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:226-32. [PMID: 23333377 DOI: 10.1016/j.pnpbp.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/26/2012] [Accepted: 01/05/2013] [Indexed: 01/07/2023]
Abstract
Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. The genetic factors might play an important role in its pathogenesis. Previous studies revealed that Reelin (RELN) polymorphisms were associated with autism. However, the roles of genes in Reelin signaling pathway for autism are largely unknown. As several knockout mice models in which the Reelin pathway genes (i.e. DAB1, VLDLR/APOER2, FYN/SRC and CRK/CRKL) are deficient have the similar phenotype as the reeler mice (Reelin(-/-)), we hypothesized that the Reelin signaling pathway genes might play roles in the etiology of autism. Therefore, we conducted a family-based association study. Sixty-two tagged single nucleotide polymorphisms (SNPs) covering 15 genes in Reelin pathway were genotyped in 239 trios, and 14 significant SNPs were further investigated in the additional 188 trios. In the total 427 trios, we found significant genetic association between autism and four SNPs in DAB1 (rs12035887 G: p=0.0006; rs3738556 G: p=0.0044; rs1202773 A: p=0.0048; rs12740765 T: p=0.0196). After the Bonferroni correction, SNP rs12035887 remained significant. Furthermore, the haplotype constructed with rs1202773 and rs12023109 in DAB1 showed significant excess transmission in both individual and global haplotype analyses (p=0.0052 and 0.0279, respectively). Our findings suggested that variations in DAB1 involved in the Reelin signaling pathway might contribute to genetic susceptibility to autism with Chinese Han decent, supporting the defect in the Reelin signaling pathway as a predisposition factor for autism.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Poot M. Towards identification of individual etiologies by resolving genomic and biological conundrums in patients with autism spectrum disorders. Mol Syndromol 2013; 4:213-26. [PMID: 23885228 DOI: 10.1159/000350041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 01/11/2023] Open
Abstract
Recent genomic research into autism spectrum disorders (ASD) has revealed a remarkably complex genetic architecture. Large numbers of common variants, copy number variations and single nucleotide variants have been identified, yet each of them individually afforded only a small phenotypic impact. A polygenic model in which multiple genes interact either in an additive or a synergistic way appears the most plausible for the majority of ASD patients. Based on recently identified ASD candidate genes, transgenic mouse models for neuroligins/neurorexins and genes such as Cntnap2, Cntn5, Tsc1, Tsc2, Akt3, Cyfip1, Scn1a, En2, Slc6a4, and Bckdk have been generated and studied with respect to behavioral and neuroanatomical phenotypes and sensitivity to drug treatments. From these models, a few clues for potential pharmacologic intervention emerged. The Fmr1, Shank2 and Cntn5 knockout mice exhibited alterations of glutamate receptors, which may become a target for pharmacologic modulation. Some of the phenotypes of Mecp2 knockout mice can be ameliorated by administering IGF1. In the near future, comprehensive genotyping of individual patients and siblings combined with the novel insights generated from the transgenic animal studies may provide us with personalized treatment options. Eventually, autism may indeed turn out to be a phenotypically heterogeneous group of disorders ('autisms') caused by combinations of changes in multiple possible candidate genes, being different in each patient and requiring for each combination of mutations a distinct, individually tailored treatment.
Collapse
Affiliation(s)
- M Poot
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|